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Abstract 
 
This paper analyzes sin goods consumption when individuals exhibit present-focused 
preferences. It considers three types of present focus: present-bias with varying degrees of 
naiveté, Gul-Pesendorfer preferences, and a dual-self approach. We investigate the incentives to 
deviate from healthy consumption (the extensive margin). In the first model, the extensive 
margin of consumption is independent of the degree of present-bias and naiveté. Likewise, in 
the latter frameworks, the strength of temptation and the cost of self-control do not affect the 
extensive margin. Hence, present-focused preferences affect the intensive margin of sin goods 
consumption, but not the extensive margin. 
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1 Introduction

Cigarettes, alcohol, unhealthy foods, and drugs bring immediate gratification and later

health costs. Thus, they are labeled as sin, or temptation, goods. Economists have

developed several classes of models to understand the behavior of sin goods consumers.

Ericson and Laibson (2018) group these models into a category called “present-focused

preferences”. By definition, “present-focused preferences exist if agents are more likely in

the present to choose an action that generates immediate experienced utility, than they

would be if all the consequences of the actions in their choice set were delayed by the

same amount of time” (Ericson and Laibson, 2018).

In this article, we define the extensive margin of sin goods consumption as a deviation

from the health-maximizing consumption level. That is, we explicitly account for the

consumers’ decision to start or abstain from sin goods consumption. We analyze how a

present focus impacts the extensive margin. The main insight from our paper is that for

the most widely used frameworks, present-focused preferences do not affect the extensive

margin of sin goods consumption. They affect only the intensive margin, i.e., the degree

of deviation. Hence, present-focused preferences cannot explain why people consume

sin goods; they only determine the intensity of sin goods consumption, given that an

individual has decided to consume sin goods.

This insight is derived within a framework of an individual who chooses the optimal

consumption path of a temptation good. There exists a consumption level that is health-

maximizing, and we refer to it as the healthy consumption level. This healthy level may

be zero. For example, in the case of cigarettes, there exist health risks of even light

and intermittent smoking (Schane et al., 2010). However, the healthy level may also be

positive. In the case of added sugar, Ramne et al. (2018) find a U-shaped relationship

between consumption and all-cause mortality. They find the lowest mortality risk at

added sugar consumption between 7.5% and 10% of the total energy intake.

We analyze the consumption choice in three different present focus frameworks. First,

we use the present-bias model developed by Strotz (1956), Phelps and Pollak (1968), and

Laibson (1997), and allow the consumer to be either a sophisticated or a naive quasi-

hyperbolic discounter. In the second case, we consider the temptation model of Gul

and Pesendorfer (2001, 2004, 2005), where the individual is capable of costly self-control.
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Lastly, we study the consumption decisions in the dual-self model of Fudenberg and

Levine (2006) with a myopic short-run self and a patient long-run self who can exert

costly self-control.

In each framework, we find that the decision to deviate (in the steady state) from

healthy consumption on the extensive margin is independent of the degree of present focus

of preferences. In the quasi-hyperbolic discounting model, both the degree of present-bias

and naiveté do not influence the extensive margin. Instead, an individual deviates from

healthy consumption if and only if the instantaneous utility-maximizing sin good level

differs from the healthy level. This is a rational reason for deviating at the extensive

margin and is not related to the degree of present-bias or naiveté. In the model of Gul

and Pesendorfer (2001), the consumer deviates from healthy consumption if and only

if the commitment utility-maximizing consumption differs from the healthy level. The

cost of self-control and the strength of temptation do not affect the extensive margin.

Lastly, in the dual-self framework, the short- and long-run selves agree on the decision

on the extensive margin, i.e., on whether and in which direction to deviate from healthy

consumption. They disagree only on the degree of deviation (the intensive margin).

The intuition behind these results is the following. In the absence of a present fo-

cus, the consumer faces a trade-off between maximizing her instantaneous utility and

minimizing the long-run health costs of consumption. If and only if the instantaneous

utility-maximizing consumption level is above the healthy level, does the individual over-

consume. When the individual exhibits present-focused preferences, the fundamental

trade-off remains unaffected. The only change is the degree of deviation away from

healthy consumption. However, both time-inconsistent (i.e., present-biased) and time-

consistent (e.g., Gul-Pesendorfer) present-focused preferences cannot affect the decision

on the extensive margin.

In our main analysis, the sin good under consideration is not addictive. To show

that this assumption is without loss of generality, we extend, in Section 5, the present-

bias model to consider an addictive sin good. We prove that our main result remains

unchanged, i.e., neither the degree of present-bias not the degree of naiveté affect the

extensive margin.

This paper is related to the literature on present-focused preferences. According
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to the aforementioned definition of Ericson and Laibson (2018), individuals with such

preferences are more likely to choose actions that generate immediate gratification in the

present. When the action generating immediate gratification is the consumption of a

sin good, our results show that the definition may only hold for the intensive margin of

consumption but not the extensive margin.

All three frameworks that we analyze predict demand for commitment (Ericson and

Laibson, 2018). However, we rarely observe such demand (Laibson, 2015), and even when

it exists, the willingness to pay for commitment is low (Laibson, 2018). Less than 15% of

experimental participants accept a commitment mechanism for smoking cessation (Giné

et al., 2010; Halpern et al., 2015), preventive health care (Bai et al., 2017), or gym at-

tendance (Royer et al., 2015). Bhattacharya et al. (2015) find a slightly higher demand

for exercise pre-commitment contracts among the users of the commitment contract site

stikK.com. In other health domains, we observe more demand for commitment: be-

tween one third and one half of experimental subjects choose commitment for sobriety

(Schilbach, 2019) and healthy food (Schwartz et al., 2014; Sadoff et al., 2015; Toussaert,

2019), while Alan and Ertac (2015) find strong demand for commitment among chocolate-

eating children (69% take-up rate).

Studying procrastination, Laibson (2015) identifies four drivers of weak demand for

commitment: naivete, high cost of commitment, uncertainty about the opportunity cost

of time, high cost of delay. Our results contribute to the literature by providing a new

explanation for the weak demand for commitment in the health domain. Commitment

mechanisms focus on achieving healthy behavior such as, e.g., smoking cessation, (alcohol

and drug) sobriety, healthy weight. However, our result that the extensive margin of

sin good consumption is independent of present focus implies that an individual who

overconsumes a sin good would not find it optimal to choose the healthy consumption in

the absence of present-focused preferences. Hence, a commitment device not only has the

usual benefit of preventing the utility loss due to present focus, but also the additional

cost of causing a utility loss due to implementing healthy consumption. This cost arises

because the individual would like to choose an unhealthy consumption in the absence

of present focus. The individual, therefore, demands a commitment device only if the

utility loss due to present-focused preferences is larger than the utility loss from healthy
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consumption.

The rest of the paper proceeds as follows. In Section 2, we present the quasi-

hyperbolic discounting model. In Sections 3 and 4, we analyze the unitary-self and

dual-self models with temptation and self-control, respectively. Section 5 extends the

model, while Section 6 concludes.

2 Quasi-Hyperbolic Discounting

2.1 The Model

Consider a representative infinitely-lived individual. Time periods evolve discretely. In

period t ∈ {0, 1, . . .}, the representative individual consumes xt units of a sin good and

a bundle of other goods whose quantity is denoted by zt. Following Becker and Murphy

(1988) and Gruber and Köszegi (2001), past consumption affects current utility through

accumulation of a consumption stock. Let st be the stock of past consumption in period

t. It follows the equation of motion

st = xt−1 + (1− d)st−1, (1)

where d ∈]0, 1] denotes the decay of the stock between two consecutive periods.

Instantaneous utility of the individual is u(xt, zt, st) = w(xt, zt)− c(st), where w(·) is

consumption utility and satisfies wi(·) > 0 > wii(·) for i = x, z and wxxwzz−w2
xz > 0. The

term c(st) represents the health costs of past consumption.1 We define a healthy stock of

past consumption, sH , as the stock for which the marginal health costs equal zero, i.e.,

c′(sH) = 0. (2)

The corresponding healthy consumption level, xH , is the steady state consumption asso-

ciated with a healthy steady state stock, i.e., xH = dsH from Equation (1).

The healthy consumption stock sH may be either positive or zero, depending on

the sin good’s type. In the case of sH > 0, the health costs c(st) are assumed to be

1The assumed utility function does not consider habits in consumption. In Section 5, we extend the
analysis to include habits and show that the main results continue to hold.
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U-shaped around sH . If the current stock is above the healthy level, then the marginal

health costs are positive: c′(st) > 0 for st > sH . If the current consumption stock is

below the healthy level, then the marginal costs are negative: c′(st) < 0 for st < sH . In

the case of sH = 0, the current consumption stock st cannot be below the healthy stock

sH and the health costs function is increasing for all st > 0; that is, c′(st) > 0 for all

st > sH = 0. Independent of sH > 0 or sH = 0, we require c′′(·) ≥ 0, which guarantees

that the consumption choices of the individual are well-behaved.

For most sin goods, we have sH = 0. Examples are cigarettes or drugs. A consumer

with zero consumption in the past faces no health costs from smoking or using drugs for

the first time. However, further consumption creates health costs. Put differently, there is

no healthy consumption level of cigarettes or drugs that is strictly positive (Schane et al.

(2010) review the evidence that even intermittent smoking is associated with health risks).

In contrast, however, if the sin good under consideration is unhealthy food, the stock of

past consumption can approximately be measured by the individual’s body mass index

(BMI). The healthy stock sH then represents the healthy BMI level between 22.5− 25.0

kg/m2, which means sH > 0. In this case, c′(sH) = 0 indicates that an individual with

BMI in the healthy range does not face positive health costs by slightly increasing her

BMI. A meta-analysis of more than 200 studies finds the hazard ratio for mortality to be

a U-shaped function of the body-mass index with a minimum at the healthy BMI (Global

BMI Mortality Collaboration, 2016). In the related case of unhealthy nutrients, sH > 0

is also possible. There is evidence of a U-shaped relationship between added sugar con-

sumption and mortality risk. Using Swedish data, Ramne et al. (2018) find that all-cause,

cardiovascular, and cancer mortality are U-shaped functions of added sugar consumption.

The lowest mortality risk is found at added sugar intake between 7.5% and 10% of the to-

tal energy intake. Health costs may arise at very low sugar consumption because sugar is

an ingredient of some “healthy foods” such as yogurt (Erickson and Slavin, 2015). More-

over, it enhances food safety by preventing high growth of some microorganisms (Erickson

and Slavin, 2015). Finally, in the case of alcohol, there is empirical evidence that moder-

ate consumption may improve cardiovascular health (Cawley and Ruhm, 2011). Hence,

sH > 0 may also hold for the sin good alcohol.

The individual may exhibit present-bias, i.e., it seeks immediate gratification, which
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is inconsistent with its long term preferences. Present-bias is modelled using quasi-

hyperbolic discounting, following Laibson (1997). The lifetime utility of the individual in

period t is given by

Ut = u(xt, zt, st) + β

∞∑
τ=t+1

δτ−tu(xτ , zτ , sτ ), (3)

where δ ∈]0, 1] denotes the degree of exponential discounting and β ∈]0, 1] is the rate of

quasi-hyperbolic discounting. If β = 1, then there is no present-bias and the preferences

are time-consistent. To the contrary, β < 1 denotes the desire for immediate gratification

and time-inconsistency, as the discount factor between any two consecutive future periods

(δ) is larger than the discount factor between the current and next period (βδ). For

β < 1, the individual has no power of self-control. Throughout this section, we refer

interchangeably to individuals with β < 1 either as individuals with self-control problems

or as present-biased individuals.

Both goods are produced at a constant marginal cost under perfect competition. We

normalize the price of zt to one, and the relative price of xt is pt. Thus, the time t budget

constraint of the individual is

ptxt + zt = e, (4)

where e denotes the exogenously given income of the individual in period t. Each period

the individual chooses xt and zt to maximize the lifetime utility (3) under consideration

of the equation of motion (1) and the budget constraint (4).

If the individual exhibits present-bias, then the optimal consumption path depends

on whether and to what extent the individual expects its future selves to behave time-

inconsistently, i.e., how sophisticated the individual is. We follow O’Donoghue and Rabin

(2001) and assume that an individual with discount rate β expects its future selves to

have a taste for immediate gratification β̂ ∈ [β, 1]. If β̂ = β < 1, then the individual is

said to be sophisticated, i.e., it anticipates its future self-control problems correctly. An

individual is naive if it is characterized by β < 1 and β̂ = 1 because this individual is not

aware of the present-bias of its future selves. Partial naiveté is present when β < β̂ < 1.2

2This form of modeling the degree of sophistication of individuals with self-control problems is standard
in the literature. See, e.g., Gruber and Köszegi (2001, 2004) for application to cigarette consumption and
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To distinguish the different types of individuals in the remaining analysis, we index the

variables using a superscript i = s, n, where s denotes a sophisticated individual and n

denotes full or partial naiveté.

2.2 Optimal Consumption and the Extensive Margin

The representative individual of type i maximizes the perceived lifetime utility at time t,

given by Equation (3). Note that an individual of type i consumes xit units of the sin good

in period t and expects to be a sophisticate individual with present-bias β̂ from period

t+ 1 onwards. We denote the expected period t+ 1 consumption of a type i individual as

xst+1(β̂). A sophisticate individual correctly predicts to consume xst+1(β) in period t + 1,

while a naive individual incorrectly expects to consume the quantity that a sophisticate

with present-bias β̂ would optimally choose.

To simplify the notation in the following analysis, we introduce the instantaneous

utility function ω(xt) ≡ w(xt, e− ptxt). In Appendix A, we derive the Euler equation of

an individual of type i for i = s, n. In the case of positive consumption of the sin good,

the Euler equation is given by3

ωx(x
i
t) =

βδ

β̂

{
ωx(x

s
t+1(β̂))

[
1− d+ (1− β̂)

∂xst+1(β̂)

∂sit+1

]
+ β̂c′(sit+1)

}
, (5)

where ωx(x
i
t) denotes the net marginal utility of sin good consumption in period t and is

given by ωx(x
i
t) = wx(·) − ptwz(·). The term ωx(x

s
t+1(β̂)) is defined analogously. Equa-

tion (5) has the following interpretation. Along the optimal path, the individual cannot

increase its utility by a marginal increase in consumption in period t, followed by a reduc-

tion in period t+ 1, such that the consumption stock in period t+ 2 remains unaffected.

The term on the left-hand side of (5) gives the marginal utility that a consumer derives of

consuming one more unit of the sin good in period t. An additional unit of consumption

in period t also increases the stock in period t+ 1, sit+1. The marginal health effect of the

change in sit+1 is captured by the last term on the right-hand side of (5). The change in

Diamond and Köszegi (2003) in the context of quasi-hyperbolic discounting and retirement.
3We report the Euler equation in case of positive consumption in (5) to simplify the exposition of our

results. The complete Euler equation that takes into account the possibility of xit = 0 and xst+1(β̂) = 0
is given by Equation (A.17) in Appendix A.
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the stock also affects the optimal consumption in period t+ 1, xst+1(β̂). If the individual

expects to be time-inconsistent, that is, if β̂ < 1, this effect also impacts the next period

utility (captured by the second term in brackets in (5)). Finally, to undo the consumption

stock effects of the period t change in consumption, the individual must lower period t+1

consumption by 1− d units. The utility effect of this change is captured by the first term

in brackets in (5).

The intensive margin of consumption of sophisticate and naive present-biased con-

sumers is discussed in detail by Gruber and Köszegi (2000).4 Present-bias increases con-

sumption by understating the future health costs. Sophisticates may either consume more

or less compared to naifs, depending on the relative sizes of several effects. On the one

hand, sophisticates may consume more than naifs owing to a pessimism effect; that is,

because (i) they are pessimistic about their future self-control and (ii) high future con-

sumption increases present consumption due to complementarity between xt and xt+1.

On the other hand, sophisticates may consume less than naifs in order to lower the future

consumption stock, st+1. A sophisticate does so in order to (i) incentivize its future selves

to consume less (because consumption xt+1 is increasing in the stock st+1 in Gruber and

Köszegi (2000)) and (ii) to lower the damage that future selves could do (a damage control

effect).

In contrast to Gruber and Köszegi (2000, 2001) and the subsequent literature, we

analyze the conditions under which the steady state consumption deviates from its healthy

level. Hence, we focus on the steady state extensive margin of sin good consumption. To

do so, we first define a “desired” consumption level xF . It is the amount of sin good

consumption that maximizes the individual’s instantaneous utility when the price is at

its steady state level. Let a variable with a bar denote its steady state value. For a given

price p, we define ωx(x
F ) = 0. To understand the intuition behind this equation, rewrite

4There are several differences between the model in this section and Gruber and Köszegi (2000). On
the one hand, this section abstracts away from addiction, while Gruber and Köszegi (2000) assume the
sin good is addictive (modeled by uxs > 0). Even though addictiveness makes the marginal utility of the
consumption stock ambiguous, Gruber and Köszegi (2000) assume it to be everywhere negative. Thus,
in their model, the healthy stock is zero. On the other hand, this model is more general by allowing for a
positive healthy stock, sH > 0. Moreover, Gruber and Köszegi (2000) assume β̂ = {β, 1}, while we allow

for β̂ ∈ [β, 1]. We also model addiction in an extension in Section 5.
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it as

wx(x
F , e− pxF )

wz(xF , e− pxF )
= p. (6)

The left-hand side of (6) gives the marginal rate of substitution between the sin good and

the bundle of other goods consumption, while the right-hand side gives the relative price

of the sin good. Furthermore, if ωx(0) ≤ 0, we define xF = 0.

Note that xF and xH are the same for both types because xF is determined by the

instantaneous utility function and the relative price, while xH is determined by the level

of the healthy stock and the equation of motion. Both are not influenced by β or β̂. We

derive the following results regarding the steady state consumption xi for i = s, n.

Proposition 1. Suppose that xH > 0. Then, there exist three possible steady states for

the consumer of type i = s, n:

(a) If xF > xH , then xH < xi < xF . The condition xF > xH is necessary and sufficient

for overconsumption: xi > xH .

(b) If xF < xH , then xH > xi ≥ xF . The condition xF < xH is necessary and sufficient

for underconsumption: xi < xH .

(c) If xF = xH , then xH = xi = xF . The condition xF = xH is necessary and sufficient

for healthy consumption xi = xH .

If xH = 0, then only cases (a) and (c) exist.

Proof: See Appendix B.

According to Proposition 1, it is sufficient to know the relation between the “desired”

level of consumption and the healthy consumption to determine whether an individual

deviates from xH on the extensive margin. Thus, the decision on the extensive margin is

not influenced by present-bias (neither by β nor by β̂). Present-bias only affects the extent

of the deviation (the intensive margin), but not whether the individual deviates from

healthy consumption. The intuition behind this insight is the following. The individual

has two goals: (i) maximization of instantaneous utility and (ii) minimization of the health

problems. It achieves the first goal when x is equal to xF and the second when x is equal

9



to xH . In the optimum, the individual consumes between these two amounts. Thus, β

and β̂ do not influence the extensive margin of consumption.

3 Temptation

The previous section considers the (β, δ) – model of a time-inconsistent individual, who

has no self-control. In this section, we extend the analysis to consider individuals with

temptation problems who are capable of self-control. In so doing, we follow the approach

of the so-called Gul-Pesendorfer preferences (Gul and Pesendorfer, 2001, 2004, 2005).

Gul and Pesendorfer define preferences over sets of lotteries (or consumption sets)

using two distinct utility functions (Gul and Pesendorfer, 2001). The first one describes

commitment utility (u) and gives the utility in the absence of temptation. The second one

describes temptation utility (v) and ranks consumption sets according to temptation. The

preferences over a choice from a given set are defined as follows: given a consumption set

A, the individual solves maxx∈A[u(x) + v(x)]−maxx̃∈A v(x̃), where x and x̃ are the actual

and most tempting consumption levels, respectively. By choosing actual consumption in

order to maximize u+v, the consumer compromises between commitment and temptation

utility. Moreover, the term maxx̃∈A v(x̃)− v(x) represents the cost of self-control, i.e., the

cost of not choosing the most tempting consumption.

We analyze self-control within the Gul-Pesendorfer framework by specifying utility

recursively as in Krusell et al. (2010). In this framework, the consumer is time-consistent

and there is just one type. Thus, we drop the superscript i introduced in the previous

section. Denote the actual consumption decisions as xt and zt and the corresponding

actual stock of past consumption as st. The (hypothetical) temptation consumption

choices in period t are x̃t and z̃t. Given an actual stock st, the hypothetical stock in

period t+ 1, if the individual succumbs to temptation in t, is s̃t+1, and is determined by

s̃t+1 = x̃t + (1− d)st. (7)
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We represent the preferences recursively as

W (st) = max
xt,zt

{
u(xt, zt, st) + δW (st+1) + V (xt, zt, st, st+1)−max

x̃t,z̃t

{
V (x̃t, z̃t, st, s̃t+1)

}}
,

(8)

where W (st) is the value function representing the self-control preferences of the individual

in period t, δ ∈]0, 1] is a time discount factor, u(xt, zt, st) = w(xt, zt)− c(st) is defined as

in Section 2, and V (·) is the temptation function

V (xt, zt, st, st+1) = γ [u(xt, zt, st) + βδW (st+1)] , with γ > 0, β ∈]0, 1[. (9)

The temptation value function V (·) differs from the value function W (st) in its discount

factor βδ < δ. Moreover, γ > 0 gives the weight of temptation in overall utility. Thus, the

term γ captures the cost of self-control, while 1−β represents the strength of temptation

(Amador et al., 2006).

The temptation function V (x̃t, z̃t, st, s̃t+1) is given by

V (x̃t, z̃t, st, s̃t+1) = γ [u(x̃t, z̃t, st) + βδW (s̃t+1)] . (10)

It depends both on the hypothetical temptation choices x̃t, z̃t (and the associated future

stock s̃t+1) and the realized current stock st, because st is pre-determined from period

t− 1. We insert Equations (9) and (10) in (8), which gives

W (st) = max
xt,zt

{
(1 + γ)u(xt, zt, st) + δ(1 + βγ)W (st+1)

−γmax
x̃t,z̃t

{
u(x̃t, z̃t, st) + βδW (s̃t+1)

}}
. (11)

Krusell et al. (2010) show in a consumption-savings model that in the case of CRRA

utility, as γ → ∞, the preferences represented by Equation (11) converge to the quasi-

hyperbolic (β, δ) – model.

The optimal consumption decisions are described by two Euler equations: one for

the actual choices and one for the hypothetical temptation choices. In Appendix C, we
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derive the following Euler equation for realized consumption:5

ωx(xt) =
δ(1 + βγ)

1 + γ

{
(1− d)ωx(xt+1) + c′(st+1) + γ(1− d)

[
ωx(xt+1)− ωx(x̃t+1)

]}
,

(12)

where we use the same notation as in Section 2 with ω(xt) ≡ w(xt, e − ptxt). There

are two differences to the Euler equation from Section 2. First, there is no term con-

taining ∂xst+1/∂s
i
t+1 because the individual is time-consistent. Second, the term γ(1 −

d) [ωx(xt+1)− ωx(x̃t+1)] captures the cost of self-control at the margin. The Euler equa-

tion describing the optimal hypothetical temptation consumption reads

ωx(x̃t) = βδ
{

(1− d)ωx(x
h
t+1) + c′(s̃t+1) + γ(1− d)

[
ωx(x

h
t+1)− ωx(x̃ht+1)

]}
, (13)

where xht+1 and x̃ht+1 represent the actual and temptation choices in period t + 1 in the

hypothetical situation, where the individual succumbs to temptation in period t.

Our main result from Section 2 is that the decision on the extensive margin is inde-

pendent of β and β̂. The individual deviates from the healthy consumption level xH in

the steady state if and only if xH differs from the “desired” consumption xF . We now

show that this result continues to hold in the presence of self-control. Define xH and xF

as in Section 2. We can then derive the following result.

Proposition 2. Suppose that xH > 0. Then, the steady state actual consumption x fulfills

the following properties:

(a) If and only if xF > xH , the individual overconsumes in steady state: x > xH .

(b) If any only if xF < xH , the individual underconsumes in steady state: x < xH .

(c) If and only if xF = xH , the individual consumes healthy in steady state: x = xH .

If xH = 0, then only cases (a) and (c) exist.

5Similarly to the previous section, we present the Euler equation in the case of positive actual and
temptation consumption levels in (12) in order to simplify the exposition of the model. The complete
Euler equation that takes into account the possibility of a corner solution with zero consumption is
given by Equation (C.29) in Appendix C. Similarly, (13) describes the Euler equation for temptation
consumption in the case of positive consumption. The temptation Euler equation that takes into account
corner cases in given by (C.31) in Appendix C.
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Proof: See Appendix D.

According to Proposition 2, neither the cost of self-control γ nor the degree of temp-

tation 1− β influence the extensive margin. The intuition behind this insight is straight-

forward. The individual’s commitment utility u contains a trade-off between healthy con-

sumption xH and “desired” consumption xF . Hence, the commitment utility-maximizing

consumption deviates from xH if and only if xF 6= xH . The presence of temptation utility

leads to a trade-off between actual and temptation consumption. Because the tempta-

tion discount factor βδ is lower than the discount factor δ, temptation consumption is

larger than actual consumption if there are positive marginal costs of consumption today

(st > sH) and smaller than actual consumption if there are negative marginal costs of

consumption today (st < sH). Therefore, the presence of temptation only determines

the degree of deviation from healthy consumption, given that the individual deviates in

the absence of temptation, i.e., given xF 6= xH . If, however, xF = xH , then the tempta-

tion and actual choices are the same in the steady state. In any case, the present focus

parameters γ and β do not impact the individual’s decision at the extensive margin.

4 A Dual-Self Model

A third type of framework that describes present-focused preferences is the dual-self frame-

work (see, e.g., Thaler and Shefrin, 1981; Bernheim and Rangel, 2004; Benhabib and

Bisin, 2005; Fudenberg and Levine, 2006). In contrast to the time-inconsistent multiple-

self model where the consumer is a different self in each period t, the dual-self models

suppose that two selves co-exist in each period: a short-run and a long-run self. While the

short-run self may be myopic (Fudenberg and Levine, 2006) or addicted (Bernheim and

Rangel, 2004), the long-run self takes the full lifetime utility into account. Note that one

interpretation of the Gul-Pesendorfer preferences is that they also represent a dual-self

model, where the short-run self’s utility is the temptation utility v, while the commitment

utility u describes the long-run self’s preferences (Bryan et al., 2010).

We use the framework introduced by Fudenberg and Levine (2006). In this frame-

work, the short-run self has period t preferences u(x̃t, z̃t, st) = w(x̃t, z̃t)− c(st), where x̃t

and z̃t are the consumption levels of xt and zt, respectively, that the short-run self would
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like to consume. Thus, this self is fully myopic and wishes to choose x̃t, z̃t in order to

maximize the short-run utility u(x̃t, z̃t, st). Using the budget constraint (4) to substitute

z̃t by e− ptx̃t, we derive the first-order condition wx(·)− ptwz(·) ≡ ωx(x̃t) ≤ 0 (with strict

equality when x̃t > 0). Hence, when the price equals the steady state level p, the short-

run self chooses x̃ = xF according to Equation (6). The long-run self chooses the actual

period t consumption level by maximizing the exponentially discounted sum of utilities

U0 =
∞∑
t=0

δt
[
u(xt, zt, st)− γ

(
max
x̃t,z̃t

u(x̃t, z̃t, st)− u(xt, zt, st)

)a]
, γ > 0, a ≥ 1,

(14)

where γ [maxx̃t u(x̃t, z̃t, st)− u(xt, zt, st)]
a represents the cost of self-control, and a ≥ 1

represents the cognitive load of self-control. If a is strictly greater than one, the cost of self-

control is nonlinear and its marginal cost is an increasing function. This feature captures

the psychological evidence that higher self-control is associated with higher cognitive load

(Fudenberg and Levine, 2006).6

We derive the Euler equation in Appendix E. In the case of positive consumption

levels xt, xt+1, it is given by7

δc′(st+1) = ωx(xt)

{
1 + γa

[
max
x̃t,z̃t

u(x̃t, z̃t, st)− u(xt, zt, st)

]a−1}
(15)

−δ(1− d)ωx(xt+1)

{
1 + γa

[
max

x̃t+1,z̃t+1

u(x̃t+1, z̃t+1, st+1)− u(xt+1, zt+1, st+1)

]a−1}
.

We derive the following results.

Proposition 3. Suppose that xH > 0. The steady state consumption x is characterized

by the following conditions:

(a) If xF > xH , then xH < x < xF . The condition xF > xH is necessary and sufficient

for overconsumption: x > xH .

6If a = 1, then the cost of self-control is linear, and the utility function (14) is a special case of the
Krusell et al. (2010) representation of the Gul-Pesendorfer preferences where β = 0.

7When either xt = 0 or xt+1 = 0, the Euler equation is given by Equation (E.13) in Appendix E.
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(b) If xF < xH , then xH > x ≥ xF . The condition xF < xH is necessary and sufficient

for underconsumption: x < xH .

(c) If xF = xH , then xH = x = xF . The condition xF = xH is necessary and sufficient

for healthy consumption: x = xH .

If xH = 0, then only cases (a) and (c) exist.

Proof: See Appendix F.

Hence, the deviation from xH on the extensive margin is independent of the cost

of self-control (γ) and the cognitive load of self-control (a) in the dual-self model of

Fudenberg and Levine (2006). The intuition behind this result is that the preferences of

the long-run and short-run selves are perfectly aligned on the extensive margin. To see

this, note that the short-run self would wish to consume xF in steady state, while the

long-run self chooses x, which is a compromise between xH and xF . Hence, the sign of

x− xH is identical to the sign of xF − xH . Thus, the two selves always agree on whether

they should over-, underconsume, or consume at a healthy level the temptation good

(extensive margin) even though they disagree on how much to deviate, given that they

agreed to deviate (intensive margin).

5 Addictive sin goods

In the previous sections, we neglect one of the major characteristics of some sin goods:

their addictiveness. Sin goods with zero healthy consumption are usually addictive (e.g.,

cigarettes, illegal drugs). In this section, we extend the (β, δ)– model of Section 2 to take

addiction into account. We follow Becker and Murphy (1988) and Gruber and Köszegi

(2001) and assume that utility takes the quadratic form

u(xt, zt, st) = αxxt +
αxx
2
x2t + αxsxtst + αsst +

αss
2
s2t + αzzt +

αzz
2
z2t , (16)

where αx, αz are positive constants, while αxx, αss, αzz are negative. Moreover, αxs > 0

measures the addictiveness of the sin good, as past consumption of addictive goods creates

habits that often increase their marginal utility (Becker and Murphy, 1988; Gruber and
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Köszegi, 2001). For simplicity, we use the budget constraint to substitute zt by e− pxt in

the utility function and express utility as

û(xt, st) ≡ u(xt, e− ptxt, st) (17)

= αxxt +
αxx
2
x2t + αxsxtst + αsst +

αss
2
s2t + αz(e− ptxt) +

αzz
2

(e− ptxt)2.

The marginal utility of the consumption stock st is given by

ûs(xt, st) = αs + αxsxt + αssst. (18)

Equation (18) measures both the marginal utility and the marginal health costs of past

consumption. We redefine the healthy consumption stock sH as the stock that makes

past sin good consumption harmless at the margin when consumption xt equals the level

associated with sH in steady state, i.e., when xt = xH ≡ dsH . Thus, we define sH

implicitly by ûs(ds
H , sH) = 0. Because most addictive goods are likely to have a zero

harmless consumption level, we focus, without loss of generality, on the case xH = sH = 0

in the remaining analysis. This case emerges if

ûs(0, 0) = 0, (19)

that is, if αs = 0 according to (18).8

Furthermore, we again define the “desired” consumption xF as well as its respective

steady state stock sF = xF/d as the consumption level that maximizes the instantaneous

utility. Thus, we define xF by the condition

ûx(x
F , sF ) = 0, (20)

where ûx(xt, st) = αx + αxxxt + αxsst − pt[αz + αzz(e − ptxt)] is the net marginal utility

of current consumption. Analogously to the previous sections, if ûx(0, 0) < 0, then we set

xF = 0.

8The assumption αs = 0 does not affect qualitatively our results regarding the extensive margin
of consumption. A positive healthy consumption stock exists if αs > 0. This case can be analyzed
analogously to the case αs = 0.
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Finally, as in Section 2, we differentiate between sophisticate and naive individuals,

and define them analogously. We again index each type with a superscript i, where

i = s, n, and solve the model similarly to Section 2. The Euler equation in the case of

positive consumption is (see Appendix G for a derivation)9

ûx
(
xit, s

i
t

)
=

βδ

β̂

{
ûx

(
xst+1(β̂), sit+1

)[
1− d+ (1− β̂)

∂xst+1(β̂)

∂sit+1

]
− β̂ûs(xst+1(β̂), sit+1)

}
.

(21)

Equation (21) has the same interpretation as the Euler equation (5). However, there

are two differences. First, the stock of past consumption influences the net marginal

utility of current consumption ûx(·). Second, the current consumption level xt affects the

marginal utility of past consumption ûs(·). While these effects complicate the analysis, it

is again possible to prove that the degrees of present-bias and naiveté (β and β̂) do not

influence the decision to consume unhealthy in steady state. In the following proposition,

we summarize these results and list all possible cases for steady state consumption.

Proposition 4. Suppose that the steady state is stable, such that the convergence factor

satisfies dsit+1/ds
i
t < 1, i = s, n. If xF = xH = 0, then the individual consumes healthy:

xi = xH = xF for i = s, n. If xF > xH = 0, the following cases emerge.

(I) If αxs < min
{
−αss

d
,−αxxd− p2dαzz

}
, then, xF > xi > xH .

(II) If αxs ∈
]
−αxxd− p2dαzz,−αss

d

[
, then, xF > xi = xH .

(III) If αxs ∈
]
−αss

d
,−αxxd− p2dαzz

[
, then, xi > xF > xH .

(IV) If αxs = −αss

d
< −αxxd− p2dαzz, then, xi = xF > xH .

(V) If αxs = −αxxd− p2dαzz < −αss

d
,

then, xi = xH , if additionally αx − p[αz + αzze] ≤ 0,

or xi > xH , if additionally αx − p[αz + αzze] > 0.

9The complete Euler equation that takes into account the possibility of zero consumption in periods
t and t+ 1 is given by Equation (G.5) in Appendix G.
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Proof: See Appendix G.

We discuss first the assumption of a stable steady state (dsit+1/ds
i
t < 1). It places

an upper bound on αxs such that the steady state can be reached from any initial stock

si0 6= si.

The intuition behind the results in Proposition 4 is the following. First, the case

xF = xH leads to healthy steady state consumption, which is identical to the result from

Proposition 1 and has the same interpretation. Second, when xF > xH , there are five

cases, which have the following interpretation. The marginal utility of past consumption,

βδûs(·), is decreasing in the steady state stock of past consumption if αxs < −αss/d.

Moreover, the net marginal utility of current consumption, ûx(·), is decreasing in the

steady state stock of past consumption if αxs < −αxxd−p2dαzz. If these two conditions are

fulfilled, we are in case I. This case is also the situation considered in Proposition 1 in the

absence of habits. Therefore, steady state consumption is characterized by xF > xi > xH ,

as in Section 2.

In case II, the marginal utility of past consumption is decreasing in the steady

state stock (αxs < −αss/d), while the net marginal utility is increasing in si (αxs >

−αxxd− p2dαzz). In this case, the steady state consumption is healthy for any “desired”

level xF ≥ 0. The intuition is that, in this case, habits make the net marginal utility

increasing in the consumption stock. Thus, whenever si ∈]sH , sF [, the individual faces

negative marginal utility of past consumption and negative net marginal utility of current

consumption, both of which point to the need to decrease consumption. Due to the

stability assumption, the sum of marginal utilities is negative also for si ≥ sF . Thus, in

the steady state, the individual chooses to consume healthy, even for xF > 0.

Case III is the opposite to case II, meaning that the marginal utility of past con-

sumption is increasing in the steady state stock, while the net marginal utility of current

consumption is decreasing in the stock of past consumption. In this case, the consumer

consumes unhealthy if xF > xH , as in case I. However, because the marginal utility of

the stock of past consumption is an increasing function (owing to habits), the individual

“overshoots” and consumes above the “desired” level xF .

The two remaining cases in Proposition 4 are special cases. In case IV , the marginal

utility of past consumption is independent of si because the marginal impact of habits
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exactly compensates the marginal health costs: αxs = −αss/d. For this reason, the indi-

vidual perceives the sin good as harmless and chooses consumption to maximize instanta-

neous utility, i.e., xi = xF . In the second special case (case V ), the net marginal utility of

current consumption ûx(·) is not a function of si in the steady state. If αx−p[αz+αzze] ≤ 0,

then ûx(·) ≤ 0 for any si ≥ 0. Because the sin good is harmful, that is, ûs(·) < 0 for any

si > 0, the individual consumes healthy, xi = xH . In the second subcase of the case V ,

we have αx − p[αz + αzze] > 0, which means that the net marginal utility is everywhere

positive, i.e., ûx(·) > 0 for any si ≥ 0. Therefore, the individual chooses to consume

unhealthy in steady state, xi > xH .

Thus, Proposition 4 shows that even when the sin good is addictive, present focus

does not affect the extensive margin. Time-consistent and time-inconsistent individuals

consume unhealthy quantities of addictive sin goods under the same conditions.

6 Conclusions

In this paper, we analyze the determinants of sin goods consumption when individu-

als have present-focused preferences. We find that the extensive margin of unhealthy

consumption is not affected by present focus. This result holds in the quasi-hyperbolic

framework of Laibson (1997), the temptation model of Gul and Pesendorfer (2001), and

the dual-self model of Fudenberg and Levine (2006).

Our results have important implications for public policy. Paternalistic policies that

correct the internality caused by present-bias should only affect the intensive margin of

consumption, but not the extensive margin. In a related paper, we analyze the implica-

tions of our results for the optimal paternalistic tax on unhealthy food, when consumers

are present-biased (Kalamov and Runkel, 2020). There, we show that the optimal pa-

ternalistic tax, which is chosen by a government that maximizes the long-term utility

of consumers, corrects only the intensive margin of obesity among obese people but not

the prevalence of obesity. Moreover, a tax that implements healthy consumption may be

worse than no taxation at all if the consumers’ present-bias is not too strong.

Furthermore, a common feature of the three present-focus frameworks, considered

in this paper, is the prediction of demand for commitment (Ericson and Laibson, 2018).
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A sophisticated individual with (β, δ)– preferences should seek commitment to force its

future selves to stick to the long-term utility-maximizing consumption choices. The same

is true for individuals with Gul-Pesendorfer and dual-self preferences. Our results can

explain the weak demand for commitment contracts in the health domain by the fact that

such contracts seek to promote healthy behavior, such as, e.g., sobriety, smoking cessation,

and healthy eating habits. Healthy behavior is, however, not optimal for a person engaging

in an unhealthy activity irrespective of whether her preferences are present-focused. A

present-focused individual must deviate sufficiently from a patient individual to demand

such a contract.

Moreover, our analysis points to the need for a commitment mechanism that commits

to the consumption that would be optimal in the absence of present focus, instead of

healthy consumption. Present-focused individuals would demand it because it would

increase their long-term utility. However, one problem with such mechanisms is that their

design requires information about the utility functions of individuals, whereas designing

a contract that commits to healthy consumption requires no such information.

Additionally, our results can explain the success of nontraditional policies in treating

drug addiction. Several European countries and Canada implement supervised injectable

heroin (SIH) treatment to treat heroin addicts (EMCDDA, 2012). This treatment is

prescribed to patients who do not respond to traditional treatments or rehabilitation

and allows the patients to self-administer injectable heroin while being fully supervised.

There is strong empirical evidence that, for these patients, SIH is more effective than

traditional treatments (Perneger et al., 1998; van den Brink et al., 2003; March et al.,

2006; Haasen et al., 2007; Oviedo-Joekes et al., 2009; Strang et al., 2010). If the treated

individuals have present-focused preferences, our results give the following explanation for

the effectiveness of SIH. By sticking to an SIH treatment, where the quantity administered

is strictly controlled, the individuals might achieve a higher long-term utility than in the

cases of uncontrolled consumption and zero (healthy) consumption. Hence, individuals

would demand it as a commitment device.
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A Derivation of the Euler equation (5)

To derive the Euler equation (5), we follow Harris and Laibson (2001). Define the current-

value function of a type i individual as W i(sit) and the continuation-value function as

V i(sit). The optimal consumption is derived from the solution of the problem

W i(sit) = max
xit,z

i
t

{
u(xit, z

i
t, s

i
t) + βδV i(sit+1)

}
(A.1)

subject to the constraints xit ≥ 0 and e = zit + ptx
i
t. We follow Knapp (1983) and solve

the maximization problem by defining the Lagrangian

L(xit, s
i
t, λ

i
t) = u(xit, e− ptxit, sit) + βδV i(sit+1) + λitx

i
t, (A.2)

where λit is the Lagrange multiplier associated with the period t nonnegativity constraint,

and we used the budget constraint (4) to replace zit by e− ptxit. Using Equation (1), we

derive the following first-order conditions:

∂L(·)
∂xit

= ωx(x
i
t) + βδV i ′(sit+1) + λit = 0, (A.3)

xit ≥ 0, (A.4)

λitx
i
t = 0, (A.5)

λit ≥ 0, (A.6)

where ω(xit) ≡ w(xit, e− ptxit) and thus ωx(x
i
t) = wx(x

i
t, e− ptxit)− ptwz(xit, e− ptxit).

The continuation-value function of the self in period t, V i(sit+1), is determined by

V i(sit+1) = u(xst+1(β̂), zst+1(β̂), sit+1) + δV i(sit+2). (A.7)

Two comments are necessary. First, Equation (A.7) determines the continuation-value

function of the self in period t and, therefore, the individual discounts exponentially at the

rate δ between periods t+ 1 and t+ 2 in accordance with the lifetime utility (3). Second,

the individual believes that its future selves in periods t+1, t+2, . . . will have self-control

problems β̂. Thus, it expects to be a sophisticated consumer with present-bias β̂ from
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period t + 1 onwards and to consume xst+1(β̂) in that period. Moreover, the consumer

expects to purchase zst+1(β̂) = e− pt+1x
s
t+1(β̂) of the bundle z. We differentiate the above

equation with respect to sit+1 and derive the following value for V i ′(sit+1):

V i ′(sit+1) = ωx(x
s
t+1(β̂))

∂xst+1(β̂)

∂sit+1

− c′(sit+1) + δV i ′(sit+2)

[
1− d+

∂xst+1(β̂)

∂sit+1

]
,(A.8)

where ωx(x
s
t+1(β̂)) = wx(x

s
t+1(β̂), e− pt+1x

s
t+1(β̂))− pt+1wz(x

s
t+1(β̂), e− pt+1x

s
t+1(β̂)). The

next step in deriving the optimal stream of consumption is to solve the maximization

problem that the self in t expects to solve in t+ 1, which is given by

W i(sit+1) = max
xst+1,z

s
t+1

{
u(xst+1, z

s
t+1, s

i
t+1) + β̂δV i(sit+2)

}
(A.9)

subject to xst+1 ≥ 0 and the period t + 1 budget constraint. The only difference between

Equations (A.1) and (A.9) is that the expected self-control problem β̂ may differ from

the actual present-bias β. Defining the Lagrangian analogously to (A.2) and denoting the

period t + 1 Lagrange multiplier as λst+1(β̂), we get the following first-order conditions

that the type i individual expects in period t+ 1:

∂L(·)
∂xst+1

= ωx(x
s
t+1(β̂)) + β̂δV i′(sit+2) + λst+1(β̂) = 0, (A.10)

xst+1(β̂) ≥ 0, (A.11)

λst+1(β̂)xst+1(β̂) = 0, (A.12)

λst+1(β̂) ≥ 0. (A.13)

We use Equations (A.3) and (A.10) to replace the terms V i ′(sit+1) and V i ′(sit+2) in (A.8),

and derive the Euler equation

ωx(x
i
t) + λit =

βδ

β̂

{
ωx(x

s
t+1(β̂))

[
1− d+ (1− β̂)

∂xst+1(β̂)

∂sit+1

]
+ β̂c′(sit+1)

+λst+1(β̂)

[
1− d+

∂xst+1(β̂)

∂sit+1

]}
. (A.14)
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Finally, we simplify (A.14) by proving that

λst+1(β̂)
∂xst+1(β̂)

∂sit+1

= 0. (A.15)

To prove (A.15), differentiate (A.12) with respect to sit+1:

∂λst+1(β̂)

∂sit+1

xst+1(β̂) + λst+1(β̂)
∂xst+1(β̂)

∂sit+1

= 0. (A.16)

If λst+1(β̂) = 0, then (A.15) is satisfied. If λst+1(β̂) > 0, then according to (A.12), xst+1(β̂) =

0, and thus (A.16) becomes equivalent to (A.15). Hence, (A.15) holds. Using (A.15) to

simplify (A.14), we get

ωx(x
i
t) + λit =

βδ

β̂

{
ωx(x

s
t+1(β̂))

[
1− d+ (1− β̂)

∂xst+1(β̂)

∂sit+1

]
+ β̂c′(sit+1) + λst+1(β̂)(1− d)

}
.

(A.17)

In the case of positive current and expected consumption, λit = λst+1(β̂) = 0 and (A.17) is

identical to (5).

B Proof of Proposition 1

To prove Proposition 1, we start by deriving the term ∂xst+1(β̂)/∂sit+1, which is implicitly

determined by the first-order condition (A.10). If the solution to (A.10) contains λst+1(β̂) >

0, we have xst+1(β̂) = 0 and thus ∂xst+1(β̂)/∂sit+1 = 0. If λst+1(β̂) = 0 and xst+1(β̂) ≥ 0,

then totally differentiating (A.10) with respect to xst+1(β̂) and sit+1 gives

∂xst+1(β̂)

∂sit+1

= −(1− d)
β̂δV i ′′(sit+2)

ωxx(xst+1(β̂)) + β̂δV i ′′(sit+2)
∈]− (1− d), 0[, (B.1)

where

ωxx(x
s
t+1(β̂)) ≡ wxx − 2pt+1wxz + p2t+1wzz =

wxxwzz − w2
xz + (wxz − pt+1wzz)

2

wzz
< 0.
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(B.2)

Equation (B.2) is negative owing to the strict concavity of w(xt, zt) (i.e., wxxwzz −w2
xz >

0, wzz < 0), while (B.1) is in the interval ]−(1−d), 0[ due to (B.2) and the strict concavity

of the continuation-value function (V i ′′ < 0).10

Moreover, for a given constant price p, the steady state consumption xi and con-

sumption stock si are determined by Equations (1) and (A.17) and are given by

dsi = xi, (B.3)

0 = ωx(x
i) + λ

i − ωx(xs(β̂))
βδ

β̂

[
1− d+ (1− β̂)

∂xst+1(β̂)

∂sit+1

]
− λsβδ

β̂
(1− d)− βδc′(si).

(B.4)

Note that in the case i = s, the individual is sophisticated and xs = xs(β̂). In the case of a

naive consumer, xs(β̂) is additionally determined by the Euler equation of a hypothetical

sophisticate individual with present-bias β̂.

Consider now the case of a positive steady state consumption, xi > 0, xs(β̂) > 0, and

analyze the steady state Euler equation (B.4). In this case, λ
i

= λ
s
(β̂) = 0. Denote the

resulting expression in (B.4) as Φi(si) and use (B.3) to re-write it as

Φi(si) = ωx(ds
i)− ωx(dss(β̂))

βδ

β̂

[
1− d+ (1− β̂)

∂xst+1(β̂)

∂sit+1

]
− βδc′(si) = 0,(B.5)

where we used (B.3) to additionally replace xs(β̂) by an expression containing the steady

state stock consistent with this consumption level: dss(β̂). We prove that Φi ′(si) < 0.

To do so, evaluate (A.8) and (A.10) in a steady state with positive consumption and use

them to simplify (B.5):

Φi(si) = ωx(ds
i) + βδV i ′(si) = 0. (B.6)

10A sufficient condition for the solution of the maximization problem (A.1) to maximize utility is that
U(xt, e− ptxt, st) is strictly concave. In this case, Ux(xt, e− ptxt, st) = 0 gives a global maximum for a
fixed st and this maximum is stricty concave in st, i.e., V i ′′ < 0 (Gruber and Köszegi, 2001). Furthermore,

∂xst+1(β̂)/∂sit+1 is negative due to the absence of addiction. When the sin good is addictive, then this
term may become positive (Gruber and Köszegi, 2001). We consider addiction in Section 5.
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The derivative of (B.6) with respect to si is

Φi ′(si) = ωxx(ds
i)d+ βδV i ′′(si) < 0, (B.7)

where we already proved ωxx(·) < 0 in (B.2) and V i ′′(·) < 0 due to the strict concavity of

the utility function (see footnote 10).

We now start with the proof of Proposition 1. From Equation (B.3), we know that

xs = dss. Moreover, sH and sF are the steady state stock levels associated with healthy

and “desired” steady state consumption, respectively, i.e., sH = xH/d and sF = xF/d.

Thus, ss, sH , and sF are defined in equal proportions to xs, xH , and xF , respectively.

Therefore, we can refer interchangeably to the stock and consumption variables in the

proof of Proposition 1.

We start by proving parts (a) and (c) for the case sH = 0, and analyze first the

sophisticate individual. Evaluate the Euler equation (B.4) when i = s, using xs = dss:

ωx(ds
s)

{
1− δ

[
1− d+ (1− β)

∂xst+1

∂sst+1

]}
+ λ

s
[1− δ(1− d)]− βδc′(ss) = 0. (B.8)

Suppose first that xF > 0 and assume xs = ss = 0. In this case, ωx(ds
s) = ωx(0) > 0

owing to ωxx(·) < 0. Moreover, the term in curvy brackets on the left-hand side of (B.8) is

positive due to ∂xst+1/∂s
s
t+1 ∈]− (1− d), 0]. Also, λ

s ≥ 0 from (A.6). Moreover, c′(0) = 0

due to our assumption sH = 0. Thus, the left-hand side of (B.8) is positive. This is a

contradiction and we conclude that if xF > xH = 0, then xs = 0 = xH is not possible.

In the case ss > 0, λ
s

= 0 from (A.5); and the left-hand side of (B.8) is equivalent

to Φs(ss). Moreover, evaluated at xs = xF > 0, the left-hand side is negative due to

ωx(x
F ) = 0, λ

s
= 0, c′(sF ) > 0. Due to Φs ′(ss) < 0, we conclude that (B.8) can only be

satisfied for ss < sF . Analogously, xs < xF . Since we already know that at xs = 0 the

left-hand side of (B.8) is positive, we conclude that, in the case xF > 0 = xH , we must

have xF > xs > 0 = xH .

Suppose now that xF = 0 and assume xs > 0. In this case ωx(x
s) < 0 owing to

ωxx(·) < 0. Additionally, λ
s

= 0 from (A.5). Furthermore, c′(ss) > 0 owing to sH = 0.

Thus, the left-hand side of (B.8) is negative. This is a contradiction and we conclude

that in the case of xF = xH = 0, xs > 0 cannot be optimal. On the other hand,
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xs = 0 = xF = xH satisfies (B.8) with λ
s ∝ −ωx(0) ≥ 0.

From the discussion in the two previous paragraphs, we conclude that xs = xH = 0

if and only if xF = xH = 0, and xs > xH = 0 if and only if xF > xH = 0.

We now turn to the case sH > 0 and analyze the sophisticate individual. Consider

part (a) of Proposition 1. Suppose sF > sH > 0 and assume the steady state satisfies

ss /∈]sH , sF [. The case ss ≤ sH < sF makes the left-hand side of (B.8) positive due

to ωx(ds
s) > 0, c′(ss) ≤ 0 and λ

s ≥ 0. The case ss ≥ sF > sH makes the left-hand

side of (B.8) negative because it implies ωx(ds
s) ≤ 0, c′(ss) > 0 and λ

s
= 0. Therefore,

ss /∈]sH , sF [ cannot be an equilibrium when sF > sH . We conclude that if sF > sH > 0

holds, then sF > ss > sH . Thus, sF > sH is sufficient for overconsumption ss > sH . To

prove that sF > sH is also necessary for overconsumption, suppose that the opposite is

true. That is, suppose sF ≤ sH and ss > sH . The steady state ss > sH ≥ sF implies that

the left-hand side of (B.8) is negative owing to c′(ss) > 0, ωx(ds
s) < 0 and λ

s
= 0. This

is a contradiction and we conclude that sF > sH is also necessary for overconsumption in

steady state.

We now turn to part (b) of Proposition 1 for a sophisticate individual. We use

again proof by contradiction. Suppose that 0 ≤ sF < sH and ss /∈]sF , sH [. We already

know from the proof of part (a) that if sF ≤ sH , then ss > sH contradicts (B.8). Thus,

the case s > sH is not possible when sF < sH . Moreover, s = sH > sF ≥ 0 implies

c′(ss) = 0, λ
s

= 0 and ωx(ds
s) < 0. Thus, s = sH > sF ≥ 0 makes the left-hand side

of (B.8) negative, which is a contradiction. Consider now the case ss ≤ sF < sH . This

case implies c′(ss) < 0, λ
s ≥ 0. Moreover, it implies ωx(ds

s) ≥ 0 if ωx(ds
F ) = 0; and

ωx(ds
s) < 0 if sF = 0 and ωx(0) < 0. Thus, the left-hand side of (B.8) is positive for all

possible cases of sF , except for the case sF = 0 when ωx(0) < 0 is sufficiently negative.

Thus, there is a contradiction whenever ωx(0) ≥ 0. We conclude that if sF < sH , then

ss ∈]sF , sH [ if ωx(0) ≥ 0. If ωx(0) < 0, then either ss = sF = 0 < sH and

λ
s

=
−ωx(0)

{
1− δ

[
1− d+ (1− β)

∂xst+1

∂sst+1

]}
+ βδc′(0)

1− δ(1− d)
, (B.9)

if ωx(0) is sufficiently negative for the numerator of (B.9) to be nonnegative, or ss ∈
]sF , sH [, if the numerator in (B.9) is negative. This proves the sufficiency part in part (b).
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To prove the necessary part, assume the opposite holds; that is, sF ≥ sH and ss < sH .

We already know from part (a) of Proposition 1 that if sF > sH , then ss < sH is not

possible. If sF = sH , then ss < sH makes the left-hand side of (B.8) positive (due to

c′(ss) < 0, ωx(ds
s) > 0 and λ

s ≥ 0). This is a contradiction. We conclude that sF < sH

is necessary and sufficient for underconsumption by a sophisticate individual: ss < sH .

To prove part (c) of Proposition 1, it is easy to see that, if sF = sH > 0, then

ss = sH = sF and λ
s

= 0 satisfy (B.8). This proves the sufficiency part. Moreover, from

parts (a) and (b) from Proposition 1, we know that ss = sH is not possible for sF 6= sH .

Thus, sF = sH is both necessary and sufficient for healthy consumption by a sophisticate

individual. This concludes the proof for sophisticate individuals.

We turn now to the naive individual. In this case, the steady state is determined by

ωx(ds
n) + λ

n − λs(β̂)
βδ

β̂
(1− d)− βδc′(sn)− ωx(dss(β̂))

βδ

β̂

[
1− d+ (1− β̂)

∂xst+1(β̂)

∂snt+1

]
= 0,

(B.10)

where ss(β̂) is determined by Equation (B.8) when β = β̂.

Analogously to the analysis of a sophisticate individual, we first consider the case

xH = 0. Suppose xF > 0 = xH . Then, the analysis of sophisticate individuals tells us

that xF > xs(β̂) = dss(β̂) > 0 and λ
s
(β̂) = 0. We use proof by contradiction. Assume

that sn = 0. In this case, ωx(0) > 0 (due to xF > 0), λ
n ≥ 0, and c′(0) = 0 due to xH = 0.

Thus, ωx(0) > ωx(ds
s(β̂)) > 0 due to xF > xs(β̂) = dss(β̂) > 0. Thus, the left-hand side

of (B.10) becomes positive:

λ
n

+ ωx(0)− ωx(dss(β̂))
βδ

β̂

[
1− d+ (1− β̂)

∂xst+1(β̂)

∂snt+1

]
> 0 for xF > 0 = xH .

(B.11)

The inequality (B.11) contradicts the Euler equation (B.10). We conclude that if xF >

0 = xH , then sn = 0 cannot be a steady state. Also, the left-hand side of (B.10) is negative

for sn = sF (since it means ωx(ds
n) = λ

n
= 0 and c′(sn) > 0). Owing to Φn ′(sn) < 0

(from (B.7)), the steady state must satisfy sn < sF . Since, additionally, sn cannot be zero
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(owing to (B.11)), we conclude that sn ∈]0, sF [ solves (B.10).

Consider now the case xF = 0 = xH . In this case, the analysis of sophisticate

individuals tells us that xs(β̂) = dss(β̂) = 0 and λ
s
(β̂) ≥ 0. We prove sn = 0 by

contradiction. Assume sn > 0. Then, ωx(ds
n) < 0, λ

n
= 0 and c′(sn) > 0. Moreover,

ωx(ds
n) < ωx(ds

s(β̂)) ≤ 0 due to xF = dss(β̂) = 0. Thus, the left-hand side of (B.10)

is negative, which is a contradiction. We conclude that if xF = 0 = xH , then sn > 0

is not possible. If ωx(0) = 0, (B.10) is satisfied for sn = λ
n

= 0. If ωx(0) < 0, then

sn = 0, λ
n
> 0 satisfy (B.10). Hence, sn = 0 is the unique solution to (B.10) in the case

xF = xH = 0.

We conclude that if xH = 0, the condition xF > xH is both necessary and sufficient

for xF > xn > 0 and xF = xH is both necessary and sufficient for xn = 0.

Consider now the case sH > 0. To prove part (a) from Proposition 1, we analyze

the situation where sF > sH > 0. From our discussion on sophisticates, we know that

if sF > sH , then ss(β̂) ∈]sH , sF [. Thus, λ
s
(β̂) = 0 in (B.10). Assume sn /∈]sH , sF [. The

case sn ≤ sH implies λ
n ≥ 0, c′(sn) ≤ 0, as well as sn < ss(β̂) < sF . The latter inequality

implies ωx(ds
n) > ωx(ds

s(β̂)) > 0. Thus, the left-hand side of (B.10) is positive, which is

a contradiction. The case sn ≥ sF implies λ
n

= 0, c′(sn) > 0, and ωx(ds
n) ≤ 0. Moreover,

we already know that, in this case, ss(β̂) ∈]sH , sF [, which implies ωx(ds
s(β̂)) > 0. Thus,

the left-hand side of (B.10) is negative, which is a contradiction. We conclude that if

sF > sH , then sn ∈]sH , sF [. In other words, sF > sH is sufficient for a steady state with

overconsumption (sn > sH). To prove that it is also necessary, suppose that the opposite

holds, i.e., sF ≤ sH and sn > sH . From our discussion on sophisticate consumers, we

know that sF ≤ sH is necessary and sufficient for sF ≤ ss(β̂) ≤ sH . Thus, sn > sH ≥ sF

implies λ
n

= 0, c′(sn) > 0 and sn > ss(β̂) ≥ sF . The latter inequality means that

ωx(ds
n) < ωx(ds

s(β̂)) ≤ 0. Thus, the left-hand side of (B.10) is negative which is a

contradiction. Therefore, sF > sH is both necessary and sufficient for a steady state with

overconsumption. This concludes the proof of part (a) for a naive individual.

To prove part (b) from Proposition 1 for a naive individual, assume 0 ≤ sF < sH

and sn /∈]sF , sH [. In the case 0 ≤ sF < sH , we know that a sophisticate individual’s

consumption satisfies ss(β̂) ∈ [sF , sH [ and λ
s
(β̂) = 0 (except for the case ωx(0) < 0,

where λ
s
(β̂) > 0 may emerge). From the previous paragraph, we know that if sF ≤ sH ,
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then sn > sH cannot be a steady state. Thus, in the case 0 ≤ sF < sH , sn > sH is

not possible. Moreover, sn = sH > sF would make the left-hand side of (B.10) negative

due to λ
n

= 0, c′(sn) = 0 and ωx(ds
n) < ωx(ds

s(β̂)) ≤ 0. The case sn ≤ sF < sH

also contradicts (B.10) if ωx(0) ≥ 0. The reason is that in this case λ
s
(β̂) = 0, ss(β̂) ∈

]sF , sH [, c′(sn) < 0, λ
n ≥ 0, ωx(ds

n) ≥ 0 > ωx(ds
s(β̂)) and the left-hand side of (B.10) is

positive. On the other hand, if ωx(0) < 0, then sn = sF = 0 < sH is a possible solution

to (B.10). We conclude that if 0 ≤ sF < sH , then sF ≤ sn < sH . This also proves that

sF < sH is sufficient for underconsumption by a naive individual: sn < sH . To prove that

sF < sH is also necessary for underconsumption, assume that sF ≥ sH > 0 and sn < sH .

We already know that when sF ≥ sH > 0, the sophisticate’s consumption stock satisfies

sH ≤ ss(β̂) ≤ sF with λ
s
(β̂) = 0. Thus, sn < sH would imply sn < ss(β̂) ≤ sF and thus

ωx(ds
n) > ωx(ds

s(β̂)) ≥ 0. Moreover, sn < sH means λ
n ≥ 0 and c′(sn) < 0. Thus, the

left-hand side of (B.10), in this case, is positive, which is a contradiction. Thus, sF < sH

is also necessary for underconsumption by a naive individual.

It remains to prove part (c) from Proposition 1 for the naive individual when sH >

0. First, we know from parts (a) and (b) that xF 6= xH is incompatible with healthy

consumption. Moreover, if xF = xH > 0, then sn = ss(β̂) = sH = sF and λ
n

= λ
s
(β̂) = 0

satisfy both (B.8) and (B.10). Thus, xF = xH is both sufficient and necessary for a

healthy consumption. This concludes the proof of Proposition 1.

C Derivation of the Euler Equations (12) and (13)

To derive Equations (12) and (13), we begin by restating the maximization problem:

W (st) = max
xt,zt

{
(1 + γ)u(xt, zt, st) + δ(1 + βγ)W (st+1)

−γmax
x̃t,z̃t

{
u(x̃t, z̃t, st) + βδW (s̃t+1)

}}
, (C.1)

subject to

xt ≥ 0, (C.2)

zt + ptxt = e, (C.3)
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z̃t + ptx̃t = e, (C.4)

st+1 = xt + (1− d)st, (C.5)

s̃t+1 = x̃t + (1− d)st. (C.6)

Analogously to Appendix A, we define the Lagrangian

L(xt, st, λt) = (1 + γ)u(xt, e− ptxt, st) + δ(1 + βγ)W (st+1)

−γmax
x̃t

{[
u(x̃t, e− ptx̃t, st) + βδW (s̃t+1)

]}
+ λtxt, (C.7)

where λt is the Lagrange multiplier. The first-order conditions are

∂L(·)
∂xt

= (1 + γ)ωx(xt) + δ(1 + βγ)W ′(st+1) + λt = 0, (C.8)

xt ≥ 0, (C.9)

λtxt = 0, (C.10)

λt ≥ 0, (C.11)

where ωx(xt) = wx(xt, e − ptxt) − ptwz(xt, e − ptxt). The value function W (st+1) solves

the maximized Bellman equation

W (st+1) = (1 + γ)u(xt+1, e− pt+1xt+1, st+1) + δ(1 + βγ)W (st+2)

−γmax
x̃t+1

{
u(x̃t+1, e− pt+1x̃t+1, st+1) + βδW (s̃t+2)

}
, (C.12)

where st+2 and s̃t+2 are defined analogously to st+1 and s̃t+1 in Equations (C.5)-(C.6).

The derivative of (C.12) with respect to st+1 is given by

W ′(st+1) = [(1 + γ)ωx(xt+1) + δ(1 + βγ)W ′(st+2)]
∂xt+1

∂st+1

− (1 + γ)c′(st+1)

+δ(1 + βγ)W ′(st+2)(1− d)− γ [ωx(x̃t+1) + βδW ′(s̃t+2)]
∂x̃t+1

∂st+1

+γc′(st+1)− γβδW ′(s̃t+2)(1− d). (C.13)
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Moreover, by lagging the first-order conditions (C.8)-(C.11) one period, we get

(1 + γ)ωx(xt+1) + δ(1 + βγ)W ′(st+2) + λt+1 = 0, (C.14)

together with xt+1 ≥ 0, λt+1xt+1 = 0, λt+1 ≥ 0, where λt+1 is the Lagrange multiplier

associated with the choice of xt+1.

We now derive the optimal temptation consumption. It is determined by the maxi-

mization problem

max
x̃t,z̃t

u(x̃t, z̃t, st) + βδW (s̃t+1), (C.15)

subject to x̃t ≥ 0 and the period t budget constraint. Moreover, s̃t+1 is given by Equation

(C.6). Define the Lagrangian as

L(x̃t, st, λ̃t) = u(x̃t, e− ptx̃t, st) + βδW (s̃t+1) + λ̃tx̃t, (C.16)

where λ̃t is the Lagrange multiplier. The first-order conditions are

∂L(·)
∂x̃t

= ωx(x̃t) + βδW ′(s̃t+1) + λ̃t = 0, (C.17)

x̃t ≥ 0, (C.18)

λ̃tx̃t = 0, (C.19)

λ̃t ≥ 0. (C.20)

In the hypothetical situation that the consumer succumbs to temptation in period t, the

maximized Bellman equation in period t+ 1 takes the form

W (s̃t+1) = (1 + γ)u(xht+1, e− pt+1x
h
t+1, s̃t+1) + δ(1 + βγ)W (sht+2)

−γmax
x̃ht+1

{
u(x̃ht+1, e− pt+1x̃

h
t+1, s̃t+1) + βδW (s̃ht+2)

}
, (C.21)

where xht+1 is the actual consumption choice in period t+ 1 in the hypothetical situation

that the individual succumbs to temptation in t, while x̃ht+1 is the optimal temptation

choice in period t+ 1 in the same situation. The hypothetical stock levels are determined
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by

sht+2 = xht+1 + (1− d)s̃t+1, (C.22)

s̃ht+2 = x̃ht+1 + (1− d)s̃t+1. (C.23)

The derivative of (C.21) with respect to s̃t+1 is

W ′(s̃t+1) =
[
(1 + γ)ωx(x

h
t+1) + δ(1 + βγ)W ′(sht+2)

] ∂xht+1

∂s̃t+1

− (1 + γ)c′(s̃t+1)

+δ(1 + βγ)W ′(sht+2)(1− d)− γ
[
ωx(x̃

h
t+1) + βδW ′(s̃ht+2)

] ∂x̃ht+1

∂s̃t+1

+γc′(s̃t+1)− γβδW ′(s̃ht+2)(1− d). (C.24)

The hypothetical actual consumption xht+1 is determined analogously to xt+1 in Equation

(C.14):

(1 + γ)ωx(x
h
t+1) + δ(1 + βγ)W ′(sht+2) + λht+1 = 0, (C.25)

together with xht+1 ≥ 0, λht+1x
h
t+1 = 0, λht+1 ≥ 0, where λht+1 is the Lagrange multiplier

associated with the choice of xht+1.

The hypothetical temptation consumption x̃ht+1 is the argument that solves

max
x̃ht+1

u(x̃ht+1, e− pt+1x̃
h
t+1, s̃t+1) + βδW (s̃ht+2), (C.26)

subject to x̃ht+1 ≥ 0. The first-order conditions with respect to x̃ht+1 are

ωx(x̃
h
t+1) + βδW ′(s̃ht+2) + λ̃ht+1 = 0, (C.27)

together with x̃ht+1 ≥ 0, λ̃ht+1x̃
h
t+1 = 0, λ̃ht+1 ≥ 0, where λ̃ht+1 is the Lagrange multiplier

associated with the choice of x̃ht+1.

Use now Equations (C.8), (C.14), and (C.17) lagged by one period to substitute for
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the W ′(·) terms in Equation (C.13). The resulting expression is

ωx(xt) +
λt

1 + γ
=

δ(1 + βγ)

1 + γ

{
(1− d)ωx(xt+1) + c′(st+1) + (1− d)(λt+1 − γλ̃t+1)

+γ(1− d)
[
ωx(xt+1)− ωx(x̃t+1)

]
+λt+1

∂xt+1

∂st+1

− γλ̃t+1
∂x̃t+1

∂st+1

}
. (C.28)

Analogously to Appendix A, Equations (A.15) and (A.16), we can prove that λt+1(∂xt+1/∂st+1) =

0 and λ̃t+1(∂x̃t+1/∂st+1) = 0. Thus, the third row of (C.28) vanishes and it simplifies to

ωx(xt) +
λt

1 + γ
=

δ(1 + βγ)

1 + γ

{
(1− d)ωx(xt+1) + c′(st+1) + (1− d)(λt+1 − γλ̃t+1)

+γ(1− d)
[
ωx(xt+1)− ωx(x̃t+1)

]}
. (C.29)

In the case of strictly positive actual and temptation consumption levels, λt = λt+1 =

λ̃t+1 = 0 and (C.29) simplifies to Equation (12).

To find the Euler equation (13), use (C.17), (C.25), and (C.27) to substitute for the

W ′(·) terms in Equation (C.24). The resulting expression is

ωx(x̃t) + λ̃t = βδ

{
(1− d)ωx(x

h
t+1) + c′(s̃t+1) + (1− d)(λht+1 − γλ̃ht+1) (C.30)

+γ(1− d)
[
ωx(x

h
t+1)− ωx(x̃ht+1)

]
+ λht+1

∂xht+1

∂s̃t+1

− γλ̃ht+1

∂x̃ht+1

∂s̃t+1

}
.

Similarly to Equation (C.28), we can prove λht+1(∂x
h
t+1/∂s̃t+1) = 0 and λ̃ht+1(∂x̃

h
t+1/∂s̃t+1) =

0 by following the proof laid out in Appendix A, Equations (A.15), (A.16). Thus, (C.30)

simplifies to

ωx(x̃t) + λ̃t = βδ
{

(1− d)ωx(x
h
t+1) + c′(s̃t+1) + (1− d)(λht+1 − γλ̃ht+1)

+γ(1− d)
[
ωx(x

h
t+1)− ωx(x̃ht+1)

]}
. (C.31)

Finally, in the case of positive consumption levels x̃t, x
h
t+1, x̃

h
t+1, we have λ̃t = λht+1 =

λ̃ht+1 = 0 and (C.31) simplifies to Equation (13).
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D Proof of Proposition 2

Suppose the consumer reaches steady state consumption x with a corresponding steady

state stock s = x/d. This is only possible if all the hypothetical consumption levels are

also constant. Denote by x̃ the steady state value of x̃t. Furthermore, we denote the

steady state Lagrange multipliers associated with x and x̃ as λ, λ̃. We use Equation (C.6)

to define the following hypothetical steady state stock level:

s̃ = (1− d)s+ x̃. (D.1)

Now, we rewrite Equations (C.8), (C.13), (C.17) in steady state as11

(1 + γ)ωx(x) + λ = −δ(1 + βγ)W ′(s), (D.2)

γβδ(1− d)
[
W ′(s̃)−W ′(s)

]
= −c′(s)− [1− δ(1− d)]W ′(s), (D.3)

ωx(x̃) + λ̃ = −βδW ′(s̃), (D.4)

We furthermore rewrite the Euler equation (C.29) in steady state:

0 = (1 + γ)ωx(x)

[
1− δ(1− d)(1 + βγ)

1 + γ

]
+ λ+ γδ(1− d)(1 + βγ)

[
ωx(x̃)− ωx(x)

]
+δ(1− d)(1 + βγ)(γλ̃− λ)− δ(1 + βγ)c′(s). (D.5)

Part (a) of Proposition 2 claims that xF > xH is both necessary and sufficient for

x > xH . We use proof by contradiction. Suppose xF > xH and assume x ≤ xH . These

inequalities imply x ≤ xH < xF . Moreover, from the definitions of s, sH and sF , we have

s ≤ sH < sF . Therefore, c′(s) ≤ 0. Moreover, x < xF implies ωx(x) > 0 (we proved

that ωxx(·) < 0 in Equation (B.2) in Appendix B). Using Equation (D.2), ωx(x) > 0,

and λ ≥ 0 from (C.11), we get W ′(s) < 0. Together c′(s) ≤ 0 and W ′(s) < 0 imply

that the right-hand side of (D.3) is positive. Therefore, the left-hand side must also be

positive and thus W ′(s̃) > W ′(s). Due to the strict concavity of u(xt, zt, st), the value

11When evaluating (C.13) in steady state, we take into account that the terms containing ∂xt+1/∂st+1

and ∂x̃t+1/∂st+1 are equal to λt+1(∂xt+1/∂st+1) and λ̃t+1(∂x̃t+1/∂st+1) and are thus equal to zero (see
the paragraph after (C.28) for a derivation).
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function is concave in the stock of past consumption (W ′′ < 0), and the last inequality

implies s̃ < s, i.e., x̃ < x. Suppose xH = 0. Then, x ≤ xH = 0 can only be fulfilled

at x = 0 and x̃ < x = 0 is a contradiction. Thus, if xF > xH = 0, we must have

x > xH = 0. Suppose now xH > 0. In this case x̃ < x and x < xF give x̃ < xF . Hence,

ωx(x̃) > ωx(x) > 0. Moreover, x̃ < x implies that x > 0 and thus λ = 0. Together,

c′(s) ≤ 0, ωx(x̃) > ωx(x) > 0, λ = 0 and λ̃ ≥ 0 from (C.20), however, make the right-hand

side of (D.5) positive. This is a contradiction. We conclude that if xF > xH ≥ 0, then it

must be true that x > xH . This proves the sufficiency part.

To show that xF > xH is also necessary for x > xH , suppose xF ≤ xH and assume

the steady state is characterized by overconsumption: x > xH . Thus, x > xH ≥ xF and,

analogously, s > sH ≥ sF . The inequality s > sH implies c′(s) > 0. The inequality

x > xF , together with xF ≥ 0 by definition, leads to ωx(x) < 0 and λ = 0. Therefore,

according to (D.2), we have W ′(s) > 0. Equation (D.3), c′(s) > 0, and W ′(s) > 0

together imply W ′(s̃) < W ′(s). Therefore, s̃ > s due to the concavity of the value

function. Consequently, x̃ > x > xF ≥ 0 and ωx(x̃) < ωx(x). Moreover, x̃ > 0 means

λ̃ = 0. However, ωx(x̃) < ωx(x) < 0, c′(s) > 0 and λ = λ̃ = 0 make the right-hand side of

(D.5) negative. This is a contradiction. Therefore, we conclude that xF > xH is necessary

for a steady state of overconsumption: x > xH .

Next, we prove part (b) of Proposition 2, which states that if and only if xF < xH , is

there underconsumption: x < xH . First, we prove that xF < xH is sufficient for x < xH .

From the proof of part (a), we already know that if xF ≤ xH , then x > xH is not possible.

Thus, if xF < xH , then x > xH cannot hold. Hence, it remains to prove that if xF < xH ,

then x = xH is not possible. We use proof by contradiction. Assume that xF < xH and

x = xH > xF . Thus, c′(s) = 0 and ωx(x) < 0. Moreover, λ = 0 due to x > xF ≥ 0. Thus,

W ′(s) > 0 according to (D.2) and W ′(s̃) < W ′(s) according to (D.3). The last inequality

and the concavity of the value function imply s̃ > s and thus x̃ > x. The last inequality

implies ωx(x̃) < ωx(x) and λ̃ = 0. Together c′(s) = 0, ωx(x) < 0, ωx(x̃) < ωx(x), and

λ = λ̃ = 0 make the right-hand side of (D.5) negative, which is a contradiction. We

conclude that if xF < xH , then x < xH must hold. This proves the sufficiency part.

To prove that xF < xH is also necessary for underconsumption (x < xH), suppose that

the opposite holds, i.e., suppose xF ≥ xH and x < xH . We already know from the proof of
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part (a) of Proposition 2 that if xF > xH , then x ≤ xH cannot hold. Thus, xF > xH and

x < xH cannot be simultaneously true. It remains to show that xF = xH is incompatible

with x < xH . Suppose that they are satisfied simultaneously, i.e., x < xH = xF . By the

definitions of xH and xF , we must have c′(s) < 0 and ωx(x) > 0. Furthermore, λ ≥ 0, such

that (D.2) implies W ′(s) < 0. Thus, the right-hand side of (D.3) is positive, which implies

W ′(s̃) > W ′(s). Thus, s̃ < s due to the concavity of the value function. Hence, λ̃ ≥ 0,

while λ = 0 because s̃ < s requires a strictly positive s. Moreover, ωx(x̃) > ωx(x) due to

the concavity of the function ω(x). Together c′(s) < 0, ωx(x̃) > ωx(x), ωx(x) > 0, λ = 0

and λ̃ ≥ 0 make the right-hand side of (D.5) positive, which is a contradiction. Hence,

xF ≥ xH is incompatible with x < xH . We conclude that xF < xH is both necessary

and sufficient for underconsumption: x < xH . This concludes the proof of part (b) of

Proposition 2.

To prove part (c), note first that if ωx(0) ≥ 0, then in the case xF = xH , x = x̃ =

xH = xF together with λ = λ̃ = 0 lead to c′(s) = ωx(x) = ωx(x̃) = 0 and satisfy Equations

(D.2)-(D.5). If ωx(0) < 0, then xF = 0 and xF = xH is possible only for xH = 0. In this

case, x = x̃ = xH = xF = 0 together with λ = −(1 + γ)wx(0) > 0, λ̃ = −ωx(0) > 0 satisfy

Equations (D.2)-(D.5). Thus, xF = xH is sufficient for healthy steady state consumption.

Moreover, from the proofs of parts (a) and (b), we know that if xF 6= xH , then x = xH

is not possible. We conclude that if and only if xF = xH , is steady state consumption

healthy.

E Derivation of the Euler Equation (15)

To derive Equation (15), we begin by defining the value function of the long-run self,

V (st), as

V (st) = max
xt,zt

{
u(xt, zt, st)− γ

[
max
x̃t,z̃t

u(x̃t, z̃t, st)− u(xt, zt, st)

]a
+ δV (st+1)

}
,(E.1)

subject to xt ≥ 0 and e = zt + ptxt. We define the Lagrangian as

L(xt, st, λt) = u(xt, e− ptxt, st)− γ
[
max
x̃t,z̃t

u(x̃t, z̃t, st)− u(xt, e− ptxt, st)
]a
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+δV (st+1) + λtxt, (E.2)

where λt is the Lagrange multiplier. The first-order conditions of the long-run self are

∂L(·)
∂xt

= ωx(xt)

{
1 + γa

[
max
x̃t,z̃t

u(x̃t, z̃t, st)− u(xt, zt, st)

]a−1}
+ δV ′(st+1) + λt = 0,

(E.3)

xt ≥ 0, (E.4)

λtxt = 0, (E.5)

λt ≥ 0, (E.6)

where ωx(xt) ≡ wx(xt, e − ptxt) − ptwz(xt, e − ptxt).12 The value function V (st+1) solves

the maximized Bellman equation

V (st+1) = u(xt+1, zt+1, st+1)− γ
[

max
x̃t+1,z̃t+1

u(x̃t+1, z̃t+1, st+1)− u(xt+1, zt+1, st+1)

]a
+δV (st+2). (E.7)

The derivative of (E.7) with respect to st+1 is given by

V ′(st+1) =

{
ωx(xt+1)

[
1 + γa

(
max

x̃t+1,z̃t+1

u(x̃t+1, z̃t+1, st+1)− u(xt+1, zt+1, st+1)

)a−1]

+δV ′(st+2)

}
∂xt+1

∂st+1

− c′(st+1)

−γa
[

max
x̃t+1,z̃t+1

u(x̃t+1, z̃t+1, st+1)− u(xt+1, zt+1, st+1)

]a−1
[c′(st+1)− c′(st+1)]

−γa
[

max
x̃t+1,z̃t+1

u(x̃t+1, z̃t+1, st+1)− u(xt+1, zt+1, st+1)

]a−1
ωx(x̃t+1)

∂x̃t+1

∂st+1

+δV ′(st+2)(1− d). (E.8)

12To simplify the notation in (E.3) and in the remainder of Appendix E, we express e − ptxt back as
zt.
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Moreover, by lagging the first-order condition (E.3) one period, we get

0 = ωx(xt+1)

{
1 + γa

[
max

x̃t+1,z̃t+1

u(x̃t+1, z̃t+1, st+1)− u(xt+1, zt+1, st+1)

]a−1}
+δV ′(st+2) + λt+1. (E.9)

Equation (E.9) is the first-order condition with respect to xt+1. Moreover, the myopic self

maximizes the instantaneous utility u(·) each period and its the first-order condition in

period t+ 1 is given by

ωx(x̃t+1) ≤ 0, (E.10)

together with x̃t+1 ≥ 0, x̃t+1ωx(x̃t+1) = 0.

To find the Euler equation for actual consumption (Equation (15)), use (E.3), (E.9),

and (E.10) to simplify Equation (E.8). The resulting expression is

δλt+1
∂xt+1

∂st+1

+ δc′(st+1) = ωx(xt)

[
1 + γa

(
max
x̃t,z̃t

u(x̃t, z̃t, st)− u(xt, zt, st)

)a−1]
+ λt

−δ(1− d)

{
ωx(xt+1)

[
1 + γa

(
max

x̃t+1,z̃t+1

u(x̃t+1, z̃t+1, st+1)− u(xt+1, zt+1, st+1)

)a−1]
+ λt+1

}

−δγa
[

max
x̃t+1,z̃t+1

u(x̃t+1, z̃t+1, st+1)− u(xt+1, zt+1, st+1)

]a−1
ωx(x̃t+1)

∂x̃t+1

∂st+1

. (E.11)

Analogously to Appendix A, Equations (A.15) and (A.16), we can show that λt+1(∂xt+1/∂st+1) =

0. Moreover, totally differentiating the first-order condition x̃t+1ωx(x̃t+1) = 0 with respect

to st+1, we get

∂x̃t+1

∂st+1

ωx(x̃t+1) + x̃t+1ωxx(x̃t+1)
∂x̃t+1

∂st+1

= 0. (E.12)

According to (E.12), if (E.10) is fulfilled with equality such that ωx(x̃t+1) = 0, then

ωx(x̃t+1)(∂x̃t+1/∂st+1) = 0. Moreover, if (E.10) is fulfilled with inequality such that

ωx(x̃t+1) < 0, then x̃t+1 = 0 and again, according to (E.12), ωx(x̃t+1)(∂x̃t+1/∂st+1) = 0.

Thus, the term in the third row of (E.11) vanishes. This result and λt+1(∂xt+1/∂st+1) = 0
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together simplify (E.11) to

δc′(st+1) = ωx(xt)

[
1 + γa

(
max
x̃t,z̃t

u(x̃t, z̃t, st)− u(xt, zt, st)

)a−1]
+ λt (E.13)

−δ(1− d)

{
ωx(xt+1)

[
1 + γa

(
max

x̃t+1,z̃t+1

u(x̃t+1, z̃t+1, st+1)− u(xt+1, zt+1, st+1)

)a−1]
+ λt+1

}
.

When consumption in periods t and t+ 1 is positive, such that xt > 0 and xt+1 > 0, the

Lagrange multipliers equal zero (λt = λt+1 = 0) and (E.13) simplifies to Equation (15).

F Proof of Proposition 3

To prove Proposition 3, evaluate the Euler equation (E.13) in steady state, where xt =

x, zt = z, st = s, and λt = λ. Note furthermore that in steady state x̃ = xF and z̃ = zF ,

where zF = e− pxF . We have

ωx(x) [1− δ(1− d)]

{
1 + γa

[
u(xF , zF , s)− u(x, z, s)

]a−1}
+ λ [1− δ(1− d)]− δc′(s) = 0.

(F.1)

Note that the term u(xF , zF , s)−u(x, z, s) is nonnegative because (xF , zF ) maximize u(·)
for a given stock level s. Thus, Equation (F.1) is qualitatively identical to Equation (B.8)

from Appendix B that describes the steady state consumption of a sophisticate consumer

with quasi-hyperbolic discounting. Applying the proof of Proposition 1 for a sophisticate

individual to Equation (F.1) proves Proposition 3.

G Proof of Proposition 4

We start with the first-order condition of the self in time period t. The maximization

problem of a type i individual in period t is defined analogously to (A.1) in Appendix

A, when the instantaneous utility function is given by (17). We define the Lagrangian

analogously to (A.2) in Appendix A, denote again the period t Lagrange multiplier as λit
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and derive the following first-order conditions:

∂L(·)
∂xit

= ûx(x
i
t, s

i
t) + βδV i ′((1− d)sit + xit) + λit = 0, (G.1)

xit ≥ 0, (G.2)

λitx
i
t = 0, (G.3)

λit ≥ 0, (G.4)

where ûx(x
i
t, s

i
t) = αx +αxxx

i
t +αxss

i
t− pt[αz +αzz(e− ptxit)]. Moreover, the continuation-

value function V i(sit+1) is determined analogously to Equation (A.7), while the period

t + 1 maximization problem of the individual of type i is analogous to (A.9). Following

the same steps as in Appendix A, we derive the following Euler equation for the individual

of type i = s, n:

ûx
(
xit, s

i
t

)
+ λit =

βδ

β̂

{
ûx

(
xst+1(β̂), sit+1

)[
1− d+ (1− β̂)

∂xst+1(β̂)

∂sit+1

]

−β̂ûs(xst+1(β̂), sit+1) + λst+1(β̂)(1− d)

}
, (G.5)

where ûs(x
s
t+1(β̂), sit+1) = αxsx

s
t+1(β̂) + αsss

i
t+1 and ûx(x

s
t+1(β̂), sit+1) = αx + αxxx

s
t+1(β̂) +

αxss
i
t+1 − pt+1[αz + αzz(e − pt+1x

s
t+1(β̂))]. The sin good consumption xst+1(β̂) is defined,

identically to Section 2, as the optimal consumption in period t + 1 of a sophisticate

individual with present-bias β̂.

Next, we consider how changes in the consumption stock sit affect optimal consump-

tion xit. First, if the solution to (G.1)-(G.4) is xit = 0, λit > 0, then sit does not affect the

optimal consumption: ∂xit/∂s
i
t = 0. Second, if the solution has xit ≥ 0, λit = 0, then we

can totally differentiate (G.1) to derive

∂xit
∂sit

= − αxs + βδ(1− d)V i ′′

αxx + p2tαzz + βδV i ′′ . (G.6)

We now analyze the conditions for steady state stability. The steady state is stable if

the convergence factor dsit+1/ds
i
t is less than one in absolute value. If λit > 0 and thus

∂xit/∂s
i
t = 0, then it follows directly from (1) that the steady state is stable. If λit = 0,
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then we use (1) and (G.6) to get

dsit+1

dsit
= (1− d) +

∂xit
∂sit

=
(1− d)[αxx + p2tαzz]− αxs
αxx + p2tαzz + βδV i ′′ > 0. (G.7)

The expression in (G.7) is positive owing to αxx < 0, αzz < 0, αxs > 0, and V i ′′ < 0. The

steady state is stable if (G.7) is less than unity. Rearranging dsit+1/ds
i
t < 1, we get

αxs + d[αxx + p2tαzz] + βδV i ′′ < 0. (G.8)

In the following analysis, we assume that (G.8) is satisfied. Note that it is always satisfied

in the absence of habits (i.e., when αxs = 0), which was the case in Section 2.

Consider for a moment the situation where both the period t consumption and the

expected period t + 1 consumption are positive and thus λit = λst+1(β̂) = 0. Evaluate

the Euler equation in steady state, and denote it as Φi(si). Analogously to Appendix B

(Equations (B.5) and (B.6)), we use xi = dsi and express Φi(si) in the following way:

Φi(si) = ûx(ds
i, si) + βδûs(ds

s(β̂), si)

−ûx(dss(β̂), si)
βδ

β̂

[
1− d+ (1− β̂)

∂xst+1(β̂)

∂sit+1

]
(G.9)

= ûx(ds
i, si) + βδV i ′(si) = 0, (G.10)

where

ûx(ds
i, si) = αx + αxxds

i + αxss
i − p

[
αz + αzz

(
e− pdsi

)]
,

ûx(ds
s(β̂), si) = αx + αxxds

s(β̂) + αxss
i − p

{
αz + αzz

[
e− pdss(β̂)

]}
,

ûs(ds
s(β̂), si) = αxsds

s(β̂) + αsss
i.

Differentiating (G.10) with respect to si, one immediately sees that the stability condition

(G.8) implies Φi ′(·) < 0:

Φi ′(si) = αxs + d[αxx + p2αzz] + βδV i ′′ < 0. (G.11)
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Consider now a sophisticate individual. To improve the tractability of the proof, we

use the following notation:

g(s) = βδûs(ds, s), (G.12)

f(s) = ûx(ds, s)

[
1− δ

(
1− d+ (1− β)

∂xst+1

∂sst+1

)]
. (G.13)

In the case of a sophisticate individual, the sum of g(s) and f(s), when both are evaluated

at s = ss, gives Φs(ss); that is, Φs(ss) = f(ss) + g(ss). Furthermore, by the definitions

of sF and sH , we have f(sF ) = 0 and g(sH) = 0. Next, we take the derivatives of f(s)

and g(s). In doing so, we take into account Theorem 1 of Gruber and Köszegi (2001),

who show that, in the case of quadratic utility, xst is a linear function of sst . Thus, the

derivative ∂xst/∂s
s
t is contant. Therefore, f(s) and g(s) are linear functions of s with the

following derivatives:

f ′ ≡ ∂

∂s

{
ûx(ds, s)

[
1− δ

(
1− d+ (1− β)

∂xst+1

∂sst+1

)]}
= [αxxd+ αxs + p2dαzz]

[
1− δ

(
1− d+ (1− β)

∂xst+1

∂sst+1

)]
, (G.14)

g′ ≡ ∂

∂s

[
βδûs(ds, s)

]
= βδ [αxsd+ αss] . (G.15)

The signs of (G.14) and (G.15) are, in general, ambiguous. However, according to (G.5)

and (G.11), these functions satisfy the following properties:

f(ss) + g(ss) + λ
s
[1− δ(1− d)] = 0, (G.16)

f ′ + g′ ≡ Φs ′ < 0. (G.17)

Equation (G.16) is the Euler equation of a sophisticate individual, evaluated in the steady

state. Moreover, (G.17) gives the derivative of the sophisticate’s Euler equation in the

case of a positive steady state consumption. It is negative owing to the assumption of a

stable steady state. The signs of f ′ and g′ are crucial for the determination of the possible

steady states. In the following, we will consider all combinations that satisfy (G.17).

There are five possible combinations of f ′ and g′ that satisfy (G.17). Denote the first
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of them as Case I and define it as

g′ < 0 and f ′ < 0. (Case I)

Case I occurs when habits are relatively weak, such that αxs is not too large. Moreover,

f(sF ) = 0 and g(sH = 0) = 0 together with g′ < 0, f ′ < 0 imply g(ss) < 0 for ss > 0 and

f(ss) R 0⇔ ss Q sF . Using (G.14) and (G.15), we can show that Case I is satisfied for

αxs < min
{
−αss

d
,−αxxd− p2dαzz

}
. (Case I’)

This case is also satisfied by the utility function in Section 2, where the sin good is not

addictive (and thus αxs = 0). Thus, the Euler equation (G.16) is qualitatively the same

as (B.8) from Appendix B. Hence, following the same proof as in Appendix B, we can

prove xs = xH if xF = xH = 0, as well as part I from Proposition 4.

The second case, labeled as Case II occurs when

g′ < 0 < f ′. (Case II)

The difference to Case I is that, under Case II, the net marginal utility of current

consumption ûx(·) is increasing in the steady state consumption stock. Thus, f(sF ) = 0

and g(sH = 0) = 0 together with g′ < 0 < f ′ imply g(ss) < 0 for ss > 0 and f(ss) Q 0⇔
ss Q sF . Using (G.14) and (G.15), we show that Case II emerges for

αsx ∈
]
−αxxd− p2dαzz,−

αss
d

[
. (Case II’)

To analyze Case II, consider first the situation sF > 0 = sH . Suppose that ss ∈]0, sF ].

Due to g′ < 0 and f ′ > 0, we know that, in this case, g(ss) < 0 and f(ss) ≤ 0, respectively.

Moreover, ss > 0 implies λ
s

= 0. Thus, the left-hand side of (G.16) is negative, which is

a contradiction. Moreover, from (G.17), we know that g′ + f ′ < 0, such that any value

ss > sF would make the left-hand side of (G.16) even more negative. Thus, a positive

steady state cannot emerge in this case. Moreover, ss = 0 = sH gives g(0) = 0 and

f(0) < 0, which satisfies (G.16) for λ
s

= −f(0)/(1 − δ(1 − d)) > 0. Thus, the only

solution in this case is ss = 0. The second possibility under Case II is sF = 0 = sH . In
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this case, ss = 0 = sH = sF = λ
s

is a solution to (G.16) if ûx(0, 0) = 0. If, however,

ûx(0, 0) < 0, then ss = 0 = sH = sF together with λ
s

= −f(0)/(1− δ(1− d)) > 0 is the

steady state. Moreover, due to g′ + f ′ < 0 from (G.17), g(ss) + f(ss) < 0 for any ss > 0.

Thus, the unique solution in the case of sF = 0 = sH is ss = 0. We conclude that, in

Case II, ss = 0 for any value of sF ≥ 0.

Define Case III as the situation where the following conditions hold:

g′ > 0 > f ′. (Case III)

In Case III, f(sF ) = 0 and g(sH = 0) = 0 together with g′ > 0 > f ′ imply g(ss) > 0 for

ss > 0 and f(ss) R 0⇔ ss Q sF . This case holds when

αxs ∈
]
−αss

d
,−αxxd− p2dαzz

[
. (Case III’)

Suppose now that sF > 0 and assume ss ∈]0, sF ]. This assumption implies λ
s

= 0, g(ss) >

0 (due to g′ > 0) and f(ss) ≥ 0 (due to f ′ < 0). Thus, the right-hand side of (G.16)

is positive and ss ∈]0, sF ] cannot be an equilibrium. Due to g′ + f ′ < 0 from (G.17),

(G.16) can only be fulfilled for larger values of the steady state consumption stock, i.e.,

ss > sF . We conclude that if sF > 0 in Case III, then ss > sF > 0 = sH . Suppose

now that sF = 0. If sF = 0 follows from ûx(0, 0) = 0, then ss = 0 = sH = sF = λ
s

satisfy (G.16). If sF = 0 follows from ûx(0, 0) < 0, then ss = 0 = sH = sF together with

λ
s

= −f(0)/[1− δ(1− d)] > 0 satisfy (G.16). Moreover, due to g′ + f ′ < 0 from (G.17),

any positive values of ss violate (G.16). We conclude that in the case sF = 0, the unique

solution is ss = 0 = sF = sH .

Case IV emerges when

g′ = 0 > f ′. (Case IV)

It holds when

αxs = −αss
d

< −αxxd− p2dαzz. (Case IV’)

In this special case, the positive effect of current consumption on the marginal utility of
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past consumption exactly compensates the marginal health costs. Because, by definition,

g(0) = 0, the condition g′ = 0 implies g(s) = 0 for all s. Thus, the Euler equation is

given by f(ss) + λ
s
[1− δ(1− d)] = 0. Suppose sF = 0. Then, at any positive level of ss,

the left-hand side of the Euler equation is negative due to f ′ < 0 and λ
s

= 0. This is a

contradiction and we conclude that if sF = 0, then ss = sF = sH = 0 is the only solution

of the Euler equation (G.16). Moreover, λ
s

= −f(0)/[1− δ(1− d)] ≥ 0. If xF > 0, then

due to f ′ < 0, the left-hand side of the Euler equation (G.16) is positive at ss = 0 and is

equal to zero at ss = sF > 0, λ
s

= 0. Thus, in Case IV , ss = sF for any sF ≥ 0.

The last case (Case V ) is

f ′ = 0 > g′. (Case V)

It holds when

αxs = −αxxd− p2dαzz < −
αss
d
. (Case V’)

The condition f ′ = 0 means the net marginal utility ûx(·) is constant and either ûx > 0

or ûx ≤ 0 for all s. The subcase ûx ≤ 0 emerges when αx − p[αz + αzze] ≤ 0. Thus, no

positive consumption can be a steady state because it would imply ûx ≤ 0, g(ss) < 0 and

λ
s

= 0, and violate (G.16). Thus, in this subcase, we have ss = 0 = sH . The subcase

ûx > 0 exists if αx− p[αz + αzze] > 0. In this case, f > 0 for all s. Since λ
s ≥ 0, the only

possible steady state that satisfies (G.16) involves g(ss) < 0, i.e., ss > 0 = sH .

To analyze the naive individual, we first rewrite its Euler equation in steady state.

It is given by

ûx (xn, sn) + λ
n

=
βδ

β̂

{
ûx

(
xs(β̂), sn

)[
1− d+ (1− β̂)

∂xst+1(β̂)

∂snt+1

]

−β̂ûs(xs(β̂), sn) + λ
s
(β̂)(1− d)

}
, (G.18)

where xn = dsn from Equation (1). Due to the quadratic form of the utility function,

∂xst+1(β̂)/∂snt+1 is constant (Gruber and Köszegi, 2001). Moreover, the marginal utilities
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are linear and can be reformulated in the following way:

ûs(x
s(β̂), sn) = ûs(x

n, sn) + αxs(x
s(β̂)− xn), (G.19)

ûx(x
s(β̂), sn) = ûx(x

n, sn) + [αxx + p2αzz](x
s(β̂)− xn). (G.20)

Using (G.19), (G.20) and xn = dsn, Equation (G.18) can be rewritten as

0 = βδûs(ds
n, sn) + ûx(ds

n, sn)

[
1− βδ

β̂

(
1− d+ (1− β̂)

∂xst+1(β̂)

∂snt+1

)]

+βδ
[
xn − xs(β̂)

] [ 1

β̂

(
1− d+ (1− β̂)

∂xst+1(β̂)

∂snt+1

)
(αxx + p2αzz)− αxs

]
+λ

n − βδ

β̂
λ
s
(β̂)(1− d). (G.21)

The first term on the right-hand side of (G.21) is g(s) from (G.12), evaluated at s = sn.

The second term is proportional to f(s) from (G.13), when evaluated at s = sn. Its

derivative with respect to s is also proportional to the derivative f ′, defined in (G.14).

The term in the second row of (G.21) has the opposite sign of [xn − xs(β̂)] due to αxx <

0, αzz < 0 and αxs > 0.

Consider now Case I, defined by g′ < 0 and f ′ < 0. This case is qualitatively identical

to the case without addiction considered in Proposition 1. Hence, we have sn > sH if

sF > sH and sn = sH if sF = sH by the proof from Appendix B.

Consider now Case II and analyze first the case sH = sF = 0. From our analysis

of the sophisticate individual, we know that it results in ss(β̂) = sH = 0 and λ
s

=

−f(0)/[1− δ(1− d)] ≥ 0. The solution sn = sH = sF = 0 satisfies (G.21) with

λ
n

=
βδ

β̂
λ
s
(β̂)(1− d)− ûx(0, 0)

[
1− βδ

β̂

(
1− d+ (1− β̂)

∂xst+1(β̂)

∂snt+1

)]
≥ 0,

(G.22)

where λ
n

is strictly greater than zero if ûx(0, 0) < 0 and equal to zero if ûx(0, 0) = 0.

Suppose now that sF > sH in Case II. In this situation, we know that ss(β̂) =

0 = sH < sF and λ
s
(β̂) = −f(0)/(1 − δ(1 − d)) > 0. Assume that sn ∈]sH , sF ]. This
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assumption must, in that case, satisfy λ
n

= 0 and

0 > βδûs(ds
n, sn) + ûx(ds

n, sn)

[
1− βδ

β̂

(
1− d+ (1− β̂)

∂xst+1(β̂)

∂snt+1

)]

+βδ(xn − xs(β̂))

[
1

β̂

(
(1− d) + (1− β̂)

∂xs(β̂)

∂sn

)
(αxx + p2αzz)− αxs

]
−βδ
β̂
λ
s
(β̂)(1− d), (G.23)

where the inequality follows from g′ < 0, f ′ > 0, xs(β̂) = 0, and λ
s
(β̂) > 0. Thus,

according to (G.23), Equation (G.21) is violated and sn ∈]sH , sF ] cannot be a steady

state. Moreover, because g′ + f ′ < 0 from (G.17), any value of sn above sF makes the

right-hand side of (G.23) even more negative. Hence, the steady state in case II can

only be achieved at sn = sH = 0. In this case, λ
n

is again given by (G.22), which is now

satisfied as a strict inequality due to λ
s
(β̂) > 0 and ûx(0, 0) ∝ f(0) < 0.

Consider now Case III. If sF = sH = 0, we know that ss(β̂) = sH and λ
s ≥ 0 from

our discussion of a sophisticate individual. Analogously to Case II, one can verify that

the unique solution to (G.21) is sn = sH = sF = 0 with λ
n ≥ 0.

Consider now the case sF > sH in Case III. We already know that this case results

in ss(β̂) > sF > sH and λ
s
(β̂) = 0. Assume that sn ∈]sH , sF ]. In this case, we derive the

following inequality:

0 < βδûs(ds
n, sn) + ûx(ds

n, sn)

[
1− βδ

β̂

(
1− d+ (1− β̂)

∂xst+1(β̂)

∂snt+1

)]

+βδ(xn − xs(β̂))

[
1

β̂

(
(1− d) + (1− β̂)

∂xs(β̂)

∂sn

)
(αxx + p2αzz)− αxs

]
+ λ

n
,

(G.24)

where the inequality follows from g′ > 0, f ′ < 0 and λ
n

= 0. Moreover, if sn = sH = 0, the

right-hand side of (G.24) is again positive due to λ
n ≥ 0 and ûx(0, 0) > 0 (since sF > 0

and f ′ < 0). Thus, (G.21) is violated for sn ∈ [sH , sF ]. Due to g′ + f ′ < 0, the positive

right-hand side of (G.24) can only become equal to zero for sn > sF . We conclude that,

in Case III, sn > sF if sF > sH .
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Consider now Case IV . We already know that, in this case, we have xs(β̂) =

xF , λ
s
(β̂) ≥ 0 for any sF ≥ 0. Thus, if sn > sF ≥ 0, the right-hand side of (G.21)

is negative due to ûs(·) = g = 0, f(sn) < 0 and λ
n

= 0. Therefore, sn > sF ≥ 0 cannot

be fufilled in a steady state. Thus, if sF = 0, then sn = sF = 0. If sF > 0, then we must

check whether sn < sF can be optimal. In this case, we already proved xs(β̂) = sF and

λ
s
(β̂) = 0. Therefore, sn < sF implies that the right-hand side of (G.21) is positive due

to ûs(·) = g = 0, f(sn) > 0 and λ
n ≥ 0. This is a contradiction. We conclude that if

g′ = 0, then sn = sF for any sF ≥ 0.

Finally, consider Case V . In its first subcase, we have ûx ≤ 0 and xs(β̂) = 0, λ
s
(β̂) ≥

0. It is easy to verify that any strictly positive sn makes the right-hand side of (G.21)

negative (due to g′ < 0, λ
n

= 0) and thus cannot be a steady state. Thus, we conclude

that in the first subcase of Case V , we have sn = sH = 0. In the second subcase, we have

ûx > 0 and αx − p[αz + αzze] > 0, which implies xs(β̂) > 0 and λ
s
(β̂) = 0. If we evaluate

(G.21) at sn = 0, we get a positive right-hand side due to ûx > 0, g(0) = 0, λ
n ≥ 0

together with xs(β̂) > 0 and λ
s
(β̂) = 0. We conclude that sn = 0 cannot be a solution in

the second subcase of Case V . Hence, (G.21) can only be satisfied for some positive sn;

that is sn > sH = 0.
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