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scenicness ratings of around 200,000 geotagged photographs from Scenic-Or-Not to 

quantify the aesthetic value of the landscapes in which onshore wind energy 

installations could be situated in Great Britain. An analysis of planning applications 

provides quantitative evidence that onshore wind projects are more likely to be rejected 

when proposed in more scenic areas. Exploiting further open data sources including 

OpenStreetMap, we build on these findings to generate new estimates of the feasible 

potential and costs for onshore wind in Great Britain, which we find to be around 

1700 TWh and £280 billion respectively. We also uncover a strong spatial correlation 

between scenicness and the quality of the wind resource, implying inevitable trade-offs 
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Abstract 
A cost-efficient and sustainable energy transition requires reliable information about the 
distribution of renewable energy resources. Here we draw on over 1.5 million scenicness 
ratings of around 200,000 geotagged photographs from Scenic-Or-Not to quantify the 
aesthetic value of the landscapes in which onshore wind energy installations could be 
situated in Great Britain. An analysis of planning applications provides quantitative 
evidence that onshore wind projects are more likely to be rejected when proposed in more 
scenic areas. Exploiting further open data sources including OpenStreetMap, we build on 
these findings to generate new estimates of the feasible potential and costs for onshore 
wind in Great Britain, which we find to be around 1700 TWh and £280 billion respectively. 
We also uncover a strong spatial correlation between scenicness and the quality of the 
wind resource, implying inevitable trade-offs between cost-efficiency and public 
acceptance. 
 
 
 
In the context of many countries’ transitions to sustainable energy systems, detailed 
resource assessments for renewable energy technologies are required. These data are 
often employed by researchers and policymakers as input to large energy system models 
with which to analyze future energy scenarios.1,2 Resource assessment methods have 
recently been improved by developing open source methods3, employing more accurate 
data4,5 and considering non-technical and especially social constraints6,7,8, including the 
visual impact of renewable technologies on the landscape.9,10,11,12 But none of these 
previous studies has explored the implications of public attitudes within a quantitative 
framework at the national scale.  

In the British context adopted for this research, there has been intense discussion 
around the future role of onshore wind energy. From 2015 until very recently, onshore 
wind was no longer eligible for subsidies in the Contracts for Differences1 auctions.13 Yet 
onshore wind has very high approval ratings, as highlighted by some recent surveys. 
Overall support for renewable energy reached its highest ever level, at 85% in 2018, 

                                                 
1 Effectively a market-oriented price-based subsidy. 



increasing from 79% in 2017.14 A YouGov15 survey ranked onshore wind as the cheapest 
perceived technology out of all options, as well as finding general support for onshore 
wind development as a technology, with tend to and strongly support together 
representing around 70% of responses.  

Despite this general approval, onshore wind can encounter local opposition from 
stakeholders, especially if they are not directly engaged in the planning and investment 
processes. 9,10, 16,17 Visual impact is one of the central arguments that local residents make 
against onshore wind installations18,19,20, although concern is reduced when people live 
further away from wind turbines20,21,22,23  and in contexts where the affected people have 
previous experience with wind energy. 21,24,25,26 Detrimental effects on the visual landscape 
are not only a concern for public acceptance; more scenic environments are typically 
associated with greater health and happiness, even when potential confounds such as 
greenspace or income levels are considered27,28, suggesting that such planning decisions 
could have consequences for human wellbeing too. 

A related discussion addresses the whole system costs of renewable energies. A 
common benchmark for power-generating technologies is the Levelized Cost of Electricity 
(LCOE). Contrary to conventional power generators, non-dispatchable renewables 
require additional investments in order to integrate them into the energy system. This has 
led to the concept of system LCOEs, which include the grid costs to connect or extend 
the electricity network, the profiling costs due to the “residual” power system having to 
modulate its output, and balancing costs due to the inaccuracy in forecasts and needs for 
the system to provide short-term flexibility.29,30,31 Accounting for all three of these requires 
power and energy system models at a high enough level of detail1,2,32, whereby 
computational complexity often dictates a focus on one or two of these fractions. 

Against this background, this paper addresses the following research questions: 
1. How can the accuracy of renewable energy potential assessments be increased by 

employing open geospatial data? 
2. What impact do the grid connection costs have on onshore wind generation 

costs? 
3. Beauty of the landscape, i.e. scenicness: 

o Is scenicness already implicitly considered in planning practice for onshore wind?  
o How, if at all, is scenicness related to the resource potential for onshore wind?  
o What is the impact of scenincess on the costs and potentials of onshore wind?  

Advantages of combining geospatial data sources  
Here we explore the impact of employing OpenStreetMap33 data alongside CORINE Land 
Cover34 (CLC) data to identify suitable areas for onshore wind. Whilst the former has a 
higher spatial resolution it suffers from incomplete coverage, especially in rural areas (19 
land use categories plus roads, railways, water/water bodies). In contrast, CLC has 
complete coverage for the whole of Europe, but at a resolution of only 100 m2 (44 
categories). For example, OSM has more details in urban areas, such as forest, park, 
residential, industrial, farm, cemeteries, allotments, meadows, commercial. On the other 
hand, the corresponding CLC dataset only differentiates continuous and discontinuous 
urban fabric, industrial or commercial units, road and rail networks and associated land, 
green urban areas, sport and leisure facilities.  



Both datasets are employed here alongside the assumed suitable areas and offset 
distances shown in McKenna et al. 35 To assess their combined efficacy we first compute 
the positive (suitable for onshore wind) and negative (unsuitable for onshore wind) areas, 
which we refer to as OSMpos, OSMneg, CLCpos and CLCneg respectively. Given that the 
higher resolution of OSM can offer two types of enhancements, by both including and 
removing additional areas respectively, we then perform two steps to exploit the 
advantages of using two datasets. Firstly we calculate a new area A=OSMpos-CLCpos, to 
account for the incorrectly excluded areas according to CLC. Secondly, we calculate a 
new area B=CLCpos-OSMneg, in order to account for (small) negative areas within the 
positive CLC areas. Finally we take the union of A and B to arrive at a revised total 
geographical potential.   
 
Table 1 | Suitable areas from OSM and CLC for onshore wind in Scotland 

Area 
name 

CLC CLCpos CLCneg OSM OSMpos OSMneg A B A + B 

Area 
(km2) 

78856 71175 7681 20400 10356 10044 366 49048 49542 

 
In Table 1 and Figure 1, we illustrate this process using the example of Scotland, due to 
the large available area, high wind speeds and scenicness values in that location. In this 
case, the coverage of OSM is around 25% or 17794 km2 of the total area of 78964 km2. 
The figure shows that the OSM data implies a reduction in the total available area for 
onshore wind from CLCpos by about 21633 km2, based on summing (CLCpos – (A+B)) 
(Table 1 and Figure 1). Of this, about 54% is in coniferous forest, 14% is in transitional 
woodland shrub, 12% in moors and heathland, 6% peat bogs and 5% natural grasslands, 
as well as other small contributions. For the whole of Scotland, the use of OSM reduces 
the positive area from 71000 to 49000 km2, i.e. reduces the potential area by about 31%. 

 
Figure 1 | Reduction in potential areas for Scotland based on CLC and OSM, with areas < 1 km2 not shown. The 
area CLCpos is reduced to A and increased by B to yield the net available area for onshore wind. 



Impacts of grid connection costs on onshore wind  
In order to explore the implications of scenicness and wind turbine clustering on the costs 
and potentials of onshore wind in Great Britain, the following four scenarios are defined 
(for details see methods section): 

 Individual wind polygons2 without network connections, Turbine_no_conn 

 Individual wind polygons with individual network connections to the nearest transformer, 

Turbine_conn  

 Wind polygons clustered into wind parks with network connections to nearest transformer, 

based on the maximisation of the energy yield, Wind_parks_Eyield – employed here as 

the “reference” scenario as considered most realistic 

 Wind polygons clustered into wind parks with network connections to nearest transformer, 

based on the minimisation of the LCOEs, Wind_parks_LCOE  

 
Figure 2 | Cumulative costs and potentials of onshore wind in Great Britain, with and without network 

connections costs in four analysed scenarios. We also depict Great Britain’s national electricity demand36 and 

electricity generation from onshore wind in 201837. The extreme value for Turbine_conn is about 1610 TWh 
and £ 1470 Billion. 

To analyse the impact of grid connection costs, we first determine and economically 
assess potential locations and capacities for onshore wind, and then compute the 
additional costs to connect these to the nearest transformer. Figure 2 shows the 
cumulative generation potential and cumulative costs associated with realizing this 
potential in the four analysed scenarios, for locations with LCOEs < 1 £/kWh. The gradient 
of the curve can be interpreted as the marginal cost in £/kWh to realise one additional 
unit of potential. The maximum potential shown for each scenario is what would be 

                                                 
2 A wind polygon is a suitable area for onshore wind, with space for one or more turbines, derived as 

outlined in the methods section. 



achieved if all suitable land were used for wind farms. The flattest curve is the one relating 
to Turbine_no_conn, with total potentials and costs of 1350 TWh and £ 90 billion 
respectively. At the other extreme is the Turbine_conn case, resulting in over £ 1470 
billion costs and around 1610 TWh generation potential. Roughly half-way between these 
two extreme scenarios are the arguably much more realistic scenarios, in which the wind 
polygons are clustered into wind farms and these are connected to the nearest 
transformer. Both of these scenarios exhibit similar gradients and overall costs and 
potentials, around 1400 TWh and £ 210 billion in the case of Wind_parks_LCOE, and 
1718 TWh and £ 277 billion in the case of Wind_parks_Eyield. Comparing the latter two 
scenarios with the scenario without connections (Turbine_no_conn) reveals an 
approximate difference in total costs of £ 187 billion to realize the full potential. Expressed 
as a marginal cost, this equates to a difference between £ 0.16 billion/TWh and £ 0.06 
billion/TWh. In other words, the marginal costs per TWh more than double if network 
connection costs are considered. 

Impacts of scenicness on wind planning applications  
To study the association between the scenicness and the planning outcome of energy 
projects, we use two main data sources. First, we measure scenicness using 
crowdsourced scenic ratings from Scenic-Or-Not 
(http://scenicornot.datasciencelab.co.uk/). Scenic-Or-Not presents users with random 
geotagged photographs, most of which have been taken at eye level, each representing 
one square kilometre of Great Britain. Users are asked to rate the photographs on an 
integer scale of 1–10, where 10 indicates “very scenic” and 1 indicates “not scenic”. The 
photographs are sourced from Geograph (http://www.geograph.org.uk), a web-based 
project that aims to collect and reference geographically representative images of every 
square kilometre of the British Isles. The final Scenic-Or-Not database has 217,000 
images covering nearly 95% of the 1 km squares of land mass in Great Britain. The 
resulting Scenic-Or-Not dataset contains 1,536,054 ratings for 212,212 images. Here, we 
analyse the mean scenicness values for all photos rated 3 times or more.  

The second primary data source is the Renewable Energy Planning Database, 
which contains detailed data about renewable energy applications in Great Britain.38 
Using detailed GIS information, five different variables are computed: distance to the 
closest Special Areas of Conservation (SAC), distance to the closest Special Protection 
Areas (SPA), distance to the closest Ramsar areas (wetlands), distance to the closest 
National Park, and distance to the closest airport.  

Table 2 shows the results of the logit regression. Model 1 includes only the 
scenicness value, whereby the associated estimated odds ratio is below one (estimated 
coefficient is negative) and significant. In the following models 2-4 we sequentially 
introduce the year fixed effects, the project technical attributes, and the environmental 
variables respectively, and in model 5 we exclude the scientific value. The estimated odds 
ratio associated with the scenicness value remains below one and significant in all 
specifications. Due to the AIC values and the Akaike weights, model 4 is our preferable 
specification, whereby the odd ratio associated with the scenicness value is estimated at 
-0.781 (std.err. is 0.037). For every one unit increase in the scenicness value, we expect 
a 0.22 decrease in the log-odds of a positive application decision, all else being equal. 

http://scenicornot.datasciencelab.co.uk/
http://www.geograph.org.uk/


The marginal effect is -0.06, i.e. an application with 1% higher scenicness value has 6% 
lower probability to be evaluated positively.  

 
Table 2 | Logit regression results (odds-ratio) for wind project planning outcomes 

 Model 1 Model 2 Model 3 Model 4 Model 5 
      

Scenicness value 0.850*** 0.793*** 0.769*** 0.781***  
 (0.033) (0.034) (0.036) (0.037)  
Number of turbines   1.231*** 1.228*** 1.221*** 
   (0.031) (0.031) (0.030) 
Capacity (MW)   0.934*** 0.935*** 0.935*** 
   (0.008) (0.008) (0.008) 
log distance to the closest     1.173*** 1.215*** 
     National Park      (0.068) (0.069) 
log distance to the closest airport    0.988 0.943 
    (0.112) (0.105) 
log distance to the closest Special     0.965 0.919** 
     Protection Areas (SPA)    (0.042) (0.039) 
log distance to the closest Special     0.889* 0.906 
     Areas of Conservation (SAC)    (0.054) (0.054) 
log distance to the closest Ramsar 
areas     1.028 1.039 
    (0.061) (0.061) 
Year fixed effect no yes yes yes yes 
Constant 2.626*** 1.296 1.668 1.634 0.822 
 (0.449) (1.610) (2.122) (2.249) (1.137) 

Number of observations 1,324 1,324 1,324 1,324 1324 

AIC 1,794.50 1,536.51 1,426.08 1,425.27 1,450.73 
Akaike weights 3.99E-81 4.19E-25 4.00E-01 6.00E-01 1.78E-06 
Log likelihood -895.25 -751.26 -694.04 -688.63 -702.36 

Note: discrete dichotomous variable taking a value of 1 if the application decision is positive, otherwise 0; 
***, **, * indicate that estimates are significantly different from zero at the 0.01, 0.05 and 0.10 levels, 
respectively; standard errors are in parentheses. AIC is Akaike’s39 information criterion. Akaike weights 
represent the minimized Kullback–Leibler discrepancy, given the data and the set of candidate models. 

 
Turning to the results, several general observations can be made. First, a larger number 
of wind turbines is associated with an increase in the probability that a planning 
application would be accepted, whereas larger project capacity is associated with a  small 
decrease in the probability of acceptance. Harper et al.40 also find a positive correlation 
between the number of turbines and the positive application outcome, and Roddis et al.41 
find the negative associations between project capacity and the positive outcome of the 
project application. Both variables account for the technical characteristics of the projects 
and are to some degree proxies for the scope of the projects. They are in our case jointly 

significant (𝜒2(1) = 67.64, 𝑝 < 0.001), which implies that projects with more wind turbines 
are more likely to be approved, for given capacity and the other included variables.  

Consequences of scenicness for onshore wind potentials  
The overall results show a potential area of 80,500 km2 (around 38% of Great Britain’s 
land area) and a generation potential of up to 1718 TWh. To facilitate interpretation of the 
results, we firstly focus on one scenario (Wind_parks_Eyield) and present the cost-
potential curves for tertiles of the scenicness distribution, as well as the maximum value 



(i.e. 10), cf. Figure 3. The distribution of LCOEs is similar in all four shown sets of curves, 
but the cumulative generation potential at LCOEs less than 1 £/kWh ranges from just 363 
TWh with scenicness values of up to 3.67, to 750 TWh up to 4.67 and 1173 TWh up to 
5.8. 

 
Figure 3 | Cost-potential curves for four scenicness thresholds 3.67, 4.67, 5.8 and 10, showing minimum, mean 
and maximum ranges for the wind years of 2001-2006 in Great Britain.  

Figure 4 illustrates the relationship between the average (mean) normalized LCOEs 
within discrete (integer) values of scenicness. For the scenario Turbine_no_conn there is 
a clear inverse relationship between the average LCOEs and the scenicness values, 
approximated with a linear function (R2 = 0.92). This suggests a strong correlation 
between the “best” wind resource (in terms of wind speeds and hence LCOEs) and high 
scenicness values. In both scenarios with connections to transformers, the average 
LCOEs exhibit a peak at scenicness values of 9. This is thought to be due to the 
aforementioned colocation: the most scenic sites tend to be more “rural and wild” 28, which 
therefore results in larger distances from and higher connection costs to the nearest 
transformer stations. The inverse also applies: sites with lower scenicness values are 
neither associated with a particularly good wind resource nor are located far from the 
nearest transformer, as they tend to more urban and/or industrial areas.  

Also shown in the figure is the cumulative generation potential across the full range 
of scenicness values (Wind_parks_Eyield scenario). It is clear from this curve that 
scenicness values above 7 hardly contribute to the total potential and above this value 
the network connection costs increase. Partly this is due to only 7% of the values having 
such high votes (i.e. greater than or equal to 7), partly it is due to some of the sites with 
very good wind resources being excluded anyway, e.g. due to being in national parks, 
conservation areas etc.  

 



 
Figure 4 | Normalized mean LCOEs and cumulative generation potential across all scenicness values (linear 
regression: LCOE = -0.04 scenicness + 1.12, r2 = 0.92). 

Discussion 
The results of this study are in broad agreement with the literature. In terms of total 
suitable area, we identified 38% of Great Britain’s land area, somewhat higher than 
Ryberg et al.3 who found 24% of UK (28% of GB) and McKenna et al.35 with 18% (21% of 
GB). McKenna et al.35 found total costs of about € 70 billion (about £ 50 billion at then-
current rates) for around 1274 TWh (or 466 GW), which corresponds well with the 
Turbine_no_conn scenario here. In our base case (EYield), we determined 1717 TWh 
and 763 GW as the generation potential and installed capacity respectively. This is 
relatively high compared to McKenna et al.35, but much closer to the more recent study of 
Ryberg et al.42, who found 2262 TWh and 690 GW potential. The only other recent study 
to analyze Great Britain1 concluded a very modest 220 GW potential in its reference 
scenario, up to 421 GW in the high case. These deviations between studies are mainly 
due to different technical and geographical assumptions.43  

The first novelty in this paper is using OSM and CORINE data to improve the 
accuracy, as demonstrated above. Validation of OSM data shows that the completeness 
of street data is high (>95%) for most Western European countries.44 But in comparison, 
the completeness of building information in OSM is typically much lower; example 
estimates include 23% for Saxony, Germany in 201345 and 57% for Lombardy, Italy.46 This 
may have resulted in overestimates of the area suitable for wind farms in our calculations. 

The second novelty is the consideration of the network connection costs. The 2752 
transformer locations were extracted from OSM but could not be validated, meaning a 
high level of uncertainty associated with their number and location. The consideration of 
these connection costs is intended to go some way towards employing “system costs” of 
onshore wind as a metric to assess suitable and economic locations. But the connection 
costs form only one part of the system LCOEs.29,30,31 In order to assess the full system 
level integration costs, the balancing and profiling costs should also be considered in the 



context of reduced future costs for wind energy.47 Here, we show the cost implications of 
excluding scenic locations from onshore wind developments, whereas Price et al.32 for 
example demonstrate that excluding scenic locations has a significant impact on the 
system costs. 

The introduction of a quantitative measure of environmental aesthetics using data 
from Scenic-Or-Not is the third and central innovation in this study. Visual impact has long 
been recognised as a concern when considering the installation of new onshore wind 
facilities.12 However, a lack of data has previously made large-scale, quantitative analysis 
of this location characteristic challenging. Future studies could look to improve on this 
quantitative measure further. For example, Scenic-Or-Not continues to collect ratings of 
these photos, such that the mean of just over 7 votes per picture in the current dataset 
will grow in the future, thereby further increasing data reliability. The data could be further 
augmented using the deep learning model introduced by Seresinhe, Preis and Moat48, 
trained on Scenic-Or-Not and able to automatically assess the scenic appeal of 
photographs. Further crowdsourced ratings or deep learning estimates would make it 
possible to increase data granularity above one photograph per 1 km2. Ratings for further 
photographs would also help ensure that views in different directions were taken into 
account for each area. 

Even with such potential improvements however, we note that ratings of 
photographs are likely to be influenced by temporary features of a scene, such as the 
weather, as well as the skill of the photographer, as manifested in qualities such as image 
composition. These influences will add noise to the dataset. A further concern relates to 
how users of Scenic-Or-Not may have interpreted the core construct of ‘scenic’, although 
the  sensitivity analyses in the methods section reduce this concern. Earlier analyses of 
the Scenic-Or-Not data do provide some insight into the characteristics of an image that 
influence the ‘scenic’ measure. These results make it clear that measurements of 
scenicness are not simply the same as measurements of greenspace27, and indeed that 
man-made structures can in some circumstances boost the aesthetics of a scene.48 For 
example, while the presence of wind farms in a photograph was found to reduce scenic 
appeal, the presence of other sizeable man-made structures such as viaducts, castles 
and lighthouses was found to increase the scenic rating of a photograph.48  

We explore the relationship between scenicness and onshore wind potentials in a 
Biritsh context within a quantitative spatial framework. To extend this approach to other 
countries, either a set of images of the environment taken at eye-level is needed, or a 
relationship between scenicness and land use categories.49 Scenic ratings of the images 
could then be crowdsourced using a similar approach to Scenic-Or-Not, or estimated 
using computer vision approaches.48 This framework could also be enhanced to consider 
the size and type of turbines installed, introduce a setback distance that can strongly 
increase acceptance20,21,22,23 or account for the experience that local communities already 
have with wind energy. 21,24,25,26 It could also include estimates of the potential impact of 
changes to landscape aesthetics on happiness and health, building on the modelling 
reported by Seresinhe et al.28,29, to help policymakers understand the range of trade-offs 
at play. 

It is also important to stress that wind energy should be considered in the context 
of other alternatives and their like-for-like impacts across all categories.50 The static 
viewpoint adopted here should also be extended to embrace the dynamic processes of 



energy system transition and changing acceptance, but this is partly hindered by a lack 
of longitudinal studies.51,52 Ultimately, research on social acceptance of wind energy is 
highly heterogeneous with some contradictory findings24, which encourages widening the 
scope of this research to consider additional perspectives.53 To relieve the tension 
between ambitious energy system transformations and democratic social process54, 
trade-offs will have to be made at all levels.  

Conclusions 
To conclude, we return to the research questions posed at the outset. Firstly, the accuracy 
of onshore wind potential assessments can be significantly increased by employing OSM 
alongside CORINE data, in this case by about 30%. Secondly, the grid connection costs 
vary strongly depending on location but on average increase the LCOEs of onshore wind 
by 100%. Thirdly, planning applications for onshore wind are less likely to be accepted in 
more scenic locations. We also found that there is a strong correlation between 
scenicness and the ‘quality’ of the wind resource. All of these findings mean that trade-
offs will be inevitable if sustainable energy policies are to reflect public concerns and offer 
the maximum possible economic and social benefits. 
 

Methods 
1. Regression of planning applications’ outcomes and scenicness 
In addition to the scenicness data, we also employ the Renewable Energy Planning 
Database, which includes the date of the application, operator, information on the site 
(name, address and coordinates), technology concerned, project capacity, the number of 
turbines (for the wind energy projects), and the outcome of the application (granted or 
rejected). For onshore wind energy, 568 project applications have been rejected and 756 
have been granted for the time period 2001-2017, so the mean success rate is about 0.6 
(Table 4). 

 
Figure 5 | Frequency distribution of scenicness 
values 

Notes: Number of observations is 1324; kernel = 
epenechnikov, bandwidth = 0.3134. 

 
Figure 6 | Frequency distribution of scenicness, 
number of votes  

Notes: Number of observations is 1324; kernel = 
epenechnikov, bandwidth = 2.6142. 
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In this analysis, we use the mean rating of images that have been rated at least three 
times, a total of 145,965. The scenicness values are in the range from 1 to 8.7 with the 
mean value of about 4. There are only a few high scenicness values (99% percentile is 
7.8), see also Figure 5. It is slightly higher for rejected applications. Each scenicness 
value is associated with number of votes. The mean number of the actual votes per 
picture is about 27 (Figure 6 and Table 3). 
 
Table 3 | Distribution of scenicness votes employed in this study 

Scenicness 1 2 3 4 5 6 7 8 9 10 Total 

Number of 
votes 

11,850 27,233 44,346 51,266 39,517 23,251 10,804 3,455 483 7 145,965 

Fraction of 
votes 

0.06 0.13 0.21 0.24 0.19 0.11 0.05 0.02 0.00 0.00 1.00 

 
The sample also includes other relevant variables that have been selected following 
findings in Roddis et al.41 and Harper et al.40 These variables are computed from protected 
sites data extracted from the Joint Nature Conservation Committee website55 and the 
National Parks data from the Office for National Statistics.56 To account for non-linear 
effects related to distance, all variables describing the geographical distance are 
transformed using a natural logarithm before being included in the statistical models. 
 
Table 4 | Descriptive statistics of Renewable Energy Planning Database 

 Positive application decision 
mean = 0.57, n=756 

Negative application 
decision 

mean = 0.43, n=568 
 Mean Std. dev. Mean Std. 

dev. 

Scenicness value (the average 
rating of photos) 

4.005 1.517 4.351 1.373 

Number of votes  26.147 15.985 28.363 14.202 
Capacity (MW) 19.268 34.041 17.654 33.778 
Number of turbines 9.503 13.643 6.773 10.203 
Dist. to the closest airport (km) 39.890 23.393 41.474 34.230 
Dist. to the closest Special Area 
of Conservation (SAC) (km) 

7.653 6.754 7.878 7.359 

Dist. to the closest Special 
Protection Area (SPA) (km)  

93.134 106.948 76.244 87.688 

Dist. to the closest Ramsar area 
(km) 

19.656 17.516 18.961 16.630 

Dist. to the closest National 
Park (km) 

52.644 47.639 41.474 34.230 

Notes: number of observations is 1324. 

 

Table 4 shows summary statistics for the final sample of planning applications used for 
estimation. The mean number of votes is also somewhat higher for rejected applications3. 
Given the uncertainty surrounding the scenicness values (the average rating of photos) 
when the number of votes is low, in the empirical analysis we estimate models when we 

                                                 
3 The difference between the mean number of votes for applications with a negative and a positive 

outcome is 2.216 (28.363- 26.147). 𝐻0: 𝑑𝑖𝑓𝑓 ≠ 0. 𝑃𝑟(|𝑇|  >  |𝑡|)  =  0.009. 



remove the 10% of photos with the lowest number of votes as a robustness check. This 
does not affect the interpretation of the results, as explained in more detail below. 

In our analysis, we assume a standard specification for the planning outcome for 
a project application 𝑖 at year 𝑡: 
 

Pr(D𝑖,𝑡 = 1 | S, 𝐗;  α, β, 𝛅, 𝛄) = F(𝛼 + 𝛽 𝑆𝑖,𝑡 +  𝜹′𝑿𝒊,𝒕  + 𝜸𝒕) (1) 

 
where 𝐷𝑖,𝑡 denotes the discrete dichotomous variable taking a value of 1 if the application 

decision is positive, otherwise 0; α is a constant term and γ is the year fixed effect; 𝑆𝑖,𝑡 is 

the scenicness value; and 𝑿𝒊,𝒕 denotes controls for project characteristics such as 

technical and geographical attributes. The coefficients are estimated using maximum 
likelihood assuming that the error term is identically and independently Extreme Value 
type I distributed (i.i.d. EV I), so 𝐹(𝑧)  =  𝑒𝑧/(1 + 𝑒𝑧) is the cumulative logistic 

distribution4. We are particularly interested in the value of 𝛽, as if the scenicness is not 
related to the application decision then 𝛽 = 0, whereas 𝛽 < 0 if the scenicness value 
negatively impacts the planning outcome. 

 
Table 5 | Sensitivity analyses: logistic regression results for project planning outcome 

 Model 1 Model 2 Model 3 
 Wind energy Wind energy  Solar energy 
 probit logit$ logit 

Scenicness value -0.148*** -0.220*** -0.030 
 (0.028) (0.056) (0.054) 
Number of turbines 0.121*** 0.229***  
 (0.014) (0.028)  
Capacity -0.040*** -0.073*** -0.013 
 (0.005) (0.009) (0.008) 
log distance to the closest National Park   0.093*** 0.169*** 0.101* 
 (0.033) (0.061) (0.060) 
log distance to the closest airport -0.001 0.001 0.209** 
 (0.068) (0.124) (0.090) 
log distance to the closest Special  -0.022 -0.024 -0.030 
     Protection Area (SPA) (0.026) (0.047) (0.096) 
log distance to the closest Special  -0.072** -0.085 -0.282*** 
     Areas of Conservation (SAC) (0.036) (0.064) (0.081) 
log distance to the closest Ramsar 
areas  0.015 0.033 0.026 
 (0.035) (0.063) (0.082) 
Year fixed effect yes yes yes 
Constant 0.240 0.207 0.612 
 (0.856) (1.411) (0.682) 

Number of observations 1,324 1,169 1,558 
AIC 1425.84 1254.61 1422.88 

Log likelihood -688.92 -604.31 -697.44 

Notes: discrete dichotomous variable taking a value of 1 if the application decision is positive, otherwise 
0; ***, **, * indicate that estimates are significantly different from zero at the 0.01, 0.05 and 0.10 levels, 
respectively; standard errors are in parentheses. AIC is Akaike’s39 information criterion. $# votes>11 (10% 
percentile). 

                                                 
4 A particular advantage of the logit model over the linear probability models is that is has a choice 
theoretic interpretation.57  



A series of logit models are estimated, the first with only the main variable of 
interest (the scenicness value) and the following models including additional variables, 
which have been selected following the relevant literature40,41, see Table 4 in the main 
text. Finally, we also include a year fixed effect to account for possible year-specific 
structural trends such business cycles, inflation and political environment. 

We have performed a number of sensitivity analyses in Table 5. First we assume 
that the error term is i.i.d. normally distributed. In this case the inverse standard normal 
distribution of the probability is modeled as a linear combination of the predictors. The 
estimation results are reported in Table 5 Model 1. The estimated coefficient associated 
with the scenicness value is negative and significant. Model 2 in Table 5 reports the 
results of a logit model (the error term is i.i.d. EV I) estimated on a subsample when the 
number of votes is larger than 11 (10% percentile). The coefficient associated with the 
scenicness value is again negative and significant. We have also estimated models when 
the number of votes is larger than 15 (25% quartile) and 25 (median) and the coefficient 
remains unchanged. Finally, we also conduct an additional sensitivity test, which entails 
replicating our baseline estimate by using ground-mounted solar panel project planning 
outcomes as the dependent variable. We observe 1,558 solar energy project applications, 
where 283 project applications were rejected and 1,275 were granted during the time 
period 2011-2017. We expect this effect to be zero because the impact of ground-
mounted solar panels on landscape aesthetics is less pronounced. The estimated 
coefficient associated with the scenicness value is indeed small and statistically 
insignificant (Table 5 Model 3). 

 

2. Estimating onshore wind potentials and network connection costs 
a. Determination of the feasible area for onshore wind 

The general approach to determining feasible areas and technical generation potentials 
for onshore wind in the UK follows the one in McKenna et al.35, with two main differences: 

1. The suitable areas and offset distances for onshore wind turbines are taken from 
the cited source. In the current paper we employ Open Street Map (OSM) 
alongside Corine Land Cover (CLC), whereby each dataset generates positive 
(suitable for onshore wind) and negative (unsuitable) areas. We then perform two 
steps to exploit the advantages of using two datasets. Firstly we calculate a new 
area A=OSMpos-CLCpos, to account for the incorrectly excluded areas according to 
CLC. Secondly, we calculate a new area B=CLCpos-OSMneg, in order to account 
for (small) negative areas within the positive CLC areas. Finally we take the union 
of A and B to arrive at a total geographical potential. 

2. The wind data employed consists of monthly mean wind speeds for the years 
2001-2006 at 5 km2 spatial resolution.58 In Figure 3, we plot the minimum, mean 
and maximum potential values for the six analysed weather years (2001-2006). 
These years have an average capacity factor for onshore wind of 24%, which 
broadly correspond to the long-term average in the UK.37 

In addition to the feasible areas and mean wind conditions, the determination of the 
technical potential is also based on a turbine database, containing capacities, power 
curves and costs. The most suitable turbine type is selected for each wind polygon based 
on LCOE or energy yield, whereby connection costs to the nearest transformers are also 
considered in three scenarios.  



b. Retrieval of transformer locations 
After the determination of the technical potential, the wind turbines have to be connected 
to the National Grid. Typically, larger wind plants are connected to transformers with a 
voltage level of 132 kV 
(https://wiki.openstreetmap.org/wiki/Power_networks/Great_Britain). The transformers 
are determined with the following query in OSM: 
[timeout:900]; 
area["ISO3166-1"="GB"]->.a; 
( 
  relation["power"="substation"]["voltage"~".*132000.*"](area.a); 
  way["power"="substation"]["voltage"~".*132000.*"](area.a); 
  relation["power"="sub_station"]["voltage"~".*132000.*"](area.a); 
  way["power"="sub_station"]["voltage"~".*132000.*"](area.a); 
  relation["power"="station"]["voltage"~".*132000.*"](area.a); 
  way["power"="station"]["voltage"~".*132000.*"](area.a); 
); 
out qt;>;out qt; 

 
Figure 7 | Transformers, which are tagged in OpenStreetMap, as well as area classification in the UK. The 
comparison of the locations of transformers (left part of figure) and urban areas (brown shapes, right part of 
figure) shows, that those transformers are predominantly located near urban areas. 
 



Smaller wind plants are generally connected to 33 kV or 13 kV. The latter is the final-level 
distribution voltage (https://wiki.openstreetmap.org/wiki/Power_networks/ 
Great_Britain). These transformers can be retrieved by replacing 132000 with 33000 or 
11000 in the query above. The voltage 13 kV is not used as a tag in OSM, therefore, we 
assume that the 11 kV transformers are equivalent to the 13 kV transformers. This 
voltage level is closest to the 13 kV. The next voltage levels in OSM would be 6.6 kV and 
25 kV. Subsequently, the GeoJSON file was imported into QGIS and the coordinates of 
the centroids of the transformer-polygons were determined. 

This procedure resulted in 964 transformers with 132 kV, 1115 with 33 kV and 673 
with 11 kV (cf. left part of Figure 7). For the northern part of UK (e.g. the Shetland Islands), 
only 19 transformers without voltage classification could be retrieved. Therefore, these 
19 transformers are not used in the following analyses. Many transformers include 
connection points for more than one voltage level. In these cases, the transformers are 
plotted on top of each other in Figure 7 and only one transformer is visible for the relevant 
location.  
 

c. Determination of network connection costs 
As a cost estimation for connecting the wind plant with transformers, linearized functions 
were derived from the National Grid’s cost estimator (https://www.nationalgridet.com/get-
connected/cost-estimator). The National Grid is the owner of the electricity transmission 
network in England and Wales. The costs of connection, costs for site-specific 
maintenance as well as transmission running costs depend on the voltage level of the 
transformer, generation capacity of the wind plant and the area classification. The 
classification of areas distinguishes between urban and rural. The costs include fixed 
costs CF and variable costs CV that depend on the length of the connection line. The fixed 
and variable costs for the connection to the different voltage levels are given in Table 6. 
According to the National Grid, for connections up to 50 MW, 13 kV is the most 
appropriate voltage, and the same is true for 135 MW and 33 kV as well as 300 MW and 
132 kV (https://www.nationalgridet.com/get-connected/cost-estimator). In Table 6, 
however, the interval for 132 kV only reaches 240 MW, since the National Grid cost 
estimator only indicates costs up to this value. 
 
Table 6 | Costs for connection of a wind farm to a transformer, depending on voltage level, generation capacity 
and area classification (https://www.nationalgridet.com/get-connected/cost-estimator). 

Voltage 
level 
[kV] 

Generation 
capacity 
interval 
[MW] 

Area 
classi-
fication 

Connection Maintenance Transmission 
running 

CF 
[M£] 

CV 
[M£/km] 

CF 
[k£] 

CV 
[k£/km] 

CF [k£] CV 
[k£/km] 

13 [0; 50] 
rural 2.3 1.1 14.1 6.8 49.9 19.2 

urban 2.9 1.4 17.6 8.4 50.3 24.1 

33 

(50; 90] 
rural 2.0 1.1 12.0 6.8 34.2 19.2 

urban 2.4 1.4 15.0 8.4 42.7 24.1 

(90; 120] 
rural 4.7 1.1 28.8 6.8 82.0 19.2 

urban 5.9 1.4 36.0 8.4 102.5 24.1 

(120; 135] 
rural 5.7 1.1 34.6 6.8 98.8 19.2 

urban 7.1 1.4 43.3 8.4 123.4 24.1 

132 (135; 240] 
rural 5.3 1.9 32.6 11.5 92.9 32.7 

urban 6.7 2.3 40.7 14.3 116.1 40.9 

https://www.nationalgridet.com/get-connected/cost-estimator
https://www.nationalgridet.com/get-connected/cost-estimator


d. Area classification for cost estimation 
The classification of areas into urban or rural is necessary for the cost estimation. The 
official classifications in England and Wales 
(https://geoportal.statistics.gov.uk/datasets/276d973d30134c339eaecfc3c49770b3) as 
well as Scotland (https://www2.gov.scot/Publications/2018/03/6040/downloads) are used 
for this purpose. As can be seen in the right panel of Figure 7, there are significantly more 
urban areas (brown shapes) in England than in Scotland and Wales. The single polygons 
in these area classification shapes were then merged to accelerate the computing 
processes. The distances between the wind farms and the transformers were then 
calculated. We use two different definitions for these wind farms in two cases, which are 
explained in Sections 3.e and 3.f respectively.  
 

e. Separate consideration of wind polygons2 
In the first case, wind farms are represented by the wind polygons (scenario 
Turbine_no_conn). Here, the centroids of the wind polygons are used as an estimate for 
the length of the connection lines (Turbine_conn).   

Figure 8 shows the connections with the nearest three transformers of the different 
voltage levels for an example wind polygon. In the next step, the connections are 
intersected with the urban areas. The red part of the black connection lines in Figure 8 
shows the proportion of connections leading through urban areas. The length of the 
connections through rural and urban areas were calculated for all wind polygons. 

 

 
The generation capacity of the wind plants is derived from the product of the geographical 
potential (available area in km2) with the turbine-specific power density (in MW/km2). 
Since the maximum capacity of a wind farm corresponds to the most economical option 
due to economies of scale, this capacity is assumed for each wind farm when calculating 
the connection costs. The selection of the turbine type is done (according to McKenna et 

 
 

Figure 8 | Possible connection lines of one wind farm 
to the nearest three transformers of each voltage 
level. The red part of the lines leads through urban 
areas. 

Figure 9 | Combination of wind polygons to wind farms for 
a specific area in UK. The colours of the wind polygons 
indicate different wind parks. 

Wind polygon

11 kV substation

33 kV substation

132 kV substation

Urban area

Wind farm centroid

Wind polygon

1 km

https://geoportal.statistics.gov.uk/datasets/276d973d30134c339eaecfc3c49770b3


al.35) simultaneously with the determination of the connections to the transformers. 
Previously, the wind turbines were only selected based on the lowest LCOE (i.e. for 
scenarios Turbine_no_conn and Turbine_conn). Now the calculations could result in a 
wind turbine with a higher LCOE. When considered simultaneously with the connection 
costs, this might lead to lower system LCOEs due to a higher energy yield.  

 

f. Clustering wind polygons into larger wind farms 
If connection costs are included in the costs of small wind farms, this can significantly 
increase the LCOE. Therefore, in a second case, the individual wind polygons are 
combined to form larger wind farms. For this purpose, buffer zones with a radius of 1 km 
are formed around the centroids of the individual wind polygons. The 1 km is chosen to 
represent the minimum distance between turbines (eight times the rotor diameter). The 
wind polygons, where these buffer zones overlap, can be combined in a next step to form 
a contiguous wind park. To ensure that this does not result in a wind farm that is far too 
large, the maximum capacity of the wind farms is limited to 240 MW (cf. maximum 
capacity in Table 6). When combining the wind parks, the maximum possible capacity is 
assigned to each wind polygon, i.e. the turbine with the highest capacity density is 
employed (23.24 MW/km2). This results in 29,060 wind farms with capacities between 1.9 
MW and 240.0 MW (mean value = 231.2 MW). Figure 9 shows resulting wind parks for a 
specific area in UK. However, these capacities only represent upper bounds, since 
turbines with a lower capacity density could also be selected in the algorithm.  

In contrast to the calculation with separate wind polygons in section 3.e, the 
connection costs to the transformers are not simultaneously included with the costs for 
the individual wind turbines. Instead, for each wind polygon in the simulation, the wind 
turbine types are selected first, and then the connection costs are added to determine the 
system LCOE. The distance of the centroid of the wind farm (cf. stars in Figure 9) to the 
transformers is used to estimate the connection costs. Since the connection costs are 
added afterwards, the wind turbines are selected in the first step in two cases with 
different criteria: 1) minimum LCOE (Wind_parks_LCOE), 2) maximum energy yield 
(Wind_parks_Eyield).  
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