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A B S T R A C T

Crop booms in forest frontiers are a major contributor to land conversion and deforestation. In this study, we
investigate the smallholder-driven northern Laos rubber boom in two case study areas (CSAs) with different
speed and intensity of rubber expansion. We assess the relative importance of market, contextual, and behavioral
factors in fostering or hindering the conversion of forest to rubber plantations. We develop a Bayesian network
(BN) model of land-use change based on household surveys, expert interviews, market price data, and land use
maps covering the period 2000–2017. We use regression analysis to inform the structure of the BN, compare
model results, and analyze time-varying effects. The BN and regression models incorporate perceived price
signals as a combination of market price and local price knowledge, and local self-reinforcing imitation dynamics
as a combination of aggregate rubber conversion and imitation behavior elicited in the survey. Results show that
deforestation was lower in strictly protected areas but not in forests with lesser protection status. Imitation had a
large effect on rubber uptake in both areas. In the CSA that experienced the most intensive spread of rubber,
price signals transmitted through social networks had a significant impact, especially throughout the stage of
rapid expansion. Rubber expansion continued in both areas during periods of descending prices mainly because
of increased cash availability and access to inputs. Our research sheds light on the underlying dynamics of crop
booms and contributes to the understanding of agricultural expansion processes.

1. Introduction

Crop booms in forest frontiers are an important driver of global
deforestation (e.g., Gasparri et al., 2016; Koh & Wilcove, 2008). These
booms are generally characterized by a slow start followed by rapid
expansion and a subsequent slowdown (Ornetsmüller et al., 2019). The
resulting changes in land use, tenure, and ownership induce socio-
ecological regime shifts (Müller et al., 2014) and have wide-ranging
socioecological impacts that are compounded by the speed of change
(Heemskerk, 2001). As yet, few studies provide quantitative analyses of
crop boom landscapes that can inform policies during all stages of the
boom. In particular, it is important to understand the effects of forest
protection policies in deterring agricultural expansion into forests
(Bruggeman et al., 2018).

Agricultural expansion can be explained in terms of distant or

exogenous drivers such as economic, demographic, or technological
changes (Alexander et al., 2015; DeFries et al., 2010; Keys & McConnell,
2005; Weinzettel et al., 2013), the local biophysical and socioeconomic
context moderating the spatiotemporal dynamics of land conversion
(Meyfroidt, 2015), and the decisions of the actors involved (Hettig
et al., 2016; le Polain de Waroux et al., 2018; Meyfroidt, 2013; Rindfuss
et al., 2007; Rudel, 2007). The latter are typically classified as agri-
business companies and smallholder or family farmers, who frequently
coexist and interact (Barbier, 2012; Cramb et al., 2017; Meyfroidt et al.,
2014; Pacheco, 2012). Land-use models are widely used in land systems
science (LSS) to assess the relative importance of drivers and contextual
factors, to gain insight into complex dynamics, and to communicate this
knowledge (Verburg et al., 2019).

One central question in agricultural economics and LSS is the
complex role of commodity prices in driving agricultural expansion.
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Capital surplus from past high prices may allow for a current expansion,
especially for capital-constrained farmers (Richards and Arima, 2018).
Current prices may have a limited impact on long-term investment
decisions (Hartley et al., 1987). Low prices may also spur investment to
maintain past income levels. While high or rising prices may be the
most important factor influencing investment decisions for large agri-
business companies, farmers also consider other aspects (Heemskerk,
2001) such as the availability of economic alternatives, perceived
ability (e.g., labor, assets, education, or power position), risk pre-
ference, labor drudge, heritability (Caldas et al., 2007; Celio et al.,
2019; Feintrenie et al., 2010; Heemskerk, 2001; Overmars and Verburg,
2006; Sun & Müller, 2013; Vanwambeke et al., 2007), or making land
claims (Kronenburg García & van Dijk, 2019).

Decisions around land-use are also influenced by the decisions of
others, especially those who are socially close (Akerloff, 1997). Imita-
tion thus becomes an important driver of crop adoption and diffusion
(Pomp & Burger, 1995). This occurs through processes ranging from
herd behavior, based on the assumption that others have better in-
formation (Besley & Case, 1994; le Polain de Waroux, 2019; Pomp &
Burger, 1995), and social learning (Bandura, 1971), to conformist
transmission (Henrich, 2001). However, quantitative assessments of the
normative and informational role of imitation in commodity expansion
are rare.

Another key question is the mechanism through which distant dri-
vers such as market prices affect decisions around local land use. The
mediation of price signals occurs, in part, through classical price
transmission between actors along the marketing chain (Meyer & von
Cramon-Taubadel, 2004), but it also occurs outside of the marketing
chain as information is transmitted in social or information networks
(Aker et al., 2016; Mazur & Onzere, 2009). Land-use models have

addressed various effects of prices on decisions, e.g., price lags, capital
surplus, or spatial heterogeneity (Aguiar et al., 2007; Richards et al.,
2012), but seldom consider the social transmission or local perception
of prices.

The expansion of rubber in the north of the Lao People’s Democratic
Republic (hereafter, Laos) after 2002 (Thongmanivong et al., 2009;
Vongvisouk et al., 2014) and across montane Southeast Asia in the last
decades (Li & Fox, 2012; Ziegler et al., 2009) was mostly smallholder-
driven (Byerlee, 2014; Epprecht et al., 2018; Fox & Castella, 2013). It is
a typical example of a forest frontier crop boom for its speed and in-
tensity (Junquera & Grêt-Regamey, 2019; Shi, 2008). Explanations for
this expansion include the rise of rubber prices after 2002, increased
demand for latex in the People’s Republic of China (hereafter, China),
the development of regional transport infrastructure, new land-use
policies incentivizing cash crop production in Laos, and the influence of
cross-border kinship and trade networks (Shi, 2008; Sturgeon, 2013).
Earlier work in the two case study areas (CSAs) under analysis also
showed the importance of widespread imitation behavior in fueling the
boom and the role of cross-border networks in the transmission of in-
formation about the market price and benefits of rubber; furthermore,
the designation of protected areas and a lack of accessibility seemed to
deter deforestation (Junquera & Grêt-Regamey, 2019). However, the
interdependence between these factors and their relative impact on
rubber expansion remain to be assessed.

Here, we employ a modeling approach to address this issue. We
develop two complementary land-use models. We build a Bayesian
network (BN) model that links the probability of local land-use change
with forest protection status, biophysical and socioeconomic indicators,
price signals, and imitation dynamics. The network structure of BNs and
their reliance on causal diagrams allow for the explicit representation of

Fig. 1. Map of the two CSAs with CSA villages studied indicated by solid dots on the map. Luang Namtha Province is shaded in gray in the map on the bottom right.
Top right: Land-use maps for 2017. FOR = Forest, FAL = Fallow, UR = Shifting Cultivation, RUB = Rubber, CAR = Cardamom, and BAM = Bamboo.
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dependence relations. We conduct sensitivity and scenario analyses to
show the relative importance of predictor variables on land-use change
outcomes. We further develop a regression-based model to inform the
BN model structure, complement BN model results, and assess changing
variable impacts over time.

We introduce two innovations compared to most land use change
models. First, we implement a rubber price “signal” as a combination
between market price and the local knowledge of price. Second, we
operationalize self-reinforcing imitation dynamics as a function of ag-
gregate rubber planted and the degree of self-reported imitation in
rubber adoption decisions.

We focus on two case study areas located at the forest frontier in
northern Laos’ Luang Namtha Province, near the border to China. These
areas have had different intensities of rubber expansion in the last two
decades. We hypothesize that: (i) a mixture of exogenous drivers and
local factors determined rubber expansion in each CSA; (ii) price signals
were most influential at the beginning of the boom, and less important in
later stages, after the adoption decision had been made; (iii) imitation
was significant throughout the boom, especially in the middle and later
stages; and (iv) the designation of protected areas reduced deforestation.

2. Case study areas

Land use in the two CSAs, referred to as Oudomsin and Prang (Fig. 1),
includes agricultural and forested areas, including a portion of the Nam
Ha National Protected Area (NPA). Before the cultivation of cash crops
for export, farmers relied on rice production in lowland paddies and
traditional upland rice production (shifting cultivation). Today, both
areas remain largely rice self-sufficient, although rubber has almost en-
tirely displaced shifting cultivation in Oudomsin, which experienced a
boom-like, i.e., rapid and intensive, expansion of rubber production.
Rubber expansion was significantly lower and slower in Prang.

Oudomsin is located in Sing District, roughly three kilometers from
the Chinese border and along the highway that leads to Mengla County
in China. It includes nine villages and covers 9,100 hectares (8.7 × 10.5
km). Its upland areas are more accessible than in Prang, and the popu-
lation density is higher. Revenue from cash crops, mainly rubber and
sugarcane, accounted for 58 percent of household income in 2017, when
the median income was USD3,900. Many households leased out their
paddies for banana production during a short-lived but lucrative banana
boom starting around 2011 (Friis & Nielsen, 2017, Friis and Nielsen,
2016), but banana plantations were mostly replaced by sugarcane by
2017. Villagers in Oudomsin have long-standing close cross-border social
ties to Chinese villages (Lagerqvist, 2013; Sturgeon, 2013).

Prang is located in the districts of Vieng Poukha and Namtha, ap-
proximately 60 kilometers from the Chinese border along the highway
that links Bangkok, Thailand, to Kunming, China. It includes five vil-
lages and covers 11,580 hectares (9.5 × 12.1 km). Revenue from
rubber and cardamom accounted for 72 percent of household income in
2017,i when the median income was USD1,100. Unlike Oudomsin,
Prang does not have close cross-border social ties to Chinese villages.

Several policy and economic changes triggered the expansion of
rubber production in Luang Namtha Province, which started around
2001ii and increased rapidly from 2004–2008. The 2004 opium re-
placement program (ORP) provided incentives for Chinese rubber in-
vestments in Laos and spurred the development of a local rubber
market, including processing facilities and a proliferation of traders (Lu,
2017). A land-use policy around 2004 declared cattle owners liable for

the damage caused by their animals, making the cultivation of high-
value crops more attractive.

Land-use planning and land allocation (LUPLA) activities were im-
plemented in Oudomsin area villages with the establishment of village
boundaries and protected forest categories in 1997–2002, and land allo-
cations in 2002–2006. Land titles were not assigned to shifting cultivation
fallows older than three years, encouraging conversion of fallows to
plantations. In the Prang area, LUPLA activities similarly took place in
2006–2010 and 2010–2014. The Nam Ha NPA was established in 1994,
but boundaries and restrictions were not clearly communicated until the
first phase of LUPLA.

Rubber trees take seven years to mature after which they produce
very little latex in years 8 to 10; production peaks around year 20 and
ends between years 30–35 (Manivong & Cramb, 2008). The market
price of rubber started an upward trend in 2002 and increased six-fold
until 2011 (Fig. 2), resulting in windfall incomes for Chinese small-
holder farmers with mature rubber plantations dating from the 1980s.
These farmers became a powerful example of social and financial suc-
cess to their relatives in Laos (Sturgeon, 2013). In fact, obtaining direct
evidence about the economic benefits of rubber—whether from re-
latives in China or through local villagers and investors—became the
main reason for rubber adoption in both CSAs. Furthermore, imitation
(or “following others” in the area) motivated 40 percent of adoption
decisions in both areas (Junquera & Grêt-Regamey, 2019).

3. Methods

3.1. Data collection

3.1.1. Household surveys, focus groups, and interviews
A total of 110 household surveys were conducted in October–December

2016 and November 2017–January 2018. Ten households were randomly
selected within the six villages selected in Oudomsin (N=60) and in all five
villages in Prang (N = 50). The survey elicited information on household
agricultural plots including size, location, biophysical characteristics, land
use, and land use history (type of land use since the plot was first claimed or
acquired and years of land use changes). Yield and cash crop prices in 2017
and in the year the cash crop was first planted were also collected. For fallow
land, the age of the fallow and the approximate diameter of the trees was
elicited. For cash crops, the reasons for adoption were asked.

Focus groups were conducted in each village to understand village
and land-use history. In addition, interviews were carried out with one
cardamom and three rubber companies as well as with Luang Namtha
district and provincial authorities.

3.1.2. Spatial data
We use annual time-series land-use maps (shapefiles) of each CSA

covering 2000–2017. These maps were developed following the meth-
odology outlined in Llopis et al. (2019) and Zaehringer et al. (2018).iii

The approach combines object-based spatial delineation of agricultural
plots based on very high-resolution (0.5 m/pixel) remote sensing ima-
gery with participatory methods.

Land-use planning (LUP) maps for Sing District covering Oudomsin
were obtained as shapefiles from the Sing District Office of National
Resources. These maps show the boundaries of agricultural areas and
protected areas, including NPAs, conservation forests, water sources
protection (WSP) forests, joint WSPs, HL protected areas, use forests,
regeneration forests, and land belonging to the District Area Forestry
Office (DAFO). For the Prang area, we only obtained LUP maps for two
villages (Prang and Talong) from the Vieng Poukha DAFO, showing the
NPA boundary within each village but no other forest categories. We
use a digital elevation model (DEM) at 50-meter resolution (MRCS,
2000) to calculate elevation and slope values for both CSAs.

i Other sources of income in Oudomsin and Prang CSAs included agricultural
wages (26 and 7%, respectively), cattle sales (2 and 16%), and non-agricultural
income (15 and 5%); remittances were negligible in 2017 (Junquera and Grêt-
Regamey, upcoming).

ii With the exception of early adopter villages Ban Had Nyao and a few bor-
derland villages, which planted rubber in the mid-1990s (Dianna, 2005). iii As of yet unpublished.
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3.1.3. Rubber prices
We obtain monthly rubber market prices at the Singapore

Commodities Exchange (SCE) for 1998–2017 (Indexmundi, 2018) and
find that they are similar to rubber market prices in the Shanghai
Commodities Exchange from 2013–2019 (Quandl, 2019) (Fig. 2).
Others have suggested a mismatch between international and Chinese
rubber market prices, including a possible time lag and distortions due
to price supports in China (Alton et al., 2005; Vongvisouk & Dwyer,
2017). In fact, Fig. 2 suggests that Chinese rubber market prices may
have a price floor of CNY10/kg. However, in the absence of definitive
evidence about this difference, we use prices from the SCE as a proxy
for Chinese rubber market prices. Furthermore, ordinary least squares
regression analysis yields a high correlation between annual averages
from the SCE and rubber prices calculated by the Luang Namtha Pro-
vincial Investment and Commerce Office (PICO) (coefficient = 0.42, SD
= 0.03, p<0.001, Radj

2 = 0.92) (see S1a). Since PICO prices are
pegged to Chinese rubber market prices with a factor of 0.42
(Vongvisouk & Dwyer, 2017, p.13), this underscores that SCE rubber
market prices are a reasonable proxy for Chinese market prices.

Rubber prices reported by villagers were close to SCE prices during
the early years of the expansion (Fig. 2), reflecting the Chinese origin of
price information, whether obtained from Chinese relatives or from
local investors. Local knowledge of rubber prices increasingly reflects
farm-gate prices after around 2008, as rubber plantations started ma-
turing and local sales increased. Farm-gate prices in turn diverge from
PICO prices, which are recommended prices, due to variably in quality,
contract arrangement,iv market intermediary, and the market power of
rubber processors and traders (Vongvisouk & Dwyer, 2017). This also
explains differences in farm-gate prices between Oudomsin and Prang
after around 2009, although these are not statistically significant.

3.2. Definition of variables used in the analysis

3.2.1. Spatial variables
We convert the land-use and LUP shapefiles and the DEM rasters

into 10-meter resolution rasters, i.e., smaller than agricultural plots.
Raster cells covering two or more land uses are assigned the dominant
land-use category. We digitize village locations in each CSA. Slope is

calculated based on the DEM. We calculate cost distance as an inverse
measure of accessibility based on distance from the nearest village and
using slope as a measure of friction. While it seems more accurate to
account for roads and paths in the calculation of cost distance, many
upland roads were built or expanded at the beginning of the rubber
boom and are thus endogenous with rubber expansion. We classify as
upland those areas with rubber, cardamom, forest, fallow, upland rice,
or bamboo in 2017 (see S1b). For each CSA, we calculate aggregate
annual hectares of rubber planted (represented by R_Converted). Table A
1 contains a summary of all variables used in the analysis.

3.2.2. Household variables
We refer to planting the first rubber plot as adoption and subsequent

plots as expansion. Household-level binary variables are created (1 if
mentioned, else 0) to code the self-reported motivations for rubber
adoption (response N = 99). Answers indicating being told about,
hearing about, or seeing the benefits of rubber are ascribed to the ca-
tegory told. Answers indicating imitation (e.g., “I followed others”) are
categorized as follow. Answers corresponding to more than one category
(N = 11) are classified as told. We define a plot-level variable indicating
whether the household knew the price of rubber prior to planting. Next,
we calculate yearly CSA averages for these three variables, representing
the fraction of households, among the households who planted a rubber
plot in a given year, who: adopted rubber based on receiving direct
information (Told), adopted rubber based on imitation behavior
(Follow), and knew the market price when planting rubber (adoption or
expansion) (KnowPrice). Due to a lack of panel data on household in-
come, we use as a proxy cash flow from cash crop sales and paddy
leases. To avoid correlation with the price variable, income from rubber
is estimated using average rubber prices over the study period.

3.2.3. Price signal and rubber conversion signal
We define the price signal for each CSA as the interaction between

rubber market price and the fraction of households who knew the price
of rubber in a given year. Similarly, we define the rubber conversion
signal, i.e., imitation, as the interaction between cumulative rubber
planted in the CSA in a given year and the fraction of households who
cited following others as the main reason for adoption (Fig. 3). In the
regression analysis, we specify these signals as interactions between
those two variables. In the BN, they are implemented by multiplying
the two variables and by dividing by their respective maximum values
to adjust the range from 0–1.

Fig. 2. Rubber prices from the Singapore Commodity Exchange (SCE), Shanghai Commodity Exchange, Luang Namtha PICO, and prices elicited in the household
survey. CNY = Chinese Yuan.

iv A few households in the Prang area had contracts, whereas all Oudomsin
households sold directly to traders (Junquera & Grêt-Regamey, 2019).
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For rubber market prices, we use the SCE price as a proxy for rubber
prices in China (Price_R_CHN). We could have used rubber prices eli-
cited in the household survey as an alternative measure of rubber
market price; however, we believe that price information elicited in the
survey does not accurately reflect local market prices. The changing
origin of local rubber pricing information throughout the boom from
price knowledge originating in China to the progressive formation of a
local market introduced a downward trend in locally known rubber
prices (Fig. 2), which we believe is not reflective of the local perception
of rubber prices, i.e., the local price signal.

We use KnowPrice instead of Told as the variable indicating
knowledge of market conditions as it more accurately reflects the
transmission of price information and it is not correlated with the
variable Follow.

3.3. Land-use change models

We use two complementary modeling approaches with identical
explanatory variables (except for the operationalization of the signals)
to assess the relative effect of spatially explicit and time-varying vari-
ables on land use change (BN model) and on rubber expansion (logistic
regression) in each CSA (hypotheses i and iv). The use of a BN makes
these dynamics and relationships explicit, allows for user-friendly sce-
nario analyses, and allows for comparability with regression analysis.
Independent variables are based on literature and field experience.
Specifically, we include household income to reflect perceived ability,
rubber price signal, imitation, accessibility (distance, cost distance, and
elevation), and protected area status. Regression results are used to
identify relevant variables and optimal discretization of variables in the
BN. We further use regression analysis to assess the changing influence
of price and imitation over time on rubber expansion (hypotheses ii and
iii). We restrict the analysis to upland areas, since rubber is only planted
in upland plots.

3.3.1. Regression analysis
As the dependent variable, we define a binary metric indicating

whether there was conversion to rubber in a given time slice (Δt). To
assess changing dynamics throughout the boom we define four periods
(2002–2005, 2006–2009, 2010–2013, and 2014–2017).

The regression dataset is a systematic sample (n = 500) extracted
from a stack of spatially explicit variables, including elevation, cost
distance, distance, slope, and protection status. In the Oudomsin area,
we exclude cells located in China. To minimize spatial autocorrelation,
we use a distance of 430 m in Oudomsin and 500 m in Prang, which is
larger than the size of a village-level rubber cluster planted in one year,
estimated as 16 hectares. We specify the following models:

= =Prob rconv rconv
rconv

XModel time independent1 ( ): ( ) log
1i

i

i
i
'

(1)

where the dependent binary variable rconvi measures whether a sam-
pled pixel i has been converted to rubber between t = 2000-2017 (0
= no, 1 = yes), Xi is the matrix of spatially-explicit variables (acces-
sibility and protected area status), and is the vector of regression

coefficients.

= = +Prob rconv rconv
rconv

µ XModel time dependent2 ( ): ( ) log
1

( )i
i

i
i it

'

(2)

where the dependent binary variable rconvit measures whether a pixel i
has been converted to rubber between =t t t( 1) , where t =
2001, 2002, …, 2017 (0 = no, 1 = yes); Xit is a matrix where spatially-
explicit variables are repeated for each time slice t , and time-dependent
variables are repeated for each sampled pixel i and include household
cash flow, R_Converted, Price_R_CHN, KnowPrice, and Follow; µi are
normally distributed individual effects; and is the logistic cumulative
distribution.

Model 3 (time-dependent, period interaction): Similar to Model
2, but where R_Converted and Price_R_CHN are interacted with the
period.

We used a generalized linear model (GLM) with a binomial dis-
tribution and a logit link. In Model 1, we test for spatial autocorrelation
in the residuals by calculating Moran’s I using a vector of spatial
weights for neighboring data points, i.e., all sample points within 1,000
meters (Dormann et al., 2007). To measure goodness of fit we calculate
the McFadden pseudo-R2 (Cameron & Windmeijer, 1997).

For Models 2 and 3, we used a panel GLM with random effects,
which assumes that there is an individual-specific normally distributed
error component for sample points within each time slice, uncorrelated
with the regressors (Croissant & Millo, 2008). All statistical and re-
gression analyses are conducted using the R statistical language and
environment (R Core Team, 2019).

3.3.2. Bayesian network (BN) model
BNs apply Bayesian inference for probability computations based on

Bayes’ theorem, which links the probability of event A conditional on
event B as = ×P A B P B A P A P B( | ) ( | ) ( )/ ( ). The joint probability dis-
tribution over the set of variables X1, X2, … Xn in the BN can be fac-
torized as = =P X X X( ) ( | )i

n
i pa i1 ( ) , where Xpa i( ) indicates the set of

parent variables of Xi. Thus, the joint probability distribution of a BN is
determined by specifying (or parameterizing) the probability distribu-
tion of each variable conditional on its parents, i.e., adjacent upstream
variables (Kjaerulff & Madsen, 2013). The probability of a variable
conditional on its parents is expressed in the form of conditional
probability tables (CPTs). In a BN, information is propagated forward
and backward when the probability distribution of a variable is updated
(or instantiated). BNs have a limited ability to handle continuous
variables, which requires their discretization into intervals or states
(Kjaerulff & Madsen, 2013).

We implement the BN using the Netica™ software (version 5.24),
which includes a graphical interface and built-in algorithms for
Bayesian inference. Netica™ calculates discretized probability dis-
tributions as density histograms.

We develop the model structure based on local knowledge elicited
in interviews and focus groups and our understanding of dynamics in
the CSAs. The BN model represents conversion of forest, fallow and
upland rice between each other and to rubber for each one-year step

=t t( 1) 1, where t = 2001, 2002, …, 2017. The model output
LUt1 is a raster expressing the probability distribution of future land use

Fig. 3. Conceptualization of Price Signal as the interaction of commodity price and local price knowledge, and Rubber Conversion Signal (Imitation) as the inter-
action of local rubber conversion and local imitation behavior.
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at the pixel level at the end of year t . LUt0 refers to the land use at the
end of year t 1. It does not include rubber, because rubber was not
converted to other land uses. We assume that household income, imi-
tation, price signal, accessibility, and protected status have a direct
impact on land-use change and reflect this by connecting these vari-
ables as well as LUt0 with LUt1. We use cost distance as the sole
measure of accessibility as elevation does not significantly improve the
model (Table A 2). We discretize each node intending to reflect the
original distribution as best as possible while minimizing combinations
of parent states with a low frequency count.

The BN model is parameterized by learning using expectation max-
imization, which maximizes the probability of the data for the given BN
structure (Norsys Software, 2019). Nodes are parameterized using the
same data as for the panel regression (Models 2 and 3) except for Pri-
ce_Signal and Rubber_Conversion_Signal. These two nodes are para-
meterized using an equation that multiplies the values of their parents
and by dividing by their respective maximum values. We use the online
platform gBay (Stritih et al., 2020) to link the BN to input data, run the
BN at the pixel level, and generate spatially-explicit output.

We measure model sensitivity using the mutual information metric,
which is the expected reduction in entropy of one variable when an-
other is known (Marcot, 2012; Norsys Software, 2012). We also conduct
scenario analyses to show the influence of predictor variables on the
outcome variable (Marcot, 2012). We evaluate BN model performance
by comparing conversion to rubber predicted by the model with con-
version to rubber in the land use maps. Quantity and exchange differ-
ence metrics are calculated following Pontius and Santacruz (2014).

4. Results

4.1. Rubber expansion

Both CSAs experienced an initial phase of rubber expansion when
international rubber prices were rising, although rubber uptake started
later in Prang (Fig. 4B and C). A second wave of expansion took place
around 2011–2016, when rubber prices were rapidly decreasing. In
Oudomsin, this second wave coincided with maturing rubber planta-
tions and with the banana boom, which freed up household labor. The
two rubber uptake peaks in the Prang area coincided with the visits of
rubber investors around 2005 and 2013. These investors informed vil-
lagers about the market price and benefits of rubber, offered contracts,
and facilitated access to inputs such as costly rubber seedlings.v While
obtaining direct evidence about the benefits of rubber was the main
reason for adoption in both areas, it did not imply knowledge of rubber
prices, which was higher in Prang than in Oudomsin (Fig. 4F). The
fraction of imitators among adopter households was roughly constant
over the boom in Oudomsin. In Prang, it was higher after the first and
before the second uptake peaks (Fig. 4E).

4.2. Regression results

Imitation and accessibility (CostDistance) were the most important
variables affecting rubber expansion in both areas. Moreover, imitation
had a larger and more significant effect than its components, namely
rubber planted annually (R_Converted) and Follow (Table A 3, Table A
4). Imitation was significant in periods 2–4 in Oudomsin, and during
period 4 in Prang (Table A 5). In absolute terms, the effect of imitation
was similar to that of the NPA and accessibility in Oudomsin, and
second to accessibility in Prang (Table A 4, Model 2 g). In both study
areas, cost distance was a large and significant deterrent to conversion
to rubber (Tables A 2-4). Spatially explicit variables explain between

36–41 percent of the variability in the dependent variable of Model 1,
as measured by the pseudo-R2 metric (Table A2).

In Oudomsin, where rubber expanded primarily into forests (Fig.
A1), the deterrent effect of protected forest areas was roughly propor-
tional to their stringency. Deforestation to rubber was lowest in the
NPA, corresponding to the highest level of protection, followed by
conservation and WSP forests (Table A 2). Less stringent protected areas
had no identifiable effect. In the Prang area, the NPA had no significant
effect mainly because most conversion took place in shifting cultivation
fallows and not in forests (Fig. A1).

Rubber price and the rubber price signal had a significant effect on
conversion in the Oudomsin area, although Model 3 reveals that this
effect was only significant during periods 2 and 3 (Table A 5), corre-
sponding to the first wave of expansion. Price had a smaller impact than
the NPA and accessibility had (Table A3, Table A 4). The effect of the
price signal is larger and more significant than the effect of price alone
(Models 2d and 2f), suggesting that this metric adequately captures the
influence of market prices.

In Prang, neither rubber price nor the price signal had a significant
effect on conversion. In fact, the largest expansion peak, around 2014,
coincided with low rubber prices (Fig. 4B and C). In contrast, the first
and largest expansion peak in Oudomsin, around 2006, coincided with
relatively high rubber prices.

Household income from cash crops (CashFlow) is not correlated with
rubber expansion in Prang but shows a large and significant effect in
Oudomsin. Increasing household income in Oudomsin coincided tem-
porarily with the second rubber expansion peak around 2014, whereas
in Prang, these did not coincide (Fig. 4C and D).

4.3. Bayesian network model

The parameterized BN model (Fig. 5) shows that Oudomsin had a
higher probability of conversion to rubber than Prang, in line with the
more intense expansion of rubber in that area. In both areas, rubber
expansion occurred mostly at intermediate accessibility. BN model
configurations that included both the Rubber_Conversion_Signal and the
Price_Signal resulted in a proportional and positive relationship between
those two signals and the probability of rubber in the land-use outcome
(LUt1), as expected. Model configurations that did not include price or
rubber planted annually as signals did not result in such proportional
relationships (Figure A 2). Thus, incorporating the influence of these
two variables as signals (Fig. 3) improves the model response.

Sensitivity and scenario analyses (Figs. A3 and A4) show that land-
use change and conversion to rubber in Oudomsin were most sensitive to
imitation, followed by cost distance, protection status, and price signal.
In Prang, imitation and cash flow were the most influential variables.

These results are generally consistent with regression coefficients,
except for cash flow in Prang, which is not significant in regression
results but has a large influence in the BN. This may be caused by the
binarization of the variable in the BN into high and low, and the fact
that the period of high cash flow coincides with the arrival of an in-
vestor, which might confound the effect of cash flow. BN sensitivity
results further indicate that cost distance had a negligible impact on
land-use change in Prang, whereas regression results show it to be
significant. In Prang, rubber expansion occurred mostly along the
highway and the villages nearby, and thus within a narrow range of cost
distance values (Fig. 1), which the coarse discretization of this variable
in the BN may not properly capture. Sensitivity analysis further shows
that the cumulative entropy reduction of all variables included in the
model with a direct impact on land-use outcome (LUt1) was around 40
percent in each CSA.

4.4. Land-use change simulations and BN model validation

In the model prediction for 2018 (Fig. 6A), the highest probability of
rubber is 35 percent for Oudomsin and 23 percent for Prang. There is no

v Rubber trees in northern Laos are clones from Chinese varieties that require
grafting; they cannot be grown from seeds. Oudomsin villagers had access to
lower cost seedlings directly across the border in Mengla County, China.
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pixel where rubber is the most probable land use. Given that conversion
to rubber had significantly slowed down in 2017, we expect little to no
conversion to rubber in 2018. However, predictions for the years 2007-
2008, when there was strong rubber expansion in both areas, do not
exceed 49 percent rubber for Oudomsin and 19 percent for Prang in any
pixel (Fig. 6B). If the most probable land use in each pixel is used as the
predicted land use, the model would under-predict conversion to rubber.

The under-prediction of conversion to rubber stems in part from the
dilution of land-use conversion over 17 time periods. To address the

difference in the predicted conversion, the threshold used to determine
conversion to rubber can be lowered (Marcot, 2012). A probability
threshold of 31 percent for Oudomsin minimizes the quantity difference
between rubber conversion in the land-use maps and rubber conversion
predicted by the model (Figure A5). For Prang, the model output for
2008 yields only two probability cutoffs (11 and 19 percent), below
which the model significantly over-predicts the quantity of rubber
converted (Figure A5). With regards to the location of land use change,
the model predicts it relatively well in both CSAs (Fig. 6B).

Fig. 4. Selected variables used in the regression analysis and in the BN. Rubber prices (shown in the first two graphs) were the same for both CSAs. For comparability
between the CSAs in this figure, rubber prices, Rubber Converted, and Cash Flow were scaled to 1 by dividing by the maximum value in each CSA.
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5. Discussion and conclusions

5.1. Drivers of rubber expansion

Smallholder rubber expansion in northern Laos was precipitated by a
conjuncture of policy and market triggers, and intensified or mitigated, i.e.,
moderated, by context-specific factors. Regression models show the con-
fluence of drivers at different phases of the boom, with periods where price
signal strongly mattered, and periods where imitation played a stronger role.
Our results highlight the importance of imitation in fueling the boom and of
lack of accessibility (cost distance) in limiting rubber expansion. Cost distance

had a particularly strong effect in Prang, confirmed by villagers’ narratives
that they did not plant rubber in certain shifting cultivation areas “because
there is no road”. Except for one village, other Prang villages did not build or
improve forest roads, as happened in Oudomsin. This underscores the well-
established bi-directional relationship between agricultural frontier expansion
and transport infrastructure development (Angelsen, 2010).

5.2. Impact of protected forest areas

Protected forest areas were an effective stopping mechanism for
deforestation in Oudomsin, where practically all other upland areas

Fig. 5. BN Model of land-use change in upland plots in the Oudomsin and Prang CSAs. Color indicates the variable type.

V. Junquera, et al. Environmental Science and Policy 109 (2020) 103–115

110



were converted to rubber. This effect was only significant in the
strictest protected areas due to differentiated enforcement and timing of
deforestation. In early boom years (2004–2006), Oudomsin villagers
converted centrally-located use and regeneration forests with relative
impunity and were even granted land titles for rubber plantations in
these forests. After around 2007, enforcement was stricter, especially in
the NPA. This was reflected in villagers’ concern about fines and prison
sentences. The majority indicated that they would continue to plant
rubber if land were available but considered protected forest, and the
NPA in particular, to be off limits. Thus, forest categorization and
perceived enforcement mattered greatly. This is confirmed by the lower
deforestation in conservation and WSP forests, similarly accessible as
use and regeneration forests.

Our findings are in line with other case studies that show the ef-
fectiveness of protected areas in reducing deforestation (Bruggeman
et al., 2018; Carranza et al., 2014), including in Southeast Asian crop
boom areas (Kong et al., 2019). Given the strong relationship between
accessibility and conversion to rubber, this suggests that the designa-
tion of protected areas is especially impactful in accessible locations,
which is in line with the findings of Bruggeman et al. (2018).

However, our analysis does not evaluate spillover and indirect ef-
fects of forest protection regulations (Ewers and Rodrigues, 2008;
Garrett et al., 2019; Lambin et al., 2014), which have been shown to be
significant in similar agricultural frontiers (Llopis et al., 2019). Further,
our remote sensing analysis provides no information about forest health
and biodiversity. Forests near the villages in both study areas are

Fig. 6. Output from the BN interface gBay showing projections of % Rubber or Most probable land use (LU) for (A) t0 = 2017, t1 = 2018 and (B) t0 = 2007, t1 =
2008. FOR = Forest, FAL = Fallow, UR = Shifting Cultivation, RUB = Rubber. Rubber conversion (actual) shows actual rubber area planted in 2008 (black), or in
2007 and earlier (gray).
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degraded, as evidenced by a near-total absence of animal sounds and
old trees, and villagers’ reports that hunting game has become very
scarce.

5.3. The role of rubber price

Our hypothesis that the influence of rubber price was highest at the
beginning of the boom is not fully confirmed by the results, which show
no correlation in the first stage of the boom but significant correlation
through the expansion phase in Oudomsin. In Prang, price was un-
correlated with rubber uptake. Similarly, Celio et al. (2019) found that
price had little effect on smallholders’ decisions to expand cash crop
plantations in Madagascar, and Ornetsmüller et al. (2019) found that
spatial price heterogeneity did not significantly explain the spatial
pattern of a maize boom in Laos. This highlights the difficulty of ade-
quately integrating the effect of price in land-use models, i.e., of re-
flecting true price signals.

An innovation introduced by this work is to represent the local price
signal as a combination of market price and local price knowledge. This
signal captures the face value of the market price as well as the local
“reception” of this information, which implicitly reflects the mediation
of the signal.

However, our operationalization of a price signal misses several
mechanisms through which commodity prices affect decisions. First,
many villagers were aware of the economic benefits of rubber without
knowing the price. This knowledge is better captured with the variable
Told than by KnowPrice. KnowPrice also does not capture knowledge of
price trend, actual price values, or the perceived quality of the price
signal. Whereas villagers in Oudomsin obtained direct and powerful
evidence of the benefits of rubber by seeing their relatives get rich,
villagers in Prang were informed by investors and other socially-distant
persons. With similar price information in both areas, the strength of
the signal may nevertheless have been higher in Oudomsin. This could
be addressed by integrating social distance in the price signal.
Furthermore, while we use a proxy for rubber prices in China as market
price, it would be preferable to use actual market prices at the origin of
the information—in this case, Mengla County, China.

A common feature of crop booms is the large income difference
between a cash crop versus alternative land uses (Ornetsmüller et al.,
2019). The difference between growing rubber and upland rice is very
high (Feintrenie et al., 2010) at almost any price of rubber (Vongvisouk
& Dwyer, 2017). Furthermore, given its productive period of almost 30
years, rubber is a long-term investment (Manivong & Cramb, 2008).
Many villagers planted rubber despite price fluctuations as they ex-
pected that the price would rise again. This may explain some of the
apparent disconnect between price and expansion.

Finally, because the initial phase of a crop boom is often char-
acterized by slow growth, analyses that establish relationships of pro-
portionality between price and expansion cannot capture the triggering
effect of price. Triggers and drivers of agricultural expansion corre-
spond to different temporal effects. Triggers provide the initial push for
a major transformation; they can bring about persistent change through
subsequent lock-in, path-dependency (Sutherland et al., 2012) or other
self-reinforcing mechanisms (Ramankutty & Coomes, 2016), and they
can help explain the timing of events (Meyfroidt, 2015). Drivers imply
causality, though in various, less specific roles than triggers (Meyfroidt,
2015). We propose that the price of rubber acted as a trigger at the
beginning of the boom and as a driver through the expansion stages.
Our regression analysis captures the latter but does not adequately
capture the trigger effect of price.

5.4. The role of imitation

We conceptualize imitation as a self-reinforcing mechanism that
influences rubber uptake based on local aggregate expansion. Some
adoption and diffusion models also include measures of aggregate

uptake to reflect learning (e.g., Busch & Vance, 2011) or imitation
specifically (Pomp & Burger, 1995). An innovation in this work is the
addition of self-reported imitation to this signal. This implementation
captures herd effects (e.g., “I wanted to make money; I did not know
how rubber would make me money, but I just followed others”) and
cultural transmission (e.g., “I just followed the community”), both of
which are categorized as follow. It also captures the self-reinforcing
effect of a so-called land rush, whereby local expansion fuels more
expansion.

Results show that imitation was strongest during and after periods
of intense growth but not in the early stages, indicating that early
adopters are more prone to make knowledge-based decisions while late
adopters are more likely to follow the example of others. Previous work
showing that households who followed others planted less rubber than
those who received direct evidence (Junquera & Grêt-Regamey, 2019)
highlights the importance of the analytical scale. At a household level,
imitation behavior lowered rubber uptake. At the CSA level, imitation
had a strong and self-reinforcing effect on rubber expansion.

5.5. Model limitations

The BN and regression models are not fully comparable as they
model land-use change trajectories and conversion to rubber, respec-
tively. However, given the minimal transition from forest to upland rice
or fallow during the analysis period, both models mostly capture the
same dynamics. Furthermore, the BN is not a model of land-use deci-
sions, but rather a model of land-use change. The former would have
required household-level disaggregated variables, whereas the house-
hold variables in this model are aggregated at the level of the CSA.
Nevertheless, a strength of this model is that it incorporates behavioral
elements of decision-making such as price knowledge and imitation.
The BN model structure is based on our understanding of local dy-
namics, and different or additional variables may influence the results.
BN model results are sensitive to variable discretization; however, re-
gression results are robust to variable additions. Parameterizing the BN
model with data for 17 time periods dilutes the land use conversion
signal in the data, but using fewer time periods would require averaging
or eliminating time-dependent variables.

Some important triggers of rubber expansion are not reflected in the
BN model. LUPLA, rising rubber prices, and the ORP were key triggers
of the boom. Because they occurred at the beginning of the study
period, we do not have data to represent temporal or spatial variability
over the time period of the analysis. For the same reason, other im-
portant factors such as proximity to markets (Ornetsmüller et al., 2019)
are not included in the model. Triggers that occurred during the mod-
eling period, such as investor visits, could be incorporated and might
improve the model response in Prang. Some variables could be im-
proved, e.g., by basing the percentage of followers (Follow) on all up-
take decisions (i.e., adoption and expansion); using total household
income or capital surplus (Richards & Arima, 2018); and incorporating
additional protected forest categories in Prang.

BNs are based on past observations and have a limited ability to
reflect temporal dynamics, feedbacks (Kelly et al., 2013; Uusitalo,
2007), and hence the non-linear dynamics of crop booms and regime
shifts. Other modeling approaches may overcome some of these lim-
itations (Filatova et al., 2016), although developing any model that can
emulate—let alone predict—such dynamics is generally difficult
(Müller et al., 2014). The choice of a BN in this work was motivated by
the transparency of the model structure and comparability with re-
gression analysis.

5.6. Policy relevance

We show that key self-reinforcing mechanisms, including imitation
and a closely-related land rush, propelled rubber expansion, particu-
larly in the Oudomsin area. The land rush was compounded by village
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relocation and land-use policies that increased population density and
perceived tenure insecurity, highlighting the role of such policies in
triggering and intensifying a boom. Rubber was planted in part as a
strategy to claim and secure land during titling processes, a reaction
also mentioned in connection with other crop booms in shifting culti-
vation landscapes (e.g., Mahanty & Milne, 2016). LUPLA thus con-
tributed to the boom-like expansion of rubber plantations and extensive
deforestation, which should be an important consideration for similar
processes elsewhere. Typical land-use policies are not designed to
preclude social dynamics such as imitation, but their potential impact
on social and behavioral dynamics and the associated consequences on
land use should be examined.

Yet LUPLA also provided stopping mechanisms through the en-
forcement of protected forest areas, although deforestation was only
reduced in areas with the strictest protection status. Furthermore, en-
forcement was not effective in the early stages of the boom. Our results
highlight the relationship between accessibility, transport infra-
structure, and deforestation. To efficiently prevent deforestation, forest
areas need to be either inaccessible (a condition rarely met), or forest
protection must be timely and effective. Beyond deforestation bans,
preserving forests should also address their biodiversity, for instance
through the enforcement of hunting restrictions.

As with all case study analyses, generalizability is limited. However,
numerous studies of crop booms identify similar dynamics, namely the
initial confluence of policy and market triggers, and subsequent re-
inforcing or lock-in mechanisms (Li, 2014; Mahanty & Milne, 2016; Shi,
2008). In particular, LUP and titling processes, generally aimed at
curbing shifting cultivation, were important triggers of several docu-
mented booms (Lu, 2017; Mahanty & Milne, 2016). Environmental
degradation and changing market conditions have also frequently
turned booms into a bust. Observed at a larger scale and over longer
periods, crop booms seem to shift in time and space (Ornetsmüller
et al., 2019). Indeed, rubber has been booming in Southeast Asia since
the 1980s (Byerlee, 2014; Fox & Castella, 2013).

This points to three broad conclusions. First, while the location and
timing of individual booms are largely unpredictable (Müller et al.,
2014), analyzing boom patterns can provide important insights about
their underlying dynamics. Second, crop booms will lead to widespread
deforestation unless forest protection is effective from the start. Third,
crop booms in areas with communal or customary tenure regimes are
likely to increase inequalities because of their speed and first-come-
first-served nature. In turn, this highlights the need for further and
broader-scaled research about crop boom dynamics and the importance
of well-adapted local LUPLA processes.
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