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Abstract 
In this paper, the authors comment on the Monte Carlo results of the paper by Lucchetti and 
Veneti (A replication of “A quasi-maximum likelihood approach for large, approximate 
dynamic factor models” (Review of Economics and Statistics), 2020)) that studies and 
compares the performance of the Kalman Filter and Smoothing (KFS) and Principal 
Components (PC) factor extraction procedures in the context of Dynamic Factor Models 
(DFMs). The new Monte Carlo results of Lucchetti and Veneti (2020) refer to a DFM in 
which the relation between the factors and the variables in the system is not only 
contemporaneous but also lagged. The authors´ main point is that, in this context, the model 
specification, which is assumed to be known in Lucchetti and Veneti (2020), is important 
for the properties of the estimated factors. Furthermore, estimation of the parameters is also 
problematic in some cases. 
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1 Introduction

Dynamic Factor Models (DFMs) are a very powerful and popular tool to reduce the dimension

of large systems of economic and �nancial variables by assuming that their dynamic dependence

relies on a relatively small number of underlying unobserved common factors. New results push-

ing forward the frontiers of knowledge about the properties of DFMs, as those in the Discussion

Paper by Lucchetti and Venetis (2020) (LV20), published in Economics, are always welcome. In

particular, LV20 investigate the properties of factors extracted using Kalman Filter and Smooth-

ing (KFS) algorithms. First, they replicate the Monte Carlo experiments carried out by Doz,

Giannone and Reichlin (2012) in which the Data Generating Process (DGP) is a static DFM

(S-DFM) with the variables in the system contemporaneously related with the factors, whose

number is assumed to be known. Second, LV20 extend the simulations to �more realistic DGPs,

more interesting for potential users�. With this purpose, they consider DGPs in which the fac-

tors are related with the variables in the system not only contemporaneously but also with lags.

Many authors refer to this model as the dynamic version of the DFM (D-DFM). In their Monte

Carlo experiments, LV20 compare the performance of the factors extracted using KFS procedures

with that of the factors extracted using procedures based on Principal Components (PC). LV20

conclude that Maximum Likelihood (ML) based on KFS factor extraction is often the dominant

method and that the persistence characteristics of the system under analysis play a crucial role.

Furthermore, they also conclude that a correct speci�cation of the underlying dynamics is of

paramount importance.

In this comment, we put forward some limitations of the analysis carried out by LV20 with

the aim of giving directions for future research that could help moving forward our knowledge

about DFMs.

2 The model

To clarify our discussion, we follow LV20 and de�ne the DFM as follows

xt = Λ0ft + Λ1ft−1 + ...+ Λsft−s + et (1)

ft = A1ft−1 +A2ft−2 + ...+Apft−p + ut (2)

et = Det−1 + vt (3)

where xt is the N×1 vector of observations at time t = 1, ..., T , which is assumed to be stationary,

ft is the q× 1 vector of unobserved factors at time t and et is the corresponding N × 1 vector of

idiosyncratic components, which are assumed to be weakly cross-sectional and serially correlated.
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The factors and idiosyncratic components are mutually uncorrelated for all lags and leads. The

noise vt is assumed to be normal with zero mean and covariance matrix T , de�ned in LV20.

The �rst important issue about the speci�cation of the D-DFM in equations (1)-(3) is related

with the identifying restrictions; see, for example, Trenkler and Weber (2016) and the references

therein for problems related with the identi�cation of unobserved component models and Bai

and Ng (2013) for identi�cation issues related to PC factor extraction. The identi�cation issues

could be very relevant when estimating the model parameters. In the context of the D-DFM

there is an even more important identi�cation issue related with identifying simultaneously the

lag order of the VAR model for the factors, p, and the number of lags, s, in equation (1). De�ning

Λ(L) = Λ0 + Λ1L+ ΛsL
s and A(L) = Iq − A1L− A2L

2 − ApL
p, the D-DFM can be written as

follows

xt = Π(L)ut + et (4)

where Π(L) = Λ(L)A(L)−1. The model in equation (4) is known as Generalized DFM and the

parameters of the in�nite lag polynomial Π(L) matrix cannot be estimated by ML or QML.

Several authors propose estimating them using frequency-domain procedures; see Forni, Hallin,

Lippi and Reichlin (2000, 2004, 2005). The identi�cation problem appears because from Π(L)

it is not possible to recover the polynomials Λ(L) and A(L) in a unique form without imposing

restrictions; see, for example, the discussion in Lütkepohl (2006).

The second comment about the DFM in equations (1)-(3) is that it should be made crystal clear

that its speci�cation is known, in the sense that q, s and p are assumed to be known. Knowledge

of these quantities is related with the last identi�cation issue mentioned above. However a

�potential user � should start from scratch by determining these quantities before she can use

KFS to extract the factors. A correct determination of these quantities could be crucial for

the good properties of KFS being, at the same time, a very di�cult task (mainly when the

idiosyncratic components are serially and cross-sectionally correlated). Although LV20 conclude

that a correct speci�cation of the underlying dynamics is of paramount importance, they do not

challenge the KFS factor extraction when the relevant quantities, p, q and s, are unknown.

3 Factor extraction (smoothing), parameter estimation and

model speci�cation

There are two main types of procedures for extracting factors in the context of DFMs. First,

one can use procedures based on PC that, although simple computationally, are not e�cient

as they do not take into account the temporal dependence of the factors. However, this is also

the main advantage of PC factor extraction as it is a non-parametric procedure that does not



Poncela and Ruiz 4

require any assumption about this temporal dependence. Alternatively, methods based on the

KFS open the way to ML estimation and, consequently, if the model is correctly speci�ed, they

are e�cient. Furthermore, KFS procedures allow to easily deal with several data irregularities as,

for example, missing observations, mixed frequencies and aggregation constraints. However, the

correct speci�cation of the model, and therefore, the e�ciency of KFS factor extraction, involves

choosing the number of factors and the number of lags in the corresponding VAR model as well

as the temporal relationship between the variables in the system and the factors. In summary,

you need to determine q, p and s. Furthermore, one needs to assume a particular speci�cation

for the temporal and cross-sectional dependences of the idiosyncratic noises (although this seems

to be less important in practice).

If the speci�cation and the model parameters were known, the DFM in equations (1)-(3) can be

written as a state space model and the KFS algorithms can be used to extract the factors and to

construct con�dence intervals. As an illustration, we simulate two systems by the same one-single

factor S-DFM considered by LV20 and Doz, Giannone and Reichlin (2012). The �rst system is

simulated with N = 10 and T = 50 while the second one is simulated with N = T = 100.

The only di�erence between our DGP and that in the above mentioned papers is that, in this

comment, following Breitung and Tenhofen (2011) and Poncela and Ruiz (2015), we randomly

draw the elements of the factor loading matrix, Λ0, from a uniform [0, 1] distribution instead of

from a standard normal variable.1 The top left panel of Figure 1 plots the true simulated factor

together with the estimated factor obtained using KFS and the corresponding 95% con�dence

intervals.2 The top right panel of Figure 1 plots the same quantities when the factor is extracted

by minimizing the same criterium as in the PC estimator but assuming that the loadings are

known, i.e. by Ordinary Least Squares (OLS). The same quantities for N = T = 100 are plotted

in the bottom panels of Figure 1. Looking at the results for N = 10, we can observe that,

not only the KFS point estimates of the factor are closer to the true factor than PC estimates,

but also that their con�dence intervals are thinner (and still contain the true factor with the

desired nominal coverage). Obviously, when N = 100, regardless of whether the factors are

extracted using KFS or PC, the extracted and true factors are much closer to each other and the

con�dence intervals are very tiny. However, we can still observe that the con�dence intervals of

the PC factors are slightly wider than those of the KFS factors. This is an e�ect of the lack of

e�ciency of PC that is not using information about the (very strong) factor dependence. If the

autoregressive parameter of the factor were smaller than 0.9, the di�erences between KFS and

PC are expected to be also smaller.

We also illustrate the results in the context of D-DFMs by simulating a system by the same

1See our comment below about simulating the weights from a standard normal distribution.
2The KFS is run as if the DFM were exact although it is not.
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Figure 1: True factor (thick red line) simulated by a S-DFM with a unique factor. The dimensions

are N = 10 and T = 50 (top panels) and N = T = 100 (bottom panels). The estimated factors

(thin blue lines) together with 95% con�dence bounds (discontinuous green lines) are obtained

assuming known parameters by KFS (left panel) and OLS (right panel).

D-DFM considered by LV20 with p = 1, s = 1 and q = 1. As above, the only di�erence with the

DGP considered by LV20 is that we generate the factor loadings from a uniform [0, 1] instead of

using a standard normal. Figure 2 plots the same quantities described above when the factor is

extracted using KFS. Note that comparing these plots with those in the �rst column of Figure 1,

we cannot observe any appreciable di�erence. If the speci�cation and the parameters are known,

it is not relevant whether the model is static or dynamic when implementing KFS. Note that PC

factor extraction in the D-DFM is not well solved in the literature. Although LV20 try di�erent

alternatives, we do not explore them further in this comment.

The illustration above is not realistic because, in practice, the model parameters are unknown

and should be estimated. If the idiosyncratic components are serial and cross-sectionally uncorre-

lated, the DFM parameters can be estimated by ML regardless of the cross-sectional dimension,

N . However, if the idiosyncratic components are serially and cross-sectionally correlated and N
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Figure 2: True factor (thick red line) simulated by a D-DFM with a unique factor (q = 1) and

one lag (s = 1). The idiosyncratic noises are heteroscedastic and the autoregressive parameter

of the factor is φ = 0.9. The dimensions are N = 10 and T = 50 (top panel) and N = T = 100

(bottom panel). The estimated factors (thin blue lines) together with 95% con�dence bounds

(discontinuous green lines) are extracted, assuming known parameters, by KFS.

is very large, ML is not feasible due to the extremely large number of parameters that need to

be estimated. In a very important contribution, Doz, Giannone and Reichlin (2012) show that

procedures based on KFS in S-DFMs are still e�cient even if they are implemented assuming

that the idiosyncratic components were serially and cross-sectionally uncorrelated when they are

not. Doz, Giannone and Reichlin (2012) propose estimating the parameters of the S-DFM by

the EM algorithm using as starting values the parameters obtained using the PC factors. This

is a QML estimator.

Next, we illustrate the KFS estimation of the factors based on the same S-DFM considered

above when the parameters are estimated by the QML estimator proposed by Doz, Giannone

and Reichlin (2012).3 As before, the left panels of Figure 3 plot the true and smoothed factors

3Note that this is the case considered in the simulations by LV20 with the model assumed to be known and
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together with their corresponding 95% bounds when N = 10 and T = 50 (top panel) and when

N = T = 100 (bottom panel). The corresponding factors extracted using PC have also been

ploted in the right panels of Figure 3. It is important to note that the identifying restrictions

are di�erent when the factors are extracted by KFS or by PC. The factors are estimated up to

a rotation which, in this case, given that q = 1 and s = 0, is a change of scale. Consequently, in

order to check whether the con�dence intervals contain the true factors, we follow Poncela and

Ruiz (2016) and rotate the estimated factors to be in the same scale of the true factors as follows

f̂∗ = f̂

[(
Λ̂′Λ̂

)−1
Λ̂′Λ

]−1
. (5)

The Mean Square Errors (MSEs), needed to construct the intervals, should be accordingly

transformed. Looking at Figure 3, we can observe that, for this particular realization when

N = T = 100, the conclusions are very similar to those obtained from Figure 1 with known

parameters. In this case, the role of parameter uncertainty is very mild. Even when N = 10

and T = 50, the estimated KFS factor is very similar to that extracted with known param-

eters although the con�dence intervals are slighly thiner (they do not incorporate parameter

uncertainty). The e�ect of parameter estimation on PC factors seems to be very mild. The

only apparent e�ect on this particular realization is a slight increase of the length of con�dence

intervals.

However, as mentioned above, in practice, one needs to decide about the speci�cation of

the DFM and this decision is crucial when considering the properties of the factors extracted

using KFS. To illustrate this point, we consider again the same basic systems described above

simulated by the S-DFM with N = 10 and T = 50 and with N = T = 100. The �rst step of

any empirical analysis is to determine the number of common factors, q. Setting the maximum

number of common factors to 5 (50) and applying the test by Onatski (2010), the number of

common factors is q̂ = 3 (q̂ = 5) when N = 10 (N = 100). To shed some light about the number

of common factors, Figure 4, which plots the corresponding scree plots, illustrates that, even if

the true underlying model only has one common factor, the tests to determine q are missleading.

Obviously, this misspeci�cation will have consequences on the estimation of the parameters and

the quality of the factor estimates. Finally, note that, if the model is dynamic instead of static,

the identi�cation is further complicated with serious consequences over the properties of the

extracted factors.

This example just illustrates the di�cuty involved in the identi�cation, even in the context

of this very simple S-DFM, when the idiosyncratic errors are temporal and cross-sectionally

correlated. Identi�cation in the context of the D-DFM is even more challenging. This is an issue

that deserves further research.

the parameters estimated by QML.
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Figure 3: True factor (thick red line) simulated by a static DFM with a unique factor. The

idiosyncratic noises are heteroscedastic and the autoregressive parameter of the factor is φ = 0.9.

The dimensions are N = 10 and T = 50 (top panels) and N = T = 100 (bottom panels). The

estimated factors (thin blue lines) together with 95% con�dence bounds (discontinuous green

lines) are extracted, after estimating the parameters assuming that the model is known, by KFS

(left panel) and PC (right panel).

4 The Monte Carlo design

The �rst comment to make about the design of the Monte Carlo experiments in LV20 is that

there is not any mention to the distribution of the errors ut. We assume that, as often done

in the related literature and, in particular, in the Monte Carlo experiments in Doz, Giannone

and Reichlin (2012), LV20 assume them to be standard normal. Although normality could be

a good approximation to start with, it could also be useful to investigate the performance of

KFS under other distributions of the factors and/or idiosyncratic components; see Barigozzi

and Luciani (2019) who carry out Monte Carlo experiments assuming that the innovations are

Student-t. Our guess is that, while point estimates of the factors may not be severely a�ected

by non-normal errors, interval estimates could be. Therefore, analyzing also the performance of



Poncela and Ruiz 9

Figure 4: Scree plot of a system simulated by a S-DFM with N = 10 and T = 50 (top panel)

and N = T = 100 (bottom panel).

con�dence regions for the underlying factors could be of interest.

Second, with respect to the design of the covariance matrix, the Monte Carlo results reported

by LV20 are obtained for the case in which di = d,∀i = 1, ..., N . What is the point in changing

the dynamics of the idiosyncratic components and, consequently, the de�nition of the matrix T

with respect to that in Doz, Giannone and Reichlin (2012) by allowing each idiosyncratic noise

to have their own autoregressive parameter if then the results are reported only for the case in

which all parameters are the same?.4

Third, another important point about the Monte Carlo design is related with the conclusion

by LV20 about the identi�cation and parameter estimation being related with the persistence of

the factors. Even though LV20 claim in the abstract that �the persistence characteristics of the

observable series play a crucial role�, they only report results for a very persistent factor, with

its autoregressive parameter being 0.9. In order to analyse the role of persistence on the results,

one should at least consider di�erent levels of persistency in the factors. This is indeed a very

crucial question for users of DFMs.

Fourth, although it is a common practice in the related literature, simulating the weights from

4It is also surprising that LV20 report 6 tables considering the same Monte Carlo design as in Doz, Giannone

and Reichlin (2012) and just one table with the �extended� design.
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a N(0, 1) does not seem to be a good idea. For the factors to be pervasive, a large enough number

of weights should be di�erent from zero. Simulating the weights from a N(0, 1), a large number

of simulated weights could be close to zero and, consequently, it could generate weak factors; see

Chudik, Pesaran and Tosetti (2011) and Onatski (2012) for the implications of weak factors.

Fifth, in their Monte Carlo experiments, LV20 drop the replicates for which TR < 0.05.5 The

authors are throwing away replicates for which the method is not working. Obviously, the results

reported are better than they shoud be. It is important to know at least how many replicates

are discarded.

Sixth, in the case of the D-DFM considered as DGP, it is not clear what the authors are esti-

mating when implementing the estimation procedures proposed by Doz, Giannone and Reichlin

(2011, 2012) that are designed for S-DFMs. In their description of these procedures, LV20 say

�estimating f̂t� as if there were no lags. Does it mean that they are extracting the factors as if

s were zero in equation (1)? If this is so, this is not exactly an estimation of the D-DFM. Some

authors propose estimating the D-DFM by looking at its corresponding �static� version with the

vector of factors being Ft = (ft, ft−1, ..., ft−s). For example, Stock and Watson (2005) propose

estimating the q(s+ 1) vector of �static� factors, Ft by PC and then, for a given lag p, estimate

the �restricted� VAR coe�cients by regressing F̂t onto the desired number of lags.6 Barigozzi and

Luciani (2019) also consider a D-DFM writen as a S-DFM with the vector of factors being Ft and

the corresponging factor equation having a singular covariance matrix of the noise. Barigozzi

and Luciani (2019) investigate the implications of estimating this model assuming that it is

exact when the idiosyncratic components are serial and cross-sectionally correlated and report

numerical results from an extensive Monte Carlo study.

Seventh, in any case, our main concern is about the design of the Monte Carlo experiments

being too restrictive as to be of real interest for users in the sense that the number of factors,

q, and the lags, s and p, are assumed to be known. For the Monte Carlo experiments to be of

real interest for users, one should consider uncertainty about the number of factors and their

dependences.

5 Conclusions

The results in the extended Monte Carlo experiments carried out by LV20 are a step further in

the knowledge about the properties of DFMs. However, a more ambitious objective could be

of interest for the results to be truly useful for potential users. In particular, it is interesting

5It is not clear what the authors mean by TR. Is the TR of any method?
6Note also that LV20 mention that they extract qs instead of q(s+ 1) factors when implementing PC.
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to investigate the properties of the KFS factors when there is uncertainty about the correct

speci�cation. This is a question still open to further research.
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