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Supplement to “On competitive nonlinear pricing”
(Theoretical Economics, Vol. 14, No. 1, January 2019, 297–343)
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Finanza, Università degli Studi di Roma“Tor Vergata”

Thomas Mariotti
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François Salanié
Toulouse School of Economics, INRA, University of Toulouse Capitole

This supplement contains the proofs of technical lemmas and auxiliary results not
included in the main paper. Unless stated otherwise, all references to results and
equations are to the main paper.

S.1. Technical lemmas

Proof of Lemma 1. Quasiconcavity. Consider a type i and a market maker k and let
us hereafter omit the indices i and k for the sake of clarity. Let (q� t) and (q′� t ′) be two
trades and let Q− and Q−′ be the corresponding solutions to (3). For each λ ∈ [0�1],
λQ− + (1 − λ)Q−′ is an admissible candidate in (3). Hence, z−(λq + (1 − λ)q′�λt + (1 −
λ)t ′) is at least

U
(
λq+ (1 − λ)q′ + λQ− + (1 − λ)Q−′�λt + (1 − λ)t ′ + T−(

λQ− + (1 − λ)Q−′))�
Because T− is convex and U is decreasing in transfers, this lower bound is itself at least

U
(
λ
(
q+Q−) + (1 − λ)

(
q′ +Q−′)�λ[

t + T−(
Q−)] + (1 − λ)

[
t ′ + T−(

Q−′)])�
and because U is quasiconcave, this quantity is at least

min
{
U

(
q+Q−� t + T−(

Q−))
�U

(
q′ +Q−′� t ′ + T−(

Q−′))}�
which is min{z−(q� t)� z−(q′� t ′)} by construction. Notice that all these quantities may be
equal if the tariff T− is locally linear; hence, this argument only shows that z− is weakly
quasiconcave.

Property SC-z. Consider a market maker k and let us hereafter omit the index k for
the sake of clarity. Fix some q < q′, t, and t ′. First, let T (Q) ≡ t + T−(Q − q), defined
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for Q ≥ q. Similarly, let T ′(Q) ≡ t ′ + T−(Q − q′), defined for Q ≥ q′. According to (3), for
each i, computing z−

i (q� t) amounts to maximizing Ui(Q�T (Q)) with respect to Q ≥ q.
Let Qi ≥ q be the solution to this problem; it is unique as Ui is strictly quasiconcave and
strictly decreasing in transfers and T is convex. Similarly, computing z−

i (q
′� t ′) amounts

to maximizing Ui(Q�T ′(Q)) with respect to Q ≥ q′. Let Q′
i ≥ q′ be the unique solution to

this problem. The proof consists of two steps.

Step 1. We first prove (5). Suppose

z−
i (q� t) < z−

i

(
q′� t ′

)

for some i and let j > i. Because Qj ≥ q is an admissible candidate in the problem that
defines z−

i (q� t), we have

Ui

(
Qj�T (Qj)

) ≤ z−
i (q� t) < z−

i

(
q′� t ′

) = Ui

(
Q′

i�T
′(Q′

i

))
� (S.1)

Two cases may arise.

(i) Suppose first Qj <Q′
i. Then

z−
j (q� t) =Uj

(
Qj�T (Qj)

)
<Uj

(
Q′

i�T
′(Q′

i

)) ≤ z−
j

(
q′� t ′

)
�

where the first inequality follows from (S.1), Assumption SC-U , and the assump-
tions that i < j and Qj <Q′

i, and the second inequality follows from the fact that
Q′

i ≥ q′ is an admissible candidate in the problem that defines z−
j (q

′� t ′). This
shows (5).

(ii) Suppose next Qj ≥ Q′
i. Because Q′

i ≥ q′ > q is an admissible candidate in the prob-
lem that defines z−

i (q� t), we have

Ui

(
Q′

i�T
(
Q′

i

)) ≤ z−
i (q� t) < z−

i

(
q′� t ′

) =Ui

(
Q′

i�T
′(Q′

i

))
�

which implies T ′(Q′
i) < T (Q′

i). Moreover, as q < q′ and T− is convex, T ′(Q) −
T (Q) is nonincreasing in Q ≥ q′. Because Qj ≥ Q′

i ≥ q′ and T ′(Q′
i) < T (Q′

i), it
follows that T ′(Qj) < T (Qj). Now, as Qj ≥ q′, Qj is an admissible candidate in the
problem that defines z−

j (q
′� t ′) and, thus,

Uj

(
Qj�T ′(Qj)

) ≤ z−
j

(
q′� t ′

)
�

Hence, from T ′(Qj) < T (Qj), we directly obtain

z−
j (q� t) =Uj

(
Qj�T (Qj)

)
<Uj

(
Qj�T ′(Qj)

) ≤ z−
j

(
q′� t ′

)
�

This shows (5).

Step 2. The proof of (4) follows from (5) by continuity. Suppose z−
i (q� t) = z−

i (q
′� t ′)

for some i and let j > i. Then because z−
i is strictly decreasing in transfers, for any strictly

positive ε, we have z−
i (q� t + ε) < z−

i (q
′� t ′) and, thus, z−

j (q� t + ε) < z−
j (q

′� t ′) from (5).

As z−
j is continuous, we can take limits as ε goes to zero to obtain (4). Notice that we
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may have z−
j (q� t) = z−

j (q
′� t ′) if the tariff T− is locally linear; hence, this argument only

shows that the family of functions z−
i satisfies a weak single-crossing property. The result

follows.

Proof of Lemma 2. Consider a market maker k and let us hereafter omit the index k

for the sake of clarity. Let μ∗ ≡ {(q∗
i � t

∗
i ) : i = 0� � � � � I} be a menu with nondecreasing

quantities such that (7) holds. The proof consists of two steps.

Step 1. We first show that there exists a menu μ ≡ {(qi� ti) : i = 0� � � � � I} that has non-
decreasing quantities and satisfies the following conditions:

(a) We have
∑

i mivi(qi� ti) ≥ ∑
i mivi(q

∗
i � t

∗
i ).

(b) For each i ≥ 1, z−
i (qi� ti) ≥ z−

i (qi−1� ti−1).

(c) For each i > 1, if qi > qi−1, then z−
i−1(qi−1� ti−1) > z−

i−1(qi� ti).

Notice that (b) is identical to (7), whereas (c) is a strict version of the upward local
incentive-compatibility constraints. Suppose, to the contrary, that there is no menu that
satisfies conditions (a), (b), and (c). Nevertheless, the set of menus with nondecreasing
quantities such that (a) and (b) hold is nonempty, as it contains μ∗. Therefore, we can
select in this set a menu μ that maximizes the index j > 1 of the first violation of (c). By
construction, for this index j, we must have qj > qj−1.

We can even require that (b) holds as an equality at i = j for μ. Indeed, if (b) holds as
a strict inequality at i = j, we can increase tj until an equality is reached: this is feasible
because z−

j is weakly quasiconcave and strictly decreasing in transfers. This change in tj
defines a new menu that satisfies conditions (a) and (b) for all i, with an equality at i = j,
and (c) for all i < j; but, according to our definition of μ, (c) must still be violated at i = j.
With a slight abuse of notation, denote this new menu again by μ.

Now, because (b) holds as an equality at i = j and qj > qj−1, the contraposition of (5)
in Property SC-z yields z−

j−1(qj−1� tj−1) ≥ z−
j−1(qj� tj). Recall, however, that (c) is violated

at i = j. Therefore, the only remaining possibility is that this inequality is in fact an
equality. As a result, (b) and (c) hold as equalities at i = j and we face a cycle of binding
incentive-compatibility constraints that we now eliminate by pooling types j − 1 and j

on the same trade. Two cases may arise.

(i) Suppose first vj(qj� tj) ≤ vj(qj−1� tj−1). We can then build a new menu μ′ that dif-
fers from μ only in allocating (qj−1� tj−1) to type j. Condition (a) is relaxed by
construction. Conditions (b) and (c) are unaffected for all i < j and trivially hold
at i = j as types j − 1 and j are pooled on the same trade. Finally, (b) still holds for
all i > j because, by Property SC-z, the downward incentive-compatibility con-
straints are satisfied as soon as the downward local incentive-compatibility con-
straints are satisfied. But then μ′ satisfies conditions (a) and (b), and any violation
of (c) for μ′ must take place for a type strictly higher than j, contradicting our
definition of μ.

(ii) Suppose next vj(qj� tj) > vj(qj−1� tj−1). We can then build a new menu μ′ that
differs from μ only in allocating (qj� tj) to type j − 1. Condition (a) is relaxed
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because, from qj > qj−1, the contraposition of Property SC-v yields vj−1(qj� tj) >

vj−1(qj−1� tj−1). Conditions (b) and (c) are unaffected for all i < j − 1 and trivially
hold at i = j as types j − 1 and j are pooled on the same trade. Condition (b) is
unaffected for all i > j. At i = j − 1, because (c) holds as an equality at i = j for
μ, the change from μ to μ′ does not affect type j − 1’s utility and so (b) still holds
at i = j − 1. There remains to check that (c) still holds at i = j − 1, in case j > 2.
Because (c) holds as an equality at i = j for μ, the contraposition of (5) in Property
SC-z yields

z−
j−2(qj−1� tj−1) ≥ z−

j−2(qj� tj)�

We also know that (c) holds at i = j − 1 for μ, so that

z−
j−2(qj−2� tj−2) > z−

j−2(qj−1� tj−1)�

These inequalities imply that (c) still holds at i = j − 1. Once more, μ′ satisfies
conditions (a) and (b), and any violation of (c) for μ′ has to take place for a type
strictly higher than j, contradicting our definition of μ.

Step 2. In Step 1, we have shown that for any menu μ∗ with nondecreasing quanti-
ties such that (7) holds, there exists a menu μ with nondecreasing quantities that yields
an expected profit at least as high as μ∗ and satisfies conditions (b) and (c). By conti-
nuity of the functions z−

i , we can then slightly decrease each transfer in the menu μ to
obtain a menu μ′ in which both (b) and (c) now hold as strict inequalities. Hence, the lo-
cal incentive-compatibility and type 1’s individual-rationality constraint for μ′ are slack.
Property SC-z together with the fact that quantities in the menu μ′ are nondecreasing
then ensure that the constraints (6) hold as strict inequalities and, thus, that the insider
has a unique best response to μ′. As the decrease in transfers in μ′ relative to μ is arbi-
trarily small, we can approximate as closely as we want the expected profit from μ and,
a fortiori, from μ∗. The result follows.

Proof of Lemma 3. We begin with some preliminary remarks on the insider’s best re-
sponse to an arbitrary profile of convex tariffs.

Step 0. Recall that, given a profile (t1� � � � � tK) of convex tariffs, the aggregate demand
Qi of type i is uniquely determined and nondecreasing in i. Given Qi, type i’s utility-
maximization problem (1) reduces to minimizing her total payment for Qi, T(Qi), as
defined by (2). This is a convex problem, so that by the Kuhn–Tucker theorem (Rock-
afellar 1970, Corollary 28.3.1), we can associate to any of its solutions (q1

i � � � � � q
K
i ) a La-

grange multiplier pi such that pi ∈ ∂tk(qki ) for all k. If there were two different solutions
(q1

i � � � � � q
K
i ) and (q′1

i � � � � � q
′K
i ) to (2) with different multipliers pi < p′

i, then because each
tariff is convex, we would have qki ≤ q′k

i for all k; but then, as both solutions must sum to
Qi, they would be identical, a contradiction. This shows that all the solutions to (2) must
share the same pi. Hence, we can associate to each type i a marginal price pi such that
whatever the solution (q1

i � � � � � q
K
i ) to (2), we have pi ∈ ∂tk(qki ) for all k. Finally, we can

with no loss of generality adopt the convention that pi is nondecreasing in i. Indeed, if
pi−1 >pi for some i > 1, then because pi−1 ∈ ∂tk(qki−1) and pi ∈ ∂tk(qki ) for all k, we have
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qki−1 ≥ qki for all k. As these quantities sum to Qi−1 and Qi, respectively, and as Qi−1 ≤ Qi,

it follows that qki−1 = qki for all k. Hence pi−1 ∈ ∂tk(qki ) for all k and we can replace pi by

pi−1. Given this convention, the lower and upper bounds sk(pi) and sk(pi) of the supply
sk(pi) of market maker k at marginal price pi, as defined by (9), are both nondecreasing
in i for all k.

Now suppose that (t1� � � � � tK) are equilibrium tariffs and that market maker k devi-
ates to some convex tariff t. Consider a nondecreasing family of quantities qi such that
(10) holds for all i; we know from Property SC-z that such a family exists. Denoting by
pi ∈ ∂t(qi) a Lagrange multiplier for type i’s problem of minimizing her total payment,
we can, according to Step 0, require that pi be nondecreasing in i. In fact, under As-
sumption QL-U , each type i must purchase Di(pi) = (u′

i)
−1(pi) in the aggregate, which

uniquely pins down the value of pi given the equilibrium tariffs t−k of the market makers
other than k. The proof consists of four steps.

Step 1. Letting p ≡ (p1� � � � �pI) and q ≡ (q1� � � � � qI), consider the piecewise-linear
tariff tp�q recursively defined by tp�q(0) ≡ 0 and

tp�q(q) ≡ tp�q(qi−1)+pi(q− qi−1)� i = 1� � � � � I� q ∈ (qi−1� qi]�
with q0 ≡ 0 by convention. Because the families of marginal prices and quantities pi and
qi are nondecreasing, the tariff tp�q is convex. It is straightforward to check that tp�q(qi)≥
t(qi) for all i. Moreover, as pi = ∂−tp�q(qi), it remains a best response for each type i

to purchase qi from market maker k if the tariffs (tp�q� t
−k) are posted. In fact, under

Assumption QL-U , tp�q is the highest convex tariff with the property that purchasing qi
from market maker k is a best response for each type i given the equilibrium tariffs t−k

of the market makers other than k (see Figure 2).

Step 2. According to Step 1, we can hereafter suppose that market maker k deviates
to the tariff tp�q. As in (9), let skp�q(pi)≡ {q : pi ∈ ∂tp�q(q)} be the supply of market maker k

at marginal price pi when he posts the tariff tp�q, with lower and upper bounds skp�q(pi)

and skp�q(pi), respectively. Define a nondecreasing family of quantities qi as follows:

(i) If skp�q(pi) < skp�q(pi) and if I+
i ≡ {j : pj = pi > cj} �=∅, let qi ≡ max{qj : j ∈ I+

i }.

(ii) Otherwise, let qi ≡ skp�q(pi).

Intuitively, there is a single value of q for each value of p in {p1� � � � �pI}: below q, we
find all the types such that ci < p who trade at marginal price p and to whom market
maker k would like to sell higher quantities; above q, we find all the types such that
p ≤ ci who trade at marginal price p and to whom market maker k would like to sell
lower quantities.

Step 3. A way for market maker k to achieve these objectives consists of decreasing
the slope of the tariff tp�q between sk(pi) and qi, and of increasing it between qi and
sk(pi). Consider accordingly a small strictly positive ε and let t̂ ≡ tp−ε1I �q, with 1I ≡
(1� � � � �1) ∈ R

I and q ≡ (q1� � � � � qI). Notice that for each i, we have ∂− t̂(qi) ≤ pi−ε < pi <

∂+ t̂(qi), so that slopes are changed in the right directions (see Figure 3). Let (q̂1� � � � � q̂I)
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be any best response of the insider to the tariff t̂ given the equilibrium tariffs t−k of the
market makers other than k. According to the definition of qi, two cases may arise.

(i) If pi > ci, then sk(pi) ≤ qi ≤ qi. Then, because for each q ≤ qi, the tariff t̂ satisfies

∂− t̂(q) ≤ ∂− t̂(qi)≤ pi − ε < pi

and type i has quasilinear utility, we must have q̂i ≥ qi.

(ii) If pi ≤ ci, then qi ≤ qi ≤ sk(pi). Then, because for each q ≥ qi, the tariff t̂ satisfies

∂+ t̂(q)≥ ∂+ t̂(qi) > pi

and type i has quasilinear utility, we must have q̂i ≤ qi.

Step 4. Finally, for any strictly positive ε, we have t̂(q) = tp−ε1I �q(q) ≥ tp�q(q) − O(ε)

for all q (see Figure 3). Thus, for any best response (q̂1� � � � � q̂I) of the insider to the tariff
t̂ given the equilibrium tariffs t−k of the market makers other than k, we have

∑
i

mi

[
t̂(q̂i)− ciq̂i

] ≥
∑
i

mi

[
tp�q(q̂i)− ciq̂i

] −O(ε)

≥
∑
i

mi

[
tp�q(qi)− ciqi

] −O(ε)

≥
∑
i

mi

[
t(qi)− ciqi

] −O(ε)�

where the second inequality follows from the fact that q̂i ≤ qi if pi ≤ ci and q̂i ≥ qi if
pi > ci by Step 3, and the third inequality follows from Step 1. Hence, by posting the
tariff t̂, market maker k can secure an expected profit within O(ε) of

∑
i mi[t(qi)− ciqi],

where ε is arbitrarily small. The result follows.

Proof of Lemma 4. Consider a market maker k and let us hereafter omit the index k

for the sake of clarity. We prove the result for the more general case where the insider’s
type is distributed over some compact subset I of R according to an arbitrary distri-
bution m. We assume that the appropriate generalization of Property SC-v holds, that
D ≡ sup{Di(p) : i ∈ I} < ∞, and that there exists an m-integrable function g such that
|νi(q)| ≤ gi for all (i� q) ∈ I × [0�D], where νi(q) ≡ vi(q�pq) for all i and q. Now observe
that if the quantities qi satisfy the constraints (13), then so do the quantities min{qi�q}
for all q. Hence we can restrict our quest for a solution to problem (12)–(13) to the set of
nondecreasing families of quantities qi such that (13) holds and

∫
νi(q)1{qi≥q}m(di)≤

∫
νi(qi)1{qi≥q}m(di)� q ∈ [

0�‖q‖∞
]
� (S.2)

where ‖q‖∞ ≡ inf{q : m[{i ∈ I : qi ≤ q}] = 1}. Notice that this set contains the null fam-
ily and is thus nonempty. We claim that any nondecreasing family of quantities qi
in this set yields an expected profit at most equal to that provided by the quantities
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min{Di(p)�‖q‖∞}. This is obvious if ‖q‖∞ = 0. If ‖q‖∞ > 0, then, for each ε ∈ (0�‖q‖∞],
applying (S.2) to q = ‖q‖∞ − ε implies that there exists j such that qj > ‖q‖∞ − ε and

νkj
(‖q‖∞ − ε

) ≤ νkj (qj)�

The contraposition of Property SC-v then yields1

νi
(‖q‖∞ − ε

) ≤ νi(qj)� i ≤ j�

Because the quantities qi are nondecreasing, this, in particular, holds for all i such that
qi < ‖q‖∞ −ε. As the functions νi are weakly quasiconcave, it follows that, for each i such
that qi < ‖q‖∞ − ε, the function νi is nondecreasing over [0�‖q‖∞ − ε]. Because this is
true for all ε ∈ (0�‖q‖∞], we obtain that, for each i such that qi < ‖q‖∞, the function νi is
nondecreasing over [0�‖q‖∞]. Hence we can choose the quantities min{Di(p)�‖q‖∞} in-
stead of the quantities qi without reducing the expected profit, as claimed. This implies
that problem (12)–(13) reduces to

sup
{∫

νi
(
min

{
Di(p)�q

})
m(di) : q ∈ [0�D]

}
� (S.3)

As the functions νi are continuous, Lebesgue’s dominated convergence theorem (Ali-
prantis and Border 2006, Theorem 11.21) ensures that the objective function in problem
(S.3) is continuous in q and, hence, that this problem has a solution. Therefore, problem
(12)–(13) has a solution with limit-order quantities at price p. Finally, if the functions
νi are strictly quasiconcave, the above reasoning shows that they are strictly increasing
over the relevant ranges, so that any solution to problem (12)–(13) is of this form. The
result follows.

Proof of Lemma 5. Recall that, given a profile (t1� � � � � tK) of convex tariffs, the aggre-
gate trade (Qi�Ti) of type i is uniquely determined and that we can associate to type
i a Lagrange multiplier pi as in Step 0 of the proof of Lemma 3. To find an efficient
allocation, we first solve for each i,

max
{∑

k

vki
(
qki � t

k
(
qki

)) : (q1
i � � � � � q

K
i

) ∈A1 × · · · ×AK

}
�

subject to constraint i in (15). Because all market makers have identical quasilinear
profit functions, this problem reduces to

min
{∑

k

ci
(
qki

) : (q1
i � � � � � q

K
i

) ∈A1 × · · · ×AK

}
(S.4)

1Strictly speaking, the contraposition of Property SC-v states that vkj (q
′� t ′) > vkj (q� t) implies vki (q

′� t ′) >
vki (q� t). However, because the profit functions are continuous and strictly decreasing in transfers, we can
easily show as in Step 2 of the proof of Property SC-z that vkj (q

′� t ′) ≥ vkj (q� t) implies vki (q
′� t ′) ≥ vki (q� t),

which is the implication we use here.
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subject to ∑
k

qki =Qi and sk(pi) ≤ qki ≤ sk(pi)� k= 1� � � � �K� (S.5)

where the latter constraints ensure that (q1
i � � � � � q

K
i ) is a best response of type i to the

tariffs (t1� � � � � tK). We now show that the family of problems (S.4)–(S.5) indexed by i

admits a family of solutions with nondecreasing individual quantities. Notice first that
each of these problems has a nonempty compact set of solutions. Hence, there exists a
family of solutions (q1

1� � � � � q
K
1 � � � � � q1

I � � � � � q
K
I ) to the family of problems (S.4)–(S.5) that

minimizes the following criterion for violations of monotonicity:
∑
k

∑
i>1

max
{
qki−1 − qki �0

}
� (S.6)

Suppose, to the contrary, that this minimum is strictly positive. Then, at the minimum,
we have

qki−1 > qki (S.7)

for some i > 1 and k. As sk(pi) and sk(pi) are nondecreasing in i, this implies

sk(pi−1) ≤ sk(pi) ≤ qki < qki−1 ≤ sk(pi−1)≤ sk(pi)� (S.8)

The intervals [sk(pi−1)� s
k(pi−1)] and [sk(pi)� s

k(pi)] then have a nontrivial intersection,
so it must be that pi−1 = pi. Therefore, for each l, sl(pi−1) = sl(pi) and sl(pi−1) = sl(pi).
Moreover, because qki−1 > qki and Qi−1 ≤Qi, there exists l �= k such that

qli−1 < qli� (S.9)

Summing up, we have

sl(pi−1)= sl(pi) ≤ qli−1 < qli ≤ sl(pi−1)= sl(pi)� (S.10)

Given (S.8) and (S.10), we can slightly decrease qki−1 and increase qli−1 by a strictly pos-
itive amount ε, so that all constraints are still satisfied. This modification strictly de-
creases the criterion (S.6), so that qki−1 − ε and qli−1 + ε cannot be part of a solution to
problem (S.4)–(S.5) for type i− 1. We thus obtain

ci−1
(
qki−1 − ε

) + ci−1
(
qli−1 + ε

)
> ci−1

(
qki−1

) + ci−1
(
qli−1

)
�

As ci−1 is convex, this implies qki−1 − ε < qli−1 and, therefore, qki−1 ≤ qli−1 as ε is arbitrary.

Alternatively, we can slightly increase qki and decrease qli by the same strictly positive
amount ε. We similarly obtain

ci
(
qki + ε

) + ci
(
qli − ε

)
> ci

(
qki

) + ci
(
qli

)
�

which implies qli ≤ qki . Using (S.7) then yields qli ≤ qki < qki−1 ≤ qli−1, which contradicts
(S.9). The result follows.
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S.2. On the Riemann approximation (34) of (29) and (30)

In this section, we prove that the Riemann approximation (34) of (29) and (30) is uni-
form in χ. As a preliminary remark, observe that when maximizing (29) and (30), we can
with no loss of generality focus on nondecreasing quantity schedules χ in a uniformly
bounded set: the first requirement follows from the fact that the family of functions
ζ∗−k(·� θ) satisfies the strict single-crossing property; the second requirement follows
from the fact that under Biais et al. (2000) responsiveness assumption c′(θ) < 1, quanti-
ties in an optimal schedule are bounded above by

χ̂(θ) ≡ arg max
{
ζ∗−k(q�θ)− c(θ)q : q ≥ 0

} = 1
K

arg max
{
u(Q�θ)− c(θ)Q :Q ≥ 0

}
�

that is, a fraction 1/K of the efficient quantity for type θ. Denote by

X ≡ {
χ : [θ�θ] →R : χ is nondecreasing and χ(θ) ∈ [

0� χ̂(θ)
]

for all θ ∈ [θ�θ]}

the corresponding set of quantity schedules.
Now each χ ∈X , being nondecreasing, has at most countably many discontinuities.

Because it is a continuous function of (χ(θ)�θ), the same holds for the integrand in (30);
it is thus Riemann-integrable (Aliprantis and Border 2006, Theorem 11.30), so that the
Riemann sum in (34) converges to the integral in (30). What we need, however, is a
stronger result, namely, that (34) approximates (29) and (30) uniformly in χ ∈X . The key
observation in that respect is that if the functions f , u, and c are sufficiently regular, then
the indirect utility function ζ∗�−k is twice continuously differentiable. This property is
notably satisfied in the uniform-quadratic example studied by Biais et al. (2013), and we
hereafter assume this to be the case. In particular, the Taylor–Lagrange approximations
in (31)–(33) are valid.

A first implication of this is that the O(1/I) term in the approximation (34) of (29)
is uniform in χ ∈ X . Indeed, the difference between the sums in (29) and (34) can be
uniformly bounded as

∣∣∣∣∣
I∑

i=1

[
mi − θ− θ

I
f (θi)

][
ζ∗−k

(
χ(θi)� θi

) − c(θi)χ(θi)
]

−
I∑

i=1

[
1 − F(θi)

][
ζ∗−k

(
χ(θi)� θi+1

) − ζ∗−k
(
χ(θi)� θi

) − θ− θ

I

∂ζ∗−k

∂θ

(
χ(θi)� θi

)]∣∣∣∣∣

≤
I∑

i=1

∣∣∣∣mi − θ− θ

I
f (θi)

∣∣∣∣max
{∣∣ζ∗−k(q�θ)− c(θ)q

∣∣ : (q�θ) ∈ [
0� χ̂(θ)

] × [θ�θ]}

+ I max
{∣∣∣∣ζ∗−k(q�θi+1)− ζ∗−k(q�θi)− θ− θ

I

∂ζ∗−k

∂θ
(q�θi)

∣∣∣∣
: q ∈ [

0� χ̂(θ)
]

and i = 1� � � � � I
}
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≤ IO

(
1

I2

)
+ (θ− θ)2

2I

(
max

{∣∣∣∣∂
2ζ∗−k

∂θ2 (q�θ)

∣∣∣∣ : (q�θ) ∈ [
0� χ̂(θ)

] × [θ�θ]
}

+ o(1)
)

=O

(
1
I

)
�

To conclude the proof, we thus only need to check that the Riemann sum in (34) con-
verges to the integral in (30) at rate 1/I, uniformly in χ. Define

H∗(q�θ) ≡
[
ζ∗−k(q�θ)− c(θ)q− 1 − F(θ)

f (θ)

∂ζ∗−k

∂θ
(q�θ)

]
f (θ)�

which is continuously differentiable in (q�θ) under our regularity assumptions. There-
fore, for each χ ∈ X , H∗(χ(θ)�θ) has finite total variation V ∗

χ over [θ�θ]. In particular,
letting

H
∗
q ≡ max

{∣∣∣∣∂H
∗

∂q
(q�θ)

∣∣∣∣ : (q�θ) ∈ [
0� χ̂(θ)

] × [θ�θ]
}

H
∗
θ ≡ max

{∣∣∣∣∂H
∗

∂θ
(q�θ)

∣∣∣∣ : (q�θ) ∈ [
0� χ̂(θ)

] × [θ�θ]
}
�

we obtain a uniform bound

V ∗
χ ≤ V

∗ ≡H
∗
qχ̂(θ)+H

∗
θ(θ− θ)� χ ∈ X�

Finally, using a standard inequality (Pólya and Szegö 1978, Part Two, Chapter 1, Sec-
tion 2, 9), we obtain a uniform bound for the difference between the Riemann sum in
(34) and the integral in (30):

∣∣∣∣∣
θ− θ

I

I∑
i=1

H∗(χ(θi)� θi) −
∫ θ

θ
H∗(χ(θ)�θ)

dθ

∣∣∣∣∣ ≤ (θ− θ)V ∗
χ

I
≤ (θ− θ)V

∗

I
�

The result follows.
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