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The Conservation Multiplier 
 
 

Abstract 
 
Every government that controls an exhaustible resource must decide whether to exploit it or to 
conserve and thereby let the subsequent government decide whether to exploit or conserve. This 
paper develops a theory of this situation and shows when a small probability that some future 
government will exploit a resource leads to a domino effect with rapid exploitation. This effect 
leads to a multiplier that measures how a small change in parameters can have large effects. The 
multiplier is especially large if the government is powerful now but unlikely to be in power later. 
The multiplier also permits dramatic returns on lobby contributions contingent on exploitation -- 
or on compensations contingent on conservation -- when these offers are expected to continue. To 
best take advantage of the multiplier, I show how and when compensations should be offered to 
the president, the party in power, the general public, or to the lobby group. 
JEL-Codes: D720, C730, Q570, O130. 
Keywords: dynamic games, exhaustible resources, deforestation, political economy, lobbying, 
conservation, PES, REDD+. 
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1. introduction

This paper analyzes resource exploitation as a dynamic game between consecutive gov-

ernments. The theory can be applied to several situations, but is especially motivated by

the acceleration of deforestation in the tropics.

The deforestation rate in the Brazilian Amazon is influenced by many factors but,

most of all, it is in the hands of the government. Burgess et al. (2019:2-8) analyze

satellite data and find that they "demonstrate the remarkable reach of the Brazilian state

to exploit or conserve its natural resources." In particular, the high deforestation rates in

the early 2000s were "associated with Brazilian policies to develop the Amazon." However:

"This policy stance was sharply reversed in the 2006-2013 period with laws to protect the

Amazon rainforest being introduced and enforced." After seven years with record-low

deforestation rates, the deforestation rate increased, once again: "the new Government

of Dilma Rousseff introduced a New Forest Code in 2012." The authors find "concrete

evidence that the Brazilian state is now favoring exploitation over conservation" (p. 2).

Recently, the deforestation rate has accelerated and it was 30 percent higher in De-

cember, 2019, relative to a year earlier.1 The government formed by the surprise winner2

of the 2018 presidential election, Jair Bolsonaro, has abolished conservation policies and

effectively encouraged illegal deforestation. If current policies continue, the rainforest

might soon be below the critical size at which it can sustain itself (Amigo, 2020).

The stakes are enormously high in the Amazon. Agricultural sectors benefit when the

land is cleared, but the world community, and supporters of globally stringent climate

change policies, lose. Negative externalities from forest loss and degradation cost between

$2 trillion and $4.5 trillion a year according to The Economist.3 Franklin and Pindyck

(2018) estimate that the average marginal social cost of deforestation in the Brazilian

Amazon increases from $9,000 to $35,000 per hectare when deforestation rates return to

1See The New York Times: https://www.nytimes.com/2019/12/05/world/americas/amazon-fires-
bolsonaro-photos.html.

2The Economist wrote that "most analysts had thought that the right-winger would even-
tually lose to someone less divisive" and that "his own Social Liberal Party, until now a
tiny group, will have 52 seats in the 513-member lower house, up from eight in the outgo-
ing congress." See https://www.economist.com/the-americas/2018/10/13/jair-bolsonaro-is-poised-to-
win-brazils-presidency.

3September 23, 2010, where The Economist cites a UN-backed effort, The Economics of Ecosystems
and Biodiversity (TEEB). See Strand et al. (2018) for more recent estimates.
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the high levels of the early 2000s. These estimates vastly exceed the cost of conservation.

Deforestation may be reduced by 50% at a cost of $21—35 billion per year, or by 20—30%

at a price of $10/tCO2.4

Stakeholders are thus willing to pay to influence the decision. On one side, because de-

forested land allows for farming and cattle raising, the agricultural sector has for decades

supported, and lobbied for, a policy that permits extensive deforestation.5 On the other

side, developed countries are increasingly offering payments in return for conservation

through the United Nation program Reduced Emission from Deforestation and forest

Degradation (REDD+). These payments are, in part, motivated by improvements in

conservation technology (such as satellite monitoring and policing capacity). In the pe-

riod 2005—2012, the Brazilian government took advantage of this technology, and the

payments, and proved that deforestation can be reduced dramatically when there is a

political will.6 Norway, the biggest contributer to the REDD+ program, paid Brazil

$1.2 billion in return. In 2019, however, the compensation schemes were halted, in part

because of disagreements over whether the payments should be earmarked or instead be

used at the discretion of the current government.

Similar situations can be found several places on Earth. The government in any

resource-rich country faces the decision over whether to exploit or conserve. If the resource

is conserved, the subsequent government inherits the dilemma. One may speculate how

the contemporary decision depends on the expected future exploitation vs. conservation

decisions. For instance, the current government may be reluctant to conserve today if it

expects that the next government in offi ce will exploit the resource to its own benefit.

Over time, this type of decision has become more significant in several countries be-

cause of technological improvements (both in logging machinery and satellite monitoring)

that give governments more influence on whether the resource will be conserved or ex-

ploited. On the one hand, the stakes have increased in the agricultural sector thanks to

4See, respectively, Edenhofer et al. (2014) and Busch et al. (2012). Stern (2008) found that defor-
estation rates can be halved for as little as $5 per ton CO2 .

5See Barbier et al. (2005) and, more recently, The Washington Post :
https://www.washingtonpost.com/world/the_americas/why-brazilian-farmers-are-burning-the-
rainforest—and-why-its-diffi cult-for-bolsonaro-to-stop-them/2019/09/05/3be5fb92-ca72-11e9-9615-
8f1a32962e04_story.html.

6Hansen et al. (2013) found evidence that tropical deforestation declined 2005—2012 in Brazil. For
more recent evidence, see Burgess et al. (2019).
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new trade agreements that enlarge the markets.7 On the other hand, the threat of climate

change and the emergence of global climate policies imply that the world community has

a greater willingness to pay for conservation than before.

These developments raise a number of questions. How does the exploit vs. conserve

decision depend on expected future policies? What are the roles of political stability,

institutions, and of improved conservation technology and exploitation capacity? Are

lobby groups taking advantage of the dynamic game between the governments? When

can compensations for conservation be effective, and should they be earmarked for public

goods or rather be targeted to the president, the party in power, or the lobby group?

This paper provides a theoretical framework for analyzing questions of this type. In

every period, there is a president deciding on whether to exploit or conserve an exhaustible

resource. If the president conserves the resource, the next-period president, who might,

with some chance, represent a different party, must decide whether to continue conserving.

It is valuable to conserve as well as to exploit, and I assume that the value of exploitation is

always larger when one’s own party is in power than when another party is in power.8 The

game ends when the resource is (fully) exploited. The model permits resource extraction

to be gradual or probabilistic but, to fix ideas, suppose it is probabilistic.

Different individuals (and different presidents) can have different preferences. With

suffi cient heterogeneity, the current president expects that the next president will exploit

with some probability. If this probability increases, the value of conserving today is

diminished and the probability for exploitation already today increases. This mechanism

leads to a domino, or multiplier, effect: If the probability that a future president exploits

increases slightly, then the probability that the current president exploits already today

can increase by a lot. The equilibrium rate of exploitation can thus be very sensitive

to small changes in the parameters. The multiplier is larger if the president’s party is

likely to lose power and if exploitation is much more valuable to a ruling party than to

the opposition (because of the possibility to spend the revenues on party perks). The

7Burgess et al. (2019) observe a development with "better monitoring (through use of satellite data)"
(p. 13) and, simultaneously, a "growing political power of the agriculture producers" (p. 8).

8This is natural: Caselli and Michaels (2013:230-231) find that "some of the revenues from oil [in
Brazil] disappear before turning into the real goods and services they are supposed to be used for" and "the
evidence leads us to conclude that the missing money result is explained by a combination of patronage
spending/rent sharing and embezzlement."
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equilibrium probability of exploitation, or the expected rate of extraction, can thus be

much larger than it would have been if the party were certain to stay in power forever. (In

that case, the multiplier would have been 1.) These results are in line with the evidence.9

The multiplier is also making conservation measures more effective. If a donor provides

compensations in return for conservation, the president is more likely to conserve. When

the current president anticipates that the compensations will make conservation more

likely also in the future, then conservation becomes more valuable today, and thus the

president becomes willing to conserve for a lower price. For this reason, the rate of return

on compensation can be arbitrarily high, and it increases with the multiplier.

A lobby group, benefiting from exploitation, can also take advantage of the multiplier.

If the lobby pays favors to a president that exploits, then any future president becomes

more likely to exploit and it becomes less attractive to conserve today. The lobby makes

it more expensive for the donor to conserve, but the multiplier increases with the lobby

contribution (because the disagreement between the party in power and the opposition

increases), and therefore the optimal compensation level for conservation increases.

The conservation multiplier depends on how the compensation payments are targeted.

On the one hand, current payments may be most persuasive if the current president

has full discretion regarding how the funds are to be spent. On the other hand, if the

compensation benefits the general public, and not only the sitting president, then future

conservation becomes more valuable to the current president (regardless of whether his

party will be in or out of offi ce). Under specified conditions, earmarking the funds can

be more effective. If the lobby group is more likely to successfully influence policy over

time than the current president is likely to stay in power, then the donor can benefit from

paying the lobby group to not lobby.

Literature.– The present paper contributes to multiple strands of literature. Most

specifically, I add a new political economy perspective to our understanding of deforesta-

9Bohn and Deacon (2000) found that political risk increases deforestation (but not necessarily
investment-intensive resource extraction). Collier (2010:1124) wrote that: "ministers in the transitional
government in the Democratic Republic of Congo (DRC) knew that they only had around three years
in offi ce. During this period many contracts were signed with resource extraction companies conceding
very generous terms in return for signature bonuses that cashed in the value of the natural assets to the
society." The theory also predicts that the multiplier is larger when the president has a lot of discretion,
as when there are few checks-and-balances. This is consistent with the empirical evidence of Collier and
Hoeffl er (2009), for example, who show that checks-and-balances mitigate the resource curse.
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tion. There is a large literature on deforestation, and an emerging literature on defor-

estation compensations. Payments for environmental services (PES) can be important

in many situations, and REDD+ is one special type of them.10 Existing theories focus

on contract-theoretic problems such as moral hazard (Gjertsen et al., 2016; Kerr, 2013),

private information (Mason and Plantinga, 2013; Mason, 2015; Chiroleu-Assouline et al.,

2012), observability (Delacote and Simonet, 2013), liquidity constraints (Jayachandran,

2013), and additionality (Jack and Jayachandran, 2019).

The strand that is more directly related to the present paper studies the political

economy determinants of deforestation. Burgess et al. (2012) showed that deforestation

increased in election years and after decentralization reforms in Indonesia (see Pailler,

2018, for a more recent study of Brazil). Harstad and Mideksa (2017) provided a the-

oretical framework to explain the evidence and how conservation contracts should be

designed when there are competing jurisdictions. These frameworks are static, however,

so they failed to uncover the multiplier, emphasized here.

Harstad (2016) analyzed a dynamic game between a country who prefers to exploit,

and a donor who may buy the resource in order to conserve it. That game, however, did

not permit rotation of political power and thus, again, it failed to uncover the multiplier

emphasized in this paper.11

In climate and environmental economics, it is frequently argued that the expectation

of a future environmental policy leads to less conservation today (Kremer and Morcom,

2000) or a worse environment ("the green paradox"; Sinn, 2008; 2012). In this paper,

in contrast, the president may conserve today exactly because, or when, conservation is

expected in the future. This political mechanism also contributes to the literature on

the resource curse, investigating conditions under which natural resources are managed

well (see van der Ploeg, 2011, for a survey). In particular, Robinson et al. (2006) show

that an incumbent extracts more if he is unlikely to be reelected. However, expectations

regarding future policies are irrelevant in their two-period model.12

10See Engel et al. (2008) for PES more generally, or Karsenty (2008) and Parker et al. (2009) for a
discussion of the difference between RED, REDD, and REDD+.
11That paper was, in part, motivated by the model in Harstad (2012) where conditions were derived

under which it is optimal to "buy coal" and conserve it, as a climate policy. Thus, the papers differ in
several ways. For example, Harstad (2016) relied on complete information and mixed-strategy equilibria
and permitted neither lobbying nor alternative targets for the funding.
12Ryszka (2013) allows for multiple periods, Long (1975) finds extraction to be larger when one fears
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Dynamic games between successive governments have been studied elsewhere in eco-

nomics, of course. It is well known that political turnover leads to less investments in

state capacity (Besley and Persson, 2009; 2010), the accumulation of debt (Persson and

Svensson, 1989; Alesina and Tabellini, 1990; Tabellini, 1991; Battaglini and Coate, 2008),

and to time inconsistency (Amador, 2003; Bisin et al., 2015; Chatterjee and Eyigungor,

2016; Harstad, 2020).13 However, these decisions (f.ex., accumulation of debt) are re-

versible, while for the multiplier effect, in this paper, the decision to exploit must be

irreversible.14 ,15 In addition, my emphasis on the role of lobbies and stakeholders influ-

encing the decisions in these dynamic political economy games is unprecendented, as far

as I know.

Multiple lobby groups are naturally considered already in the political economy liter-

ature. The seminal result by Grossman and Helpman (1994) is that effi cient trade occurs

when all groups are lobbying. However, this result fails to hold in the present exploitation

vs. conservation game: In contrast, the analysis below uncovers a fundamental asym-

metry in the influence between the lobby paying for action (i.e., exploitation) and the

stakeholder paying for inaction (i.e., conservation), because the first lobby only needs to

pay the president one single time to succeed, whereas the stakeholder paying for conser-

vation needs to pay in every period. The cost is thus higher for this stakeholder which,

therefore, is less likely to succeed.16

Outline.– The next section presents the model with rotation of political power and

nationalization, van der Ploeg and Rohner (2012) show that extraction is larger if the resource fuels
conflicts, Mehlum et al. (2006) find that the curse depends on the quality of institutions, and Brollo et
al. (2013) show that oil shocks in Brazil influence the electoral candidate selection.
13I follow most of this literature by assuming that the reelection probability is exogenous. In Battaglini

and Harstad (2020), however, incumbents sign treaties and invest in technologies in order to influence
future elections.
14That said, Alesina and Drazen (1991) do model stabilization policies as a once-and-for-all irreversible

policy decision. In their paper, each policymaker hopes that another policymaker will end the game (by
stabilizing the economy), while in the present paper each policymaker hopes that the other policymakers
will not end the game. This difference is key and leads to dramatically different results.
15There is a theoretical literature on dynamic contribution games (see Marx and Matthews, 2000, and

subsequent papers), but the present game is very different since every player fears that later players will
end the game (by exploiting the resource). In the contribution games literature, in contrast, each player
fears that subsequent players will not contribute, i.e., that the game will continue for a long time. Given
that the game here is a stopping game, it is also very different from the literature on dynamic common
pool problems, typically focusing on the steady state when the resource is renewable (see, for example,
Nowak, 2006, and the subsequent literature).
16This ineffi ciency does not arise in the models by Schopf and Voss (2017; 2019) who analyze lobbying

of a long-lived government or planner extracting the resource.
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discusses the exploitation multiplier. Section 3 shows how the analogous conservation

multiplier can be taken advantage of - not only by a donor paying for conservation - but

also by a lobby group paying for exploitation. Section 4 shows when the donor achieves

cost-effective conservation by paying the party, the public, or the lobby group, instead

of paying the president. Section 5 extends the model in several directions, Section 6

concludes, and the Appendix contains all proofs.

2. The Dynamics of Conservation and Exploitation

2.1. A Stopping Game

Players.– Every period t is associated with a president Pt ("he"). The individual

president Pt will not be the president in later periods. However, the model can distinguish

between presidents, parties, and the opposition, and the president might be associated

with a political party. The party in power at time t is out of offi ce in any later period

with probability p ∈ [0, 1]. If p = 0, there is no chance for any rotation of power.

Actions.– Pt decides only on st ∈ [x, x] ⊆ [0, 1]. Decision variable st can be in-

terpreted as the probability of exploiting an exhaustible resource, such as a biodiverse

tropical forest. Alternatively, as I will explain in the next subsection, st can be inter-

preted as the fraction of the resource that is extracted at time t. When st is interpreted

as a fraction, it is reasonable to assume that there are boundaries to how fast the resource

can be exploited and to the extent to which it can be conserved. However, also when st

is interpreted as a probability, it may be diffi cult for Pt to guarantee with certainty that

the resource is, or is not, exploited. For these reasons, I permit x > 0 and x < 1, but the

reader is welcome to restrict attention to the simpler situation in which x = 0 and x = 1.

Payoffs.– There is a benefit from exploiting the resource. To allow for a conflict of

interest, let b > 0 be the benefit for the party in power, and b ≥ 0 for everyone not

in power. For the most part, I will assume that ∆ ≡ b − b > 0, meaning that any Pt

benefits more if he, or his party, exploits the resource, than if another party exploits the

resource. Since ∆ > 0 measures the ruler’s additional benefit of exploitation, it might

be reasonable that ∆ is correlated with the amount of corruption in the country, or that
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∆ will be limited if there are suffi cient checks-and-balances. (Similarly, the amount of

discretion, x−x, may also be limited by institutional checks-and-balances.) In Section 5,

I discuss applications of the model in which ∆ < 0 is natural, and how the results would

change in that case.

Even though the president at time t will not be the president at later times, there

may be some chance that Pt can enjoy b, rather than b, if the resource is exploited in

the future. To be specific, suppose Pt is associated with a political party and enjoys b,

rather than b, if and only if this party exploits the resource in the future. When p ∈ [0, 1]

is the probability that the current president’s party is out of offi ce in any later period,

Pt enjoys b if he extracts the resource, but expects pb + (1− p) b ≤ b if the resource is

exploited later.

Although Section 2.5 explains how the model can permit heterogeneous political par-

ties, I will otherwise not consider heterogeneity in p. If there are n identical parties, then

we may have 1− p = 1/n, for example, but the reader is free to restrict attention to the

simple case in which p = 1. (In that case, the party plays no role.)

There is also a cost associated with exploiting the resource or, equivalently, there is

a benefit from conservation. The per-period payoff to Pt if the resource is conserved at

time τ ≥ t is cP > 0. Thus, Pt’s payoff from conserving indefinitely is cP/ (1− δ) when

δ ∈ (0, 1) measures the common discount factor.

To allow future decisions to be uncertain, the subscript on cP indicates that various

individuals and presidents may value conservation differently. To model this uncertainty,

let cP = c + θt ∈ [c, c+ σ], where c > 0 is a common component while θt characterizes

the type of president in power at time t. Every θt is i.i.d. uniformly on [0, σ].

The model and the results stay unchanged if the gain from extraction, b, instead of c,

were heterogeneous and uncertain in this way, and also if c, instead of b, were dependent

on whether one’s own party makes the decision.17 Section 5 shows that other types of

uncertainties (regarding the resource price, for example) lead to similar results.

Timing.– There is an infinite number of periods. The identity of Pt is determined

period t. Technically, this means that θt is drawn from [0, σ]. Thereafter, Pt decides on

17The Appendix permits both b and c to depend on whether one’s own party acts, and they can also
be different for Pt when he is the president and when he is not.
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st ∈ [x, x] and receives the expected payoff stb + (1− st) (c+ θt). With probability st,

the exploitation game ends after period t. With probability 1− st, the game continues to

period t + 1. Then, and in any future period, another (identical) party is in offi ce with

probability p. Subsection 2.5 and Section 5 let the parties be heterogeneous and p to be

endogenous.

Equilibrium Concept.– The game is stationary, every subgame is equivalent, and the

history is "payoff irrelevant" (as long as the resource has not been exhausted). Thus, I

will look for an equilibrium in stationary strategies. In fact, if later presidents can observe

the outcome only, and not the chosen probability st ∈ [x, x], then every subgame-perfect

equilibrium (SPE) must be stationary. Hence, Pt’s strategy, st (θt), is a function of θt

alone. Since the distribution of θt is independent of time, the probability that any later

president exploits is constant over time. Let x be this stationary probability. If Pt

conserves, his continuation value starting at any later period is:

V P = pbx+ (1− p) bx+ (1− x)
(
cP + δV P

)
=
pbx+ (1− p) bx+ (1− x) cP

1− δ (1− x)
. (1)

Anticipating V P , Pt solves:

arg max
st∈[x,x]

xtb+ (1− xt)
(
cP + δV P

)
. (2)

2.2. Probabilistic vs. Gradual Extraction

As an alternative to interpreting st as the probability of exploitation, it can be inter-

preted as the fraction that is extracted from a resource stock St, so that St+1 = (1− st)St.

For st to be Markov perfect, st, and thus x, cannot be functions of the stock when the

stock is payoff irrelevant. The stock is payoff irrelevant as long as when later presidents

do not condition their strategies on the stock, then the current president does not benefit

from conditioning st on St. To see that the stock is indeed payoff irrelevant, note that if

the future x is constant over time, then Sτ = (1− x)τ−t St and Pt’s continuation value at

10



τ > t can be written as:

∞∑
κ=τ

δκ−τ
[
pbxSκ + (1− p) bxSκ + (1− x)SκcP

]
=

∞∑
κ=τ

δκ−τ (1− x)κ−τ Sτ
[
pbx+ (1− p) bx+ (1− x) cP

]
=Sτ

pbx+ (1− p) bx+ (1− x) cP
1− δ (1− x)

= SτV
P ,

where V P is as in (1). Anticipating this, Pt solves:

arg max
st∈[x,x]

xtStb+ (1− xt)StcP + δ (1− xt)StV P ,

which is the same st as in (2). Hence, a Markov strategy st does not depend on St.

It follows that if st is interpreted as the fraction of the remaining resource that is

exploited, then the set of Markov-perfect equilibria (MPEs) coincides with the set of

SPEs we obtain when st is interpreted as the probability that Pt exploits the resource (if

later presidents can observe whether the resource is exploited, but not the past st’s). With

this, x and x can be interpreted as the minimum and maximum fractions, respectively,

that can be exploited in any given period.

Although the model permits both interpretations, it is helpful to fix ideas and refer

to st as the probability. (After all, and as discussed in Section 5, if st is a fraction, then

there might be other SPEs in addition to the MPEs emphasized in the following analysis.

These SPEs cease to exist when st represents a probability.)

2.3. Strategies

When Pt’s continuation value is given by (1), the solution to problem (2) is very

simple. Pt’s best and equilibrium strategy, st (θt), is:

x if θt ≥ θ (x) , and

x if θt ≤ θ (x) , where

θ (x) ≡ δp∆x+ (1− δ) b− c. (3)

11



The probability of exploitation, xt ≡Eθtst (θt), is:

xt = xPr (θt ≥ θ (x)) + xPr (θt ≤ θ (x)) .

Given that θt is uniformly distributed on [0, σ], we can easily see when the equilibrium

level for xt depends on the expected x in later periods:

xt (x) =


x if θ (x) ≤ 0

x+ x−x
σ
θ (x) if θ (x) ∈ [0, σ]

x if θ (x) ≥ σ

 . (4)

Proposition 1.

(i) If p∆ = 0, current exploitation is independent of future exploitation: xt (x) = xt (0).

(ii) If p∆ > 0, current exploitation increases with future exploitation: ∂xt (x) /∂x > 0.

The First Best.– To evaluate the result, it is useful to compare it to the first-best

outcome for xt. For the utilitarian first-best outcome, if the payoff of the ruling party is

negligible relative to everyone else, it is optimal to increase exploitation (from x to x) if

and only if:18

(1− δ) b > c, (5)

where c ≡ c+σ/2, independently of the future exploitation probability, x. By comparison,

Pt exploits if (1− δ) b+ δp∆x > c+ θt. Thus, even if p∆x = 0, Pt’s preference is different

from that of the opposition because of the additional value (b− b) of exploitation for the

party in power, and because θt can be different from the average shock (which is σ/2).

Part (i) of the proposition shows that, as in the first best, xt is independent of the

future x when p = 0 or ∆ = 0. If Pt’s party will always stay in power, or if there is

no conflict of interest between the party in power and the opposition, then Pt’s decision

does not depend on what later presidents are expected to do. This is intuitive: The level

of xt (x) is determined by the type that is indifferent between exploiting and conserving.

The type that is indifferent now is also indifferent regarding whether his party will exploit

later, and thus that later decision is of no consequence (Observation 1 in the Appendix

elaborates on this).

Part (ii) is intuitive as well: If Pt conserves, it is because Pt hopes to enjoy the

18By comparison, Pt exploits if (1− δ) b+ δp∆x > c+ θt.
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conservation benefit cP when the opposition rules. But if future presidents are likely to

exploit, then Pt strictly prefers to exploit right now if he fears to lose power (p > 0)

and, with that, some of the gains (∆) from exploiting the resource. In this case, the

expectations of future policies influence the policy today, and the influence is significant

when p∆ is large.

2.4. Equilibria

The stationary equilibrium is characterized by xt (x) = x. For the equilibrium x to

be interior in (x, x) and stable, we must have:

xt (x) > x, (A1)

xt (x) < x. (A2)

With (3)-(4), (A1) and (A2) are, respectively, equivalent to:

δp∆x+ (1− δ) b > c,

δp∆x+ (1− δ) b < c+ σ.

Proposition 2. The set of equilibrium outcomes can be one of four types:

(i) Suppose (A1) fails. There exists a stable equilibrium with x = x.

(i-1) If (A2) holds, this is the unique equilibrium outcome.

(i-2) If (A2) fails, there is also a stable equilibrium with x = x.

(ii) Suppose (A1) holds. There is no equilibrium with x = x.

(ii-1) If (A2) fails, the unique equilibrium outcome is x = x.

(ii-2) If (A2) holds, the unique equilibrium outcome is:

x =

σx
x−x + (1− δ) b− c

σ
x−x − δp∆

∈ (x, x) . (6)

The four cases are illustrated in Figure 1 and discussed in the following.

Self-fulfilling Expectations.– First, suppose c is so large that (A1) fails: c > (1− δ) b+

δp∆x. If x = 0, this inequality is simply c
1−δ > b. Under this condition, no president

13



Figure 1: In equilibrium, xt = x.

would ever exploit the resource if the probability (p) for the party to lose power were zero.

In line with this preference, the resource is never exploited in case (i-1). However, if p∆x

is large, (A2) fails and we enter case (i-2) and a situation with self-fulfilling expectations:

While no president exploits if later presidents are expected to conserve, everyone exploits

if it is expected that later presidents will exploit. In this case, there are multiple equilibria.

Note that this situation can arise only if there is a suffi ciently large probability (p) for

losing power later, and if the conflict (∆) between the rulers and the opposition is large.

Of the two equilibria, everyone prefers the equilibrium x = x, but x = x is nevertheless

also a stable equilibrium.

A Domino Effect.– Now, assume (A1) holds, so that there is always some chance

that Pt exploits (when θt is very small). If (A2) fails, the only equilibrium is x = x.

Remarkably, x = x is the only equilibrium even if xt (0) > 0 is arbitrarily small, i.e., if a

long-lived party (that stayed in power with certainty) would exploit the resource with a

very small probability. The intuition for why x = x nevertheless is the only equilibrium is

due to a domino effect: If Pt is expected to exploit with a small but positive probability,
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then at time t−1, exploitation becomes optimal for a set of θt−1’s so that the probability

for exploitation at t − 1 is larger than the probability was at time t. Anticipating this,

the incentive to exploit is even larger at time t − 2, and so on, until all incentives for

conservation unravel and exploitation becomes attractive even for the most conservation-

friendly president. The unraveling path is illustrated in panel ii-1 in Figure 1.

If both (A1) and (A2) hold, the domino effect converges and it does not lead to a

complete unraveling of the conservation incentives. This situation is the relevant one if

there is suffi cient uncertainty and always some chance that the presidents may prefer to

conserve, no matter what the future may bring, but it is also possible that some president,

at some point in time, may prefer to exploit, even if he would hold power forever. When

none of these possibilities can be ruled out, we are in case (ii-2), with the unique stable

equilibrium outcome xt (x) = x ∈ (x, x). Since only this equilibrium is sensitive to small

changes in the parameters, it allows for particularly interesting comparative statics. To

study them, I henceforth assume that (A1) and (A2) hold.

The Multiplier.– Some of the properties of this equilibrium are quite natural. As one

would expect, the probability of exploitation is larger if b is large and c is small. More

interestingly, note that while xt (0) measures the equilibrium probability for exploitation

if p = 0 , the equilibrium probability can be much larger when there is a chance (p > 0)

that parties rotate being in offi ce. The ratio of the two is:

x

xt (0)
=

1

1− δp∆ (x− x) /σ
> 1 when p∆ > 0. (7)

The number on the right-hand side can be referred to as the exploitation multiplier,

since it measures the factor that xt (0) must be multiplied by in order to obtain the

equilibrium x, which is strictly larger than xt (0) only because p∆ > 0. The multiplier

also measures how x changes in parameters c and b, relative to how xt (0) changes in

these parameters. This difference can be very large because while there is a direct effect

from, for example, a larger c on xt (so that xt (x) is reduced to x′ in Figure 2, even for a

fixed x), the equilibrium xt is reduced all the way to x′′ thanks to the indirect effect that

every future x also is reduced when c is larger.

So, although the domino effect converges to an interior solution for x when (A1) and

(A2) hold, the domino effect can still be quite large. Although xt (x) is linear in p∆, x is

15



Figure 2: A larger c reduces x all the way to x′′ - thanks to the multiplier.

convex in p∆ because the multiplier increases in p∆. The multiplier can increase without

bounds:
1

1− δp∆ (x− x) /σ
↑ ∞ when p ↑ σ/δ∆

x− x.

Of course, as the multiplier increases, the equilibrium will eventually be characterized

by (ii-1) in Proposition 1, where x = x: the unique equilibrium x reaches x as soon as

δp∆x ≥ σ − (1− δ) b+ c,

even though xt (0) can be arbitrarily small.19

Exploitation Technology and Conservation Technology.– The threshold x can be in-

terpreted as the minimal fraction (or probability) of extraction that we face, even if Pt

attempts to conserve. For tropical deforestation, illegal logging (and fires) can make it

diffi cult to reduce x all the way to zero. However, better monitoring technology can

reduce x. The effect of a lower x is that x is reduced for two reasons. The direct effect

is that every time conservation is attempted (i.e., when θt > θ (x)), it is more likely

to succeed. In addition, when the future x is reduced (because of the lower x), then

it becomes more attractive to conserve now, and the threshold θ (x) is reduced. This

indirect effect is large when the multiplier is large. The multiplier, in turn, is large when

x is small. Therefore, the effect on conservation accelerates when x falls. Technically,

19The multiplier here is very different from the ecological multiplier measuring how deforestation
negatively affects the standing forest because of fragmentation and dryness (Strand, 2017).
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although 1− xt (x) is linear in x, 1− x is convex in x:

∂2 (1− x)

(∂x)2 > 0.

The upper boundary x can be interpreted as the speed (or, alternatively, as the

probability) at which exploitation may occur if Pt prefers to exploit the resource. For

tropical forests, x is limited by the capacity to log (which, in turn, is limited by the

number of machines and the amount of specialized labor). With technological progress,

or economic development, deforestation can occur at a higher speed. A larger x increases

x for two reasons. The direct effect is that if Pt prefers exploitation, he can exploit faster.

The indirect effect is that when the future x is larger because of the direct effect, then

exploitation becomes more attractive now (in that θ (x) increases). The indirect effect

increases with the multiplier, and the multiplier increases with x. So, although xt (x) is

linear in x, x is convex in x:
∂2x

(∂x)2 > 0.

Since [x, x] represents the discretion, or power, of the president, [x, x] can also be larger

in countries with weak political institutions since various checks-and-balances often limit

the power of the executive.

Corollary 1. If the technologies are more effective, or institutions are weaker, the

multiplier x/xt (0) is larger.

2.5. Remarks on Heterogeneous Parties and Elections

Although Sections 3-4 draw on the basic model above, it is worth noting how a

generalization of the model can shed light on the recent development in Brazil. (For

details, see Section 5.1.)

Heterogeneous Political Parties.– If we have two parties, A and B, and pi measures

the probability that i ∈ {A,B} is out of offi ce in any given period, then (4) holds for

xit (xj) if θ (x) in (3) is replaced by:

θi
(
xj
)
≡ δ∆pixj + (1− δ) bi − ci, j 6= i, i ∈ {A,B} . (8)
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Now, we have two equations to determine the stationary xA and xB.

The difference between xA and xB is interesting. If party B, for example, benefits

more from exploitation in that b
B
increases or cB decreases, then that increases the

equilibrium xB and, therefore, also the equilibrium xA. If the parties only differ in pi,

then xA < xB < 0 if and only if pA < pB.

Corollary 2. The minority party (with the largest pi) is more likely to exploit.

Elections.– Since both parties exploit more than they would have preferred under

commitment (or if pi = 0), it is reasonable that voters prefer more conservation. In

that case, if xA < xB, the voters elect A with a larger probability than B, so pA < pB.

Since pA < pB caused xA < xB in the first place, there can be multiple (self-enforcing)

equilibria: Party B exploits more because B is unlikely to be in power later, and B is

unlikely to be (re)elected because the voters rationally expect B to exploit more. When

B anticipates that it is handicapped in the election because of the mere existence of the

resource, B has an additional incentive to exploit fast, so as to eliminate this handicap.

These predictions are formalized and proven later in the paper. Here, it suffi ces

to note that they are in line with the recent development in Brazil. As mentioned in

the Introduction, president Bolsonaro was a surprise winner, he may not be expected

to remain in offi ce after the next election, nor has he declared an intention to seek

reelection.20 The high deforestation rate tolerated by the current government is thus

consistent with the theory. This consistency is reassuring before we employ the basic

model to investigate optimal conservation measures.

20For example, President Bolsonaro claimed in 2019 that "I’m not worried about reelection. The day
I worry about reelection, I turn into a guy just like the others before me," according to
https://noticias.uol.com.br/meio-ambiente/ultimas-noticias/redacao/2019/08/26/bolsonaro-

questiona-intencoes-por-tras-de-ajuda-internacional-para-amazonia.htm
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3. Payments and Lobbying For or Against Exploitation

3.1. Paying for Conservation

The Conservation Multiplier.– The exploitation multiplier can just as well be referred

to as the conservation multiplier, since it coincides with the percentage increase in the

probability of conservation (1−x) when the resource may be conserved also in the future,

relative to the probability of conservation today if the resource were to be exploited in

the very next period. Simple algebra verifies that:

1− x
1− xt (1)

=
x

xt (0)
=

1

1− δp∆ (x− x) /σ
.

So, just as the multiplier amplifies the incentives to exploit the resource, it can amplify

the effects of compensation for conservation.

Effects of Compensations.– Developed countries are increasingly offering compensa-

tion in return for verified reductions in deforestation rates. To start with, I assume that

the compensation is directly beneficial only for the president (Section 4 relaxes this as-

sumption). A compensation k to Pt, conditional on conservation at time t, implies that

Pt prefers to exploit only when:

b > k + cp + δV P = k + c+ θt + δ
pbx+ (1− p) bx+ (1− x) (c+ θt)

1− δ (1− x)
⇔

θt < θk (x) ≡ δp∆x+ (1− δ) b− c− k [1− δ (1− x)] . (9)

When k increases, θk (x) decreases and so does the set of presidents who exploit. With

(9), replacing (3), xt (x) continues to be given by (4). That is, for any given future x, xt

decreases in k. The reduction in xt is the immediate and direct effect of the compensation.

There is also an indirect effect at play when k is expected to be offered to future pres-

idents who conserve, since the reduced future x contributes to a reduced xt, as observed

in Proposition 1. Consequently, the total effect of a per-period payment k on x can be

much larger than the effect of k, in period t only, on xt. In other words, the presence

and anticipation of future compensations help a donor to obtain what it seeks today (i.e.,

conservation) at a lower cost. When k is paid to every future Pt who conserves, then

xt (x) = x is:
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x =

σx
x−x + (1− δ) b− c− (1− δ) k

σ
x−x − δp∆ + δk

, (10)

if we throughout this section sticks to the assumption that x is interior in [x, x]. (Section

4 relaxes this assumption and studies the corner solution x = x.)

Optimal Compensation.– Let D ("she") be a long-lived donor and d > 0 the per-

period damage avoided in every period in which the resource is conserved. With a linear

per-period cost of k, D’s continuation payoff is:

V D = (1− x)
(
d− k + δV D

)
= (d− k)

1− x
1− δ (1− x)

. (11)

When we substitute for x, as given by (10), and derive the optimal k, we arrive at our

next result.

Proposition 3. The optimal k ≥ 0, from D’s point of view, increases in p∆:

k∗ ≡ arg max
k
V D = max

{
0,

1

2

[
d− σ 1− x

x− x + δp∆ + (1− δ) b− c
]}

. (12)

Intuitively, and as evident from the first two terms in (12), k∗ increases in d and in

(x− x). Thus, it is optimal to offer more if Pt has access to a more effective exploitation

technology or conservation technology.

A larger third term in (12), δp∆, increases the multiplier, the effectiveness of the

compensation, and therefore the optimal k∗. Simply put: It is optimal to offer more

for conservation if the party in power is likely to lose power in the future, or if the

disagreement between the ruling party and the opposition is large.

The optimal k∗ is smaller when (1− δ) b − c is small since, in this case, it is more

likely that Pt conserves even without the transfer. In that event, k leads to less additional

conservation.

Time Inconsistency.– So far, we have assumed, for simplicity, that D decides on a

time-invariant k. In that case, D takes advantage of the multiplier by committing to a

large k, since kτ at time τ > t is decreasing not only xτ , but also xt because of the domino

effect.

If Pt could commit to k∗0 for time t and k
∗
+ for later periods, he would prefer k

∗
0 ≤ k∗

and k∗+ ≥ k∗, where k∗ is given by (12). However, this plan is not renegotiation proof: In
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period t+ 1, D would prefer k∗0 ≤ k∗ rather than k∗+ ≥ k∗, and so on.21

Suppose now that D can commit to kt only, at the beginning of period t, before

observing θt,22 and that she cannot affect actual or expected future compensation levels

(as in an MPE). Any positive effect of kt on earlier x’s is sunk, making it less beneficial for

D to raise k as much as D preferred when D decided on a time-invariant k. Consequently,

the MPE kt, call it kM , is smaller than k∗.

Proposition 4. Suppose θ′k
(
xM
)
> 0 and that D , at the beginning of period t, can

commit only to kt. There is an equilibrium in which D pays kM ≤ k∗ if Pt conserves,

where:

kM = max

{
0, k∗ −

(
1− xM

)
θ′k

2

}
≤ k∗.

For simplicity, and to facilitate a comparison, kM is defined relative to k∗.23 The

result is then intuitive: The reason D would like to commit to a large k∗ is that less

exploitation in the future influences xt. The larger this influence is (i.e., the larger

θ′k ≡ ∂θk
(
xM
)
/∂xM = δ

(
p∆− kM

)
is), the larger the difference between k∗ and kM is.24

If x ↑ 1, k ↑ d regardless of whether D commits or not, so then the difference k∗− kM

vanishes. (See Observation 2 in the Appendix.)

As shown in the Appendix, the optimal kM depends on the expected k in the future,

so there can be multiple equilibria. There can be an equilibrium with kM = 0, in addition

to the one described by Proposition 4. Intuitively, it may be too expensive to persuade

Pt to conserve if Pt expects no future payments and thus a large x.

Corollary 3. The different kt’s are strategic complements: If k = k∗−
(
1− xM

)
θ′k/2 > 0

in later periods, the same k is optimal in this period. If k = 0 in later periods, k = 0

may be optimal in this period.

21It is generally optimal with backloaded payments in dynamic principal-agent problems (Ray, 2002).
However, as in Acemoglu et al. (2008), the scopes for backloading are limited here because the agent is
short lived (i.e., Pt does not care directly about the benefits to later principals).
22If D observes θt before deciding on kt, the equilibrium kt is qualitatively similar but it must be

derived from a cubic expression instead of from a quadratic expression.
23An explicit equation for kM is derived in the Appendix.
24If kM is so large that θ′k = δ

(
p∆− kM

)
< 0, then the president at time t considers future presidents

to be paid to conserve too much. In this case, a smaller x increases xt, and D would like to commit to
a smaller future k. This possibility is discussed in Section 5.
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3.2. Lobbying for Exploitation

Just as there may exist a stakeholder willing to pay for conservation, there may exist

another stakeholder willing to pay for exploitation. In particular, agricultural sectors are

often lobbying to get access to new land. It is reasonable to assume that their lobbying

expenditures can persuade and benefit a president caving in to these requests.

Effects of Lobbying.– If a lobby contribution l is paid conditional on exploitation and

only in period t, the effect of l on xt is exactly as in (4) if k in (9) is replaced by −l. This

is intuitive, since l is a payment for the opposite of k.

If l will be paid to the president in any period in which a president exploits the

resource, then xt = x will be given by (10), as before, if just k is replaced by −l. Even

though xt (x) is linear in l, x is convex in l. Once again, the multiplier is at play: When

Pt anticipates that future lobbying will raise x, then Pt becomes more willing to exploit

at time t because of the reduced future x as well as because of the possibility to obtain

l right now. In other words, the presence (and anticipation) of future lobbying helps the

lobby obtain what it seeks today (i.e., exploitation) at a lower cost.

Optimal Lobbying.– Suppose the (activist/agricultural) lobby group, A, is long-lived

(the next section permits the lobby group to be less than long-lived). If A’s present-

discounted value of succeeding with exploitation is represented by a (for "agricultural

value"), and A pays l to the president as soon as he exploits, A’s continuation value is:

V A = x (a− l) + (1− x) δV A =
x (a− l)

1− δ (1− x)
. (13)

When we substitute for x and take the derivative w.r.t. l, we find A’s optimal l.

Proposition 5. The optimal l, from A’s point of view, is:

l∗ ≡ arg max
l
V A = max

{
0,

1

2

[
a− σ

1− δ
x

x− x − b+
c

1− δ

]}
. (14)

Once again, the stakeholder pays more when the stake (here, a) is large and Pt has a

lot of discretion (in that x−x is large). So, the lobby expenditure increases regardless of

whether Pt has access to more effective exploitation technology or conservation technology

—or if institutions are weak. As long as x is large or x is small, Pt’s decision matters

more to A.
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However, in contrast to D, A pays less when b− c
1−δ is large because Pt is then quite

likely to exploit in any case and l leads to less additional extraction.

Time Inconsistency.–When A decides on its time-invariant payments, A takes ad-

vantage of the multiplier by committing to a large l, since lτ at time τ > t is increasing

not only xτ , but also xt because of the domino effect. However, this effect is sunk when A

enters period τ . Suppose, therefore, that A decides on every lt at the beginning of period

t. As with k, the MPE l, call it lM , is smaller than l∗.

Proposition 6. Suppose A, at the beginning of period t, can commit only to lt. There

is an equilibrium in which A pays lM ≤ l∗ if Pt exploits, where:

lM = max

{
0, l∗ − xMθ′k

2 (1− δ)

}
≤ l∗.

The effect of θ′k is just as in Proposition 4, but here θ
′
k = δ (p∆ + l) is unambiguously

positive. If x ↓ 0, l ↑ a whether or not A commits, so then the difference l∗− lM vanishes.

(See Observation 4 in the Appendix.)

3.3. Paying (forever) for Conservation and (once) for Exploitation

It is easy to see (and the Appendix proves) that when D bids for conservation, and

A simultaneously bids for exploitation, then the two optimal best-response functions are

interdependent:

k∗ = max

{
0,

1

2

[
l + d− σ 1− x

x− x + δp∆ + (1− δ) b− c
]}

, (15)

l∗ = max

{
0,

1

2

[
k + a− σ

1− δ
x

x− x − b+
c

1− δ

]}
. (16)

Corollary 4. The optimal compensation for conservation, k∗, increases in the lobby

contribution, l.

So, although the presence of lobbying makes it less likely that Pt will conserve, given

any k, lobbying is nevertheless increasing the optimal k. Intuitively, with lobbying, the

multiplier is larger (because the conflict between presidents and the opposition is larger)
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and the payment for conservation is more likely to lead to additional conservation.25

Analogously, compensations for conservation increase the necessity to lobby, and the

equilibrium lobby contributions increase.

The equilibrium xt (x) continues to be given by (4) if just (3) is replaced by:

θkl (x) ≡ δp∆x+ (1− δ) b− c− (k∗ − l∗) [1− δ (1− x)] . (17)

If we henceforth assume both k∗ and l∗ are strictly positive, then the total effect of

both payments on x is given by the following result.

Proposition 7. The equilibrium x decreases in d− a:

x∗ =

σx
x−x + (1− δ) b− c− (1− δ) (k∗ − l∗)

σ
x−x − δp∆ + δ (k∗ − l∗) , where (18)

k∗ − l∗ =
1

3

[
d− a− σ

x− x

(
1− x

(
2− δ
1− δ

))
+ (2− δ) b− c

(
2− δ
1− δ

)
+ δp∆

]
.

With the Markov-perfect payments, x continues to be given by (18) if just k∗ − l∗ is

replaced by kM − lM .26 The change in x is ambiguous: As noted above, lM is smaller

than l∗ if x is large, while kM is smaller than k∗ if x is small.

Proposition 8. Suppose θ′kl > 0. Compared with the case with commitment, both xM

and lM − kM are larger if and only if

x∗ <
1− δ
2− δ .

Figure 3 illustrates that, in both cases, the equilibrium x inreases in a− d.

Ineffi ciency.– At first, it may appear intuitive that d and a enter symmetrically in

k− l, and thus in x. However, while a is A’s present discounted value when the resource

is exploited, and the land is forever accessible to agriculture, d is the per-period flow

payoff to D from conservation. The present-discounted value of conservation forever is

d/ (1− δ) > d. With D and A, the criterion for when it is socially optimal to exploit

25As shown in the Appendix, the multiplier becomes

x

xt (0)
=

1

1− δ
(
x−x
σ

)
(p∆ + l − k)

.

26As shown in the Appendix, kM and lM are inter-dependent in a similar way as k∗ and l∗ are.
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Figure 3: Equilibrium x increases in a −  whether the stakeholders can commit to the 
short or the long run.

changes from (5) to:

(1− δ) (a+ b) > c+ d. (19)

Thus, if d/a ∈ (1− δ, 1), the presence of D and A makes conservation more likely to

be effi cient, but, in equilibrium, their payments increase x. If d/a ∈ (1− δ, 1) remains

constant when both a and d increase, then a − d increases and the resource will be

exploited, even though (19) will eventually fail, i.e., it becomes socially optimal to reduce

x, as illustrated by the dashed line in Figure 3.

Corollary 5. Let a and d increase by the same proportions, so that d/a ∈ (1− δ, 1)

stays fixed. Eventually, it becomes socially optimal to conserve, but in equilibrium k − l

decreases and the resource is exploited with probability one.

The intuition for this ineffi ciency is that A needs to pay only one single time for

exploitation, while D needs to pay every future Pt for conservation. The future payments,

to the later presidents, are costly for D but not fully appreciated by the current president.

This insight suggests that paying the presidents may not necessarily be the best way of

achieving conservation. It might be less expensive for D to pay in terms of public goods,

or party goods, that increase Pt’s conservation value even after Pt retires as president. It

may also be more effi cient for D to pay A for reducing its lobby effort, than to pay every

president in competition with A. These possibilities are investigated in the next section.
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4. Cost-Effective Conservation

Paying the president to conserve reduces the conflict between the president and the

opposition. With that, the multiplier decreases and so does the effectiveness of another

unit of compensation. For that reason, and because of the corollary above, there may be

better ways of securing conservation.

It is easy to see that V D is convex in c. If c increases, x decreases in the future and

this raises the benefit of conservation today. Parameter c is exogeneous, but if D funds

a public good conditional on conservation, the effect is similar to an increase in c.

In this section, I describe situations in which D is better offby committing to earmark

compensations, kG, for a public good (also benefitting the opposition) or for funds, kR,

administered by the ruling party (benefitting the members of the party), instead of simply

paying the president for conservation. In some situations, D can also be better off by

paying A to not lobby, instead of competing with A regarding what Pt should do.

To study such targets in a pedagogic setting, it will be assumed that d − a is so

large that D conserves in full. This corner solution is relevant also because the value of

conserving tropical forests vastly exceeds the benefits of logging, as was argued in the

Introduction. So, although Propositions 3—8 restricted attention to interior solutions for

x, it is time to pay attention to the corner solution x = x. (Observation 3 in the Appendix

presents the exact condition under which x = x is optimal.)

The following discussion will be easier to follow if we allow for full conservation. Thus,

let x = 0.

4.1. Paying Presidents, Parties, or the Public

Paying the Public.– If D pays for conservation and this payment is earmarked for a

public good, the current president benefits directly from future conservation payments,

and not only from the indirect effect through the reduced x. With this, the president is

incentivized to conserve more now. On the other hand, paying for public goods is less

targeted toward the president, since the funds are tied to goods that may be of secondary
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importance to the president (with direct transfers to the president, the president can

spend the money on public goods, or on private perks, just as the president pleases).

To capture this trade-off, suppose D’s per-period payment kG, conditional on conser-

vation, provides the benefit γ > 0 per dollar for the opposition as well as for the party

in power. It is also reasonable that γ < 1, since, otherwise, the president (whose value

of a dollar is normalized to 1) would prefer to spend his private funds on the public

good. Note that γkG has a role similar to that of the conservation benefit c, and that the

equation for x continues to hold if just c is replaced by c+ γkG .

Paying Parties.– Payments to the president, and earmarks to a public good, are both

extreme cases. An intermediate case is that D offers a transfer, kR, to be administered

by the ruling party, so that each dollar gives everyone associated with the ruling party

some benefit α > 0. It is reasonable that α > γ, since the party would otherwise prefer

to spend all party dollars on the public good. It is also reasonable that α < 1, since,

otherwise, the president would prefer to transfer his private funds to the party. There

are interesting trade-offs if α ∈ (γ, 1) but the results below hold for every α and γ.

In this intermediate case, the current president receives the direct benefit αkR from

conserving today. When it is anticipated that these transfers will arrive also in later

periods, the correspondingly lower future x gives the current president an indirect benefit

from conserving now. As a third effect, the current president’s expected direct benefit of

later conservation is pαkR.

With these modifications, the resource is exploited at time t if and only if:

θt < θR (x) ≡ δp∆x+ (1− δ) b− c− γkG − αkR [1− δp (1− x)]− (k − l) [1− δ (1− x)] .

To guarantee least-cost conservation, D’s problem is:

min
k≥0,kR≥0,kG≥0

(k + kR + kG) s.t. θR (0) = 0. (20)

The solution to D’s problem is always a corner solution with payments only to the

president, the party, or the public, as illustrated in Figure 4.
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Figure 4: D benefits from earmarking the funds to public goods if δ is large, but from
giving the ruling party discretion over the funds if p is small.

Proposition 9. To ensure maximal conservation (x = 0), it is optimal for D to pay

(i) the public if δ is large:

γ ≥ max {1− δ, α (1− δp)} .

(ii) the party if p is small:

α (1− δp) ≥ max {γ, 1− δ} ,

(iii) the president otherwise, i.e., if:

1− δ > max {γ, α (1− δp)} ,

Compensating the public can be best since then Pt benefits directly when future

presidents can conserve. This solution is more likely to be best if δ, the weight on future

benefits, is large. Allowing the ruling party to spend the money as it pleases is also giving

the current Pt direct benefits if his party’s future presidents can conserve. This benefit is

large only when p, the probability of losing power, is small. Thus, a more stable political

environment means that letting parties administer the funds can be best.

The impacts of the valuation parameters α and γ for the comparison are straightfor-

ward.
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Note that the level of l is irrelevant for this result —the proposition holds for any l

—as long as l is the same regardless of how D pays. And, indeed, the equilibrium l is

exactly the same regardless of (i)-(iii): When x ↓ 0, A’s optimal choice is always l ↑ a, as

shown in the Appendix.27

It is also easy to check that A would never prefer to direct funds to the party or the

public, instead of to the president: Such payments are not only less effective right now

(given that α < 1 and γ < 1), but they also increase Pt’s value of postponing exploitation,

making immediate exploitation less likely.

4.2. Paying the Lobby

Compensating short-lived presidents is expensive because D must compensate every

one of them for not exploiting a resource. If the lobby group is long-lived, then it can

be less expensive to pay A to not lobby, since A anticipates that it can lobby or receive

compensations also next period.

Let q ∈ [0, 1] measure the probability that A will not be the relevant lobby group in

any future period. (This will not change the previous result.) With probability 1− q, the

current lobby group can lobby in order to obtain a also in later periods. To treat A and

D more or less symmetrically, the reader is free to restrict attention to q = 0, as has been

done so far. Alternatively, the lobby group and the party in power will be more similar

if q = p. If q < p, the lobby group is more likely to be a player in the future than is the

political party in power.

As above, if x ↓ 0, then l increases toward A’s value of exploitation, which is a when

D does not pay A. If D pays kA ≥ 0 to discourage A from lobbying, then A’s value

of exploitation is reduced because A will subsequently lose the payments from D. The

reduced value means that A finds it optimal to reduce l, even if we assume that l is

unobservable for D, so that D can condition her payments to A only on whether the

resource is exploited and not on the level of l.28

27It is assumed that A does not significantly benefit directly from any of the transfers k, kR, or kG,
even though kG is referred to as a public good. After all, the value of land, a, is likely to be much larger.
28In principle, we can here proceed by making one of the following alternative assumptions:
(a) We may assume that D can observe l so that, if A selects l > 0 in this period, A does not receive
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If D pays the relevant lobby group an amount kA ≥ 0 in every period with conserva-

tion, A’s net value of exploitation is reduced from a to a − kA
1−δ(1−q) , given the present-

discounted value of the per-period kA. When x = 0, the optimal l is also reduced by

this amount (regardless of whether A can commit). When this term is substituted in the

expression for θR (0) (replacing a), and D solves min (k + kR + kG + kA) s.t. θR (0) = 0,

we can see that it is optimal with either kA = 0 or

kA = a [1− δ (1− q)] , (21)

so that A, in that case, prefers l = 0. This exercise also leads to the next proposition.

Proposition 10. D benefits from paying L to not lobby if q is small and p large. The

following three cases correspond to the cases in Proposition 9:

(i) If D compensates the public for conservation, D benefits from paying A to not lobby

if:

q < (1− δ) 1− γ
γδ

.

(ii) If D pays the party to conserve, D benefits from paying A to not lobby if:

q < (1− δ) 1− (1− δp)α
(1− δp)αδ .

(iii) If D pays the president to conserve, D always benefits from paying A to not lobby,

and strictly so if q < 1.

It is quite intuitive that D prefers to pay A when q is small and p is large. If q is

small, A appreciates not only the current compensation from D, but also the expected

payments in the future. In this case, the per-period payment kA is effective in persuading

A to not lobby. If p is small, Pt appreciates future payments to the party, so then kR may

kA in this period and, with probability x, A receives a and the game ends.
(b) D may be unable to observe l. Thus, if the resource is not exploited, A receives kA and the game

continues. If the resource is exploited, then A receives a instead of the flow of kA every period.
(c) A might, with some chance, learn θt before A decides to lobby so as to receive a. As in case (b),

the consequence for A is that A loses the flow of kA every period if and only if Pt exploits. (In this case,
it will not matter whether D observes l.)
I have decided to focus on case (b) because (i) it leads to the same outcome as case (c), (ii) this

outcome is simpler to describe than the outcome in (a), (iii) the payment following (b) and (c) is larger
than under (a) and thus it is robust and suffi cient regardless of whether A observes θt, or D observes l,
and (iv) if D benefits from paying A in cases (b) and (c), then she also benefits from this payment in
case (a) (since the payments are then less).
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Figure 5: D benefits from paying L to abstain from lobbying if q is small while p is large.

reduce x more than kA can, especially if q is large. Parts (i) and (ii) of the proposition

are illustrated in Figure 5. (In the figure, it is assumed that 1− δ < γ, so that it is not

optimal to pay the president directly.)29

Time Inconsistency.– Note that D must commit or build a reputation for earmarking

the payments to the public or the party. Although paying parties or the public takes

greater advantage of the multiplier, a direct transfer is more effi cient right now, when

α < 1 and γ < 1. So, at the start of any given period, D’s temptation and MPE strategy

is always to pay the president directly. In line with Proposition 10(iidi), D can then

benefit from paying A to not lobby.

5. Alternative Assumptions and Applications

5.1. Optimal Conservation Targets under Budget Constraints

Drawing on Section 4.1., we can also show how the optimal target for the conservation

funds depends on D’s budget and preferences (i.e, on d). Assume, for simplicity, that

29Since the claims in Proposition 10 takes the following form: "If D pays...[then]...D always benefits
from paying A...", it follows that Proposition 10 is relevant if and only if kA = a [1− δ (1− q)] is
insuffi cient to ensure that θa (0) = 0. In addition, the following is true: For each of the cases in
Proposition 10, if kA < a [1− δ (1− q)] is suffi cient to ensure that θa (0) = 0, then D compensates A,
exclusively.
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l = 0. The donor’s continuation value is:

(d−K)
1− x

1− δ (1− x)
, where

K = k + kG + kR.

It is easy to see that the second term ( 1−x
1−δ(1−x)

) is linear in k. (It was for that reason

the expression for the optimal k was so simple to derive.) It is also easy to see that this

second term is convex in kG, and also in kR if p < 1. Intuitively, the additional direct

future conservation value associated with funding public goods, or party perks, makes it

especially attractive for the president to conserve, particularly if also future conservation

is likely (because the funds are large). This is the intuition for why a large budget, K,

makes it more likely that it is optimal for D to earmark funds for party perks rather than

letting the president decide, and for why it is more likely that D benefits from earmarking

the funds for the public goods.

Proposition 11. If K is D’s fixed budget, there exists thresholds K1, K2, and K3, such

that:

(i) D prefers to earmark the funds for the party, rather than letting the president have

full discretion, if K > K1,

(ii) D prefers to earmark the funds for the public, rather than letting the president have

full discretion, if K > K2,

(iii) D prefers to earmark the funds for the public, rather than the party, if K > K3.

When the budget K is optimally set by the donor, it is likely that a larger d makes it

optimal to have a larger budget. It then follows that:

Corollary 6. There exists thresholds d1, d2, and d3, such that:

(i) D prefers to earmark the funds for the public, rather than the party, if d > d1,

(ii) D prefers to earmark the funds for the public, rather than letting the president have

full discretion, if d > d2,

(iii) D prefers to earmark the funds for the party, rather than letting the president have

full discretion, if d > d3.

So, if the donor is formed by a large coalition of countries, d is likely to be large and

32



thus it is likely that the funds should be earmarked to public goods. Of course, as noted

above, this requires D to build a reputation for earmarking the funds in this way. (At

every time t, it is tempting for D to instead pay the president directly if α < 1 and

γ < 1.)

5.2. Heterogeneous Parties and Elections

Suppose there are two parties, A and B, and that A is more likely to win as long as

the resource exists (i.e., pA < pB). Suppose there are no offi ce rents (I will relax this

assumption below).

Proposition 12. The minority party exploits the most when it is in power (iff ∆ > 0):

xi =

[
x+ x−x

σ

(
1 + x−x

σ
δ∆pi

)] [
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2
pipj

, i ∈ {A,B} ⇒

xB − xA =
(
pB − pA

)
∆
δ
(
x−x
σ

)2 [
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2
pApB

⇒

xB > xA iff pB > pA.

It also follows from this equation (see the Appendix) that less is exploited when the

probability that the major party wins increases.

Proposition 13. Expected exploitation is maximized when pi → 1/2 (iff ∆ > 0):

(
1− pi

)
xi + pixj =

[
x+ x−x

σ

(
1 + 2x−x

σ
δ∆ (1− pi) pi

)] [
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2

(1− pi) pi
.

Elections.–We can easily endogenize the winning probabilities. Suppose that the

median voter prefers conservation ((1− δ) b < c) and elects party i if the difference in

continuation value, V m
i − V m

j , is larger than the popularity shock favoring party j and

suppose this shock is i.i.d. uniformly and symmetrically distributed over time. Then,

party i is more likely to win if V m
i − V m

j is large, which holds if xj − xi is large. Since

xj > xi if pj > pi, there can be multiple equilibria where a party receives less votes

because the party exploits more, and the party exploits more because it is less likely to

be in power later.

33



Proposition 14. There are multiple equilibria where pi > pj and xi > xj, i ∈ {A,B}.

In equilibrium, the asymmetry |pi − pj| increases in x−x
σ
δ∆:

(
1− pi

)
pi =

1− 2δ∆
(
x−x
σ

)2 [
(1− δ) b− c

](
x−x
σ
δ∆
)2

Offi ce rents.– Now, suppose R measures the rents for being in offi ce, per se. Suppose,

further, than if the resource is fully exploited, then pi = 1/2, since then there is no longer

any disagreement between the parties when it comes to this issue. If pB > 1/2, party B

faces an additional incentive to exploit: Not only will one then obtain the benefit bP , but

in addition the chance for offi ce rents will be larger in the future. This effect is naturally

strengthening B’s incentive to exploit. For the analogous reason, A’s incentive to exploit

decreases (iff∆ > 0), since A loses his electoral advantage once the resource is exploited.

Proposition 15. Consider an equilibrium with pB > pA and xB > xA. If the offi ce rent

R increases, xB increases and xA decreases, so polarization increases. As a consequence,

pB increases and pA decreases.

5.3. Postponing Reforms (∆ < 0)

The above framework can shed light on several other situations besides resource ex-

traction. As discussed in the Introduction, a larger body of literature analyzes macroeco-

nomic policies in dynamic contexts. In some of these papers, the decision is whether to

cut spending and stabilize debt (Alesina and Drazen, 1991) or to invest in state capacity

(Besley and Persson, 2009; 2010). Stopping the game in this way is costly for a policy-

maker, and every government may hope that this cost will instead be paid by subsequent

governments.

This situation fits the model except that now it is reasonable that ∆ < 0. The above

equations hold also for this case, but the interpretations of the results will be different.

When ∆ < 0, each president is more likely to stop the game (by completing the project

of stabilizing debt, for example) if later governments are less likely to stop the game in
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this way. That is, ∂θ (x) /∂x < 0, and the multiplier is thus less than 1. This sign also

eliminates the possibility of multiple equilibria, described by Proposition 2(i-2).30

Also for this application, it seems reasonable that stakeholders (domestic businesses)

may lobby the president to postpone the action, while external stakeholders (such as

the IMF) may try to persuade the government to act (and repay the debt). The above

analyses of such payments continue to hold, but the differences between the long-term

optimal payments (k∗ and l∗) and the short-term (Markov-perfect) payments (kM and

lM) change sign.

Corollary 7. When ∂θ (x) /∂x < 0, the multiplier is less than 1 and both A and D prefer

to commit to lower levels of future payments.

For the donor (e.g., the IMF), the intuition is that it is beneficial to reduce the

probability that future governments will act, so as to prompt the current government to

act, instead. When the future arrives and no debt is repaid, however, the IMF is inclined

to continue the effort by helping the government to repay the debt (this is the classic soft

budget constraint).

The results from the previous subsection are also modified in interesting ways when

∆ < 0. In this case, each party hopes the other party ends the game, since that is costly.

It is natural to assume, now, that the voters prefer to end the game (by completing the

reform).

Corollary 8. When ∆ < 0, the minor party B is less likely to act (by "completing a

reform"). There are multiple equilibria in which xB < xA and pB > pA even though

the parties are identical in other respects. If the offi ce rent R increases, the two policies

converge: xB increases and xA decreases.

The intuition for the last statement is that because the issue gives A an electoral

advantage (because A is more likely to end then game than B), then A’s incentive to

complete the project is weakened but B’s is strengthened (as in Powell, 2019).

30The conjectures discussed in Section 2.5 are also reversed: If ∆ < 0, the dominant party is more
likely to end the game. When also the voters prefer to end the game, high offi ce rents can motivate the
minority party to adopt the opponent’s policy (of ending the game), and vice versa (as in Powell, 2019),
in order to eliminate its handicap in the election.
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5.4. Convex Extraction Costs and Price Shocks: Interior Solutions

In this extension, I will show that quadratic extraction costs in the gradual-extraction

model is isomorphic to a model with a uniformly distributed price on the part of the

resource that is extracted. (I.e., this part generalizes the reasoning in Section 2.2.)

A Model with Stochastic Resource Prices.– Suppose c is the same for everyone, but

that from b is substracted a benefit-reduction εt, measuring a negative shock on the profit

from logging (due to, for example, low resource prices in period t). Let εt be uniformly

i.i.d. on [0, σb]. As before bp − b = ∆ is the additional benefit from exploitation for the

party in power.

Let V P (x) be the continuation value in the future if the resource is conserved now.

Anticipating V P (x), the president exploits if:

bP − εt > c+ δV P (x)⇒

εt < ε̂ ≡ bP − c− δV P (x) ,

which holds with probability:

x∗t = Pr (εt < ε̂) =
ε̂

σb
=

1

σb

[
bP − c− δV P (x)

]
. (22)

Given this threshold, we have that E(bP − εt | εt < ε̂) = bP − ε̂/2 = bP − σbx/2. Antici-

pating this, and with b̃ ≡ b+ (1− p) ∆, we have:

V P (x) =
(
b̃− σbx/2

)
x+ (1− x)

(
c+ δV P

)
=

(
b̃− σbx/2

)
x+ (1− x) c

1− δ (1− x)
. (23)

Substituted into (22), we get

xt =
1

σb

bP − c− δ
(
b̃− σbx/2

)
x+ (1− x) c

1− δ (1− x)

 .
A Model with Gradual Extraction and Convex Extraction Costs.– Suppose now that

there are no shocks, but that x is the fraction of the resource that is extracted. The

remaining stock of the resource next period is St+1 = (1− xt)St, as in Section 2.2.

Suppose, further, that the extraction cost is σbStx2
t/2, given some parameter σb > 0.

This cost function means that the marginal extraction costs increases in the fraction that
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is extracted. It is natural that, given xt, the total cost may be proportional to St. With

this, the continuation value per unit of the stock is exactly as in (23), and, anticipating

V P , the optimal extraction level is

x∗t = arg max
xt

(
bpxtSt − σb

x2
t

2
St + (1− xt)St

(
c+ δV P (x)

))
=

1

σb

[
bP − c− V P (x)

]
,

exactly as in (22).

Proposition 16. The stochastic-price model and the convex-extraction-cost model are

isomorphic:

(i) The per-unit-of-stock continuation value is the same for both models.

(ii) The optimal x is the same for both models.

(iii) The assumption of uniformly distributed shock is analogous to the assumption of a

quadratic extraction cost.

Heterogeneous Parties.– This model generalizes the basic model, which restricted at-

tention to a constant ∆ (which had to be either positive or negative). Here, the optimal

x is interior and thus x is perceived to be too small if x is small (as when ∆ < 0) and too

large if x is large (as when ∆ > 0). In either case, V P (x) is less than it is at the optimal

x.

It follows that if there are two parties with different preferences, then each party

i ∈ {A,B} extracts more when pi > 0 than when pi = 0, even if bP = b.

To see this, note that if we henceforth assume bP = b, but that parties have different

bi’s and ci’s, then party i’s optimal x is (under commitment or with pi = 0):

xi∗ = arg maxV P
i =

bi − ci
σb

.

Thus, for any expected future x 6= xi∗, the continuation value is lower, V P
i (x) < V P

i (xi∗),

and then (22) implies that i prefers xt > xi∗ at any time t he is in power.

Proposition 17. Suppose that parties prefer different x’s but preferences are the same

whether the president’s party is in vs. out of offi ce (i.e., bP,i = bi). Then, each party

i ∈ {A,B} makes decisions s.t.

xi > xi∗ iff pi > 0.
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That is, both parties extract more when they fear to lose power —not because it is more

beneficial to extract in offi ce —but because each party perceives the resource to be mis-

managed by the other party (whether that party is perceived to extract too much or too

little), and thus it is less attractive to conserve the resource.

Now, suppose B is the party preferring the largest x: xB∗ > xA∗. If D pays A to

conserve more, V P
B declines and (22) implies that xB increases. In other words, payments

(to A) in return for conservation can be counter-productive (since B may extract more).

On the other hand, if D pays B marginally to conserve, both xB and xA declines (xA

declines because V A increases). This mechanism suggests that it may be less risky to pay

B to conserve than paying A.

Corollary 9. Suppose xB∗ > xA∗. (i) If D pays A to conserve, xB may increase. (ii) If

D pays B (marginally) to conserve, both xB and xA are reduced.

5.5. Alternative Equilibria

Above, the set of MPEs for the gradual-extraction model coincides with the set of

SPEs for the probabilistic exploitation model (if only the outcome could be conserved).

This claim holds also for the alternative model in Section 5.4. However, when x represents

gradual extraction (as a fraction of the stock) and St is the size of the remaining stock,

then there are other SPEs in addition to the MPEs emphasized above.

As in other dynamic games with an infinite time horizon, there can be a large set of

SPEs when the discount factor is large. For example, in the basic model, there may be

an SPE in which every president sets xt = x but, as soon as one president has deviated

from this strategy, then we (re)turn to the MPE described in Section 2.4. It is easy to

check that these strategies, and the outcome x, can constitute an SPE if δ is above some

threshold. If δ is lower than that threshold, then xt = x cannot be guaranteed unless D

makes xt = x more attractive by compensating for conservation.

Formally, suppose V P
E is the continuation value for the least conservation-friendly type

in the cooperative equilibrium with low exploitation:

V P
E = b̃

x

1− δ (1− x)
+ c

1− x
1− δ (1− x)

,
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where b̃ ≡ pb+ (1− p) b, and let V P
M be the same type’s continuation value in the MPE:

V P
M = b̃

x

1− δ (1− x)
+ c

1− x
1− δ (1− x)

=

(
b̃− c

) [
b− c

1−δ
]

+ c
[
σ̃−δp∆

1−δ

]
σ̃ + δ

[
b− c

(1−δ)

]
− δp∆

.

For x = x always to be an equilibrium, it must be attractive with x = x even for the

least conservation-friendly president:

k + xb+ (1− x)
(
c+ δV P

E

)
≥ xb+ (1− x)

(
c+ δV P

M

)
,

which holds iff k is suffi ciently large.31

Proposition 18. When x ∈ [x, x] represents gradual extraction, there exists an SPE

outcome that guarantees xt = x∀t, even if k = 0, iff δ ≥ δ. If δ falls below δ, k > 0 is

necessary to sustain xt = x∀t as an SPE.

However, note that if x = 1, the condition becomes:

k + xb+ (1− x)

(
c+ δ

[
b̃

x

1− δ (1− x)
+ c

1− x
1− δ (1− x)

])
≥ b,

but, when this inequality holds for some k, then x = x is also an MPE outcome for that

same k. Thus, when x = x, SPEs do not permit better equilibria than MPEs do.

6. Concluding Remarks

This paper provides a framework for analyzing the game between consecutive govern-

ments when each of them decides whether to exploit or conserve a resource, such as a

tropical forest. If a future government is more likely to exploit the resource, the current

government becomes more likely to exploit, as well. The exploitation multiplier means

that the outcome can be very sensitive to small changes in the parameters and to expec-

tations regarding future policies. A lobby group, eager to exploit, can benefit from the

multiplier. A donor, interested in conservation, can also take advantage of the mirroring

31Here, the role of k is to make a stream of environmentally friendly decisions self-enforcing, just like
environmentally friendly technology made the climate agreement self-enforcing in the analysis by Harstad
et al. (2019).
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conservation multiplier, but there is an asymmetry between paying once for exploitation

vs. forever for conservation.

On the one hand, the results provide an explanation of recent developments in Brazil:

Although earlier governments have succeeded in reducing deforestation, the current gov-

ernment facilitates deforestation. The current government is unlikely to stay in power in

the future (given its sagging popularity and historically bad polls), so it is in line with

the model that it prefers exploitation rather than conservation. The prospects of new in-

ternational trade agreements, signed with the EU, US, and EFTA, make it plausible that

deforestation will eventually occur, in any case. Anticipating all this, the government

benefits from permitting deforestation already now.

On the other hand, the results provide a number of normative policy implications.

First, payments contingent on conservation (i.e., REDD+) can have dramatically large

effects because of the multiplier, but only when the payments are large enough to coun-

terbalance the effect of the lobby contributions. Second, the anticipation of future pay-

ments, and the trust that they will continue to be offered, may have larger effects than

the contemporary effects of current payments. It is thus essential to build credibility that

payments will continue. Third, it is tempting for the donor to offer funds that can be

used at the discretion of the president, but it may be more effective to build a reputation

for earmarking the funds for public goods, beneficial also for parties no longer in power.

Finally, if the lobby group, willing to pay for exploitation, is more of a long-run player

than is the current political party in power, then cost-effective conservation requires the

donor to compensate the lobby for halting its lobbying effort.
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Appendix

Notation: To faciliate the later proofs, all proofs allow for a payment k to Pt if Pt
conserves, and a payment l when he exploits, as discussed in Section 3. Furthermore: I
will permit the value of conservation in the future to be different for Pt when Pt’s party is
in power, than when he is not in power. In particular, Pt’s value of conservation whenever
Pt’s party is not in power is cP = c + θt, while Pt’s value of conservation is ĉP whenever
Pt ’s party is in power, where ĉP = ĉ + θt, ĉ = c + f , and f can be positive or negative.
Propositions 1 and 2 (and their proofs) follow by requiring k = l = f = ĉ− c = 0. I also
use the simplification σ̃ ≡ σ

x−x and m ≡ k − l.

Proof of Proposition 1:
Pt receives b if he cuts now. Suppose that if Pt does not cut now, then his party will
cut with probability y any later period it is in power, while the opposition exploits
with probability x any period Pt’s party is not in power. With this, the current Pt’s
continuation value at the beginning of any later period, τ > t, is:

V P = (1− p) yb+ pxb+ (1− p) (1− y)
(
ĉP + δV P

)
+ p (1− x)

(
cP + δV P

)
=

(1− p) yb+ pxb+ (1− p) (1− y) ĉP + p (1− x) cP
1− δ (1− p) (1− y)− δp (1− x)

.

The numerator as well as the denominator are clearly positive. Therefore, Pt prefers to
cut now if:

k + ĉP + δV P < b+ l⇔

k + ĉP + δ
(1− p) yb+ pxb+ (1− p) (1− y) ĉP + p (1− x) cP

1− δ (1− p) (1− y)− δp (1− x)
< b+ l⇔

(1− p) yb+ pxb+ (1− p) (1− y) (ĉ+ θt) + p (1− x) (c+ θt) <

1

δ

(
b+ l − k − ĉ− θt

)
[1− δ (1− p) (1− y)− δp (1− x)]⇔

θt <
(
b+ l − k − ĉ

)
[1− δ (1− p) (1− y)− δp (1− x)]

− δ
[
(1− p) yb+ pxb+ (1− p) (1− y) ĉ+ p (1− x) c

]
= (1− δ) b+ δp

(
b− b

)
x− ĉ+ δp (1− x) (ĉ− c)

+ (l − k) [1− δ (1− p) (1− y)− δp (1− x)]⇔
θt < θ (x) ≡ (1− δ) b− ĉ+ δp∆x+ δp (1− x) f

+ (l − k) [1− δ (1− p) (1− y)− δp (1− x)] .

Observation 1: If l = k , θ (x) depends on x, but not on y.
So, when there is neither lobbying nor donations, then the level of y is not relevant

for Pt’s decision. This is natural, since if Pt is indifferent now, he is indifferent later, and
thus to the level of y, as well.
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Even if we do not impose l = k, θ (x) simplifies to the following when y = x:

θ (x) = (1− δ) b− ĉ+ δp∆x+ δp (1− x) f + (l − k) [1− δ (1− x)] , (24)

which, in turn, simplifies to (4) when f = l − k = 0.
The probability that Pt prefers to exploit is:

0 if θ (x) ≤ 0,

θ (x) /σ if θ (x) ∈ [0, σ] ,

1 if θ (x) ≥ σ.

If Pt prefers to (not) exploit, he exploits with probability x (x). Thus, the probability
for exploitation is

xt (x) = x · θ (x)

σ
+ x ·

(
1− θ (x)

σ

)
= x+ (x− x) · θ (x)

σ
, (25)

if θ (x) ∈ [0, σ], while xt (x) = x if θ (x) < 0 and xt (x) = x if θ (x) > σ. This can be
written as (4). QED

Proof of Proposition 2:
The first three cases are trivial, but (A1) and (A2) are, respectively, more generally
written as:

θ (x) /σ > x⇔ (1− δ) b− ĉ+ δp (1− x) f + (l − k) [1− δ (1− x)] > x (σ − δp∆) ,

θ (x) /σ < x⇔ (1− δ) b− ĉ+ δp (1− x) f + (l − k) [1− δ (1− x)] < x (σ − δp∆) .

When both hold (case ii-2), there exists, by continuity, x ∈ [x, x] such that xt (x) = x.
To find this fixed point, substitute in for θ (x) and xt (x) = y = x in (25) and solve for x
to obtain:

x =
σ̃x+ (1− δ) b− c− f (1− δp) + (1− δ) (l − k)

σ̃ − δp (∆− f)− δ (l − k)
. (26)

With f = l − k = 0, we arrive at (6). QED

Proof of the second-derivatives at the end of Section 2:
From (25):
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∂x

∂x
= 1− θ (x)

σ
+
x− x
σ

(δp (∆− f) + δ (l − k))
∂x

∂x

=
1− θ(x)

σ

1− x−x
σ

(δp (∆− f) + δ (l − k))
, so

∂2x

(∂x)2 < 0, as θ′ (x) > 0 and x increases in x.

∂x

∂x
=
θ (x)

σ
+
x− x
σ

(δp (∆− f) + δ (l − k))
∂x

∂x

=
θ(x)
σ

1− x−x
σ

(δp (∆− f) + δ (l − k))
, so

∂2x

(∂x)2 > 0, as θ′ (x) > 0 and x increases in x.

QED

Proof of Proposition 3:
First, note that, with (26), and with the simplified notation m ≡ k − l, the following
expression is linear in k:

1− x
1− δ (1− x)

=
σ̃ (1− x)− δp (∆− f) + δm−

[
(1− δ) b− ĉ+ δpf − (1− δ)m

]
(1− δ) [σ̃ − δp (∆− f) + δm] + δ

[
σ̃x+ (1− δ) b− ĉ+ δpf − (1− δ)m

]
=

σ̃ (1− x)− δp∆ + k − l − (1− δ) b+ ĉ

σ̃ [1− δ (1− x)] + δ
[
(1− δ) b− ĉ

]
− δ (1− δ) p∆ + δpf

.

Since this expression is linear in k, it is straightforward to maximize (11) and derive
the optimal k, given l. The first-order condition w.r.t. k ≥ 0 gives (the second-order
condition holds trivially):

(d− k)
∂

∂k

(
1− x

1− δ (1− x)

)
− 1− x

1− δ (1− x)
≤ 0⇔ (27)

d− k
σ̃ [1− δ (1− x)] + δ

[
(1− δ) b− ĉ

]
− δ (1− δ) p∆ + δpf

≤ σ̃ (1− x)− δp∆ + k − l − (1− δ) b+ ĉ

σ̃ ([1− δ (1− x)]) + δ
[
(1− δ) b− ĉ

]
− δp∆ (1− δ) + δpf

⇔

d− k −
[
σ̃ (1− x)− δp∆ + k − l − (1− δ) b+ ĉ

]
≤ 0, (28)

with equality if k > 0, if the corresponding x is in (x, x). With ĉ = c and l = 0, we
arrive at (12).
Observation 2: If x→ 1, (27) requires k → d.
We obtain the corner solution x = x if (28) is positive at the k ensuring θkl (x) = 0.
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From (24), we see that this is the k satisfying:

θkl (x) = (1− δ) b− ĉ+ δp∆x+ δp (1− x) f + (l − k) [1− δ (1− x)] = 0⇔

k = l +
1− δ

1− δ (1− x)
b− ĉ

1− δ (1− x)
+

δp∆x

1− δ (1− x)
+

δp (1− x) f

1− δ (1− x)

At this k, (28) is indeed positive if d ≥ d, where

d ≡ l + 2
1− δ

1− δ (1− x)
b− 2

ĉ

1− δ (1− x)
+ 2

δp∆x

1− δ (1− x)
+ 2

δp (1− x) f

1− δ (1− x)

+ σ̃ (1− x)− δp∆− (1− δ) b+ ĉ.

Observation 3: When d ≥ d, D pays so much that (A1) fails and x = x. QED

Proof of Proposition 4:
Note that if we fix the future k (and thus the future x), we get:

∂V D
t

∂kt
=
∂ (1− xt)

∂kt

(
d− kt + δV D

)
− (1− xt) , where (29)

∂ (1− xt)
∂kt

=
x− x
σ

[1− δ (1− x)] and

V D = (d− k)
1− x

1− δ (1− x)
.

Equalizing (29) to zero gives the f.o.c. (the s.o.c. clearly holds):

x− x
σ

[1− δ (1− x)]
(
d− kt + δV D

)
= 1− xt ⇔ (30)

[1− δ (1− x)] (d− kt) + δ (d− k) (1− x) = σ̃ (1− xt) , (31)

and, with (25), (31) becomes

[1− δ (1− x)] (d− kt) + δ (d− k) (1− x)

= σ̃

(
1− x− 1

σ̃

[
(1− δ) b− ĉ+ δp∆x+ δp (1− x) f + (lt − kt) [1− δ (1− x)]

])
= σ̃ (1− x)−

[
(1− δ) b− ĉ+ δp∆x+ δp (1− x) f + (lt − kt) [1− δ (1− x)]

]
⇔

(2kt − d− lt) [1− δ (1− x)] (32)

= δ (d− k) (1− x)−
[
σ̃ (1− x)− (1− δ) b+ ĉ

]
+ δp∆x+ δp (1− x) f.

With λ ≡ kt − k, and when (28) is substituted into the bracket on the r.h.s. of (32),
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we can rewrite this expression as follows:

(2kt − d− lt) [1− δ (1− x)]

= δ (d− k) (1− x)− [(d− k∗)− (k∗ − l∗) + δp∆] + δp∆x+ δp (1− x) f

= δ (d− k) (1− x)− [(d− k∗)− (k∗ − l∗)]− δp (1− x) (∆− f)⇔
2λ [1− δ (1− x)] + (2k − lt) [1− δ (1− x)]

= 2k∗ − δk (1− x)− l∗ − δp (1− x) (∆− f)⇔
2λ [1− δ (1− x)]

= 2k∗ − 2k + 2kδ (1− x)− δk (1− x)− l∗ + l − lδ (1− x)− δp (1− x) (∆− f)

= 2 (k∗ − k)− (l∗ − l)− [δp (∆− f) + (l − k) δ] (1− x)

= 2 (k∗ − k)− (l∗ − l)− (1− x) θ′kl.

It is possible to derive an explicit equation for kM . From (31), note that x − xt =
λx−x

σ
[1− δ (1− x)], so (31) can be written as:

[1− δ (1− x)] (d− kt) + δ (d− k) (1− x) = σ̃ (1− xt)⇔

[1− δ (1− x)] (d− k − λ) + δ (d− k) (1− x) = σ̃

(
1− x+ λ

x− x
σ

[1− δ (1− x)]

)
= σ̃ (1− x) + λ [1− δ (1− x)]⇔

(2λ+ k − d) [1− δ (1− x)] = [δ (d− k)− σ̃] (1− x)⇔

2λ+ k − d = [δ (d− k)− σ̃]

(
1− x

1− δ (1− x)

)
= [δ (d− k)− σ̃]

(
σ̃ (1− x)− δp∆ + k − l − (1− δ) b+ ĉ

σ̃ [1− δ (1− x)] + δ
[
(1− δ) b− ĉ

]
− δp∆ (1− δ) + δpf

)
⇔

2λ = (d− k)

[
1 + δ

σ̃ (1− x)− δp∆ + k − l − (1− δ) b+ ĉ

σ̃ [1− δ (1− x)] + δ
[
(1− δ) b− ĉ

]
− δp∆ (1− δ) + δpf

]

− σ̃ σ̃ (1− x)− δp∆ + k − l − (1− δ) b+ ĉ

σ̃ [1− δ (1− x)] + δ
[
(1− δ) b− ĉ

]
− δp∆ (1− δ) + δpf

,

which gives

2λ
[
σ̃ [1− δ (1− x)] + δ

[
(1− δ) b− ĉ

]
− δ (1− δ) p∆ + δpf

]
/δ

= (d− k) (k − l − p∆ + pf + σ̃/δ) (33)

− σ̃

δ

[
σ̃ (1− x)− δp∆ + k − l − (1− δ) b+ ĉ

]
,

where the right-hand side is hump-shaped and concave (and quadratic) in k. For kt = k
(implying λ = 0) to constitute a stable stationary equilibrium, k must equal the largest
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k satisfying the above (and the following, rewritten) quadratic equation:

k2 + k (2σ̃/δ − p∆ + pf − l − d)− d (σ̃/δ − p∆ + pf − l) +

σ̃

δ

[
σ̃ (1− x)− δp∆− l − (1− δ) b+ ĉ

]
= 0.

The stable k is the largest k satisfying this equation, i.e.:

kM = −2σ̃/δ − p∆ + pf − l − d
2

+

1

2

√
(2σ̃/δ − p∆ + pf − l − d)2 + 4d (σ̃/δ − p∆ + pf − l)− 4

σ̃

δ

[
σ̃ (1− x)− δp∆− l − (1− δ) b+ ĉ

]
Since the r.h.s. of (33) is hump-shaped in k, there can be multiple stable equilibria:

k = 0 is an equilibrium if the r.h.s. of (33) is negative at k = 0, i.e., if:

d (pf + σ̃/δ − l − p∆)− σ̃

δ

[
σ̃ (1− x)− δp∆− l − (1− δ) b+ ĉ

]
< 0.

QED

Proof of Proposition 5:
First, notice that the following expression is linear in l:

x

1− δ (1− x)
=

σ̃x+ (1− δ) b− ĉ+ δpf + (1− δ) (l − k)

(1− δ) [σ̃ − δp (∆− f) + δm] + δ
[
σ̃x+ (1− δ) b− ĉ+ δpf − (1− δ)m

]
=

σ̃x+ (1− δ) b− ĉ+ δpf + (1− δ) (l − k)

σ̃ [1− δ (1− x)] + δ
[
(1− δ) b− ĉ

]
− δ (1− δ) p∆ + δpf

.

Since this expression is linear in l, it is straightforward to maximize (13) and derive the
optimal l. The first-order condition w.r.t. l ≥ 0 is (the second-order condition holds
trivially):

(a− l) ∂
∂l

x

1− δ (1− x)
− x

1− δ (1− x)
≤ 0.

Observation 4: If x ↓ 0, this first-order condition requires l ↑ a.
Otherwise, the f.o.c. can be written as:

(1− δ) (a− l)−
[
σ̃x+ (1− δ) b− ĉ+ δpf + (1− δ) (l − k)

]
≤ 0, (34)

with equality if l > 0 and if the corresponding x < x. With ĉ = c and k = f = 0, we
arrive at (14).
However, note that we obtain a corner solution with x = x if (34) is positive at such

a large l. From (24), we see that the required l is determined by:

θk (x) = (1− δ) b− ĉ+ δp∆x+ δp (1− x) f + (l − k) [1− δ (1− x)] = σ ⇔
(l − k) [1− δ (1− x)] = σ − (1− δ) b+ ĉ− δp∆x− δp (1− x) f.
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At this l, (34) is indeed positive if

(1− δ) a− 2 (1− δ) σ − (1− δ) b+ ĉ− δp∆x− δp (1− x) f

1− δ (1− x)

> σ̃x+ (1− δ) b− ĉ+ δpf + (1− δ) k.

So, for such a large a, (A1) fails and A pays so much that x = x. QED

Proof of Proposition 6:
The proof is analogous to the proof of Proposition 3. Note that we can write:

V A
t = xt (a− lt) + (1− xt) δV A, where

V A =
(a− l)x

1− δ + δx
and

∂xt
∂lt

=
x− x
σ

[1− δ (1− x)] .

Thus, the derivative of V A
t w.r.t. lt gives:

∂V A
t

∂lt
=
x− x
σ

[1− δ (1− x)]
(
a− lt − δV A

)
− xt,

which decreases in lt, implying that the s.o.c. holds. When this derivative equals zero,
the f.o.c. holds and it can be written as:

x− x
σ

[1− δ (1− x)]
(
a− lt − δV A

)
= xt ⇔

[1− δ (1− x)] (a− lt)− δ (a− l)x = σ̃xt (35)

= σ̃x+ (1− δ) b− ĉ+ δp∆x+ δp (1− x) f + (lt − kt) [1− δ (1− x)] . (36)

Define η ≡ l− lt. Then, when A anticipates that kt = k, and with (34) describing the
equilibrium under commitment, l∗, (36) can be written as:

η [1− δ (1− x)] + (1− δ) (a− l)
= (1− δ) (a− l∗)− (1− δ) (l∗ − k∗) + δp (∆− f)x+ (lt − kt) [1− δ (1− x)]⇔

2η [1− δ (1− x)]

= (1− δ) (l+ − l∗)− (1− δ) (l∗ − k∗) + δp (∆− f)x+ (l+ − kt) [1− δ (1− x)]⇔
2η [1− δ (1− x)] (37)

= 2 (1− δ) (l+ − l∗)− (1− δ) (kt − k∗) + δp (∆− f)x+ (l+ − kt) δx
= 2 (1− δ) (l+ − l∗)− (1− δ) (kt − k∗) + xθ′kl.

First, note that if l+ − l∗ = kt − k∗ = 0, the r.h.s. is positive iff θ′kl > 0 so, then,
lt < l∗. In other words, if the contributions k∗ and l∗ are expected, A is tempted to lobby
less than l∗ iff θ′kl > 0.
Second, in a stationary equilibrium, η = 0, so l can be written as:

lM = l∗ − k∗ − k
2
− xθ′kl

2 (1− δ) .
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QED

Proof of Proposition 7:
The above best-response functions (28) and (34) already permit the other payer’s decision.
If we combine the two to solve for k∗ − l∗, and combine that, in turn, with (26), then we
obtain (18), given that we assume interior solutions for k∗ and l∗. QED

Proof of Proposition 8:
In a stationary equilibrium, (31) and (35) give:

d− kM = σ̃ (1− x) and a− lM = σ̃x/ (1− δ) , so:

kM − lM = d− a− σ̃
(
1− xM

)
+ σ̃xM/ (1− δ) = d− a+

(
2− δ
1− δx

M − 1

)
σ̃. (38)

When the parties can commit, as in Propositions 3 and 5, we get the same ex-
pressions for d − k, a − l, and k − l, as in (38), except that σ̃ is replaced by σ̃ −
(δp∆− δpf + δ (l∗ − k∗)) = σ̃ − θ∗′ (x). This follows from Lemma 1, below. Thus:

k∗ − l∗ = d− a+

(
2− δ
1− δx

∗ − 1

)
[σ̃ − θ∗′ (x)]

= d− a+

(
2− δ
1− δx− 1

)
[σ̃ − θ∗′ (x)] +

2− δ
1− δ (x∗ − x) [σ̃ − θ∗′ (x)] .

So, in both cases, k− l increases in x, and since x increases in k− l, the two curves cross
exactly once. (I.e., we do not have multiple equilibria.)
By combining the expression for kM − lM and the expression for k∗ − l∗, we get:

(
kM − lM

)
− (k∗ − l∗) =

(
2− δ
1− δx

M − 1

)
σ̃ −

(
2− δ
1− δx

∗ − 1

)
[σ̃ − θ∗′ (x)]⇔

(
kM − lM

)
− (k∗ − l∗) +

2− δ
1− δ σ̃

(
x∗ − xM

)
=

(
2− δ
1− δx

∗ − 1

)
θ∗′ (x) . (39)

Note that the two brackets on the l.h.s. have the same sign:
(
kM − lM

)
> (k∗ − l∗)⇔

x∗ > x. Hence, both these equalities hold if the r.h.s. of (39) is positive, and both fails
if the r.h.s. is negative. QED

Lemma 1: Under commitments, we have

d− k∗ = (1− x∗) [σ̃ − (δp∆− δpf + δ (l∗ − k∗))] and

a− l∗ =
x∗

1− δ [σ̃ − (δp∆− δpf + δ (l∗ − k∗))] .

Proof: As an alternative to the proof of Proposition 3, we can derive k∗ from the following
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f.o.c.:

(d− k)
∂

∂k

(
1− x

1− δ (1− x)

)
− 1− x

1− δ (1− x)
= 0⇔

(d− k)
−1 + δ (1− x)− δ (1− x)

[1− δ (1− x)]2
∂x

∂k
− 1− x

1− δ (1− x)
= 0⇔

(d− k)
−1

1− δ (1− x)

∂x

∂k
= 1− x⇔

V D

1− x
∂ (1− x)

∂k
= 1− x⇔

d− k
1− δ + δx

[1− δ (1− x)]

σ̃ − (δp∆− δpf + δ (l − k))
= 1− x⇔

d− k
σ̃ − (δp∆− δpf + δ (l − k))

= 1− x. (40)

And, as an alternative to the proof of Proposition 5, l∗ can be derived as follows:

(a− l) ∂
∂l

(
x

1− δ (1− x)

)
− x

1− δ (1− x)
= 0⇔

(a− l) 1− δ (1− x)− δx
[1− δ (1− x)]2

∂x

∂l
− x

1− δ (1− x)
= 0⇔

(a− l) 1− δ
[1− δ (1− x)]

∂x

∂l
= x⇔

(a− l) 1− δ
[1− δ (1− x)]

[1− δ (1− x)]

σ̃ − (δp∆− δpf + δ (l − k))
= x⇔

(a− l) 1− δ
σ̃ − (δp∆− δpf + δ (l − k))

= x. (41)

QED

Proof of Proposition 9:
First, notice that f has the same role as αkR. If we set f , which is defined as ĉ− c, equal
to αkR in (24), we obtain the expression for θR (x). With this, the proposition follows
straightforwardly from the first-order conditions of the Lagrange problem (20). QED

Proof of Proposition 10:
The proof follows from the reasoning in the text. QED

Proof of Proposition 11:
With the budget K, D’s objective is

(d−K)
1− x

1− δ (1− x)
, where

K = k + kG + kR, and
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1− x
1− δ (1− x)

=
σ̃ (1− x)− δp∆ + k − l − (1− δ) b+ ĉ

σ̃ [1− δ (1− x)] + δ
[
(1− δ) b− ĉ

]
− δ (1− δ) p∆ + δpf

=
σ̃ (1− x)− δp∆ + k − l − (1− δ) b+ c+ f

σ̃ [1− δ (1− x)] + δ
[
(1− δ) b− c− f

]
− δ (1− δ) p∆ + δpf

=
σ̃ (1− x)− δp∆ + [K − kG − kR]− l − (1− δ) b+ c+ γkG + αkR

σ̃ [1− δ (1− x)] + δ
[
(1− δ) b− c− γkG − αkR

]
− δ (1− δ) p∆ + δpαkR

,

when we substitute for the budget, i.e., k = K − kG − kR. The derivative w.r.t. kG is:

− (1− γ)
[
σ̃ [1− δ (1− x)] + δ

[
(1− δ) b− c− γkG − αkR

]
− δ (1− δ) p∆ + δpαkR

]
+ δγ

[
σ̃ (1− x)− δp∆ + [K − kG − kR]− l − (1− δ) b+ c+ γkG + αkR

]
,

which is positive if K is suffi ciently large.
The same qualitative statement can easily be obtained if we instead take the derivative

w.r.t. kR, and also if we set kR = K − k − kG and then take the derivative w.r.t. kG.
QED

Proofs of Propositions 12-14:
The derivation of (8) is analogous to the proof of Proposition 1. When we solve the two
equations we get:

xi = x+
x− x
σ

[
δ∆pixj + (1− δ) bi − ci

]
= x+

x− x
σ

[
(1− δ) bi − ci

]
+
x− x
σ

δ∆pixj

= x+
x− x
σ

[
(1− δ) bi − ci

]
+
x− x
σ

δ∆pi
[
x+

x− x
σ

[
(1− δ) bj − cj

]
+
x− x
σ

δ∆pjxi
]
⇔

xi
(

1−
(
x− x
σ

δ∆pi
)(

x− x
σ

δ∆pj
))

= x+
x− x
σ

[
(1− δ) bi − ci

]
+
x− x
σ

δ∆pi
[
x+

x− x
σ

[
(1− δ) bj − cj

]]
⇔

xi =
x+ x−x

σ

[
(1− δ) bi − ci

]
+ x−x

σ
δ∆pi

[
x+ x−x

σ

[
(1− δ) bj − cj

]]
1−

(
x−x
σ
δ∆
)2
pipj

.

If every b
i

= b and ci = c, we get:

xi =

[
x+ x−x

σ

(
1 + x−x

σ
δ∆pi

)] [
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2
pipj

,

so xi > xj iff pi > pj, assuming (1− δ) b > c.
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Expected exploitation is:(
1− pi

)
xi + pixj

=
(
1− pi

) [x+ x−x
σ

(
1 + x−x

σ
δ∆pi

)] [
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2
pipj

+ pi
[
x+ x−x

σ

(
1 + x−x

σ
δ∆pj

)] [
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2
pipj

=
(
1− pi

) [x+ x−x
σ

(
1 + x−x

σ
δ∆pi

)] [
(1− δ) b− c

]
1−

(
x−
σ
δ∆
)2
pipj

+ pi
[
x+ x−x

σ

(
1 + x−x

σ
δ∆pj

)] [
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2
pipj

=

[
x+ x−x

σ

(
1 + 2x−x

σ
δ∆ (1− pi) pi

)] [
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2

(1− pi) pi
,

which is maximized at pi = 1− pi = 1/2.
Difference in exploitation:

xi−xj =

[
x−x
σ

(
x−x
σ
δ∆ (pi − (1− pi))

)] [
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2
pipj

=
δ∆
(
x−x
σ

)2
(2pi − 1)

[
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2

(1− pi) pi
.

The median voter’s utility is (V m is the expected continuation value if the resource
has not been exploited):

V m
i = bxi +

(
1− xi

)
(c+ δV m)

V m
i − V m

j =
(
xj − xi

)
(c+ δV m − b) .

With probabilistic voting and symmetrically and uniformly distributed relative popularity
shock, i wins with probability:

1− pi =
1

2
+ ς

(
xj − xi

)
,

where ς is equal to the density of the shock multiplied by (c+ δV m − b). When we
substitute in for (xj − xi), we get:

1− pi =
1

2
+ ς

δ∆
(
x−x
σ

)2
(1− 2pi)

[
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2

(1− pi) pi
, or

pj − pi = 2ς
δ∆
(
x−x
σ

)2
(pj − pi)

[
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2

(1− pi) pi
.
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which pins down pi, and thus the x’s. In particular, pi is:

1− 2pi = 2
δ∆
(
x−x
σ

)2
(1− 2pi)

[
(1− δ) b− c

]
1−

(
x−x
σ
δ∆
)2

(1− pi) pi

1−
(
x− x
σ

δ∆

)2 (
1− pi

)
pi = 2δ∆

(
x− x
σ

)2 [
(1− δ) b− c

]
(
1− pi

)
pi =

1− 2δ∆
(
x−x
σ

)2 [
(1− δ) b− c

](
x−x
σ
δ∆
)2 ,

which clearly gives multiple (two) equilibria, and there is more asymmetry (i.e., larger
|pi − pj|) if the r.h.s. is small: I.e., if x−x

σ
δ∆ and (1− δ) b− c are large. QED

Proof of Proposition 15:
Let the offi ce rent be R and suppose pB > pA. If the resource is exploited, however, the
resource is no longer an electoral issue and thus suppose both probabilities are 1/2 and
each continuation value is V P

0 = R/2 (1− δ).
Pt receives b if he cuts now. Suppose that if Pt does not cut now, then his party

will cut with probability y any later period it is in power, while the opposition exploits
with probability x any period Pt’s party is not in power. With this, the current Pt’s
continuation value at the beginning of any later period, τ > t, is:

V B =
(
1− pB

)
R +

(
1− pB

)
xB
(
b+ δV P

0

)
+ pBxA

(
b+ δV P

0

)
+
(
1− pB

) (
1− xB

) (
ĉP + δV P

)
+ pB

(
1− xA

) (
cP + δV P

)
=

(
1− pB

)
R +

(
1− pB

)
xB
(
b+ δV P

0

)
+ pBxA

(
b+ δV P

0

)
1− δ (1− pB) (1− xB)− δpB (1− xA)

+

(
1− pB

) (
1− xB

)
ĉP + pB

(
1− xA

)
cP

1− δ (1− pB) (1− xB)− δpB (1− xA)
.

Pt prefers to cut now if:

k + ĉP + δV B < b+ l + δV P
0 ⇔

δ

(
1− pB

)
R +

(
1− pB

)
xB
(
b+ δV P

0

)
+ pBxA

(
b+ δV P

0

)
1− δ (1− pB) (1− xB)− δpB (1− xA)

+ δ

(
1− pB

) (
1− xB

)
ĉP + pB

(
1− xA

)
cP

1− δ (1− pB) (1− xB)− δpB (1− xA)

< b+ δV P
0 + l − k − ĉP .
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With ĉP = cP , and l = k = 0, we get:

δ
[(

1− pB
)
R +

(
1− pB

) (
b+ δV P

0

)
+ pBxA

(
b+ δV P

0

)
+ pB

(
1− xA

)
cP
]

<
(
b+ δV P

0 − ĉP
) [

1− δpB
(
1− xA

)]
⇒

δ
(
1− pB

)
R +

[
δ − δpB

(
1− xA

)
−
[
1− δpB

(
1− xA

)]] (
b+ δV P

0

)
− δpBxA∆

< −ĉP
[
δpB

(
1− xA

)
+ 1− δpB

(
1− xA

)]
⇒

δ
(
1− pB

)
R− [1− δ]

(
b+ δV P

0

)
− δpBxA∆ < −ĉP ⇒

θt < δpBxA∆ + [1− δ]
(
b+ δV P

0

)
− δ

(
1− pB

)
R− c⇒

θt < δpBxA∆ + [1− δ]
(
b+ δ

R

2 (1− δ)

)
− δ

(
1− pB

)
R− c⇒

θt < δpBxA∆ + [1− δ] b+ δ

(
1

2
−
(
1− pB

))
R− c⇒

θt < δpBxA∆ + δ

(
pB − 1

2

)
R + [1− δ] b− c.

So, the minor (major) party becomes more (less) likely to exploit (regardless of the
sign of ∆).
The derivation of the equilibrium pi is similar to the previous proof. Thus, the larger

polarization increases the difference in pi, strengthening the polarization in xi, etc. QED

Proofs of Propositions 16-18:
These proofs are in the text. QED
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