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Incentives, project choice, and dynamic multitasking

Martin Szydlowski
Department of Finance, Carlson School of Management, University of Minnesota

I study the optimal choice of projects in a continuous-time moral hazard model
with multitasking. I characterize the distortions caused by moral hazard and the
dynamics of the firm’s project choice. Both overinvestment and underinvestment
relative to a net present value (NPV) criterion can occur on the path of the con-
tract. As past performance increases, the firm chooses projects that require higher
pay–performance sensitivity. When the continuation value is large, investment
projects are chosen more efficiently, and project choice depends more on the NPV
and less on the incentive costs.

I implement the optimal contract with an equity stake, bonus payments, and a
personal account.

Keywords. Continuous-time contracting, project choice, multitasking, bonus
payments.

JEL classification. D86, G11, G31, G32, M12, M52.

1. Introduction

Managers oversee different projects. They select markets to enter, direct product de-
velopment, decide which employees to promote or fire, and allocate capital across di-
visions. Incentive contracts must guarantee that the manager allocates his effort to the
most profitable projects, not just that he works hard. But when effort is unobservable,
which project is profitable depends on how the cost of incentives interacts with its pay-
off characteristics. With forward looking managers, as past performance changes, so
must the cost of incentives. Project choice is therefore endogenous and changes over
time.

Despite the prevalence of long-term contracts in the real world, almost all of the lit-
erature on moral hazard with multiple tasks is static. The following important questions
are so far unanswered. (i) Which projects should be chosen at any given time? (ii) How
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does the project choice change with the firm’s past performance? (iii) Is there a selec-
tion criterion the firm can use that takes the agency costs into account? (iv) Can a simple
scheme, based on real-world instruments, implement the optimal contract?

To answer these questions, I build a continuous-time moral hazard model with mul-
tiple projects. I characterize how moral hazard distorts project choice, both across
projects and across time, and I examine the implications for the optimal provision of
incentives.

In my model, a firm has access to a fixed number of projects and a manager decides
whether to work or shirk in each. When he works, the project generates output that fol-
lows an arithmetic Brownian motion, with different drift and volatility for each project.1

Both principal and agent are risk-neutral. The agent is protected by limited liability and
the principal conditions payments to the agent on the observed history of output. In-
centivizing effort is costly since the agent has to be compensated for the effort cost. Also,
whenever the agent exerts effort in a project, the contract must be sufficiently sensitive
with respect to that project’s output. Because of limited liability, sufficiently bad perfor-
mance can lead to termination, which again is costly for the principal. Thus, there is a
trade-off between the project’s flow payoff and the induced termination risk, which can
depend on the history of the contract.

I characterize this trade-off and show that it can be expressed as a function of the
project’s net present value (NPV) and its risk–return ratio. The former captures the social
value of the project, while the latter affects the implicit cost of incentives. The distortions
of moral hazard can thus be interpreted as deviations from the NPV criterion.

These deviations from NPV can take the form of overinvestment or underinvestment.
That is, the principal may allow the agent to shirk on a positive NPV project, but she
may also direct him to work on a project with negative NPV on the path of the contract.
The intuition for underinvestment is standard: because of the cost of incentives, the
principal foregoes projects that are socially valuable. The overinvestment result is new
and requires a dynamic setting with multiple projects. It is caused by the principal’s
inability to punish the manager with lower payments in the presence of limited liabil-
ity.2 With a single project, the principal cannot demand money from the manager after
bad performance, so the only option is to fire him, which is inefficient.3 With multiple
projects, the principal can instead incentivize effort in a project she would otherwise
not choose. This lowers the manager’s realized flow utility because of the effort cost, so
it serves as an alternative punishment device. Because it substitutes for costly firing,
this punishment can be valuable to the principal even when the NPV of the project is
negative. Importantly, overinvestment is only temporary on the path of the contract. As

1Throughout the paper, I refer to drift as the return and to volatility as the risk of the project.
2Managers have limited liability with respect to the firm’s profits. In practice, the scope of clawback

provisions is often limited; see Babenko et al. (2017).
3Zhu (2013) has studied shirking in a dynamic moral hazard model with linear utilities and limited liabil-

ity. Throughout this paper, I focus on the case when shirking would never be optimal to avoid complications
stemming from a degenerate continuation value process that arise in Zhu’s paper.
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performance improves, the principal stops incentivizing any negative NPV projects and
instead chooses ones with positive NPV.4

I characterize the dynamics of the project choice and derive the set of chosen
projects at any point in time. This delivers several testable implications. Firms with suf-
ficiently high past performance choose projects that require higher pay–performance
sensitivity. Those are projects whose risk–return ratios are relatively low.5 The firm’s
choice is also more in line with the NPV criterion. If, across projects, higher return
implies the project is more costly to incentivize, firms choose projects with higher risk
and higher return when their past performance is better. Conversely, they choose safer
projects with lower return when their performance is worse.6

We can alternatively understand the model as a theory of managerial task allocation.
High performing managers are allocated more profitable but more difficult to incen-
tivize tasks, while low performing ones work on tasks that are easy to incentivize (i.e.,
require a low pay–performance sensitivity) but not very valuable. When a manager’s
performance decreases, he may even be allocated “busy work,” which is not valuable
but easy to incentivize.

From an applied perspective, the model provides a novel explanation for overinvest-
ment.7 The model also provides a rationalization for the use of bonus contracts. As
Murphy (1999) documents, most chief executive officer (CEO) contracts consist of eq-
uity and a bonus, and the latter is a linearly weighted function of the CEO’s performance
across different categories. The optimal contract in my paper can be implemented us-
ing an equity stake and bonus payments. Bonus payments are used since they help
fine-tune the manager’s incentives when there are multiple projects, by conditioning the
manager’s payoffs on the output of individual projects. This cannot be achieved with an
equity stake alone.

The manager’s pay–performance sensitivity can be decomposed into the sensitiv-
ity of the equity stake and the sensitivity of his bonus payments, which are both deter-
mined by the choice of projects and, therefore, the manager’s past performance. Again,
this yields testable implications since we can back out the pay–performance sensitivities
from the risk–return characteristics of the currently chosen projects.

The paper makes several technical contributions. First, there might be interactions
between projects, i.e., incentivizing one project might alter the cost of incentives for
others. Then the optimal project choice would have to be determined via a discrete op-
timization problem, which is difficult to solve. In my setting, incentivizing effort in one

4In other words, a negative NPV project is only valuable because there are other positive NPV projects
that can be chosen at other points in time.

5The risk–return ratio is the average project return conditional on the agent exerting effort divided by the
volatility of the project output. I define this ratio formally in Section 3.3.

6This finding also differs from the seminal risk-shifting result in Jensen and Meckling (1976). In that
paper, the possibility of liquidation leads firms to take on excessive risk, while in my work, it deters the firm
from taking risky projects.

7Overinvestment is well documented in the empirical literature. For example, Harford (1999) finds that
acquisitions of cash-rich firms decrease value. Richardson (2006) uses accounting measures to document
investment in negative NPV projects.



816 Martin Szydlowski Theoretical Economics 14 (2019)

project does not affect the current cost of incentives for other projects,8 although it does
alter the dynamics of the contract and, therefore, future cost of incentives. Therefore,
at any point in time, whether the agent should exert effort can be determined indepen-
dently for each project, using a criterion that links the project’s characteristics to the
current cost of incentives.

Second, incentivizing effort in a project implies the agent’s continuation value must
feature a volatility term with respect to the noise of that project’s output. Since effort
is not continuous, changing the set of projects the agent exerts effort in implies a jump
in the volatility term of the continuation value, so existence of the contract has to be
carefully considered. I show that the optimal contract can nonetheless be characterized
via a Hamilton–Jacobi–Bellman equation.

The paper proceeds as follows. Section 2 provides an overview of the related lit-
erature. Section 3 introduces the model, and illustrates basic results on the incentive
scheme and the principal’s value function. Section 4 is the core of the paper and dis-
cusses the optimal project selection scheme under both aggregate and project-based in-
centives. The implementation outlined in the paragraphs above is derived in Section 5.
Section 7 concludes.

2. Related literature

My paper contributes to the continuous-time contracting literature and uses the mar-
tingale representation approach (Schättler and Sung 1993, Sannikov 2008).

Underinvestment is a common result in this literature. He (2009) studies a model
where the payoffs follow a geometric Brownian motion. The agent controls the evolution
of firm size by choosing either to work or to shirk. For low continuation values, the
contract may feature shirking. We can interpret this as underinvestment, since the firm
grows more slowly.

Biais et al. (2010) study investment and downsizing as a way to incentivize accident
prevention. In their model, effort lowers the arrival rate of a Poisson shock that lowers
firm value. When the agent’s continuation value is low, reducing promised pay can-
not incentivize effort, because the agent’s limited liability constraint would be violated.
Then the principal provides punishments by downsizing the project. In this sense, Biais
et al. (2010) rationalize underinvestment.

DeMarzo et al. (2012) is the first paper to consider neoclassical investment in a
continuous-time agency framework. Their framework builds on DeMarzo and Sannikov
(2006), i.e., there is a single task, payoffs follow an arithmetic Brownian motion, the
agent either works or shirks, and everyone is risk-neutral. In addition, the principal
may invest in capital, which increases average profits. Inefficient termination reduces
the value of capital, so there is underinvestment.

Zhu (2013) also builds on DeMarzo and Sannikov (2006), but he considers contracts
that allow shirking. Shirking may be optimal for low continuation values, where it is

8This is because I am assuming that the effort cost is linearly separable. Doing so allows me to cleanly
separate the dynamic effects of moral hazard. Without moral hazard, the choice of projects is independent
over time. With moral hazard, past profits in one project affect the future value of another project.
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used as a punishment, or for high continuation values, where it is used as a reward. Fong
(2007) considers incentive contracts for surgeons, who have privately observed quality
and who can decide whether to avoid risky patients. This “risk selection” increases the
surgeon’s average performance but it may reduce patient welfare. The optimal contracts
for both good and bad surgeons are distorted. The bad surgeon always engages in selec-
tion behavior and the good surgeon engages in it when his continuation value is low. In
this sense, the optimal contract features shirking.

My underinvestment result is similar to the above papers. For low continuation val-
ues, the cost of incentives is high, because termination is likely. This lowers the value
of effort (Fong 2007, He 2009, Zhu 2013), capital investments (Biais et al. 2010, DeMarzo
et al. 2012), and, in my case, risky projects.

My overinvestment result is new compared to this literature. It relies on the following
conceptual insight. Incentivizing effort in a negative NPV project can effectively relax
the agent’s limited liability constraint and help avoid inefficient termination. This is
because negative NPV projects can act as punishment devices. To obtain such a result,
the principal needs to have different projects, with different NPVs and risk–return ratios.
My implementation, which features equity and project-specific bonus payments is, to
my knowledge, also new and has not been obtained by other papers following Sannikov
(2008) or DeMarzo and Sannikov (2006). This is because multiple projects are necessary
to capture the key stylized facts of bonus schemes.9

The problem of multitasking has received significant attention since the seminal ar-
ticle of Holmström and Milgrom (1991). Most of this literature assumes correlation be-
tween task outputs (see, e.g., Holmström and Milgrom 1991) or complementarity in the
profit or total effort cost (see, e.g., Dewatripont et al. 2000 and the discussion therein or
Bond and Gomes 2009 for a recent contribution). In my paper, there is no such depen-
dence. That is, project outputs are independent and the effort cost is linear. This allows
me to establish a clean benchmark. Without moral hazard, projects would be chosen
independently of each other. With moral hazard, certain projects are always chosen at
the same time on the equilibrium path. Thus, any dependence between projects arises
endogenously.

In my model, negative NPV projects (i.e., overinvestment) provide value because
they effectively relax the agent’s limited liability constraint. Bohren and Kravitz (2016)
exploit a similar mechanic, albeit without any negative NPV projects.10 In a static model
with multiple tasks and multiple agents, they show that bundling tasks into a single con-
tract and assigning multiple agents to each task also relaxes the limited liability con-
straint.11

Because of the complexity of multitask models, dynamic studies of multitasking are
rare. Manso (2011) studies the trade-off between two tasks interpreted as exploration

9As Murphy (1999) describes, CEOs are evaluated according to “customer satisfaction, operational
and/or strategic objectives (such as increasing plant capacity, bringing a new computer system on line
by a particular date, reducing time to market, etc.) and measures of plant safety” in addition to profits or
earnings. The total bonus is additive in the individual performance categories. With a single project, it is
impossible to rationalize such a structure.

10See their Assumption 1.
11I am grateful to a referee for pointing out this connection.
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and exploitation and Miquel-Florensa (2007) characterizes whether two tasks should be
executed sequentially or in parallel, depending on the strength of the externalities be-
tween them.

My model is also related to the literature on capital budgeting. For example, Harris
and Raviv (1996) and Harris and Raviv (1998) study the choice of projects when a divi-
sion manager has private information about project quality and has an incentive to mis-
report. Models in capital budgeting can explain underinvestment (e.g., Bernardo et al.
2006) and overinvestment (e.g., Harris and Raviv 1996, Bernardo et al. 2009) in static set-
tings, but they provide no guidance on how the firm’s project choice changes over time
or how it depends on past performance.12 An exception is Malenko (2018), who con-
siders a dynamic version of Harris and Raviv (1996). He derives the capital budgeting
mechanism in continuous time. Projects arrive at random times and they have uncer-
tain quality, which is privately observed by an agent. The optimal contract specifies how
much capital the principal contributes to each project and which projects are audited
to verify the manager’s reports. The contract can be implemented with a discretionary
account for the agent and a quality threshold above which projects are audited. In the
papers on capital budgeting, projects have a one-dimensional quality. By contrast, my
results on project choice dynamics (Section 4.2) are driven by a trade-off between risk
and return.

3. Model setup

3.1 Projects

I study a firm that has access to a fixed number of projects and hires a manager. The
shareholders of the firm act as the principal (she) and the manager acts as the agent
(he). Time is continuous and indexed by t, and the horizon is infinite. Each project
yields risky payoffs, and the agent decides in which projects to exert effort at any given
time. A project’s average payoff is μi if the agent works and 0 otherwise. Formally, for
any project i ∈ {1� � � � �N}, the cumulative output xit is given by

dxit = μiait dt + σi dBit�

with initial condition xi0 = 0 for all i. The Brownian motion Bit captures the noise in the
project’s payoff, while ait ∈ {0�1} denotes the agent’s decision to work or to shirk. The
project’s average payoff given effort is μi and σi measures the amount of noise. For two
projects i and j, the Brownian motions Bit and Bjt are mutually independent, so that the
path of each project’s payoffs is determined by the agent’s effort and the noise in that
project alone.13

12In Harris and Raviv (1996) an agent has private information about the value of a project and prefers to
overstate this value to receive a private benefit. The optimal contract then may optimally allow for some
overinvestment.

13Formally, Bit ⊥ Bjs for all times t� s ≥ 0. This helps to ensure that in the optimal contract, any depen-
dence between projects is driven by the agency friction, and not by assumptions on the firm’s technology.
The framework can be extended to allow for direct complementarities between projects.
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I denote the agent’s allocation of effort among projects with the vector at = (ait)
N
i=1

and the set of all possible allocations with A = {0�1}N . Whenever ait = 1 on the path
of the contract, I say project i is being chosen or selected at time t. When a project is
chosen on an interval left of t ′, but not chosen at t ′, I say that the project is stopped at
t ′.14 The project is started when the opposite holds. I also call at the project choice or
project allocation at time t. Additionally, the principal can decide to temporarily shut
down a project so it does not produce any output.15 I denote these shutdown decisions
as kit ∈ {0�1} and I let kt = (kit)Ni=1.

Throughout this paper, I focus on the case in which letting the agent shirk in all
projects is never optimal.16 I establish sufficient conditions in Appendix A.3.

3.2 Utility functions and the contract space

The vector of project-specific Brownian motions Bt := (B1t � � � � �BNt) is defined on a
complete probability space (��F�P) with filtration Ft , which satisfies the usual con-
ditions.17 While each project’s output can be fully observed by the principal and con-
tracted upon, effort is unobservable. The principal commits to a contract, which con-
sists of a cumulative consumption process c = {ct ∈ R+ : t ≥ 0}, a prescribed effort pro-
cess a= {at ∈ A : t ≥ 0}, project shutdown decisions k= {kt ∈ {0�1}N� t ≥ 0}, and a firing
time τ. Effort, consumption, and shutdowns are progressively measurable with respect
to Ft , and τ is an Ft-stopping time. I characterize incentive-compatible contracts, in
which the prescribed effort process equals the agent’s actual effort process ât .

Both principal and agent are risk-neutral. They have different discount factors, r and
γ, respectively, and the agent is less patient, i.e., r < γ.18 The agent’s total effort cost is
linear and symmetric in effort for each project, and is given by h

∑
i ait . This specifi-

cation, together with the mutual independence of the Brownian motions in the project
outputs, ensures that any potential dependence between projects along the path of the
optimal contract is driven by the agency friction instead of assumptions on technology
or preferences. The agent’s valueW0 is given by

W0 =E
[∫ τ

0
e−γt

(
dct − h

∑
i

ait dt

) ∣∣∣∣F0

]
� (1)

The agent is protected by a limited liability constraint, so that the cumulative consump-
tion process ct is nondecreasing.19

14Formally, project i is stopped at time t ′ if for some ε > 0, ait = 1 for t ∈ (t ′ − ε� t ′) and ait′ = 0.
15See also the discussion in the Section 3.2.
16This guarantees that the continuation value process for the agent has nondegenerate volatility, which

avoids the technical difficulties of having to deal with sticky Brownian motion, as in Zhu (2013), and con-
siderably simplifies the analysis.

17See Karatzas and Shreve (1991, p. 10).
18As noted in DeMarzo and Sannikov (2006), this prevents the principal from postponing the agent’s

consumption forever.
19Intuitively, the increment in the agent’s consumption payments dct may not be negative. This assump-

tion rules out trivial contracts in which it is costless to incentivize effort by demanding arbitrarily high pay-
ments from the agent when a low path of output realizes for one of the projects. Qualitatively, the results in
my paper remain unchanged if I assume dct ≥ −c dt for some c > 0.



820 Martin Szydlowski Theoretical Economics 14 (2019)

The principal receives the payoffs from each project and pays the agent’s compen-
sation. Her expected value is

J0 =E
[∫ τ

0
e−rt(kit dxit − dct)+ e−rτl ∣∣ F0

]
� (2)

When the firm is shut down, the principal can recover a salvage value l > 0. The agent
receives an outside payoff of zero in this case.

If a project is shut down, i.e., kit = 0, it generates no output for the principal, because
in her flow value kit multiplies dxit . I adopt this specification to simplify the interpreta-
tion of “choosing” projects.

On the path of the optimal contract, we have kit = ait . The principal would never
incentivize effort in a project, but then have it generate no output, so we must have
kit = 1 whenever ait = 1. Without loss of generality, we also havekit = 0 whenever ait = 0.
If the agent does not exert effort in a project, we have E[dxit |F0] = E[dBit |F0] = 0 for any
kit , so kit = 0 is optimal.

Using the law of iterated expectations, the principal’s value in (2) then becomes

J0 =E
[∫ τ

0
e−rt(aitμit dt − dct)+ e−rτl|F0

]
�

To save notation, I suppress the distinction between ait and kit . In the following section,
I focus on contracts that specify (a� c� τ).

3.3 Incentive compatibility and the principal’s problem

At any point in time, the history of the contract can be summarized by the agent’s con-
tinuation utility, which acts as a state variable.20 For any incentive-compatible contract
(a� c� τ), this continuation utility is given by

Wt =E
[∫ τ

t
e−γ(s−t)

(
dcs − h

∑
i

ais ds

) ∣∣ Ft
]
�

Lemma 1 below uses the martingale representation theorem21 to derive a law of mo-
tion for the continuation value Wt . The lemma also states an incentive compatibility
condition that ensures that the agent exerts effort.

Lemma 1. For any effort process a and consumption process c, there exists a collection of
progressively measurable and square integrable stochastic processes {(ψit)Ni=1 : 0 ≤ t ≤ τ},
such that the agent’s continuation value satisfies the law of motion

dWt =
(
γWt + h

∑
i

ait

)
dt − dct +

∑
i

ψit dBit � (3)

20Using the agent’s continuation value as a state variable is a common technique in dynamic contracts.
See Spear and Srivastava (1987) for an illustration.

21See Karatzas and Shreve (1991, Theorem 4.15, p. 182).
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Let ψi = hσi/μi. The contract is incentive compatible (IC) if and only if

ψit ≥ψi� (4)

whenever ait = 1 and ψit ≤ψi whenever ait = 0.22

The parameter ψit measures the pay–performance sensitivity (PPS) of the agent’s
continuation value with respect to the noise in project i’s output. When the agent shirks
on a small interval of time dt, his utility rises by hdt, since he does not incur the effort
cost. However, the output dxit decreases by μi dt on average. From the principal’s per-
spective, this is the same as dBit decreasing by μi/σi dt. The agent then loses ψitμi/σi dt
in continuation utility. To induce effort, this loss must be larger than hdt.

Lemma 1 also illustrates why the risk–return ratio RRi = μi/σi is important for pro-
viding incentives. When the agent shirks, he affects the principal’s beliefs about the re-
alization of dBit . When the risk–return ratio is large, observing a shortfall in output by
μi dt while the agent is working is a relatively unlikely event and corresponds to a large
negative realization of the Brownian noise. In this sense, it is easy to detect shirking and
the principal does not need a large PPS to provide incentives. The opposite holds for a
large volatility σi.

With the result of Lemma 1, the optimal contract can be expressed as a choice of
consumption payments dct , prescribed effort at , pay–performance sensitivities for each
project ψit , and a firing time τ. The principal maximizes the firm value (2), subject to
the promise-keeping constraint (3) and the incentive compatibility condition (4). The
principal’s problem is

J(W0) = max{ψit �ait �ct �τ}
E

[∫ τ

0
e−rt

(∑
i

μiait dt − dct
)

+ e−rτl ∣∣ F0

]

s.t. dWt =
(
γWt + h

∑
i

ait

)
dt − dct +

∑
i

ψit dBit

ψit ≥ σi
μi
h if ait = 1�

I characterize the solution in the following section.

3.4 Shape of the value function

The principal’s value function is the solution to a Hamilton–Jacobi–Bellman (HJB) equa-
tion, with the continuation value Wt as the only state variable. This solution is used in
the following sections to characterize the choice of projects. The proof of the proposition
below, which includes a verification argument, is provided in Appendix A.2.

22In Proposition 1, I show that the principal’s value function is strictly concave. On the path of the opti-
mal contract, we have ψit = 0 whenever ait = 0 and ψit =ψi whenever ait = 1.
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Proposition 1. Let n(at) = ∑
i ait denote the number of projects chosen at time t. The

HJB equation

rJ(W )= max
a∈A

∑
i

μiai + J′(W )
(
γW + hn(a)) + J′′(W )1

2

∑
i

ψ2
i ai (5)

with boundary conditions

J(0) = l�

J′(W̄ ) = −1�

J′′(W̄ ) = 0

has a unique twice continuously differentiable solution on the interval [0� W̄ ] that equals
the principal’s optimal value function. The optimal PPS for each project is given by

ψit =ψi
whenever ait = 1 and ψit = 0 whenever ait = 0. The value function is strictly concave on
(0� W̄ ) and three times continuously differentiable on any subset of (0� W̄ )with nonempty
interior on which project choice is constant. If W0 > W̄ , then the principal pays the agent
a discrete lump sum so that the continuation value reaches W̄ .

Figure 1 qualitatively illustrates the shape of the value function, which has the fol-
lowing features. WhenWt hits zero, the agent is fired and the principal receives the scrap
value of l. The principal’s value is concave, because introducing more risk in the con-
tract, via higher ψit , increases the likelihood that Wt hits zero and the contract is termi-
nated. Increasing Wt has two effects: a reduction in the likelihood of termination, but
also an increase in expected payments to the agent. When Wt is small, the first effect
dominates and the principal’s value may be increasing inWt .23 WhenWt = W̄ , the agent

Figure 1. Shape of the principal’s value function.

23Note that this regime is not renegotiation-proof as the principal’s value function is increasing in the
agent’s value. If renegotiation is allowed, the principal may agree to promise the agent a higher value,
since doing so would be mutually beneficial. The overall value for the principal is lower compared with
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is paid, i.e., dct > 0.24 The smooth pasting and super contact conditions, J′(W̄ ) = −1
and J′′(W̄ )= 0, ensure that the threshold W̄ is optimal.

Characterizing the value function faces several technical hurdles. First, the compo-

nents of the volatility in (3) have discrete jumps. This is because the volatility ofWt with

respect to Bit is ψi when the agent works on project i and is 0 when he shirks. There-

fore, one has to take care in showing that the stochastic differential equation for Wt has

a unique solution. Specifically, I prove the existence of ε-optimal controls for the prin-

cipal that ensure that Wt has a unique weak solution and that approximate the optimal

value arbitrarily closely.25 In all numerical solutions I have encountered, including those

I have not reported in this paper, there is a finite number of cutoffs at which project

choice changes. In these cases, Wt admits a unique weak solution even without resort-

ing to ε-optimal controls.26 Many standard sources rely on strong solutions and require

Lipschitz continuity of the volatility with respect to the state under the optimal control,

which is clearly violated in my case.27 Second, the optimization problem on the right

hand side of the HJB equation is discrete. As is common in optimal control, a verifica-

tion argument is needed to establish that the solution to the HJB equation equals the

principal’s value function. For this argument to apply, the HJB equation must admit a

twice continuously differentiable solution, despite this discreteness. The argument to

establish concavity also requires twice continuous differentiability.28

4. Results

4.1 Project choice

I now characterize the optimal project choice. I show that moral hazard can cause both

underinvestment and overinvestment in projects relative to an NPV criterion.

The project choice is determined via the HJB equation (5). Conditional on the con-

tinuation value, the optimization problem is separable in each project. Therefore, the

instantaneous marginal benefit of each project can be determined separately. It is given

the case with commitment, since the agent’s incentives are diminished if he anticipates the contract to be
renegotiated. Thus, the principal will always commit if she has the ability. See also DeMarzo and Sannikov
(2006) for a discussion of renegotiation in a related setting.

24See, e.g., DeMarzo and Sannikov (2006). This corresponds to the linear segment in Figure 1.
25I do this as part of the verification argument in Appendix A.2, in the Proof of Proposition 8.
26See Figure 4 for an example.
27That is, σ̂(W ) = σ(Wt�a(Wt)) must be (at least locally) Lipschitz continuous. See, e.g., Fleming and

Soner (2006, p. 159). Yong and Zhou (1999, p. 68) establish existence results for an equation similar to mine,
but require a convex control space. For unique weak solutions, standard sources require that the controlled
volatility is continuous in the state (see, e.g., Karatzas and Shreve 1991, p. 327 or Yong and Zhou 1999, p. 45),
which is also violated.

28I show this in Appendix A.2.
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by29

bi(Wt)= μi + J′(Wt)h+ J′′(Wt)
1
2
ψ2
i � (6)

A project is chosen whenever the marginal benefit is positive, which depends on the
project’s average payoff μi, the cost of compensating the agent for effort J′(Wt)h, and
the cost of providing incentives J′′(Wt)ψ2

i /2. While the marginal benefit of project i im-
plicitly depends on both past and current choices of other projects, any dependence is
summarized by the value function J(W ).

To relate project choice to the NPV criterion, we can rewrite (6) as

bi(W )= rNPVi +
(
J′(W )+ 1

)
h+ J′′(W )1

2
h2

RR2
i

� (7)

Here, I define a project’s NPV as NPVi = (μi − h)/r. The marginal benefit of choosing
a project depends positively on both the NPV and the project’s risk–return ratio RRi =
μi/σi. While a higher NPV implies higher expected payoffs from the project, the risk–
return ratio works through the agent’s incentives. The higher is the ratio, the easier it is
to detect shirking, and the agent’s incentives can be weaker without ceasing to motivate
effort. By the representation in (3), this is equivalent to a lower volatility ofWt . The term
(J′(W )+ 1)h measures the increase in social value from moving the continuation value
away from the termination boundary, and it is always positive. Setting bi(W )= 0, I can
derive a minimum NPV criterion that determines project choice.30

Proposition 2. Conditional on W , a project with a given risk–return ratio is chosen
whenever its NPV exceeds

NPV(RR�W )= −1
r

(
J′(W )+ 1

)
h− J′′(W ) 1

2r
h2

RR2 � (8)

This threshold is a function of the current continuation value and the project’s risk–
return ratio. Figure 2 qualitatively illustrates the nonlinear relationship between NPV
and RR, and outlines the set of projects that are chosen at continuation valueW .

Depending onW and the risk–return ratio, the threshold may be positive or negative.
If it is positive, a project with positive NPV might not be chosen, leading to underinvest-
ment. If it is negative, which happens whenever the risk–return ratio is sufficiently high,
a project with negative NPV may be chosen, leading to overinvestment.

Thus, moral hazard leads to both over- and underinvestment in my setting. Un-
derinvestment is due to the cost of incentives. Overinvestment occurs since assigning
projects can be used as a punishment device. The optimal contract provides incentives

29Recall that ψi = σih/μi (Lemma 1). We can rewrite the HJB equation (5) as

rJ(W )=
∑
i

max
{
0�μi + J′(W )h+ 0�5J′′(W )ψ2

i

} + γW J′(W )�

The terms inside the sum are the principal’s optimal project choice.
30The derivation for this result is in the text above, so the proof is omitted.
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Figure 2. NPV versus risk–return boundary. The solid line qualitatively illustrates the trade-off
between NPV and the risk–return ratio. At the line, bi(W ) equals zero. The area above the line
represents combinations of NPV and risk–return for which bi(W ) is positive.

by inducing a low continuation value for the agent utility after bad performance.31 This
can be done either via a high likelihood of firing or by a low flow utility. Since firing is
inefficient, the principal would prefer to lower the agent’s flow utility, but she is con-
strained by limited liability. Incentivizing the agent to work on a project allows the prin-
cipal to circumvent the limited liability constraint, because it lowers his realized flow
utility via the effort cost. This is valuable, since it allows her to provide incentives while
relying less on costly termination.

Formally, this effect is captured in bi(W ) in (7). Choosing an additional project in-
creases the drift of the continuation value in (3). Equivalently, it lowers the realized flow
utility of the agent in (1). Since the drift of Wt is higher, the likelihood of hitting the
termination boundary at W = 0 is lower. The value of this for the principal is captured
by J′(W ), which can be positive when W is low. However, to incentivize a project, the
principal must increase the volatility of Wt , which in turn increases the likelihood of
termination. In (7), this is captured by the last term, J′′(W )h2/RR2

i , which is always neg-
ative. When the risk–return ratio is sufficiently large, the overall expression can still be
positive. Then, choosing a negative NPV project can be optimal.

An important qualification for this result is that (a) the continuation value must be
sufficiently low, i.e., termination must be sufficiently likely, (b) the NPV of the project
cannot be too negative, and (c) the risk–return ratio must be relatively high, i.e., the
project must be relatively easy to incentivize.32 To understand (a) more clearly, notice
that increasing the drift of Wt has two effects. On average, the payment boundary W̄
is hit earlier and, therefore, expected payments to the agent are higher. This decreases
the principal’s value. However, as just outlined, it also decreases the likelihood of ter-
mination, which increases the principal’s value. Whenever the second effect outweighs
the first, J′(W ) is positive. This happens when W is sufficiently low and termination is
sufficiently likely.

31This can be seen from (3). The pay–performance sensitivity ψit is positive whenever the agent exerts
effort in a project, meaning thatWt must decrease whenever dBit is negative.

32In other words, the pay–performance sensitivity ψi must be relatively low. Of course, if the principal
had access to a positive or zero NPV project with small required pay–performance sensitivity, she would
prefer to use that project to act as a punishment device rather than one with negative NPV.
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The overinvestment and underinvestment effects are shown in Figure 2. For a given
continuation value W , the area above the solid curve is the region where a project’s
marginal benefit is positive for a given combination of NPV and risk–return ratio. The
lower bound of this area is (8).

The intuition that overinvestment can substitute for termination allows me to derive
a simple sufficient condition for when it occurs on the path of the contract. Whenever
the scrap value l is sufficiently small, i.e., termination is sufficiently costly, overinvest-
ment will occur as long as the project’s payoff is not too negative and the required pay–
performance sensitivity is not too large. In the following proposition, I prove an even
stronger result: when l is small, projects with negative payoff μi, not just NPV, may be
chosen.

Proposition 3. Suppose there exists a project i such that ψi = ε and μi = −ε with ε
sufficiently small. Then, as l→ 0, there exists a region ofW such that bi(W ) > 0.

The proof is straightforward and is only sketched here. As l → 0, I can show that
J′(0) > 0; otherwise concavity of the value function would imply that the principal’s
value is negative close to W = 0. By continuity of J′(W ), the first derivative remains
positive on some region right of 0. On this region,

bi(W )= −ε+ J′(W )h+ J′′(W )1
2
ε2�

which is positive for ε sufficiently small.

Discussion Before moving to dynamics, I would like to address how the results relate
to other work.

Zhu (2013) studies an extension of DeMarzo and Sannikov (2006) in which there is a
single project and the principal can let the agent shirk temporarily. In both my paper and
his, shirking is optimal whenever the decrease in the risk of termination, which comes
from the principal having to provide sufficient incentives to motivate effort, outweighs
the loss of payoff from shirking. This happens if the payoff loss is sufficiently small.33

This is analogous to underinvestment in my paper, since not choosing a positive NPV
project decreases the principal’s flow payoff, but also decreases the cost of incentives.

The key difference is that in my paper, it may be optimal to incentivize effort in a
project that has negative NPV. Since Zhu’s model has only a single task and that task has
positive “NPV,”34 this result cannot be obtained in his setting. If the value of incentiviz-
ing effort were negative, Zhu’s optimal contract would simply never implement effort.

33See Zhu’s Lemma 3.3 and Section 6.2.1.
34In my model, NPV is defined as (μi − h)/r. In Zhu’s model, when the agent works, the principal gets

μ, while when he shirks, she gets μ−A. When working, the agent receives no private benefit, while when
shirking, he receives λA> 0, where 0< λ< 1. The analog definition of NPV is, hence, μ− ((μ−A)+λA)=
(1 − λ)A> 0. Thus, NPV is positive in Zhu’s model. In the first best, the principal would choose any project
with positive NPV in my model. The analog holds in Zhu’s paper. There, the principal would implement
effort forever if and only if (1 − λ)A> 0 in the first best.



Theoretical Economics 14 (2019) Incentives, project choice, and dynamic multitasking 827

Importantly, choosing a negative NPV project does not follow the simple intuition
of trading flow payoff for lower instantaneous incentive costs. In Zhu’s model, shirk-
ing decreases the principal’s flow payoff, decreases the drift of the continuation value,
and decreases the pay–performance sensitivity. In my model, it may be optimal to
choose a negative NPV project in addition to a positive NPV project, purely to punish
the agent. This increases the principal’s flow payoff (even though NPV, which represents
social value, is negative), increases the drift of the continuation value, and increases total
pay–performance sensitivity. In sum, the overinvestment effect identified in my paper
cannot be obtained in Zhu’s setting and it is qualitatively different from shirking in his
model.35

In DeMarzo et al. (2012), there is a single task and the principal can invest to increase
firm size subject to a cost. Due to the cost of incentives, investment is below the first-best
level. Thus, in DeMarzo et al. (2012), moral hazard can only create underinvestment,
whereas my setting generates both underinvestment and overinvestment, depending
on the project characteristics.

In Section 5, I show that the contract can be implemented with equity and bonus
payments. These bonuses are a linearly weighted function of individual project outputs.
Such implementation is new in the literature. It cannot be obtained in single-project
settings such as DeMarzo and Sannikov (2006), Zhu (2013), or DeMarzo et al. (2012).

My overinvestment result is also different from the “cross-pledging” result in static
moral hazard models.36 There, the principal can reduce the agent’s information rents by
incentivizing effort in a positive and a negative NPV project together, provided she can
condition payments on the success of both. This reduces the agent’s value, because it
reduces information rents. Thus, cross-pledging is only possible if the agent’s participa-
tion constraint is not binding. In my model, the negative NPV project is valuable only
because it serves as a temporary punishment device. This is different than the rent re-
duction effect. We could start out with a contract where the agent’s ex ante participation
constraint is binding, but the principal would still choose negative NPV projects on the
optimal path.

4.2 Project choice dynamics

I now characterize how the project choice changes over time. The main results are as
follows. First, as W approaches W̄ , the distortions from moral hazard disappear and

35To see this explicitly, Zhu’s HJB equation ((5) on p. 5) is

rB(W )= max
{
μ+ γW B′(W )+ λ2

2
B′′(W )�μ−A+ (γW − λA)B′(W )

}
�

where the first term is the HJB under working and the second term under shirking. Thus, shirking re-
duces the flow payoff to the principal to μ−A, reduces the drift of the continuation value to the agent, i.e.
E(dWt) = (γWt − λA)dt, and reduces the pay–performance sensitivity, so the last term B′′(W )λ2/2 disap-
pears under shirking. This is analogous to what happens with underinvestment in my paper. Not exerting
effort in a project reduces the principal’s flow payoff by μi, reduces the drift of the continuation value by
h, and reduces the total pay–performance sensitivity by ψ2

t , but not necessarily analogous to overinvest-
ment, since that may increase flow payoff to the principal, the drift of the continuation value, and the total
pay–performance sensitivity.

36See, e.g., Diamond (1984). I am grateful to Bruno Biais for pointing out this connection.
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project choice approaches the first best. Second, as W increases, the firm chooses
projects with higher costs of incentives.37 These are the projects that require a higher
pay–performance sensitivity to motivate effort and have lower risk–return ratios. Third,
if projects with higher return have higher costs of incentives, the firm chooses higher
return projects asW increases.

Exploiting the fact that high continuation value means good past performance, I can
convert these results into empirical predictions. Better performing firms have a project
choice that is closer to NPV, while worse performing firms are more likely either to over-
or underinvest. As past performance increases, the firm chooses projects that are more
profitable, more risky, and require a higher pay–performance sensitivity to motivate ef-
fort.

The intuition for these results is that when the continuation value increases, the like-
lihood of termination declines, so that the firm’s project choice shifts toward high-NPV
projects with a lower risk–return ratio and high cost of incentives. To get a clean char-
acterization, I focus here on the case where the agent is sufficiently patient, i.e., γ is
sufficiently close to r for the remainder of this section. Then the cost of incentives is
decreasing asW increases.38 I defer all formal proofs to Appendix A.4.

The first result, that distortions disappear asW → W̄ , follows from the characteriza-
tion in Proposition 1.

Corollary 1. As W approaches W̄ , the optimal project choice converges to the project
choice under the NPV criterion.

AsW → W̄ , J′(W )→ −1 and J′′(W )→ 0, which implies

bi(W )→ rNPVi�

This result is illustrated qualitatively in Figure 3. The red function shows the project
boundary for small W , and the black and blue functions represent the boundaries for
successively largerW . AsW → W̄ , the break-even NPV line in the figure approaches the
x-axis.

Firms start projects with higher costs of incentives if the marginal benefit function
of those projects is increasing in the continuation value. This is because if a project is
started at some value Ŵ , it must be that bi(W ) crosses zero from below at Ŵ . However,
the marginal benefit bi(W ) is not necessarily increasing in the continuation valueW for
every project. As W increases, the cost of incentives, which is proportional to J′′(W ),
decreases, but J′(W ), which measures the cost of compensating the agent, increases
because J(W ) is concave. However, I can show that if a project requires a higher pay–
performance sensitivity than those already chosen, bi(W ) is increasing. Formally, we
have the following proposition.39

37The costs of incentives for a project i are J′′(Wt)ψ2
i /2 or, equivalently, J′′(W )h2/(2RR2

i ).
38Formally, J′′′(W ) > 0 for allW ∈ [0� W̄ ].
39The intuition is as follows. We have bi(W ) = μi + J′(W )h + J′′(W )ψ2

i /2. The last term is increasing
in W , but the middle term is decreasing by concavity of J. If b′

i(W ) < 0 for some projects, these projects
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Figure 3. Project cutoffs as a function of W . This figure shows, qualitatively, the combinations
of NPV and the risk–return ratio for which bi(W ) is zero for different values ofW .

Proposition 4. The marginal benefit bi(W ) is increasing inW if

ψ2
i ≥ 1

n
(
a(W )

) ∑
j

ψ2
j aj(W )� (9)

where a(W )= (a1(W )� � � � � aN(W )) is the optimal project choice at continuation valueW .

The proposition implies that if a project has sufficiently high cost of incentives, its
marginal benefit is increasing. If a project is started as W increases, it must be among
those projects. Conversely, if it is stopped, it must be among those with relatively low
cost of incentives. In this sense, firms choose projects that are more difficult to incen-
tivize.

An important question is how the average risk or return of the chosen projects
changes withW . I can obtain such results under additional assumptions on the relation
between risk and return. The firm will take projects with higher return as W increases
if higher return implies the project requires a higher pay–performance sensitivity (or,
equivalently, has a lower risk–return ratio). Specifically, suppose all projects are ordered:
any project with higher return also requires a higher pay–performance sensitivity. Then
the marginal benefits of any two projects i and j satisfy a single-crossing condition inW .
The firm chooses projects that have higher returns and higher risk, but are more difficult
to incentivize asW increases.40

must have low ψ2
i . Conversely, for projects with high ψ2

i , bi(W ) must be increasing since the weight on
J′′(W ) is higher. These are exactly the projects for which the incentive cost is relatively high. To derive
the characterization in (9), I show in Appendix A.4 that if bi(W ) is decreasing for a project with higher
than average cost of incentives, then J′(W ) would have to be so large that the principal’s value exceeds the
first-best value, which is impossible.

40Proposition 5 resembles the result in Radner and Shepp (1996), who study project choice and payout
decisions in a model with exogenous bankruptcy, but without moral hazard. Under a similar condition as
in Proposition 5, they find that firms further from bankruptcy (when the cash stock is high) choose more
profitable projects. In their model, projects have no costs and strictly positive average payoffs. Thus, their
model induces only underinvestment relative to the NPV criterion. I am grateful to an anonymous referee
for pointing out this connection.
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Figure 4. Project choice with four projects. The solid lines indicate the regions in which differ-
ent projects are chosen. Projects 1 and 2 (bottom) have positive NPV, and projects 3 and 4 (top)
have negative NPV. I set γ = 0�046, r = 0�05, l = 0�97, and h= 0�1. The projects are characterized
by μ1 = 0�15, σ1 = 0�3, and ψ1 = 2; μ2 = 0�11, σ2 = 0�21, and ψ2 = 1�909; μ3 = 0�04, σ3 = 0�05, and
ψ3 = 1�25; and μ4 = 0�02, σ4 = 0�02, and ψ4 = 1.

Proposition 5. Suppose for any two projects i and j, μi > μj implies ψi > ψj . Either
bi(W )≥ bj(W ) for allW or bi(W ) crosses bj(W ) from below at a unique cutoffWij .

That is, the principal derives a higher (marginal) value from project i than from
project j if and only if W is above a cutoff, unless the value of project i is always larger.
Figure 4 illustrates this result, which can be seen by constructing the difference between
bi(W ) and bj(W ), which satisfies

�ij(W )= μi −μj + J′′(W )1
2
(
ψ2
i −ψ2

j

)
�

This expression is increasing because J′′(W ) is increasing.41 This immediately implies
single crossing inW .

5. Implementation with bonus contracts

The optimal contract can be implemented with equity and project-specific bonus pay-
ments. Here, the equity share is used to provide a baseline level of incentives among all
chosen projects, while bonus payments provide additional incentives beyond the equity
share. By adjusting the sensitivity of the bonus payments to output, the principal can in-
centivize effort. Murphy (1999) finds that the majority of incentive contracts feature a

41This follows from the assumption that γ is sufficiently close to r. See Proposition 12 in Appendix A.4.
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mix of equity and bonus payments, with the latter being a linearly weighted function of
the agent’s performance across a range of categories, just as in my implementation.42

Implementing the contract requires adjusting the equity share as the choice of
projects changes. To ensure that these changes in shares are incentive neutral, the agent
must be compensated whenever he loses shares. Effectively, this means the agent trades
the shares at transfer prices chosen by the principal. These prices depend on past per-
formance. An explicit derivation is given in Appendix A.5.

Proposition 6. The optimal contract can be implemented with equity and project-
specific bonus payments. The agent trades equity at predetermined transfer prices and
the proceeds are held in a bonus account.

Intuitively, the equity share depends on the payoffs of all projects and the volatility
of the agent’s continuation value increases in the equity share. The optimal share must
hence be low enough to prevent unnecessary risk in the contract. It equals the equity
share that incentivizes effort in the project with the lowest return. The rest of the incen-
tives are provided by adjusting the sensitivity of the bonus payments, which map each
project’s payoffs to payments into the agent’s bonus account.

6. Discussion of applied results

Introducing multiple projects significantly alters the firm’s behavior and the optimal
compensation contract compared to models where effort is static (e.g., DeMarzo and
Sannikov 2006 and DeMarzo et al. 2012). There, the firm is always restricted to taking
the same project. As a result, while promised compensation varies with performance,
the manager’s pay–performance sensitivity can never change. Specifically, he receives a
constant equity share that does not depend on past performance. Therefore, such mod-
els are unable to obtain any relation between the firm’s performance and the optimal
compensation contract.

In Sannikov (2008), effort is variable, and the model delivers a link between past per-
formance and instantaneous pay–performance sensitivity. However, the optimal con-
tract does not have an implementation that resembles real-world instruments. Allowing
the firm to allocate different projects to the manager allows me to resolve this problem.
As I showed in Section 5, I can explicitly derive how the manager’s optimal equity share
and the sensitivity of the bonus payments change over time, and how they depend on
the projects currently chosen. Also, I can derive predictions on how the firm’s cash flow
volatility changes with past performance, since taking different projects with different
risk yields different volatilities for the total cash flow.

The model yields several testable predictions about the firm’s project choice and the
optimal compensation contract. Project choice depends on past performance and firms
with better performance choose riskier projects. Since the firm’s total cash flow is the

42For this implementation to be valid, it is necessary to assume that the principal can “shut off” projects
in which the agent does not exert effort.
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sum of the cash flows of all individual projects, the project choice determines the real-
ized volatility of the firm’s total cash flow. Thus, firms with better past performance also
have higher cash flow volatility.

In the model, past performance determines the distance to the termination bound-
ary. If we interpret this as default, firms that are closer to default will choose safer
projects and those that are far away will choose riskier ones. This prediction is broadly
consistent with results found in Rauh (2009). In the implementation in Section 5, I
showed that the agent’s continuation value can be interpreted as the sum of the firm’s
free cash and a personal incentive account. Thus, firms with higher free cash choose
riskier projects, since that corresponds to a higher continuation value. By the same logic,
larger firms choose less risky projects, since the continuation value is lower.

Recently, Cassell et al. (2012) found that managers with higher inside debt holdings,
i.e., deferred compensation and pension benefits, choose less risky investments, be-
cause they are more likely to lose those holdings if the firm goes bankrupt. This result is
consistent with the mechanics in my model. Here, if the manager’s continuation value
is low, he is more likely to be terminated than to receive any of his promised payouts.
The firm then optimally chooses safer projects because the incentive cost is high.

An alternative interpretation for the model is to understand the projects as individ-
ual tasks allocated to the manager instead of actual investment projects. In this case,
more risky and difficult to incentivize projects are allocated to relatively successful man-
agers, while unsuccessful managers work only on relatively safe ones. If higher risk im-
plies higher return, this means that the most lucrative activities are allocated to the man-
agers with the best track record. Since the continuation value in (3) has positive drift, on
average, more experienced managers, i.e., those with longer tenure, get more risky tasks
and receive a higher pay–performance sensitivity. This is consistent with the findings in
Cremers and Palia (2011).

In addition, my model sheds light on the connection between managerial incen-
tives and the firm’s investment choices, which has received considerable attention in
finance. In my model, total pay performance sensitivity is higher whenever the firm
chooses riskier projects. Thus, firms with higher pay–performance sensitivity also have
higher cash flow volatility. This is consistent with results from Massa and Patgiri (2009),
who study mutual funds and find that those with higher pay–performance sensitivity
also have more risky and more profitable investments.43

7. Conclusion

I analyze a continuous-time moral hazard problem in which the agent’s effort is dis-
tributed among different projects. Unlike past studies, project choice is simultaneous,

43Most of the literature, including Massa and Patgiri (2009), focuses on the convexity of the manager’s
payoffs, as measured by the vega of the manager’s option grants (see also Guay 1999 and Coles et al. 2006) as
an explanatory variable, although some results concerning the slope are available. Coles et al. (2006) show
in their Table 3 that a higher option delta in the manager’s compensation contract yields higher research
and development (R&D) expenses, which can be interpreted as the firm choosing riskier projects. Massa
and Patgiri (2009) also provide explicit results on the slope.
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and the possible feedback effect between projects is explicitly considered. The model
sheds light on the optimal choice of projects under moral hazard and the prevalence of
bonus contracts in CEO compensation. Further, it explains the use of different criteria
to evaluate projects aside from NPV, which is broad practice in companies, as shown by
Graham and Harvey (2001).

In the optimal contract, a project is chosen whenever its NPV is above a cutoff that
depends on the firm’s current cash stock and the project’s risk–return ratio. This cutoff
changes stochastically over time and depends on the agent’s cumulative past perfor-
mance. Firms with a large cash stock feature a relatively efficient investment portfolio,
comprising only projects with positive NPV, whereas firms with a low cash stock suf-
fer from an inefficient choice of investment projects, passing up positive NPV projects
when their risk is too high. The absolute benefit of projects with above-average risk in-
creases with the firm’s cash stock when the cost of incentives is decreasing, whereas the
benefit of projects that are relatively safe decreases. The project choice follows the NPV
criterion whenever the cash stock is large enough. The agent is assigned riskier projects
after a history of sufficiently good performance, whereas a poorly performing agent ei-
ther will see the number of projects assigned to him diminish or will be given relatively
safe projects as a punishment.

My model can be applied to investment situations whenever the choice of projects is
discrete. This allows studying issues such as R&D efforts, the opening of new manufac-
turing plants, natural resource exploration, and diversification into different markets, to
name a few. The empirical literature on firm investment has overwhelmingly focused
on a firm’s aggregate investment, which is treated as a continuous variable. My model
constitutes a theoretical benchmark that makes predictions on a firm’s entire project
portfolio and may be used to test against data, once estimates of the individual projects’
average payoff and volatility have been obtained, instead of providing insights into the
choice of one investment project in isolation.

Appendix A: Proofs

A.1 Proof of Lemma 1

ThatWt satisfies (3) follows from a simple modification of DeMarzo and Sannikov (2006,
Lemma 2, p. 2689). I therefore omit his proof. To derive the incentive compatibility
condition in (4), suppose the agent’s actual effort process ât differs from the prescribed
effort process at . At any such time, the agent’s effort cost changes by h(âit − ait) and
his expected payoffs change by ψit(âit − ait)μi/σi for any project i. This follows from
applying Girsanov’s theorem to Bit . The total payoff from effort process ât is thus

W0 +E
[∫ τ

0
e−γt

∑
i

(ψit − h)(âit − ait)dt
]
�

Thus, ψit ≥ψi ensures that âit = 1 is optimal. If ψit < ψi, the agent chooses âit = 0. This
establishes the result.
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A.2 Existence and uniqueness of the value function and verification

In this section, I establish the existence of a twice continuously differentiable solution
to the HJB equation44

rJ(W ) = max
a

∑
i

μiai + J′(W )
(
γW + hn(a))

+ J′′(W )1
2

∑
i

ψ2
i ai (10)

with boundary conditions J(0)= 0, J′(W̄ )= −1, and J′′(W̄ )= 0, and verify that this so-
lution equals the value function under the optimal contract. Throughout, I focus on the
case where there exists at least one project with positive NPV, i.e., μi − h > 0, and where
for all W , the principal implements effort in at least one project, so that the volatility of
the continuation value process is never degenerate. I find parameter values such that
this is indeed optimal in Proposition 10 in Section A.3 below.

For simplicity, I assume that for all i, μi − h is either strictly greater or smaller than
0, which implies that at the first best, the principal cannot be indifferent between taking
a project or not. At W̄ , the boundary conditions imply that

rJ(W̄ )=
∑
i

(μi − h)+ − γW̄ �

where (μi − h)+ = max{μi − h�0}. Therefore, they are equivalent to J(W̄ ) = J∗(W̄ ) and
J′(W̄ )= −1, where J∗(W ) is given by

J∗(W )=

∑
i

(μi − h)+ − γW

r
�

The conditions including J∗(W ) are easier to work with, and I will use them for the re-
mainder of the argument, which relies on a variant of the shooting method. I fix a suffi-
ciently large but finite domain [0�Wmax] and define the function H : [0�Wmax] × R

2 → R

by

H(W �u�p)= −min
a

ru−
∑
i

μia−p(
γW + hn(a))

1
2

∑
i

ψ2
i ai

� (11)

44The arguments in many standard sources cannot be used. Krylov (1980, Theorem 5, p. 24) provides
sufficient conditions for a twice continuously differentiable solution to the HJB equation, but he requires a
convex control space. By contrast, the project choice in my model changes discretely. Gilbarg and Trudinger
(2001) establish sufficient condition for partial differential equations (PDEs), of which HJB equations are a
special case. They require that the coefficients are Holder continuous in the state, which is violated in
my model because the volatility of Wt has discrete jumps. Fleming and Soner (2006, p. 161) provide suf-
ficient conditions for the case where coefficients may depend on time, but they require the state space to
be bounded a priori (in my model, W̄ is endogenous). Yong and Zhou (1999, Chapter 4) provide only a
verification theorem.
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The HJB equation is equivalent to

J′′(W )+H(
W�J(W )�J′(W )

) = 0� (12)

By Berge’s maximum theorem,45 H(W �u�p) is jointly continuous in its parameters. This
implies that for any starting slope s, the initial value problem (IVP) satisfying (12) with
boundary conditions J(0)= l and J′(0)= s has a twice continuously differentiable solu-
tion on the domain [0�Wmax], and is uniformly continuous with respect to s.46 I denote
a solution with starting slope s by Js(W ).

For a large negative number b, choose Wb such that J∗(Wb) = b, and define the
boundary B ⊂ R

2 as47

B = [
(0� b)�

(
J∗(Wb)�b

)] ∪ {
(y�W ) ∈ [

b�J∗(0)
] × [0�Wb] : y = J∗(W )

}
�

Finally, let W̄ (s)= inf{W : Js(W )= J∗(W )} be the first point at which Js(W ) hits J∗(W ).48

The following proposition is crucial for establishing uniqueness of the solution, and es-
tablishes concavity.

Proposition 7. Any solution to the IVP (12) for which 0> J′
s(W̄ (s))≥ −1 holds is strictly

concave on (0� W̄ (s)).

Proof. Since s is constant throughout the proof, I omit it for the sake of notation. Note
that J′(W̄ )≥ −1 implies that J′′(W̄ )≤ 0; otherwise J(W̄ ) > J∗(W̄ ). By the boundary con-
ditions we have ai = 1 whenever μi ≥ h at W̄ . By the envelope theorem, J′′′(W ) exists on
a neighborhood left of W̄ ,49 and is given by

J′′′(W )= −(γ− r)J′(W )− J′′(W )
(
γW + hn(a))

1
2

∑
i

ψ2
i ai

> 0�

which follows from continuity of J′(W ) and J′′(W ). Therefore, J′′(W ) < 0 for W suffi-
ciently close to W̄ . If J ′′(W )≥ 0 for someW < W̄ , the point Ŵ = sup{W < W̄ : J′′(Ŵ )≥ 0}
exists. If J′(Ŵ )≥ 0, we have

rJ(Ŵ )≥ max
a

∑
i

μiai�

45See Aliprantis and Border (2006, Theorem 17.31, p. 570).
46See, for example, Hartman (2002, Chapters 2 and 5).
47Because the optimal value function satisfies J(W ) ≥ l −W for all W and because J′∗(W ) < −1, a pair

(b�Wb) can always be found, and restricting the solution of the HJB equation to lie in B is without loss of
generality.

48The function W̄ (s) may not exist for all s, for example, when s is a large negative number. However,
W̄ (s) is only used in the argument in cases where Js actually hits J∗, so this is not an issue.

49This follows because the boundary conditions imply bi(W̄ )= μi − h, which is either greater or smaller
than 0, and bi(W ) is continuous.
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and, therefore, ai = 1 and

J(Ŵ )≥

∑
i

μi

r
�

The right hand side is the value obtained in the first best with zero effort cost. The term
J(W ), which is the value under moral hazard and strictly positive effort cost, must al-
ways lie strictly below it. Thus, the above inequality implies a contradiction.

Therefore, we need J′(Ŵ ) < 0. If Ŵ ∈ intCa for some continuation region Ca, then
J′′′(Ŵ ) exists and is given by

J′′′(Ŵ )= −(γ− r)J′(Ŵ )
1
2

∑
i

ψ2
i ai

> 0�

which makes it impossible for J′′ to cross zero from above, as required by the definition
of Ŵ . If Ŵ does not lie on the interior of any continuation region, there exists a project
i such that bi(Ŵ )= μi + J′(Ŵ )h= 0. Take some W > Ŵ . Because J′′ < 0 on (Ŵ �W ), J′
is decreasing on this region, and bi(W ) < bi(Ŵ )= 0. Thus, the project cannot be taken
again on (Ŵ �W ), and the project choice must stay constant on some neighborhood
right of Ŵ . This implies that the right derivative J′′′+ (Ŵ ) exists, and it is positive since J′
and J′′ are negative. But then again J′′(W ) cannot cross zero from above at Ŵ . Therefore,
J′′(W ) < 0 for allW < W̄ .

Lemma 2. There exists at most one s∗ such that J′
s∗(W̄ (s

∗))= −1.

Proof. I first establish two auxiliary results. First, for two initial slopes s and s′ with
s′ > s, we have Js′(W ) > Js(W ) on (0�Wmax). To see that this is the case, let Ŵ = inf{W :
J′
s′(W )≥ J′

s(W )}. By construction, Js′(Ŵ ) > Js(Ŵ ). Since H(W �u�p) is decreasing in its
second argument, we have

H
(
Ŵ � Js(Ŵ )� J

′
s(Ŵ )

) =H(
Ŵ � Js(Ŵ )� J

′
s′(Ŵ )

)
>H

(
Ŵ � Js′(W )� J

′
s′(Ŵ )

)
�

which implies that J′′
s′(Ŵ ) > J

′′
s (Ŵ ). Therefore, J′

s′(W ) cannot cross J′
s(W ) from above at

Ŵ , which is a contradiction. Since J∗(W ) is a strictly decreasing function, this result also
implies that W̄ (s′) < W̄ (s) whenever s′ > s.

Now, suppose that for s′ > s, J′
s′(W̄ (s

′))= J′
s(W̄ (s))= −1. By the preceding argument,

−1 = J′
s′
(
W̄

(
s′

))
> Js

(
W̄

(
s′

))
�

and by Proposition 7, Js is strictly concave, and, therefore, Js(W̄ (s)) < Js(W̄ (s′)) < −1.

To conclude the proof, I define a mapping S(s) = J′
s(W̄ (s)), which is continuous

since the solutions to the IVP are continuous with respect to s. If there exists a pair {s� s̄}
with s̄ > s such that S(s̄) > −1 and S(s) < −1, there exists an s∗ for which S(s∗) = −1,
which is a consequence of the continuous mapping theorem. Lemma 2 then guarantees
uniqueness.
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Lemma 3. There exist two values s̄ > s such that all s ≥ s̄, S(s)≥ 0, and for all s ≤ s, S(s)≤
−1.

Proof. First, consider the map T (s)= {(y�W ) :W = inf{u : (Js(u)�u) ∈ B}}, which asso-

ciates to each s the first point where Js hits B. For s ≤ s, where s is chosen sufficiently

small, Js hits b, and the first hitting point of b can be made arbitrarily close to zero by the

choice of s. Similarly, choosing s ≥ s̄, where s̄ is large and positive, implies that Js hits J∗
at someW close to zero and that S(s̄) is positive. Define

Bε = [
(ε�b)�

(
J∗(Wb)�b

)] ∪ {
(y�W ) ∈ [

b�J∗(0)
] × [ε�Wb] : y = J∗(W )

}

for some positive but small ε. Since the solution to the IVP (12) is uniformly continuous

in s on [0�Wmax], T (s) is continuous. Because it maps an appropriately chosen interval

[s� s̄] into the compact set Bε, the mapping is onto, by the continuous mapping theorem.

Therefore, there exists a subinterval of [s� s̄] for which Js hits J∗.

Now take Ŵ sufficiently close to Wb, so that J∗(Ŵ ) is negative and large. By the

preceding argument, there exists a slope s such that Js hits J∗ at Ŵ . Suppose that

0 > J′
s(Ŵ ) > −1. By Proposition 7, Js is strictly concave on (0� Ŵ ) and J′

s(W ) > −1 for

W < Ŵ . But then Js(Ŵ ) > Js(0) − Ŵ > J∗(Ŵ ), since J′∗(W ) < −1, and Wb was chosen

sufficiently large. This is a contradiction.

If J′
s(Ŵ ) > 0, then necessarily J′′

s (Ŵ ) < 0; otherwise Js(Ŵ ) > J∗(W ). There must exist

a region left of Ŵ on which J′′
s (W ) > 0; otherwise concavity would imply that J′

s(W ) > 0
for all W > Ŵ , and Js(Ŵ )= b could not hold. In particular, there must exist some W <

Ŵ for which J ′′
s (W ) > 0 and J′

s(W ) > 0. Then a similar argument as in Proposition 7

establishes that Js(W ) > Jfb(W ), which is a contradiction. This shows that there exists a

number s such that for all s ≤ s, S(s)≤ −1.

I now verify that the unique solution to the HJB equation is indeed the optimal con-

tract.

Proposition 8. Let G0 be the payoff from an incentive-compatible contract (a� c� τ).

Then J0 ≥G0.

Proof. Take any incentive-compatible contract (a� c� τ). By the martingale representa-

tion result in Lemma 1,Wt follows (3). Define the realized payoff from using the contract

until time t ≤ τ as

Gt =
∫ t

0
e−rs

(∑
i

dXis − dcs
)

+ e−rtJ(Wt)�
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where dXis is the output process under the effort implemented in the contract. By Itô’s
lemma,

dGt = e−rt
(∑

i

μiait dt +
∑
i

σi dBit − dct
)

+ e−rt
(
J′(Wt)

(
γWt dt + hn(at)dt − dct +

∑
i

ψit dBit

)
+ J′′(Wt)

1
2

∑
i

ψ2
it dt

)

− re−rtJ(Wt)dt�
By the construction of the HJB equation (10), for any incentive-compatible contract,

−rJ(W )+
∑
i

μiai + J′(W )
(
γW + hn(a)) + J′′(W )1

2

∑
i

ψ2
i ≤ 0�

and for any consumption payout policy, −(1 + J′(W ))dct ≤ 0 on (0� W̄ ). Since J′(W ) is
bounded, this term is square integrable and Gt is a supermartingale.

For all finite t, the principal’s profit is

E[Gτ] = E[Gt∧τ]
+E

[
1{t<τ}e−rtE

[∫ τ

t
e−rs

(∑
i

dXis − dcs
)

+ e−rτl− J(Wt)
]]
�

The second term is bounded from above by Jfb(0)−Wt − J(Wt). Since J(Wt)= J(Wt)≥
(l−Wt) and J′(Wt)≥ −1, we have (Wt + J(Wt))≥ l, so that

Jfb(0)−Wt − J(Wt)≤ (
Jfb(0)− l)�

By the supermartingale property of Gτ , E[Gt∧τ] ≤ G0 = J(W0), and the profit satisfies
the bound

E[Gτ] ≤G0 + e−rt(Jfb(0)− l)�
Proposition 9. There exists an ε-optimal strategy such that the agent’s continuation
value in (3) admits a unique weak solution.

Proof. Existence is guaranteed since both drift and volatility are bounded and measur-
able (see Krylov 1980, p. 87). From Krylov (2004), we know that weak uniqueness holds
if the coefficients are discrete on a finite set. I now construct ε-optimal strategies that
partition [0� W̄ ] into intervals of length ε, so that the project choice is constant on each
interval.

The loss in payoff in the HJB equation between the optimal project selection a and
an arbitrary a′ is

L
(
W�a�a′) =

∑
i

(
μi + J′(W )h+ 1

2
J′′(W )ψ2

i

)(
ai − a′

i

)
�
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which is bounded on (0� W̄ ) by a constant L̄, because J ′(W ) and J′′(W ) are contin-
uous. Let the grid W = {W1�W2� � � � �WN} for some finite N such that Wn < Wn+1 for
n= 1� � � � �N−1 and maxn Wn+1 −Wn ≤ ε. For anyW , define the Markov control â(W ) ∈ A
as â(W ) = a(Wn) if W ∈ [Wn�Wn+1]. I need only to show that I can construct a grid W
such that as ε→ 0, the expected loss vanishes.

If a given project choice a is optimal on an interval of W (i.e., the optimal policy
a(W ) is constant on that interval), then the loss L(W �a(W )� â(W )) becomes zero for a
positive but small ε. If W is on the boundary of two nonempty intervals in which two
different project choices a and a′ are optimal, takeW without loss of generality to be the
midpoint of the grid [W − ε/2�W + ε/2]. The expected loss in this interval starting from
W is bounded below:

λ(W )= L̄E
[∫ τε

0
e−rt dt

]
�

Here, the expectation operator is taken under the action â(W ), and τε denotes the first
exit time ofWt from the interval. As ε→ 0, this expression converges to zero.50

IfW is an accumulation point of regions in which two actions a and if a′ are optimal,
then L(W �a�a′)= 0. If W is the midpoint of a grid with size ε and if â(W ) is fixed at a′,
then by continuity of L inW , L(W �a(W )� â(W )) converges to zero as ε→ 0.

Then repeating the previous verification argument with â(W ) implies that for ε suf-
ficiently small, the loss relative to the optimal project selection from the HJB equation
(10) is bounded by L̄ε/r.

A.3 Optimality of no shirking

I now show that it is optimal to never let the agent shirk whenever the payoff from termi-
nation for the principal is sufficiently large, even if there are projects that have negative
NPV.

Proposition 10. For l sufficiently large, the optimal contract implements effort in at
least one project for all t ≥ 0.

Proof. It is optimal to always implement at least one project if for allW ∈ [0� W̄ ], there
exists some project such that bi(W ) > 0. By the HJB equation (5), this is equivalent to

rJ(W )− γW J′(W )=
∑
i

bi(W )a
∗
i > 0� (13)

Here, a∗
i denotes the optimal choice of projects in the HJB equation. Consider the IVP

with initial condition J(0)= l and starting slope s, as in Section A.2. I first show that for

50Precisely, since â(W ) is constant, Wt satisfies dWt = (γWt + hn̂)dt + ∑
i ψiâi dBit , and λ(W ) solves the

differential equation rλ(W )= L̄+λ′(W )(γW +hn̂)+λ′′(W )ψ̂2/2 subject to the boundary conditions λ(W −
ε/2)= λ(W + ε/2)= 0, where ψ̂= ∑

i ψiâi. The boundary value problem is linear inW and the existence of
a C2 solution is standard, see, e.g., Friedman (1975, p. 134, Theorem 2.4). Then an estimate from Hartman
(2002, p. 428) allows us to find a bound on λ′(W ) that is uniform in ε. This implies that |λ(W )| ≤Mε on
[W − ε/2�W + ε/2] for someM > 0 and all ε > 0, which is the desired result.
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all initial slopes s and initial values l > l′, the solutions to the IVP, Js�l(W ) and Js�l′(W )
satisfy J′

s�l(W ) > J
′
s�l′(W ) for allW > 0. To see this, note that

J′′
s�l(0)= −H(0� l� s) >−H(

0� l′� s
) = J′′

s�l′(0)�

where H(W �p�q) is given by (11), implies J′
s�l(W ) > J

′
s�l′(W ) on some neighborhood

right of 0. Now, suppose Ŵ = inf{W > 0 : J′
s�l(W ) < J

′
s�l′(W )} exists and note that we

must have Ŵ > 0. Since J′
s�l and J′

s�l′ are continuous, we have J′
s�l(Ŵ ) = J′

s�l′(Ŵ ). For

W ∈ (0� Ŵ ), we have J′
s�l(W ) > J

′
s�l′(W ) by construction of Ŵ and, therefore, Js�l(Ŵ ) >

Js�l′(Ŵ ). This implies

J′′
s�l(Ŵ ) = −H(

Ŵ � Js�l(Ŵ )� J
′
s�l(Ŵ )

)
> −H(

Ŵ � Js�l′(Ŵ )� J
′
s�l(Ŵ )

) = −H(
Ŵ � Js�l′(Ŵ )� J

′
s�l′(Ŵ )

) = J′′
s�l′(Ŵ )�

But then J′
s�l(W ) cannot cross J′

s�l′(W ) from above, which implies a contradiction.
Hence, J′

s�l(W ) > J
′
s�l′(W ) ∀W > 0.

Now, pick l = 0, and some fixed s > 0 and let Ws0 = inf{W > 0 : J′
s�0(W )= 0}. By con-

struction, Js�0(Ws0) > 0 and by the previous result, for any l > 0,

Js�l(Ws0)=
∫ Ws0

0
J′
s�l(W )dW + l ≥

∫ Ws0

0
J′
s�0(W )dW + l= Js�0(Ws0)+ l�

Since J∗(0)= ∑
i(μi − h)+/r and J∗(W ) is strictly decreasing, this implies

Js�l(Ws0) > J∗(Ws0)

for s > 0 fixed and l sufficiently large. Thus, that solution to the IVP hits J∗(W ) with a
positive slope and cannot be a solution to the boundary value problem (BVP) in Equa-
tion (10) since it violates the boundary conditions J∗(W̄ )= Js�l(W̄ ) and J′

s�l(W̄ )= −1.
Let s∗ be the starting slope that solves the BVP (10), let Jl(W ) be the solution to the

BVP, and let W̄ (l) be the value at which J′′
l (W )= 0. The previous result implies that s∗ →

0 for l sufficiently large. Also, since Jl(W ) ≥ Jl′(W ) for all W ≥ 0, we have W̄ (l) ≤ W̄ (l′)
and thus for all l > 0, W̄ (l) ≤ W̄ (0). Since for all l, Jl(W ) is strictly concave, we have
J′
l(W )≤ s∗. Plugging this into condition (13) yields

rJl(W )− γW J′
l(W )

≥ rJ(W )− γW s∗�
For s∗ sufficiently small (or, equivalently, l sufficiently large), we have

rJ(W )− γs∗ > 0

for allW ≤ W̄ (l). Thus, ∑
i

bi(W )a
∗
i > 0

for allW < W̄ (l), which establishes the result.
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A.4 Proofs on project dynamics

The following proposition offers a complete characterization of when firms choose
projects with higher pay–performance sensitivity. Notice that throughout Section 4.2
I assumed that γ is sufficiently close to r. In the proofs below, I am making the assump-
tion explicit.

Proposition 11. If J′′′(W ) ≤ 0, then b′
i(W ) < 0 for all projects i. If J′′′(W ) > 0, there

exists a cutoff ψ̄(W ) such that b′
i(W ) > 0 if and only if ψi > ψ̄(W ). If

ψ2
i >

1
n(a)

∑
j

ψ2
j aj�

then b′
i(W ) > 0. There exists aW0 ∈ [0� W̄ ) such that J′′′(W ) > 0 for allW >W0.51

To establish the result, we need the following lemma.

Lemma 4. Whenever J′(W ) < 0 and J′′′(W ) exists, we have J′′′(W ) > 0.

Proof. Whenever J′′′ exists, it is given by

J′′′(W )= −(γ− r)J′(W )− J′′(W )
(
γW + hn(a))

1
2

∑
i

ψ2
i ai

� (14)

which follows from differentiating the HJB equation (5) for a fixed project choice. This
expression is positive because J is concave.

Lemma 5. For any W and all projects k, if b′
k(W ) exists, it is strictly positive if both

J′(W ) < 0 and

ψ2
j ≥ 1

n(a)

∑
i

ψ2
i ai�

Whenever J′′′(W ) < 0, b′
k(W ) < 0 for all k, and if J′′′(W ) > 0, then b′

k(W ) > 0 if ψ2
k >

− 2J′′(W )
J′′′(W ) .

Proof. We have b′
k(W )= J′′(W )h+ J′′′(W )ψ2

k/2, which follows from differentiating (6).
Using (14) in the proof of the previous lemma, we have

b′
k(W )= J′′(W )h− 1

2
ψ2
k

(γ− r)J′(W )+ J′′(W )
(
γW + hn(a))

1
2

∑
i

ψ2
i ai

�

51Precisely, theW0 here satisfies J′(W0)= 0.
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which is positive whenever

h
1
2

∑
i

ψ2
i ai −

1
2
ψ2
k

(
γW + hn(a))< (γ− r)J′(W )

J′′(W )
1
2
ψ2
k�

Since the right hand side is positive whenever J′(W ) < 0, a sufficient condition is

ψ2
k ≥ 1

n(a)

∑
i

ψ2
i ai�

Note that a sharp condition is ψ2
k >

−2J′′(W )
J′′′(W ) , which is equivalent to

ψ2
k >

2(
γW + hn(a))

(
h

1
2

∑
i

ψ2
i ai −

(γ− r)J′(W )
J′′(W )

)
�

The result that for γ close to r, the cost of incentives is decreasing was used in the
main text to characterize the dynamics. The following proposition formalizes this result.

Proposition 12. There exists an ε > 0 such that for all γ ∈ (r� r + ε), we have J′′′(W ) > 0
for anyW ∈ [0� W̄ ].

Proof. Suppose J′′′(W )≤ 0 for someW ∈ [0� W̄ ]. Then, using (14), we have

J′(W )≥ −J′′(W )
(
γW + hn∗)
γ− r �

where n∗ is the optimal number of projects from the HJB equation (5). Plugging this
expression into the HJB equation (5), we have

rJ(W ) ≥ max
a

∑
i

μiai

− J′′(W )
γ− r

((
γW + hn∗)(γW + hn(a)) − (γ− r)1

2

∑
i

ψ2
i ai

)
�

As γ ↓ r, the term multiplying J′′(W ) is strictly positive for allW > 0 so that

rJ(W )≥ max
a

∑
i

μiai�

which implies a contradiction along the same lines and in the proof of Proposition 7.

I now restate Proposition 4 for the convenience of the reader and prove it.

Proposition 13. There exists an ε > 0 such that for all γ ∈ (r� r + ε), we have b′
k(W ) > 0

for all kwith

ψ2
k >

1
n(a)

∑
i

ψ2
i ai�
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Proof. Choose k andW such that

rk ≡ψ2
k − 1

n(a)

∑
i

ψ2
i > 0

and b′
k(W )≤ 0. The last condition is equivalent to

−J′(W )(γ− r)1
2
ψ2
k − J′′(W )

(
1
2
ψ2
kγW + hn∗ri

)
≤ 0�

where again n∗ is the optimal number of projects and I have used the definition of bi(W )
in (6). This condition can be rewritten as

J′(W )≥ −J′′(W )

(γ− r)1
2
ψ2
k

(
1
2
ψ2
kγW + hn∗ri

)
�

Plugging this inequality into the HJB equation (5) yields

rJ(W ) ≥ max
a

∑
i

μiai

− J′′(W )

(γ− r)1
2
ψ2
k

(
1
2
ψ2
k

(
γW + hn∗rk

)(
γW + hn(a)) − (γ− r)1

2

∑
i

ψ2
i ai

)
�

For γ − r sufficiently small, the term multiplying −J′′(W ) is positive for all W and rk
chosen as above, and, therefore,

rJ(W )≥ max
a

∑
i

μiai�

which again implies a contradiction.

The result that bi(W )→ NPVi asW → W̄ was sketched in the main text.

A.5 Proof of the implementation in Section 5

I now derive the implementation in Proposition 6. I let Mt denote the cash stock. The
stockMt earns a total interest of rMt , where r is the interest rate, and it has inflows from
the output of all projects dXt = ∑

i dXit and outflows from the dividends paid on the
equity and the payout to the agent. Thus,Mt evolves according to

dMt = rMt dt + dXt − dct − dDivt � (15)

Here, Divt is a dividend process required by shareholders that satisfies

dDivt = (γ− r)Mt dt� (16)
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The agent receives a constant equity share �t and bonus payments Pt , which are linear
in individual project outputs

dPt =
∑
i

βitdXit� (17)

with nonnegative weights βit .
The agent is also endowed with a personal account52 with balance At , which pays

interest at rate γ and is used in part to pay him. At any point in time, he receives an
equity share �t in any currently chosen project. Whenever a new project is started, he
buys equity in that project at a predetermined price pt , and when a project is stopped,
he sells off the equity. Proceeds from these sales and purchases are deposited in the
personal account.53 Finally, the agent may not access funds inside the account, except
for when a dividend dct is paid. Formally, the account balance satisfies

dAt = γAt dt +pt d�t + dPt − dcAt � (18)

Here, dcAt is the agent’s consumption paid from the account, pt is the transfer price on
equity sales and purchases, and d�t =�t − limt ′↑t �t ′ denotes the amount of shares that
are purchased if d�t > 0 or sold if d�t < 0.

The optimal equity share needs to be low enough to prevent unnecessary risk in the
contract, which is achieved exactly by setting it to the minimal equity stake the agent
would hold if project-specific shares could be issued. The rest of the incentives are pro-
vided by adjusting the sensitivity of the bonus payments.

I now show that by setting pt =Mt ,�t = mini:ai=1 h/μi, and βit = (h/μi −�t)ait , the
principal can implement the optimal contract. First, I show that the agent’s continuation
utility satisfies Wt =�tMt +At . Indeed, (15), (16), (17), and (18) imply that the agent’s
HJB equation satisfies

γWt = max
a∈A

�t

(
rMt +

∑
i

μiait − dct

dt
− dDivt

)
+�t dct

dt
− h

∑
i

ai + dAt + d�t

dt
Mt

= max
a∈A

�t

(
γMt +

∑
i

μiai

)
− h

∑
i

ai + γAt +
∑
i

eit

(
h

μi
−�t

)
μiai

=�tγMt + max
a∈A

(∑
i

(�itμiai − hait)
)

+ γAt

=�tγMt + γAt�

Given the law of motion for At and Mt , we can verify that if Wt =�tMt +At , then dWt
still satisfies (3). Thus the optimal contract is implemented.

52The unit of account is irrelevant, and the balance on the agent’s account can be interpreted in terms of
cash or an incentive point scheme.

53I assume that it is possible for the account to have a negative balance.
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