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ORIGINAL ARTICLE

Decomposing international gender test 
score differences
Farzana Munir1 and Rudolf Winter‑Ebmer2* 

Abstract 

In this paper, we decompose worldwide PISA mathematics and reading scores. While mathematics scores are still tilted 
towards boys, girls have a larger advantage in reading over boys. Girls’ disadvantage in mathematics is increasing over 
the distribution of talents. Our decomposition shows that part of this increase can be explained by an increasing trend 
in productive endowments and learning productivity, although the largest part remains unexplained. Countries’ gen‑
eral level of gender (in)equality also contributes to girls’ disadvantage. For reading, at the upper end of the talent distri‑
bution, girls’ advantage can be fully explained by differences in learning productivity, but this is not so at lower levels.
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1 Introduction
Consensus exists regarding significant gender test score 
differences in schools. Boys typically excel in mathemat-
ics and science whereas girls score better in reading and 
literacy subjects (e.g., Turner and Bowen 1999; Halpern 
et  al. 2007; Ceci et  al. 2009). Although girls have some-
what caught up in mathematics (Hyde and Mertz 2009), 
differences remain. On the other hand, there is evidence 
of more men or boys at the upper end of the education 
or professional distribution (Machin and Pekkarinen 
2008), which could be attributed to the larger variance of 
test scores for boys. The magnitude, spread and practi-
cal significance of gender differences in educational out-
comes have remained a topic of concern. This concern 
is important, because gender disparities in achievement 
at an earlier stage, particularly at the upper ends of the 
distribution, may impact career selection and educational 
outcomes at a later stage.

The previous literature mostly examined mean differ-
ences (Fryer and Levitt 2010), while quantile regressions 
do exist for some countries (Gevrek and Seiberlich 2014; 
Sohn 2012; Thu Le and Nguyen 2018): providing evidence 
for Turkey, Korea and Australia, respectively. Two possible 

arguments have been suggested for these gender gaps, one 
biological or natural (Benbow and Stanley 1980; Geary 
1998) and the other environmental, including family, 
institutional, social, and cultural influences (e.g., Fennema 
and Sherman 1978; Parsons et al. 1982; Levine and Orn-
stein 1983; Guiso et al. 2008; Pope and Sydnor 2010; Nol-
lenberger et al. 2016). Recent studies looked at the impact 
of culture: Nollenberger et al. (2016) look at immigrants 
in the U.S. to explain whether gender-related culture in 
the home country can explain differences in mathematics 
scores; similarly Guiso et al. (2008) look at gender differ-
ences in 35 countries PISA mathematics scores.

The present study looks at mathematics and reading 
scores for all countries included in the OECD’s PISA 
test and tries to decompose these score differences at 
different percentiles of the distribution through natural 
and environmental factors that influence the students’ 
mathematics and reading test scores. This decomposi-
tion research is guided by the Juhn et al. (1993) decom-
position model, which extends the usual Blinder–Oaxaca 
decomposition by taking into account the residual distri-
bution. Following this method, this study will decompose 
test score gaps between males and females to analyze 
how much of the test score gap can be “predicted” by 
observable differences across students in determining 
the test score production function and inequality within 
these classifications.
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In this study, we employed international PISA data to 
examine test score differences between boys and girls 
worldwide, focusing on the differences at different quan-
tiles of the distribution. PISA has the advantage of cover-
ing various personal, family, school system, and societal 
background characteristics, which enables decomposing 
potential differences into effects due to different endow-
ments, institutional settings, and the productivity of 
learning in different situations. We adopted a decompo-
sition following Juhn et  al. (1993), which enabled us to 
decompose test score differentials into endowment, pro-
ductivity, and unobservable components.

Our decomposition for score differentials in math-
ematics shows that part of the increasing disadvantage 
of girls over the distribution of talent can be explained 
by an increasing trend in productive endowments and 
learning productivity, although the largest part remains 
unexplained. Countries’ general level of gender (in)equal-
ity also contributes to girls’ disadvantage. For reading, at 
the upper end of the talent distribution, girls’ advantage 
can be fully explained by differences in learning produc-
tivity, but this is not so at lower levels. Our contribution 
to the literature lies in an extension of quantile regression 
results to practically all PISA countries, to an inclusion of 
country-specific gender-related variables and to an appli-
cation of the Juhn, Murphy and Pierce analysis, which 
extends a simple decomposition to take the residual dis-
tribution into account.

The remainder of the paper is organized as follows: The 
next section describes the PISA database, its features and 
other data sources used in the study. Section 3 discusses 
the estimation strategy used in this paper and structures 
the econometric model based upon the Juhn, Murphy 
and Pierce decomposition method. Section  4 presents 
results on test score inequality for our dispersion analy-
sis. Section 5 concludes.

2  Data
This paper uses the micro data of the Program of Interna-
tional Student Assessment (PISA) 2012 as well as data on 
per capita GDP (PPP), gender equality, and government 
expenditure on education to analyze the decomposition 
of gender differences in test scores. Combining the avail-
able data, the dataset contains information on 480,174 
students in 65 countries pertaining to mathematics and 
reading literacy.

2.1  PISA data
PISA is a cross-national study created by the Organi-
zation for Economic Co-operation and Development 
(OECD) to assess students’ ability in mathematics, read-
ing, science, and problem solving. Since its launch in 
2000, the assessment is conducted on a triennial basis. 

The main advantage of the program is its international 
comparability, as it assesses students’ ability based on a 
cohort of students of the same age. Moreover, there is a 
large volume of background information of students and 
schools, which may help to put student assessment into 
perspective. The assessment in each wave focuses on one 
particular subject,1 and tests other main areas as well. In 
our analysis, we employed data from the 2012 PISA wave 
that focused on performance in mathematics.

The PISA 2012 dataset covers the test score perfor-
mance of students from 34 OECD and 31 non-OECD 
countries, which includes approximately 510,000 stu-
dents aged 15 or 16 years. The dataset includes a number 
of demographic and socioeconomic variables for these 
students. The instrument was paper-based and com-
prised a mixture of text responses and multiple-choice 
questions. The test is completed in 2 h. The questions are 
organized in groups based on real life situations. A strati-
fied sampling design was used for this complex survey, 
and at least 150 schools were selected2 in each country 
and 35 students randomly selected in each school to form 
clusters. Because of potential sample selection problems, 
weights were assigned to each student and school. The 
PISA test scores are standardized with an average score 
of 500 points and standard deviation of 100 points in 
OECD countries. In the PISA 2012 test, the final profi-
ciency estimates were provided for each student and 
recorded as a set of five plausible values.3 In this study, 
we used the first plausible value as a measure of student 
proficiency.4

In 2012, Shanghai scored best and remained at the 
top with 613 PISA points in mathematics, followed 
by Hong Kong, Japan, Taiwan, and South Korea, all 

1 The first PISA exam in 2000 focused on reading literacy, while the second 
focused on mathematics specialization. PISA 2012 again focused on math-
ematics literacy.
2 The PISA consortium decides which school will participate, and then the 
school provides a list of eligible students. Students are selected by national 
project managers according to standardized procedures (OECD 2012).
3 These plausible values are calculated by the complex item-response the-
ory (IRT) model (see Baker 2001; Von Davier and Sinharay 2013) based on 
the assumption that each student only answers a random subset of ques-
tions and their true ability cannot be directly judged but only estimated 
from their answers to the test. This is a statistical concept, and instead of 
obtaining a point estimate [like a Weighted Likelihood Estimator (WLE)], a 
range of possible values of students’ ability with an associated probability for 
each of these values is estimated (OECD 2009).
4 “Working with one plausible value instead of five provides unbiased esti-
mates of population parameters but will not estimate the imputation error 
that reflects the influence of test unreliability for the parameter estimation” 
(OECD 2009).
As this imputation error decreases with a large sample size, so the use of 
one plausible value with a sample size of 480,174 students will not make any 
substantial difference in the mean estimates and standard errors of the esti-
mates. For details, see p 43: https ://www.oecd-ilibr ary.org/docse rver/97892 
64056 275-en.pdf?expir es=15372 49103 &id=id&accna me=guest &check 
sum=FCF6D 3D8A0 3AB42 A0FEC 82FE7 E2ADF 47.

https://www.oecd-ilibrary.org/docserver/9789264056275-en.pdf%3fexpires%3d1537249103%26id%3did%26accname%3dguest%26checksum%3dFCF6D3D8A03AB42A0FEC82FE7E2ADF47
https://www.oecd-ilibrary.org/docserver/9789264056275-en.pdf%3fexpires%3d1537249103%26id%3did%26accname%3dguest%26checksum%3dFCF6D3D8A03AB42A0FEC82FE7E2ADF47
https://www.oecd-ilibrary.org/docserver/9789264056275-en.pdf%3fexpires%3d1537249103%26id%3did%26accname%3dguest%26checksum%3dFCF6D3D8A03AB42A0FEC82FE7E2ADF47
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high-performing East Asian countries. Among the Euro-
pean countries, Liechtenstein and Switzerland demon-
strated the best performance, followed by the Netherlands, 
Estonia, Finland, Poland, Belgium, Germany, and Austria 
with slightly lower figures. On average, the mean score in 
mathematics was 494 and 496 for reading in OECD coun-
tries. The UK, Ireland, New Zealand, and Australia were 
close to the OECD average, while the USA scored lower 
than the OECD average with 481 PISA points.

Since the primary concern of this study is to explore 
the differences in mathematics and reading test scores 
between male and female students, the dependent vari-
able is the student test score in PISA 2012. The rich set of 
covariates includes five characteristics, namely individual 
characteristics of the students, their family characteris-
tics, school characteristics, student’s beliefs or percep-
tions about learning, and country characteristics. Table 2 
provides a description of all variables from the PISA data 
used in this study.

In the survey data, the probability that individuals will 
be sampled is assumed dependent on the survey design. 
To take into account this feature, students’ educational 
production functions were estimated using survey 
regression methods. This allowed us to include student 
weights and school clusters depending on the sampling 
probabilities and within standard errors respectively in 
our analysis.

Non-parametric kernel density estimates for the dis-
tribution of the entire sample of students’ test score 
achievements by gender are presented in Fig. 1. The left 
and right panels of Fig. 1 display kernel density estimates 
for mathematics and reading test performances respec-
tively. Males’ test scores in mathematics are on average 
higher than those for females, whereas females on aver-
age score better than males for reading. Regarding the 
spread of the curves, it is narrow and highly concentrated 

around the mean for females compared to the relatively 
wider distribution of males both in mathematics and 
reading test scores.

2.2  Level of development, education expenditure, 
and gender equality data

To consider the country’s level of development in this 
analysis, we employed the data on GDP per capita 
(measured in purchasing power parity (PPP)) from the 
World Development Indicators 2012. Data on educa-
tion expenditure was derived from the Human Devel-
opment Report 2013, United Nations Development 
Program, while data for Jordan, Shanghai, and Macao 
were obtained from the World Bank database.

To explore the cultural role related to gender equality, 
following Guiso et  al. (2008), we employed the Gender 
Gap Index (GGI) by the World Economic Forum (Haus-
mann et al. 2013). The Global Gender Gap Index was first 
introduced in 2006, which by that time was published 
annually by the World Economic Forum. GGI shows the 
ranking of countries based on the average of four sub 
indices,5 namely economic, political, health, and edu-
cational opportunities provided to females. A GGI of 1 
reflects full gender equality and 0 total gender inequality. 
The top five countries in the 2012 GGI ranking were Ice-
land (0.86), Finland (0.85), Norway (0.84), Sweden (0.82), 
and Ireland (0.78). It is important to note that GGI data 
is only available for whole countries6 and not for partici-
pating economic regions in the PISA 2012 dataset (e.g., 
Hong Kong, Macao, and Shanghai), Furthermore, it does 
not seem reasonable that data for whole countries can be 

Fig. 1 Kernel density estimation of PISA test score 2012 in mathematics and reading

5 The detailed structure of GGI is provided in Table 2 in Appendix.
6 GGI data for Liechtenstein, Montenegro, and Tunisia is unavailable.
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representative of the relevant economic regions. These 
regions were eliminated from the data set.7

3  Estimation strategy
In general, decomposition approaches follow the stand-
ard partial equilibrium approach in which observed out-
comes of one group (i.e., gender, region, or time period) 
can be used to construct various counterfactual scenarios 
for the other group. Besides this, decompositions also 
provide useful indications of particular hypotheses to be 
explored in more detail (Fortin et al. 2011).

Originally, decomposition methods were proposed by 
Oaxaca (1973) and Blinder (1973) for decomposing dif-
ferences in the means of an outcome variable. The Juhn 
et  al. (JMP) (1993) decomposition method extends the 
Oaxaca/Blinder decomposition by considering the resid-
ual distribution.8 We show this decomposition following 
the description of Sierminska et al. (2010) as follows:

where  Yj are the test scores for j=M, W (men and women 
respectively),  Xj are observables, βj are the vectors of the 
estimated coefficients, and εj are the residuals (unobserv-
ables, i.e., unmeasured prices and quantities).

If  Fj(.) denotes the cumulative distribution function of 
the residuals for group j, then the residual gap consists of 
two components: an individual’s percentile in the residual 
distribution  pi, and the distribution function of the test 
score equation residuals  Fj(.). If  pij = Fj(εij|xij) is the per-
centile of an individual residual in the residual distribu-
tion of model I, by definition we can write the following:

where Fj
−1(.) is the inverse of the cumulative distribution 

(e.g., the average residual distribution over both samples) 
and β an estimate of benchmark coefficients (e.g., the 
coefficients from a pooled model over the whole sample).

Using this framework, we can construct hypothetical 
outcome distributions with any of the components held 
fixed. Thus, we can determine:

1. Hypothetical outcomes with varying quantities 
between the groups and fixed prices (coefficients) 
and a fixed residual distribution as

(1)Yj = Xjβj + εj

(2)εij = F−1
i

(

pij|xij

)

 

2. Hypothetical outcomes with varying quantities and 
varying prices and fixed residual distribution as

 

3. Outcomes with varying quantities, varying prices, 
and a varying residual distribution9 as

 

Let a capital letter stand for a summary statistic of the 
distribution of the variable denoted by the correspond-
ing lower-case letter. For instance, Y may be the mean or 
interquartile range of the distribution of y. The differen-
tial  YM–YW can then be decomposed as follows:

where T is the total difference, Q can be attributed to 
differences in observable endowments, P to differences 
in the productivity of observable contributions to test 
scores, and U to differences in unobservable quantities 
and prices. This last component not only captures the 
effects of unmeasured prices and differences in the dis-
tribution of unmeasured characteristics (e.g., one of the 
unmeasured characteristics is more important for men 
and women for generating test scores), but also measure-
ment error.

The major advantage of the JMP framework is that it 
enables us to examine how differences in the distribution 
affect other inequality measures and how the effects on 
inequality differ below and above the mean.

4  Estimation results
4.1  Descriptive statistics
Table 4 contains the descriptive statistics on all the varia-
bles used in this microanalysis of the PISA, 2012 dataset. 
The descriptive statistics are displayed by gender and by 
OECD and non-OECD countries separately. We imputed 
missing data for the variable ‘age’ and for some other 

(3)y
(1)
ij = xijβ + F−1

i

(

pij| xij

)

(4)y
(2)
ij = xijβj + F−1

i

(

pij|xij

)

(5)y
(2)
ij = xijβj + F−1

i

(

pij| xij

)

(6)

YM − YW =

[

Y
(1)
M − Y

(1)
W

]

+

[(

Y
(2)
M − Y

(2)
W

)

−

(

Y
(1)
M − Y

(1)
W

)]

+

[(

Y
(3)
M − Y

(3)
W

)

−

(

Y
(2)
M − Y

(2)
W

)]

= T = Q+ P+ U

8 Other methods, like Machado and Mata (2005) provide a similar decom-
position, extending the Blinder-Oaxaca framework along quantiles, Juhn 
et al. (1993) have the advantage that they also provide for a distribution of 
residuals.

9 These outcomes are actually equal to the originally observed values, i.e., 
y
(3)
ij = yij = xijβj + εij.

7 See Munir (2017) for details.
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variables10 in the schooling vector by using the mean 
imputation method.

Table  4 shows that in OECD countries, students on 
average, scored 42.12 and 46.1 points more in mathe-
matics and reading, respectively than non-OECD coun-
tries. On average, OECD girls have fallen behind OECD 
boys by 5.4 points in mathematics scores and 9 points in 
reading scores, while, non-OECD girls remain 3.5 PISA 
points behind non-OECD boys in mathematics and 6.5 in 
reading.

In order to examine whether or not a gender differ-
ence within PISA is statistically significant at the 1%, 5% 
and 10% levels, we also calculated the mean difference 
between the girls’ and boys’ scores.11 It shows that signifi-
cant mean differences across gender (based on the OECD 
and non-OECD grouping) exist for almost all variables.

4.2  PISA score in mathematics
Decomposition results for the mathematical test scores 
following JMP are depicted in Fig. 2. Positive results indi-
cate females’ disadvantage. In Fig. 2, we include a varying 
set of control variables: individual’s characteristics, fam-
ily characteristics, school characteristics, characteristics 
of beliefs about the learning process, and country char-
acteristics. Panels A–E provide the decomposition results 
including only one of these lists of covariates. Panel F 
shows a decomposition using all available covariates 
together. Male–female test score differences are shown at 
various percentiles: 5th, 10th, 25th, 50th, 75th, 90th, and 
95th. Table 6 in Appendix provides the numerical results.

In general, a strong upward trend in the total male–
female test score differential (T) is evident. While there 
is (almost) no difference for the lowest percentiles, 
the female disadvantage in mathematical competence 
increases almost linearly to around 20 PISA points at the 
95th percentile. As good mathematical knowledge, par-
ticularly at the upper percentiles, is especially valuable 
for getting a good job (Athey et al. 2007), it is important 
to explore this issue. This total (T) effect will be decom-
posed into an effect due to differences in observables (Q), 
in a productivity-effect (P) on the learning productivity of 
these observables, and finally, an unobservable (U) rest.

Looking first at Panel F—including all characteristics, 
this upward trend in mathematical test score differences 
(T) cannot easily be explained by one factor. Unobserva-
bles demonstrate a clear upward trend, but observables 
and productivity effects do so at a somewhat lower level. 
We now examine individual contributions of individual 
versus school characteristics. Here, decomposing the 

contribution of unobservables (U) in Panels A–E does 
not make sense, because even if the individual contribu-
tions are orthogonal, the unobservable trends measure 
mainly the impact of omitted variables.

Turning to the contribution of observables (Q) towards 
mathematical competence, the endowment effect, Panel 
F indicates a negative endowment effect. In other words, 
females typically enjoy better endowments: around 10 
PISA points at lower percentiles down to 5 PISA points 
at higher levels. These advantages stem from better 
female endowments in terms of schooling characteristics 
and beliefs. The slight upward trend in the contribution 
of observables in Panel F can mainly be attributed to an 
upward trend in observables in belief characteristics.

What is the contribution of learning productiv-
ity (P)? Panel F shows that the learning productivity of 
females increases the male–female test score gap for all 
percentiles, but the effect is slightly higher for higher 
percentiles. Panels A–E indicate similar productivity dis-
advantages for all included lists of characteristics.

To examine the contribution of individual variables 
in more detail, we performed the following quantita-
tive exercise: increase, in turn, one of the variables in the 
model by one standard deviation and calculate the impact 
on the PISA score for males and females (Table 1). Start-
ing with variables that will increase the male test score 
advantage, the number of female students in a classroom 
has the largest positive effect. Increasing the female share 
by one standard deviation increases the male–female test 
score differential by 8.8 PISA points. This is contrary to 
the results of Gneezy et  al. (2003), who found that more 
female peers in schools increases the mathematical com-
petence of females. Other strong pro-male variables are 
students’ beliefs such as perseverance, success, or a career 
or job motive. Factors that reduce the male–female gap are 
subjective norms, public schools, more studying outside 
school, better education of the mother, and mothers who 
work more. Interestingly, countries where the GGI is more 
favorable towards women have lower male–female PISA 
score differences. This is in contrast to simple correlations 
by Stoet and Geary (2013), which did not reveal any corre-
lation between PISA gender differentials and the GGI.

4.3  PISA scores for reading
An equivalent analysis was conducted for reading, as 
shown in Fig.  3. Panel F shows the JMP decomposition 
when all control variables are included. In contrast to 
mathematics, a continuous advantage of girls over boys 
is evident. In particular, there is a large disadvantage for 
boys at the lower end of the distribution: at the 5th and 
10th percentile, boys score almost one half standard devi-
ation (50 PISA points) less than girls. Torppa et al. (2018) 
investigate this for an extension of Finnish PISA data 

10 These are school autonomy, class size, quality of physical infrastructure, 
proportion of girls at school, out of school study time and perseverance.
11 These results are not presented here because of space limitations but are 
available upon request.
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and find that general reading fluency (speed) is the main 
explanation for this difference, whereas other indicators 
like mastery orientation, homework activity or leisure 
book reading frequency are not very influential.

On the other hand, similar to mathematics, the total 
advantage of girls (T) diminishes from around 50 PISA 

points at the lowest percentiles to about 20 PISA points 
at the highest.12 Decomposing that, at the highest per-
centile levels, this male–female differential is fully 

Fig. 2 Juhn–Murphy–Pierce decomposition of relative mathematics test scores by percentile, 2012, T total differential, Q endowments, P 
productivity, U unobservables, a–e provide decompositions using only a subset of variables; f uses all available variables

12 See also Stoet and Geary (2013) for the inverse relationship between 
mathematics and reading assessments.
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explained by productivity differentials (P), less so at lower 
percentiles. There is a contribution of observables (Q): 
the endowment of students contributes between 6 and 12 
PISA points towards this female advantage. Finally, the 
contribution of unobservables (U) is mixed, increasing 
between − 9 to + 9 PISA points.

Which factors are responsible for this difference? Our 
detailed analysis of the causes in Panels A–E in Fig.  3 
indicates that endowment differences (Q) are strongest 

for schooling characteristics. Schooling characteristics, 
considered separately, explain between 7 and 10 PISA 
points, while the contributions of other domains are 
minor.

On the other hand, there is a large productivity (P) 
contribution in all separately considered domains. They 
are particularly high in the family, individual, belief, and 
country domains.

Table 1 Ceteris–paribus shifts in  math and  reading test scores due to  a  one standard deviation shift in  individual 
variables

Gender score inequality is calculated by subtracting the female scores from male scores where positive values are indicating the gender inequality towards females. 
Male and female test scores are calculated on the basis that one standard deviation increase in particular characteristic e.g. age is associated with an increase of 0.071 
score points in math gender score gap

Mathematics Reading

Male Female Gender score 
difference

Male Female Gender score 
difference

Individual characteristics

Age 1.001 0.930 0.071 0.731 0.775 − 0.567

Grade 11.66 9.950 1.71 12.67 10.24 2.43

Country of birth 1.675 1.577 0.098 1.235 1.098 0.137

Family characteristics

Mother’s education 4.30 6.09 − 1.79 4.706 5.947 − 1.241

Father’s education 5.414 5.457 − 0.043 4.180 3.976 0.204

Mother’s work 4.217 5.763 − 1.546 3.605 5.354 − 1.749

Father’s work 5.841 5.467 0.374 5.540 4.896 0.644

Family structure 1.734 1.178 0.556 0.930 − 0.106 1.036

Language 2.401 0.856 1.545 6.44 5.276 1.164

Home possession 16.89 17.83 − 0.94 14.98 17.51 − 2.53

Schooling characteristics

Public schools − 3.897 − 1.769 − 2.128 − 7.069 − 2.88 − 4.189

6.370 7.563 − 1.193 5.502 6.234 − 0.732

Class size 9.425 9.122 0.303 10.44 7.932 2.508

Quality of physical infrastructure 2.904 2.65 0.254 2.183 1.534 0.649

Percentage of girls at school 7.983 − 0.872 8.855 8.807 1.667 7.14

Certified teachers 7.697 9.528 − 1.831 6.796 7.164 − 0.368

Teacher–student ratio − 3.570 − 4.763 1.193 − 1.818 − 2.858 1.04

Teacher–student relations − 1.409 − 0.218 − 1.191 − 1.580 − 1.120 − 0.46

Belief characteristics

Difference in test efforts − 3.565 − 2.083 − 1.482 − 5.635 − 3.837 − 1.798

Out of school study hours 1.586 5.825 − 4.239 0.236 3.810 − 3.574

Perseverance 9.765 6.977 2.788 8.79 6.136 2.654

Success 16.52 10.85 5.67 11.85 6.055 5.795

Career motive 12.52 10.06 2.46 7.424 5.476 1.948

Job motive − 2.88 − 4.589 1.709 − 8.765 − 9.541 0.776

Subjective norms − 12.40 − 9.155 − 3.245

Country characteristics

GDP − 0.342 0.963 − 1.305 0.976 0.723 0.253

GGI − 0.908 1.507 − 2.415 0.826 0.621 0.205

Gender ratio at PISA − 12.21 − 10.37 − 1.84 − 7.641 − 7.302 − 0.339

Education expenditure 11.47 11.02 0.45 12.06 12.74 − 0.68
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Regarding the contributions of individual items (Table 1), 
those favorable for boys are the percentage of girls in a class-
room, success motivation, and class size. Factors favorable 
for girls are public schools and the amount of studying time 
out of school. Interestingly, a country’s GGI has no effect on 
the reading differential between boys and girls.

5  Conclusion
In this paper, we provided a decomposition of PISA 
mathematics and reading scores worldwide. Our contri-
bution to the literature lies in an extension of quantile 
regression results to practically all PISA countries, to an 
inclusion of country-specific gender-related variables 

Fig. 3 Juhn–Murphy–Pierce decomposition of relative reading test scores by percentile, 2012, T total differential, Q endowments, P productivity, U 
unobservables, a–e provide decompositions using only a subset of variables; f uses all available variables
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and to an application of Juhn et al. (1993) analysis, which 
extends a simple decomposition to take the residual dis-
tribution into account.

While mathematics scores are still tilted towards boys, 
girls have a larger advantage in reading over boys. This 
advantage is particularly large for low-achieving indi-
viduals. Our analysis shows that over the distribution of 
talent, boys’ scores increase more than girls—for both 
mathematics and reading: thus—at the highest percen-
tiles—we see a smaller reading advantage for girls as well 
as a large advantage of boys in mathematics.

Our decomposition shows that part of this increase 
can be explained by an increasing trend in productive 
endowments and learning productivity, but the largest 
part remains unexplained. Countries’ general level of 
gender (in)equality also contributes towards girls’ dis-
advantage. For reading, at the upper end of the talent 
distribution, girls’ advantage can be fully explained by 
differences in learning productivity, although this is not 
so at lower levels. Education policy trying to reduce these 
gender differences must target high-performing females 
in their efforts in mathematics and science, and must be 

concerned by low-achieving boys who lag in reading and 
verbal expressiveness.
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Table 2 Variables’ description (PISA 2012). Sources: (1) PISA Technical Report 2012; (2) PISA Data Analysis Manual SPSS 
2009 (Second Edition)

Variable Definition

Students’ own characteristics

Age Age of student was calculated as the difference between the year and month of the testing and the year and month of the 
students’ birth

Grade The relative grade index was computed to capture between the country variation. It indicates whether students are below 
or above the model grade in a country (model grade having value “zero”)

Country of birth According to the PISA, students’ are distinguished by country of birth to take into account their immigrant status
1. “Native students”, students born in the country of assessment with at least one parent born in the country of assessment
2. “Second‑generation students”, students born in the country with both parents foreign‑born
3. “First‑generation students, where foreign‑born students have foreign‑born parents
In this study, the variable for country of birth only differentiate that the students are “native” or “others”

Family characteristics

Educational level of 
mother and father

Educational levels were classified using ISCED (OECD 1999) that is International Standard Classification of Education. Indices 
were constructed for the following categories

1. “0” for “None
2. “1” for “primary education”
3. “2” for “lower secondary”
4. “3” for “upper secondary”
5. “4” for “post secondary”
6. “5” for “vocational tertiary”
7. “6” for “theoretical tertiary (or post graduate)”

Occupational status of 
parents

Parents’ job status is closely linked to socio‑economic status that can cause large gaps in performance between students. 
Students reported their mothers’ and fathers’ current job status either as “full or part time working” or they hold another 
job status (i.e. home duties, retired etc.)

Family structure An index was formed on the basis of the family structure with the following categories
1. “1” if “single parent family” (students living with one of the following: mother, father, male guardian, female guardian)
2. “2” if “two parent family” (students living with a father or step/foster father and a mother or step/foster mother)
3. “3” if students do not live with their parents

Language spoken at 
home

An international comparable variable is derived from the information (containing a country‑specific code for each language) 
with the following categories

1. Language at home is the same as the language of assessment for the student
2. Language at home is another language

Home possession Home possession is the summary index of 23 household items, mainly related to possession of books and things necessary 
to have a profound study
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Table 2 (continued)

Variable Definition

Schooling characteristics

School category Schools are classified as either public or private according to whether a private entity or a public agency has the ultimate 
power to make decisions concerning its affairs

School autonomy Twelve items measuring school autonomy were asked that includes (a) Selecting teachers for hire, (b) Firing teachers, (c) 
Establishing teachers’ starting salaries, (d) Determining teachers’ salary increases, (e) Formulating the school budget, (f ) 
Deciding on budget allocations within the school, (g) Establishing student disciplinary policies, (h) Establishing student 
assessment policies, (i). Approving students for admission to the school, (j) Choosing which textbooks are used, (k) Deter‑
mining course content, and (k). Deciding which courses are offered. Five response categories were used and principals 
were asked to tick as many categories as appropriate, that are

1. Principal
2. Teachers
3. School governing board
4. Regional education authority
5. National education authority

Class size The average class size was derived from one of the nine possibilities ranging from “15 students or fewer” to “more than 50 
students” for the average class size of the test language in the sampled schools. The mid point of each response category 
was used for class size, resulting a value of 13 for the lowest category, and a value of 53 for the highest

Quality of physical infra‑
structure

The index concerning the quality of physical infrastructure was computed on the basis of three items measuring the prin‑
cipals’ perceptions of potential factors hindering instruction at school that are (a) Shortage or inadequacy of school build‑
ings and grounds, (b) Shortage or inadequacy of heating/cooling and lighting systems, and (c) Shortage or inadequacy of 
instructional space (i.e. classrooms). All items were reversed for scaling

Proportion of girls 
enrolled at school

Proportion is based on the enrollment data provided by the principal, calculated by dividing the number of girls by the 
number of girls and boys at a school

Proportion of fully certi‑
fied teachers

The proportion was calculated by dividing the number of fully certified teachers by the total number of teachers

Student–teacher ratio The student–teacher ratio is obtained by dividing the school size by the total number of teachers. The number of part–time 
teachers was weighted by 0.5 and the number of full‑time teachers was weighted by 1.0 in the computation of this index

Teacher–student rela‑
tions

The index of teacher–student relations is derived from students’ view that to what extent do you agree with the following 
statements”: (i) Students get along well with most of my teachers; (ii) Most teachers are interested in students’ well‑being; 
(iii) Most of my teachers really listen to what I have to say; (iv) if I need extra help, I will receive it from my teachers; and (v) 
Most of my teachers treat me fairly. Higher values on this index indicate positive teacher–student relations

Students’ perceptions or beliefs about learning

Difference in test effort To compare the students’ performance across countries that can be influenced by the effort students invest in preparing 
PISA assessment, a variable “difference in test effort (or relative test effort)” is used. This based on the “Effort Thermometer” 
that was developed by a group of researchers at the Max–Planck‑Institute in Berlin (Kunter et al. 2002). The Effort Ther‑
mometer is based on three 10‑point scales (For more details, see Butler and Adams 2007)

Effort Difference = PISA Effort − School Mark Effort
The Effort Difference scores can range from negative nine to positive nine. A negative score on Effort Difference means that 

students indicate they would try harder on a test that counts than they did on the PISA assessment

Out of school study time The index was calculated by summing the time spent studying for school subjects from the information that how much 
time they spent studying outside school (in open‑ended format)

Perseverance Five items measuring perseverance (i.e. a). When confronted with a problem, I give up easily, (b) I put off difficult problems, 
(c) I remain interested in the tasks that I start, (d) I continue working on tasks until everything is perfect, and (e) When 
confronted with a problem, I do more than what is expected for me) were included with five response categories, namely

1. Very much like me
2. Mostly like me
3. Somewhat like me
4. Not much like me
5. Not at all like me
All three items were reversed

Perceived control The index of perceived control is constructed using student responses on question “what you think that you can succeed 
with enough effort (or the course material is too hard to understand with your sole effort)? Students give responses that 
they strongly agreed, agreed, disagreed, or strongly disagreed

Instrumental motivation 
for job and career

The index of instrumental motivation for job and career is constructed by asking question that making an effort is worth‑
while for me because it will increase chances to get a job and will improve my career with student responses over the 
extent they strongly agreed, agreed, disagreed, or strongly disagreed

Subjective norms (Math‑
ematics)

The index of subjective norms in mathematics is constructed using student responses over whether, thinking about how 
people important to them view mathematics, they strongly agreed, agreed, disagreed or strongly disagreed to the fol‑
lowing statements: Most of my friends do well in mathematics; most of my friends work hard at mathematics; my friends 
enjoy taking mathematics tests; my parents believe it’s important for me to study mathematics; my parents believe that 
mathematics is important for my career; my parents like mathematics
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Table 4 Descriptive statistics

Variable Mean Std. dev Minimum 
value

Maximum value No. of obs.

Test scores

Math scores
Math scores (girls) 469.1 102.6 19.8 912.3 242375

Math scores (boys) 478.8 107.5 34.7 962.2 237799

Math (OECD) 494.05 104.7 59.67 896.8 295,416

Math scores (girls, OECD) 488.2 101.7 98.23 896.8 147,717

Math scores (boys, OECD) 499.8 107.1 59.67 891.3 147,699

Math (Non-OECD) 451.93 98.6 19.79 962.2 184,758

Math scores (Girls, Non‑OECD) 448.6 96.8 19.79 912.3 94,658

Math scores (Boys, Non‑OECD) 455.3 100.3 34.75 962.2 90,100

Reading scores
Reading scores (Girls) 493.08 97.93 0.0834 904.8 242,375

Reading scores (Boys) 455.85 105.7 0.0834 889.3 237,799

Reading (OECD) 496.4 105.9 2.546 904.8 295,416

Reading (Girls, OECD) 515.2 99.2 2.546 904.8 147,717

Reading (Boys, OECD) 478.1 108.2 3.911 889.3 147,699

Reading (Non-OECD) 450.3 94 0.083 838.7 184,758

Reading (Girls, Non‑OECD) 469.3 89.1 0.083 836.8 94,658

Reading (Boys, Non‑OECD) 431 95.6 0.083 838.7 90,100

Math sub-scale (content) scores

Change and relationship (OECD) 492.6 115.7 10.68 941.9 295,416

Change and relationship (Girls, OECD) 487.0 111.9 10.68 873.9 147,717

Change and relationship (Boys, OECD) 498.2 118.9 17.46 941.9 147,699

Change and relationship (Non-OECD) 448.4 110 6.551 980.8 184,758

Change and relationship (Girls, Non‑OECD) 446.1 107.7 6.551 968.7 94,658

Change and relationship (Boys, Non‑OECD) 450.9 112.1 6.551 980.8 90,100

Quantity (OECD) 495.2 110 20.42 885.5 295,416

Quantity (Girls, OECD) 489.6 107.2 20.42 855.5 147,717

Quantity (Boys, OECD) 500.8 112.3 26.88 885.5 147,699

Quantity (Non-OECD) 448.2 103.2 3.357 934.9 184,758

Quantity (Girls, Non‑OECD) 444.3 101.3 7.875 907.8 94,658

Quantity (Boys, Non‑OECD) 452.2 104.9 3.357 934.9 90,100

Space and shape (OECD) 489.7 112.6 1.254 963.2 295,416

Space and shape (Girls, OECD) 481.6 110 13.33 917.8 147,717

Space and shape (Boys, OECD) 497.6 114.3 1.254 963.2 147,699

Space and shape (Non‑OECD) 456.6 108.1 3.980 1082.1 184,758

Space and shape (Girls, Non‑OECD) 450.9 107.2 3.980 1022.1 94,658

Space and shape (Boys, Non‑OECD) 462.4 108.8 24.47 1082.1 90,100

Uncertainty and data (OECD) 493.2 105.6 7.953 892.2 295,416

Uncertainty and data (Girls, OECD) 488.6 102.1 7.953 849.7 147,717

Uncertainty and data (Boys, OECD) 497.8 108.7 7.953 892.2 147,699

Uncertainty and data (Non‑OECD) 449.1 93.11 9.044 941.1 184,758

Uncertainty and data (Girls, Non‑OECD) 447.8 90.64 9.044 905.3 94,658

Uncertainty and data (Boys, Non‑OECD) 450.5 95.46 24.39 941.1 90,100

Students’ own characteristics

Gender of a student (Reference category is “Male”)
Female 0.4998 500 0 1 242,375

Male 0.5 500 0 1 237,799
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Table 4 (continued)

Variable Mean Std. dev Minimum 
value

Maximum value No. of obs.

Age of the student
Age 15.78 0.291 15.17 16.33 480,058

Age (Missing) 0.0001 0.012 0 1 116

Age (After imputation) 15.78 0.291 15.17 16.33 480,174

Grade in which students are enrolled (reference category: Grade 7 + 8 + 9)
Grade 7 + 8 + 9 0.452 0.498 0 1 179,603

Grade 10 + 11 + 12 + 13 0.546 0.498 0 1 299,698

Ungraded 0.0025 0.0504 0 1 873

Country of birth (Reference category is “Other country”)
Country of test 0.915 0.2783 0 1 437,025

Other country 0.066 0.248 0 1 34,126

N/A + Invalid + Missing 0.019 0.135 0 1 9023

Family characteristics

Mothers’ Education (Reference category is “None + Primary + Lower secondary + Upper secondary “)
None + Primary + Lower secondary + Upper secondary 0.32 0.466 0 1 157,228

Post secondary + Tertiary (Bachelor) + Tertiary (Master, 
Doctoral)

0.641 0.48 0 1 304,692

Missing 0.04 0.195 0 1 18,254

Fathers’ Education (Reference category is “None + Primary + Lower secondary + Upper secondary “)
None + Primary + Lower secondary + Upper secondary 0.32 0.467 0 1 158,477

Post secondary + Tertiary (Bachelor) + Tertiary (Master, 
Doctoral)

0.611 0.488 0 1 289,539

Missing 0.069 0.253 0 1 32,158

Mothers’ work status (Reference category is “Part-time + Looking for a job + other”)
Mothers working full time 0.4701 0.499 0 1 215,933

Part‑time + Looking for a job + Other 0.492 0.5 0 1 246,620

N/A + Invalid + Missing 0.038 0.191 0 1 17,621

Fathers’ work status (Reference category is “Part-time + Looking for a job + other”)
Fathers working full time 0.6995 0.458 0 1 335,802

Part‑time + Looking for a job + Other 0.229 0.42 0 1 110,709

N/A + Invalid + Missing 0.072 0.258 0 1 33,663

Family structure (Reference category is “Single parent”)
Single parent 0.121 0.326 0 1 57,304

Two parents 0.74 0.439 0 1 356,286

Other  + Missing 0.139 0.346 0 1 66,584

International language at home (Reference category is “Other language”)
Language of the test 0.852 0.355 0 1 403,608

Other language 0.108 0.311 0 1 56,687

N/A + Invalid + Missing 0.039 0.194 0 1 19,879

School/class characteristics

School category (Reference category is “Private school”)
Public school 0.797 0.403 0 1 378,889

Private school 0.184 0.388 0 1 93,041

N/A + Invalid + Missing 0.019 0.137 0 1 8244

School autonomy
School autonomy − 0.072 1.057 − 2.872 1.604 470,968

Missing 0.021 0.142 0 1 9206

School autonomy (Imputed) − 0.072 1.046 − 2.872 1.604 480,174
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Table 4 (continued)

Variable Mean Std. dev Minimum 
value

Maximum value No. of obs.

Class size
Class size 29.06 9.42 13 53 462,865

Missing 0.03 0.17 0 1 17,309

Class size (Imputed) 29.06 9.28 13 53 480,174

Quality of physical infrastructure
Quality of physical infrastructure − 0.118 1.048 − 2.76 1.305 461,829

Missing 0.042 0.202 0 1 18,345

Quality of physical infrastructure(Imputed) − 0.118 1.026 − 2.76 1.305 480,174

Proportion of girls at school
Proportion of girls at school 0.488 0.196 0 1 465,353

N/A + Invalid + Missing 0.037 0.189 0 1 14,821

Proportion of girls at school(Imputed) 0.488 0.193 0 1 480,174

Proportion of certified teachers at school
Proportion of certified teachers at school 0.865 0.275 0 1 376,980

N/A + Invalid + Missing 0.183 0.387 0 1 103,194

Proportion of certified teachers at school (Imputed) 0.865 0.249 0 1 480,174

Students’ perceptions or beliefs about learning

Difference in test effort = (PISA Effort – School Mark Effort) (Reference category is “Positive test effort”)
Difference in test effort excluding N/A, Invalid and Missing 0.873 0.333 0 1 418,698

N/A + Invalid + Missing 0.127 0.333 0 1 61,476

Difference in test effort (Negative or zero) 0.276 0.447 0 1 127,858

Difference in test effort (Positive) 0.597 0.490 0 1 290,840

Out of school study time
Out of school study time (Excluding missing) 11.11 10.58 0 180 305,317

Missing 0.365 0.481 0 1 174,857

Out of school study time (Imputed) 11.11 8.431 0 180 480,174

Perseverance(willingness to work on problems that are difficult)
Perseverance (Excluding missing) 0.124 0.995 − 4.053 3.529 309,742

Missing 0.356 0.479 0 1 170,432

Perseverance (Imputed) 0.124 0.797 − 4.053 3.529 480,174

Perceived control (can succeed with enough effort) (Reference category is “Disagree, Strongly disagree”)
Strongly agree 0.308 0.462 0 1 153,582

Agree 0.291 0.454 0 1 136,272

Disagree, Strongly disagree 0.048 0.214 0 1 21,667

N/A + Invalid + Missing 0.353 0.478 0 1 168,653

Instrumental motivation (good for career chances) (Reference category is “Disagree, Strongly disagree”)
Strongly agree 0.195 0.396 0 1 98,403

Agree 0.315 0.465 0 1 151,583

Disagree, Strongly disagree 0.137 0.344 0 1 61,790

N/A + Invalid + Missing 0.353 0.478 0 1 168,398

Instrumental motivation (good to get a job) (Reference category is “Disagree, Strongly disagree”)
Strongly agree 0.167 0.373 0 1 84,270

Agree 0.306 0.461 0 1 148,611

Disagree, Strongly disagree 0.174 0.379 0 1 78,895

N/A + Invalid + Missing 0.352 0.478 0 1 168,398

Country characteristics
Non‑OECD 0.4770 0.499 0 1 184,758

OECD 0.5230 0.499 0 1 295,416
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Table 4 (continued)

Variable Mean Std. dev Minimum 
value

Maximum value No. of obs.

GDP per capita (PPP) 33,937.2 24,246.2 5000.8 135,421.7 479,881

GGI 0.7108 0.0544 0.6015 0.864 452,918

Gender ratio at PISA test 1.019 0.0854 0.84 1.3 478,413

Expenditures on education (%) 5.0116 1.372 2.1 8.7 450,865

Table 5 International gender gap in math and reading test scores at various percentiles

Firstly, we calculated the performance percentiles for girls and boys separately for each assessment and then for each assessment, we calculated the gender 
differences in performance distribution by subtracting the boys’ scores from girls’ scores

1st 5th 10th 25th 50th = median Std. dev. 75th 90th 95th 99th

Test score performance in mathematics

Girls’ scores 248.8 305.51 336.66 391.97 460.59 100.17 532.96 596.60 632.74 698.17

Boys’scores 246.31 307.14 339.78 398.75 472.12 106.16 549.39 616.30 652.99 717.64

Gender gap = (Girls–Boys) 2.49 − 1.63 − 3.12 − 6.78 − 11.53 − 16.43 − 19.7 − 20.25 − 19.47

Test score performance in reading

Girls’ scores 257.36 327.42 363.88 424.48 491.84 96.49 556.97 612.02 643.32 698.28

Boys’scores 201.99 276.09 315.95 381.95 456.29 105.22 528.46 587.81 620.13 678.35

Gender gap = (Girls–Boys) 55.37 51.33 47.93 42.53 35.55 28.51 24.21 23.19 19.93

Table 6 Juhn–Murphy–Pierce decomposition of mathematics 
test scores by gender

Percentiles T Q P U

Individual characteristics

p5 0.6232 − 1.6601 10.627 − 8.3435

p10 1.7136 − 2.6240 11.1438 − 6.8062

p25 4.7516 − 3.0524 11.534 − 3.7298

p50 9.2694 − 2.7514 11.829 0.1914

p75 14.644 − 1.8629 12.234 4.2733

p90 17.916 − 1.4133 12.525 6.8035

p95 18.928 − 1.3949 13.001 7.3219

Family characteristics

p5 0.6232 0.3782 9.3689 − 9.1239

p10 1.7136 − 0.8306 9.6578 − 7.1136

p25 4.7516 − 1.2217 9.9602 − 3.9869

p50 9.2694 − 0.3162 9.6565 − 0.0709

p75 14.644 0.9631 9.5052 4.1756

p90 17.916 0.4696 9.8460 7.6000

p95 18.928 0.0490 9.7870 9.0921

Schooling characteristics

p5 0.6232 − 5.9810 15.933 − 9.3289

p10 1.7136 − 7.2584 16.637 − 7.6655

p25 4.7516 − 7.8643 17.044 − 4.4281

p50 9.2694 − 7.6651 16.846 0. .0887

p75 14.644 − 7.4658 17.388 4.7218

p90 17.916 − 7.7754 17.839 7.8517

p95 18.928 − 8.8790 19.016 8.7914

Percentiles T Q P U

Belief characteristics

p5 0.6232 − 3.4441 8.5159 − 4.4486

p10 1.7136 − 4.1805 10.000 − 4.1060

p25 4.7516 − 4.1604 11.559 − 2.6474

p50 9.2694 − 2.4598 12.256 − 0.5264

p75 14.644 − 1.5339 13.877 2.3006

p90 17.916 − 1.3770 14.394 4.8983

p95 18.928 − 2.1631 15.337 5.7538

Country characteristics

p5 0.0779 2.2793 6.9492 − 9.1506

p10 1.1684 1.2424 7.5482 − 7.6222

p25 4.3621 1.1179 7.8306 − 4.5864

p50 8.2568 0.8006 7.8884 − 0.4322

p75 14.021 1.5481 7.8875 4.5853

p90 17.215 0.95,581 7.8215 8.4372

p95 18.227 0.6335 7.6553 9.9383

All characteristics

p5 0.0779 − 10.119 14.258 − 4.0610

p10 1.1684 − 11.203 15.762 − 3.3903

p25 4.3621 − 10.737 17.339 − 2.2400

p50 8.2568 − 8.1646 16.836 − 0.4148

p75 14.021 − 6.0930 18.046 2.0675

p90 17.215 − 5.4332 18.752 3.8954

p95 18.227 − 6.4822 19.588 5.1214

Table 6 (continued)
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