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Abstract 
 
This paper develops a static model of endogenous task-based technical progress to study how 
factor scarcity induces technological progress and changes in factor prices. The equilibrium 
technology is multi-dimensional and not strongly factor-saving in the sense of Acemoglu (2010). 
Nevertheless, labor scarcity induces labor productivity growth. There is a weak but no strong 
absolute equilibrium bias. This model provides a plausible interpretation of the famous contention 
of Hicks (1932) about the role of factor prices and factor endowments for induced innovations. It 
may serve as a micro-foundation for canonical macro-economic models. Moreover, it 
accommodates features like endogenous factor supplies and a binding minimum wage. 
JEL-Codes: O310, D920, O330, O410. 
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1 Introduction

In a competitive environment, a process innovation allows firms to increase profits
through a reduction of costs. A firm adopts such an innovation or attempts to invent
it if the cost advantage due to an improved productivity of the factors of production
outweighs the cost of making the associated innovation investment. At the level of the
individual firm, a process innovation allows to produce the same amount of output
with fewer resources. For the economy as a whole, aggregate output will increase if
the factors of production set free by the process innovation either produce more in the
industry where the innovation occurs or produce other commodities elsewhere. The
question about the economic phenomena that explain when and why firms adopt a new
process innovation or engage in its invention is therefore crucial for our understanding
of the observed productivity differences across firms, industries, and countries.

The present paper addresses this question in a static version of the dynamic competitive
economy with endogenous task-based technical progress devised in Irmen (2017) and
Irmen and Tabaković (2017). This analytical framework formalizes a central idea of
John Hicks’ The Theory of Wages according to which (relative) factor endowments affect
(relative) factor prices and induce firms to implement or invent new technologies that
replace the more expensive factor (Hicks (1932)).2

The analysis starts from the premise that a firm is an economic unit where tasks are per-
formed to produce output. Accordingly, a firm’s production function relates performed
tasks to final output. These tasks are executed by two factors of production, capital
and labor. New technologies are process innovations with the potential to increase the
productivity of capital and labor in performing tasks. The factor productivity of both
factors is endogenous and hinges on the firm’s willingness to make innovation invest-
ments. Since factor markets clear, the equilibrium number of performed tasks depends
on the productivity of each factor and on the economy’s factor endowments. Moreover,
technical change is factor augmenting at the macroeconomic level.

Two main sets of results are derived. The first concerns induced productivity growth and
underlines the role of factor scarcity as an important determinant of technology choice.
The second set of results deals with factor price biases due to technological change and
changing factor endowments. Two complementary analytical strategies are used to es-
tablish these findings. The first strategy is based on comparative statics of the com-
petitive equilibrium. The second strategy relies on the notions of net output and net
marginal product at given factor endowments. It establishes and exploits the fact that the

2Similar arguments have been put forward to shed light on various episodes in economic history. Ex-
amples include Habbakuk’s explanation of the differential technological progress in the United States and
Britain in the 19th century (Habakkuk (1962)), or Elvin’s argument for why a spinning wheel was aban-
doned in fourteenth-century China (Elvin (1972)). More recently Allen (2009) and Broadberry and Gupta
(2009) use it to explain why major inventions were adopted in eighteenth-century Britain and not elsewhere.
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equilibrium technology maximizes net output at given factor endowments and that the
equilibrium factor prices are equal to the respective net marginal product at given factor
endowments.

As to induced productivity growth, the equilibrium technology is neither strongly fac-
tor saving nor strongly factor complementary in the sense of Acemoglu (2010), i. e.,
depending on the kind of process innovation the marginal product of capital and labor
may increase or fall. However, even without these regularity conditions the equilibrium
productivity of a factor of production will be higher if this factor becomes scarcer. For
instance, less labor increases the equilibrium incentives to substitute labor with technol-
ogy and leads to a higher equilibrium labor productivity. At the same time, it weakens
the incentives to substitute capital with technology. Accordingly, the equilibrium pro-
ductivity of capital will be lower. It is in this sense that factor endowments determine
the direction of technical change.

As to factor price biases - in the taxonomy of Acemoglu (2007) - technologies are shown
to be absolutely and relatively biased towards the complementary factor, i. e., at given
factor endowments a higher productivity of labor increases the real rental rate of capital
and reduces the real wage. Moreover, there is neither a strong absolute nor a strong rel-
ative bias.3 Hence, labor scarcity leads to a higher equilibrium real wage and a higher
relative price of capital. The latter finding is driven by a partial and a general equilib-
rium effect of opposite sign. The partial equilibrium effect captures the effect of changes
in a factor endowment for a given technology and is negative. The general equilibrium
effect captures the effect of a change in factor endowments on factor prices through in-
duced technical change. This effect is positive, i. e., there is a weak absolute and a weak
relative equilibrium bias. Hence, labor scarcity induces technical change that increases
the real wage and reduces the relative price of capital. Since the partial equilibrium ef-
fect dominates the general equilibrium effect, the long-run demand schedule of a factor
is declining in its price.4

Additional sets of new results are derived in the ‘extensions’ section. First, the link be-
tween the task-based model of this paper and some of the author’s earlier work includ-
ing Irmen (2011) and Hellwig and Irmen (2001a) is discussed. The former contribution
studies a competitive three-sector economy. It is shown that the equilibrium of a static
version of this multi-sector economy is isomorphic to the one derived in the present

3Absence of a strong absolute bias means that the equilibrium price of a factor cannot increases in
response to an increase in its supply. Absence of a strong relative equilibrium bias means that the relative
demand curve for the two factors cannot be upward-sloping (Acemoglu (2007), p. 1372).

4These findings are in line with those derived in Acemoglu (2007) for an economy where a factor’s
(gross) marginal product coincides with its net marginal product and both are equal to its equilibrium
factor price. In the present setting, the equilibrium remuneration of the factors of production is equal to
their respective net marginal product at given factor endowments which differs from the respective (gross)
marginal product. This distinction reflects the marginal contribution to final output of a factor and the
additional investment outlays related to the tasks performed by it.
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task-based model. The key is that the first-order condition determining the aggregate
number of tasks performed in the task-based model coincides with the free-entry, zero-
profit condition of the intermediate-good sectors of the three-sector economy. As a con-
sequence, the implications of factor scarcity for innovation incentives and factor prices
derived in the present paper carry over to this multi-sector environment. The analysis
of the link to a static version of the competitive growth model proposed by Hellwig and
Irmen (2001a) reveals that this one-sector model has no weak absolute bias since the
equilibrium technology maximizes the real wage.

Second, the analysis turns to the role of endogenous factor supplies. Intuition sug-
gests that the link between the scarcity of a factor, a higher factor price, and induced
innovation may be counteracted by an increase in the aggregate supply of this factor.
The analysis confirms this intuition for a scenario where either individuals supply more
hours in response to a higher real wage or where the supply of labor increases in the
rental rate of capital. However, this tendency does not invalidate the key predictions
derived in the basic version of the model with inelastic factor supplies. It does however
weaken the link between factor endowments, innovation incentives, and factor prices
via a general equilibrium effect.

The third extension allows for one factor price to be exogenous. This turns the economy
either into one with a minimum wage or into a small open economy. Both setups yield
similar results concerning the role of changing factor endowments for the equilibrium
technology, the remaining endogenous factor price, and employment levels. The anal-
ysis focusses on the case of a minimum wage. Then, the economy under scrutiny is
similar to a static version of the one analyzed in Hellwig and Irmen (2001b). A binding
minimum wage is found to entirely determine the direction of technical change as well
as the rental rate of capital. Compared to the equilibrium under laissez-faire it reinforces
the incentive to save labor, reduces the incentive to raise the productivity of capital, and
implies a lower rental rate of capital. Changing the economy’s capital endowment leaves
these variables unaffected but leads to adjustments of the level of employment.

The present paper builds on and contributes to at least two strands of the literature.
First, it makes a contribution to the theory of endogenous capital- and labor-saving
technical change that has its roots in the so-called ‘induced innovations’ literature of
the 1960s (see Fellner (1961), von Weizsäcker (1962), Kennedy (1964), Samuelson (1965),
Drandakis and Phelps (1966), and von Weizsäcker (1966)). A main focus of this literature
is on the link between (relative) factor prices and induced technical change as envisaged
by Hicks (1932). However, its lack of a sound micro-foundation has often been criticized
(see, e. g., Salter (1966), Burmeister and Dobell (1970), Chapter 3, Nordhaus (1973), Funk
(2002), or Acemoglu (2003)). It assumes competitive firms with access to a constant-
returns-to-scale production function F (bK, aL) where K is capital, L is labor, and b and
a are capital- and labor-augmenting technology terms. Obviously, profit-maximization
with respect to (b, a, K, L) is not well defined since F has increasing returns in all four
variables. To circumvent this problem, firms maximize instead the current rate of cost
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reduction subject to some invention possibility frontier. While this ad-hoc heuristic leads
to results in support of Hicks’ argument, the question remains open as to whether these
findings would still hold under a sound micro-foundation.

The model developed in this paper provides such a micro-foundation. It gives rise to
an endogenous ‘technology frontier’ along which b and a cannot simultaneously in- or
decrease (see, Section 3.1), a property that is key to the exogenous invention possibility
frontier of the ‘induced innovations’ literature (Burmeister and Dobell (1970)). Moreover,
Section 5.2 establishes the close link between the comparative statics of my model and
Hicks’ famous contention.5

Second, this paper complements the literature on a class of competitive models with
endogenous technological change where the technology has a tendency to be strongly
capital saving or strongly labor saving. As argued in Acemoglu (2010), models with this
property include, e. g., Champernowne (1961) or Zeira (1998). However, the multi-
dimensional technology in the model of the present paper does not comply with this
regularity condition.6 Nevertheless, labor (capital) scarcity induces a higher equilibrium
productivity of labor (capital). From the results of the ‘extensions’ section, it is evi-
dent that this property is also shared by the competitive endogenous growth models
proposed in Irmen (2011).

Another important dimension with respect to which the present setup differs from ex-
isting competitive models with endogenous technical change is that technical progress
applies to tasks and requires an innovation investment for each of them. Therefore the
gross marginal product of a factor exceeds its net marginal product which is equal to
the respective equilibrium factor price. Nevertheless, most of the findings on absolute
and relative factor price biases are consistent with those of Acemoglu (2007) where gross
and net marginal products coincide.

This paper is organized as follows. Section 2 presents the model with endogenous task-
based technical progress. Section 3 establishes the existence of a general equilibrium,
discusses its welfare properties, and introduces key concepts such as net output, equilib-
rium technology, and net marginal product. In Section 4, the link between factor scarcity,
the equilibrium technology, and net output is discussed. The link between factor prices,
technical progress and factor scarcity is the focus of Section 5. Section 6 has the above
mentioned extensions. Section 6.1 establishes the equivalence between the model of
Section 2 and a three-sector model of (Irmen (2011). Moreover, it discusses the link to
a static version of the one-sector model of Hellwig and Irmen (2001a). Section 6.2 deals

5See Irmen (2018) for an analysis of the relationship between the model of this paper and the steady-state
requirements of canonical growth models. Alternative approaches to characterize the technology frontier
and its relationship to the aggregate production function include Jones (2005), Growiec (2013), Growiec
(2018), and León-Ledesma and Satchi (2019).

6Therefore, the derived effects of factor scarcity on technological progress are not covered by Theorem
1 in Acemoglu (2010) when applied to a competitive environment.
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with the role of an endogenous labor supply. Finally, Section 6.3 studies the effect of an
exogenous factor price with a focus on a binding minimum wage. Section 7 concludes.
Proofs are relegated to Section 8, the Appendix.

2 The Model

Consider a static economy endowed with capital and labor. The respective factor endow-
ments are denoted by K ∈ R++ and L ∈ R++. These inputs are inelastically supplied.7

There is a single manufactured final good that can be consumed or invested. If invested
it may increase the productivity of capital and/or labor in the performance of factor-
specific tasks. The economy is perfectly competitive. All agents’ preferences are defined
over the consumption of the final good which also serves as numéraire.

Throughout this paper subscripts are often used to denote partial derivatives. For
functions of one variable, it is the argument that appears as a subscript, for instance,
fκ (κ) ≡ d f (κ) /dκ. In the context of functions of several variables numbers are used as,
for example, in F12 (M, N) ≡ ∂2F (M, N) /∂M∂N.

Technology

The production sector has a continuum [0, 1] of competitive firms. Without loss of gen-
erality, their behavior may be analyzed through the lens of a competitive representative
firm. Two types of tasks have to be performed to produce output. The first type needs
capital, the second labor as the only input. Let m ∈ R+ denote a task performed by
capital and n ∈ R+ a task performed by labor. Then, m ∈ [0, M] and n ∈ [0, N] where M
and N denotes the total ‘number’ of tasks of each type performed by the representative
firm.

Tasks of the same type are identical. Therefore, total output depends only on M and N.
Let F : R2

+ → R+ denote the production function of the representative firm. It assigns
the maximum output, Y, to each pair (M, N) ∈ R2

+, i. e.,

Y = F (M, N) . (2.1)

The function F is C2 with F1 > 0 > F11 and F2 > 0 > F22 for all (M, N) > 0. While tasks
of each type are identical, they differ with respect to their marginal product. Moreover,

7The labels capital and labor are used for convenience only. They provide the link to the neoclassical
production function as introduced by Solow (1956) and Swan (1956), the extension being that technical
change is endogenous here. However, from a purely mathematical point of view, K and L may represent
any pair of distinguishable inputs that are inelastically supplied. I discuss the role of endogenous factor
supplies in Section 6.2.
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F exhibits constant returns to scale (CRS) with respect to both task types. For further
reference, let κ denote the task intensity of the firm, i. e.,

κ ≡ M
N

. (2.2)

Then, the production function in intensive form is F (κ, 1) ≡ f (κ), where f : R+ → R+,
with fκ (κ) > 0 > fκκ (κ) for all κ > 0.

A task m requires k(m) = 1/b(m) units of capital, a task n needs l(n) = 1/a(n) units of
labor. Hence, b(m) and a(n) denote the productivity of capital and labor, respectively.
They are equal to

b(m) = 1 + qb(m) and a(n) = 1 + qa(n), (2.3)

where qb(m) ∈ R+ and qa(n) ∈ R+ are indicators of productivity growth associ-
ated with task m and n, respectively. These productivity levels require investments
of i

(
qb(m)

)
≥ 0 and i (qa(n)) ≥ 0 units of the final output. The investment cost function

i : R+ → R+ is the same for all tasks, C2, increasing and strictly convex. Hence, higher
levels of productivity require ever larger investments. Moreover, it satisfies for all tasks
and j = a, b

lim
qj→0

i(qj) = lim
qj→0

iq(qj) = 0, and lim
qj→∞

i
(

qj
)
= lim

qj→∞
iq

(
qj
)
= ∞. (2.4)

One may think of an investment as a decision to adopt a new technology that is available
in differing degrees of sophistication or as R&D outlays in the spirit of the lab-equipment
model of Rivera-Batiz and Romer (1991). In both cases, qj measures the productivity
gain that results from an investment that costs i(qj) units of output.

Profit-Maximization

The representative firm takes the vector (R, w) of the real rental rate of capital and the
real wage as given and chooses a plan comprising

(
qb(m), k(m)

)
for all m ∈ [0, M] and

(qa(n), l(n)) for all n ∈ [0, N] as well as the choice of how many tasks (M, N) to perform.
This plan is to maximize profits

Π ≡ F (M, N)− C, (2.5)

where C is the firm’s cost reflecting factor and investment costs for each task, i. e.,

C ≡
∫ M

0

[
Rk(m) + i(qb(m))

]
dm +

∫ N

0
[wl(n) + i(qa(n))] dn. (2.6)

With (2.3) one has k(m) = 1/(1 + qb(m)) and l(n) = 1/(1 + qa(n)). Accordingly, the
firm’s problem may be split up in two parts. First, for each m ∈ [0, M] and each n ∈
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[0, N], the values
(
qb(m), qa(n)

)
∈ R2

+ are to minimize C. This leads to the first-order
(sufficient) conditions

qb(m) :
−R

(1 + qb(m))2 + iq

(
qb(m)

)
= 0, ∀m ∈ [0, M], (2.7)

qa(n) :
−w

(1 + qa(n))2 + iq (qa(n)) = 0, ∀n ∈ [0, N]. (2.8)

For each task of the respective type, these conditions equate the marginal reduction
of the firm’s capital cost/wage bill to the marginal increase in its investment costs.
Assuming R > 0 and w > 0, the convexity of the investment cost function and the
fact that limqj→0 iq(qj) = 0, j = a, b, imply that these conditions determine a unique
qb(m) = qb > 0 and qa(n) = qa > 0 for either task type. Accordingly, b(m) = b,
a(n) = a, k = 1/b, and l = 1/a.

Second, each performed task must be profitable, i. e.,

F1(m, N)− R
1 + qb(m)

− i
(

qb(m)
)
≥ 0, ∀m ∈ [0, M], (2.9)

F2(M, n)− w
1 + qa(n)

− i (qa(n)) ≥ 0, ∀n ∈ [0, N]. (2.10)

Hence, for a task to be performed, its marginal value product must be at least as large as
its cost. The former is equal to F1(m, N) and F2(M, n), respectively. The latter is the sum
of the capital or wage cost and the investment outlays of the respective task. Since each
task is associated with a strictly positive input requirement k(m) = 1/

(
1 + qb(m)

)
> 0

and a(n) = 1/ (1 + qa(n)) > 0, M and N must be finite in equilibrium to exclude an
excess demand for capital or labor. In other words, in equilibrium conditions (2.9) and
(2.10) must hold as an equality. Since Π has CRS in (M, N) at

(
qb, qa), this also implies

that equilibrium profits are zero.

Finally, observe that conditions (2.9) and (2.10) will only pin down the task intensity
κ = M/N since F has CRS in (M, N). The number of tasks will be determined by
market clearing conditions.

3 Equilibrium Analysis

3.1 Definition and Characterization

An equilibrium consists of a plan((
qb(m), k(m)

)
m∈[0,M]

, (qa(n), l(n))n∈[0,N] , M, N
)

7



and factor prices (R, w) that solve (2.7) - (2.10) and the factor market clearing conditions

R ≥ 0,
∫ M

0
k(m)dm ≤ K, R

(∫ M

0
k(m)dm− K

)
= 0,

(3.1)

w ≥ 0,
∫ N

0
l(n)dn ≤ L, w

(∫ N

0
l(n)dn− L

)
= 0.

Hence, at positive factor prices there must not be an excess demand, and equilibrium
factor prices can only be strictly positive if there is full-employment of the respective
factor.

Let θ ≡ K/L denote the capital intensity. Then the following holds.

Theorem 1 There is a unique competitive equilibrium for any (K, L) ∈ R2
++. The equilibrium

technology satisfies

q̄b = gb (κ̄) and q̄a = ga (κ̄) , (3.2)

where gj : R++ → R++, j = a, b, with ga
κ (κ) > 0 > gb

κ (κ). Equilibrium factor prices are

R̄ = R (κ̄) > 0 and w̄ = w (κ̄) > 0, (3.3)

where R : R++ → R++ with Rκ (κ) < 0 and w : R++ → R++ with wκ (κ) > 0. Moreover,
the equilibrium task intensity, κ̄, satisfies

κ̄ = κ (θ) > 0, (3.4)

where κ : R++ → R++ with κθ (θ) > 0.

Theorem 1 suggests a simple way to characterize the equilibrium. Both, the equilibrium
technology and equilibrium factor prices depend on the equilibrium task intensity, κ̄,
which, in turn, is pinned down by the capital intensity, θ. The intuition behind this
comes in two steps.

The first step addresses the dependency of the equilibrium technology and the equi-
librium factor prices on the task intensity κ as stated in (3.2) and (3.3). This property
reflects the first-order conditions (2.7) - (2.10) and is illustrated in Figure 3.1 for tasks
performed by capital. The left panel shows the marginal value product of the marginal
task where use is made of the fact that F1 (M, N) = fκ (κ). According to (2.7) and (2.9),
this value product must be equal to the minimized cost of tasks performed by capital.
The cost-minimization is shown in the right panel. Hence,

(
κ, R, gb(κ)

)
is an admissible

solution to these two equations. As fκκ (κ) < 0, increasing the task intensity from κ to κ′

means that the cost minimum must fall. This requires a lower real rental rate of capital
R′ < R, hence Rκ(κ) < 0. Since a lower capital cost reduces the marginal advantage
of a productivity enhancing investment, the new cost-minimum is reached at a lower

8



Figure 3.1: The Link between κ, R, and gb (κ).

level of qb, i. e., gb(κ′) < gb(κ) and gb
κ(κ) < 0. The same line of reasoning shows why

wκ(κ) > 0 and ga
κ(κ) > 0. The key difference here is that the marginal value product

F2 (M, N) = f (κ)− κ fκ (κ) increases in κ.

The second step concerns the determination of the equilibrium task intensity as stated
in (3.4). From the first step, the equilibrium technology depends on the task intensity.
However, the market clearing conditions (3.1) reveal that in equilibrium M = (1 + q̄b)K
and N = (1 + q̄a)L, i. e., the task intensity depends on the equilibrium technology.
Combining factor market clearing and (3.2) shows that the task intensity that performs
both functions, κ̄, must be a solution to

κ̄ =
1 + gb(κ̄)

1 + ga(κ̄)
θ. (3.5)

According to (3.4), there is a unique κ̄ > 0 that satisfies this equation. Moreover, κ̄

increases in the capital intensity, θ, since ga
κ(κ) > 0 > gb

κ(κ). For further reference, let
me express this last result in terms of elasticities, i. e.,

εκ
θ =

1
1 + εb

κ + εa
κ

∈ (0, 1), (3.6)

where

εκ
θ ≡

κθ(θ) θ

κ̄
, εb

κ ≡
−gb

κ(κ̄) κ̄

1 + gb(κ̄)
> 0, and εa

κ ≡
ga

κ(κ̄) κ̄

1 + ga(κ̄)
> 0.

Hence, due to induced technical change the response of the equilibrium task intensity
to changes in the capital-labor ratio is less than proportionate.
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Finally, observe that Theorem 1 implicitly defines a ‘technology frontier’ and a ‘factor-
price frontier’ (Samuelson (1960)). The technology frontier links any pair

(
qb, qa) > 0

that satisfies (3.2). It may be stated as

qb = gb
[
(ga)−1 (qa)

]
≡ g (qa) , (3.7)

where (ga)−1 (qa) is the inverse of ga (κ) and, accordingly, g : R++ → R++. Since
ga

κ(κ) > 0, the slope of the inverse is also strictly positive. Hence, dqb/dqa < 0, i. e.,
qb and qa cannot increase simultaneously. Notice that unlike the exogenous invention
possibility frontier stipulated by the ‘induced innovations’ literature of the 1960s, the
technology frontier of the present model is the result of profit-maximizing behavior.
The factor-price frontier is defined for any pair of factor prices (R, w) > 0 that satisfies
(3.3) with dR/dw < 0, i. e., R and w cannot increase simultaneously. I shall explore these
properties in Sections 4 and 5.

3.2 Net Output, Equilibrium Technology, and Equilibrium Factor Prices

This section introduces the notions of net output and net marginal product at given
factor endowments. These concepts are later used to establish key properties of the
equilibrium technology and factor prices.

Net Output

Net output is aggregate output minus aggregate investment outlays. Let
(
qb, qa) ∈ R2

+

denote the vector of symmetric technology choices. It presumes a firm behavior where
the same amount of investment is allocated to all tasks of the same type (though, not
necessarily the profit-maximizing amount of investment). Then, net output at symmetric
technology choices is defined as

V
(

qb, qa, M, N
)
≡ F (M, N)−Mi

(
qb
)
− Ni (qa) . (3.8)

The argument
(
qb, qa, K, L

)
is used to study the effect of technical change at given factor

endowments. Besides symmetric technology choices, it reflects the additional use of the
market clearing conditions (3.1), i. e., M =

(
1 + qb)K and N = (1 + qa) L. Then, final

output at given factor endowments is defined as

Y
(

qb, qa, K, L
)
≡ F

((
1 + qb

)
K, (1 + qa) L

)
. (3.9)

This reveals that i) technical change is factor augmenting, ii) a better technology means
more output of the final good, i. e., Y1 = KF1 > 0 and Y2 = LF2 > 0, and iii) Y

(
qb, qa, K, L

)
is (strictly) super-modular in

(
qb, qa), i. e., Y12 = KLF12 > 0. Here, super-modularity

follows since F has positive, yet diminishing, marginal products, and CRS to scale in

10



(M, N). Using (3.9) and the market clearing conditions (3.1) in (3.8) gives rise to the
definition of net output at given factor endowments, i. e.,

V
(

qb, qa, K, L
)
≡ Y

(
qb, qa, K, L

)
−
(

1 + qb
)

Ki
(

qb
)
− (1 + qa) Li (qa) , (3.10)

where
(
1 + qb)Ki

(
qb)+ (1 + qa) Li (qa) are aggregate investment outlays given full em-

ployment of both factors of production.

Equilibrium Technology

The following proposition derives an important property of the equilibrium technology.

Proposition 1 If
(
q̄b, q̄a) is the equilibrium technology then(

q̄b, q̄a
)
= argmax(qb,qa)∈R2

+
V
(

qb, qa, K, L
)

. (3.11)

Moreover, any
(
qb, qa) ∈ R2

+ that solves (3.11) is an equilibrium technology.

Hence, both the first and the second welfare theorem hold in this economy.8 This finding
confirms the claim that the static technology choice in competitive environments tends
to be welfare maximizing (see, e. g., Acemoglu (2007) or Zeira (1998)). However, in the
present model there is a novel perspective on the equilibrium technology which will
prove useful later. Indeed, the presence of the technology frontier (3.7) and the fact that
the equilibrium technology is a global maximizer of V

(
qb, qa, K, L

)
leads immediately to

the following corollary to Proposition 1.

Corollary 1 The equilibrium technology
(
q̄b, q̄a) is the solution to

q̄a = argmaxqa∈R+
V (g (qa) , qa, K, L) and q̄b = g (q̄a) . (3.12)

For further reference, the maximum of net output at given factor endowments is hence-
forth referred to as equilibrium net output and denoted by V (K, L), i. e.,

V (K, L) ≡ V
(

q̄b, q̄a, K, L
)

(3.13)

= Y
(

q̄b, q̄a, K, L
)
−
(

1 + q̄b
)

Ki
(

q̄b
)
− (1 + q̄a) Li (q̄a) .

8At first sight, Proposition 1 may seem restrictive because it presumes a symmetric technology choice.

However, this turns out to be a valid short cut since a planner who chooses
(

qb(m)
)

m∈[0,M]
, (qa(n))n∈[0,N],

and (M, N) to maximize net output, F (M, N)−
∫ M

0 i
(

qb(m)
)

dm−
∫ N

0 i (qa(n)) dn, subject to the resource

constraints
∫ M

0

(
1 + qb(m)

)−1
dm ≤ K and

∫ N
0 (1 + qa(n))−1 dn ≤ L will pick the technology

(
q̄b, q̄a

)
that

also solves (3.11).
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Equilibrium Factor Prices and Net Marginal Products

The net marginal product of capital at given factor endowments is the additional net output
at
(
qb, qa, K, L

)
that results from a small increase in K. Analogously, for a small increase

in L, one has the net marginal product of labor at given factor endowments. To develop an
intuition for these concepts consider capital.

If the economy’s capital stock is fully employed then M =
(
1 + qb)K, and a small in-

crease in capital means dM =
(
1 + qb) dK additional tasks. On the one hand, this implies

an increase in the output of the final good equal to dY = F1
((

1 + qb)K, (1 + qa) L
)

dM =

F1
((

1 + qb)K, (1 + qa) L
) (

1 + qb) dK. On the other hand, aggregate investments in-
crease by i(qb)dM = i(qb)

(
1 + qb) dK. The net marginal product of capital at given

factor endowments is then the difference between these two effects and equal to

∂V
(
qb, qa, K, L

)
∂K

≡
(

1 + qb
) [

F1

((
1 + qb

)
K, (1 + qa) L

)
− i
(

qb
)]

. (3.14)

Analogously, the net marginal product of labor at given factor endowments is

∂V
(
qb, qa, K, L

)
∂L

= (1 + qa)
[

F2

((
1 + qb

)
K, (1 + qa) L

)
− i (qa)

]
. (3.15)

This leads to the following result.

Proposition 2 The equilibrium factor prices satisfy

R̄ =
∂V
(
q̄b, q̄a, K, L

)
∂K

and w̄ =
∂V
(
q̄b, q̄a, K, L

)
∂L

. (3.16)

Hence, the equilibrium factor prices are equal to the respective net marginal products
at given factor endowments evaluated at

(
q̄b, q̄a). Intuitively, equilibrium factor prices

adjust so that (2.9) and (2.10) hold as equality. This requires R̄ and w̄ to be equal to their
respective net marginal products.

4 Factor Scarcity, Equilibrium Technology, and Net Output

This section explores the role of factor scarcity for the equilibrium technology and for
equilibrium net output.

Factor Scarcity and Equilibrium Technology

The main result of this section is given in the following proposition.

Proposition 3 At
(
q̄b, q̄a, K, L

)
it holds that

dq̄b

dK
< 0,

dq̄a

dK
> 0,

dq̄a

dL
< 0,

dq̄b

dL
> 0. (4.1)
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Hence, a larger capital stock induces a lower q̄b and a higher q̄a, and, mutatis mutandis,
for a larger labor force. In other words, the equilibrium incentive to equip a factor with
a better factor-augmenting technology declines if the factor becomes more abundant.
At the same time, the equilibrium incentives for a better technology that augments the
other factor increases. It is in this sense that a factor and ‘its’ technology are substitutes,
whereas a factor and the ‘other’ technology are complements.

The intuition for these findings is closely linked to the one underlying Theorem 1 since
changes in factor endowments increase or decrease the capital intensity, θ. For instance,
a higher K increases θ so that the equilibrium task intensity, κ̄, shifts upwards and
induces a lower q̄b and a higher q̄a in accordance with the technology frontier defined
above.9

To place Proposition 3 in a broader context recall from Proposition 1 that the equilibrium
technology satisfies V1

(
q̄b, q̄a, K, L

)
= V2

(
q̄b, q̄a, K, L

)
= 0. Restricting attention to labor,

total differentiation of these two conditions at
(
q̄b, q̄a, K, L

)
delivers

dq̄b

dL
=

V12V24 −V22V14

V11V22 −V2
12

, (4.2)

dq̄a

dL
=

V21V14 −V11V24

V11V22 −V2
12

. (4.3)

To sign these derivatives note the following. First, since
(
q̄b, q̄a)maximizes V

(
qb, qa, K, L

)
,

it holds that V11 < 0, V22 < 0 and V11V22 − V2
12 > 0. Second, V12 = KLF12 > 0 since

Y
(
qb, qa, K, L

)
is (strictly) super-modular in

(
qb, qa). Finally,

V14 = K (1 + q̄a) F12 > 0, (4.4)

V24 = L (1 + q̄a) F22 < 0. (4.5)

Hence, a higher qb increases the net marginal product of labor at given factor endow-
ments whereas a higher qa reduces it. In other words, V neither exhibits strictly de-
creasing nor strictly increasing differences in

(
qb, qa, L

)
.10 Therefore, in the taxonomy of

Acemoglu (2010), the technology
(
qb, qa) is neither strongly labor saving nor strongly labor

complementary.11 As a consequence, the products in the numerators of (4.2) and (4.3) are

9In fact, Proposition 3 may also be expressed in terms of the relative scarcity of factors of production
measured by θ. Then, it would state that dq̄b/dθ = gb

κ (κ(θ)) κθ(θ) < 0 and dq̄a/dθ = ga
κ (κ(θ)) κθ(θ) > 0

where the signs follow from Theorem 1 according to which q̄b = gb (κ (θ)) and q̄a = ga (κ (θ)). To the extent
that changes in θ may result from simultaneous variations in capital and labor, rephrasing Proposition 3 in
this way is slightly more general.

10If a function f (x, t) defined on Rn×R is twice differentiable on some open set, then for each i = 1, ..., n
increasing (decreasing) differences means ∂ f 2(x, t)/∂xi∂t ≥ 0

(
∂ f 2(x, t)/∂xi∂t ≤ 0

)
.

11According to Acemoglu (2010), Definition 1, p. 1050, a technology is said to be strongly labor saving
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of the same sign.12 Nevertheless, the overall sign of these numerators is unequivocal.
The positive sign of dq̄b/dL follows since

V12V24 −V22V14 = Lcq (q̄a)V14 > 0.

The negative sign of dq̄a/dL results since

V21V14 −V11V24 = Kcq

(
q̄b
)

V24 < 0,

where cq
(
qj) ≡ 2iq

(
qj)+ (1 + qj) iqq

(
qj) > 0, j = a, b, is the slope of the minimized cost

per task.

An alternative and insightful interpretation of the comparative statics stated in (4.2)
and (4.3) can be gained from Corollary 1. Recall that the technologies qb and qa are
linked via the technology frontier qb = g (qa) introduced in (3.7). Along this frontier,
the technology becomes effectively single-dimensional and net output at given factor
endowments can be stated as V (g (qa) , qa, K, L). Then, it is readily verified that

∂2V
∂L∂qa = gq (q̄a)V14 + V24 < 0,

where V is evaluated at
(
q̄b, q̄a, K, L

)
and gq (q̄a) < 0 is the slope of the technology

frontier. In light of (4.4) and (4.5), both summands are negative. Hence, the technology
qa is ‘strongly labor saving along the technology frontier’. Moreover, total differentiation
of the first-order condition associated with (3.12) and evaluation at

(
q̄b, q̄a, K, L

)
delivers

dq̄a

dL
= −

gq (q̄a)V14 + V24

gq (q̄a)
(
V11gq (q̄a) + 2V12

)
+ V22

< 0 and
dq̄b

dL
=

dq̄a

dL
gq (q̄a) > 0 (4.6)

which coincides with (4.2) and (4.3) but unequivocally reveals the sign of the compara-
tive statics.

Finally, observe that the qualitative results of Proposition 3 carry over to a world where
firms have access to only one of the two technologies. For instance, without means
to raise the productivity of capital, qb = 0, k = 1 , and the equilibrium technology

(strongly labor complementary) if improvements in the technology reduce (increase) the net marginal product

of labor at
(

q̄b, q̄a, K, L
)

. Analogously, it is strongly capital saving (strongly capital complementary) if im-

provements in the technology reduce (increase) the net marginal product of capital at
(

q̄b, q̄a, K, L
)

. Here,

‘improvements in the technology’ refer to higher levels of both elements of the technology vector
(

qb, qa
)

.

12Mutatis mutandis, the qualitative results of (4.2) - (4.5) and the ensuing interpretation are analogous
for changes in the capital endowment. Hence, V has neither strictly decreasing nor strictly increasing

differences in
(

qb, qa, K
)

. Accordingly, the technology
(

qb, qa
)

is neither strongly capital saving nor strongly
capital complementary. Moreover, the logic behind the unequivocal signs of changes in K on the equilibrium
technology is analogous to the one for changes in L.
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q̄a maximizes net output at given factor endowments given by V (0, qa, K, L). Implicit
differentiation of V2 (0, q̄a, K, L) = 0 delivers

dq̄a

dK
=
−V23

V22
> 0 and

dq̄a

dL
=
−V24

V22
< 0, (4.7)

again confirming the signs obtained in Proposition 3. More capital fosters innovation
investments that increase the productivity of the complementary factor since V23 =

LF12 > 0. Moreover, labor scarcity increases innovation incentives since, as in (4.5),
V24 = (1 + q̄a) LF22 < 0.13 Analogous results obtain if only the productivity of capital
can be increased by means of innovation investments.

Factor Scarcity and Equilibrium Net Output

How does the equilibrium net output of (3.13) respond to changes in factor endow-
ments? The answer is given by the equilibrium net marginal product of capital. Using
Proposition 1 - 3, the latter is

dV (K, L)
dK

=

[
V1

(
q̄b, q̄a, K, L

) dq̄b

dK
+ V2

(
q̄b, q̄a, K, L

) dq̄a

dK

]
(4.8)

+
∂V
(
q̄b, q̄a, K, L

)
∂K

= R̄.

The first line captures the effect of induced technical change on net equilibrium output.
In light of Proposition 3 it holds that dq̄a/dK > 0 > dq̄b/dK, i. e., the productivity of
labor increases whereas the one of capital falls. However, the effect of these incremental
adjustments on equilibrium net output is negligible since, according to Proposition 1, the
equilibrium technology has already been chosen to maximize net output at given factor
endowments. Accordingly, the partial derivatives V1

(
q̄b, q̄a, K, L

)
and V2

(
q̄b, q̄a, K, L

)
are zero in equilibrium, and the first line of (4.8) vanishes. As a consequence, a small
increase in capital augments equilibrium net output only to the extent that more tasks
can be performed using the given technology

(
q̄b, q̄a). According to Proposition 2, this

effect is equal to the equilibrium real rental rate of capital. An analogous argument
shows that the effect of changing labor on equilibrium net output is equal to w̄.

5 Factor Prices, Factor Scarcity, and Equilibrium Technology

This section studies the role of factor scarcity and technical progress for the levels of
absolute and relative factor prices.

13This is in line with the key finding of Acemoglu (2010). Since there is only one technology V24 < 0
means that the equilibrium technology is strongly labor-saving. Hence, labor scarcity increases q̄a.
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5.1 Absolute Factor Prices

Denote the equilibrium factor prices of (3.16) by R̄
(
q̄b, q̄a, K, L

)
and w̄

(
q̄b, q̄a, K, L

)
, re-

spectively. The following proposition states the main result of this section.

Proposition 4 At
(
q̄b, q̄a, K, L

)
it holds that

dR̄
dK

< 0,
dw̄
dK

> 0,
dw̄
dL

< 0,
dR̄
dL

> 0. (5.1)

Hence, a larger capital stock lowers the equilibrium rental rate of capital and increases
the real wage, and, mutatis mutandis, for a larger labor force. To get the intuition
consider dR̄/dK < 0. From Theorem 1 the equilibrium rental rate of capital declines
in the task intensity which, in turn, increases in the capital-labor ratio. In other words,
since a higher K increases θ, R̄ must fall. Moreover, in accordance with the factor-price
frontier, w̄ increases.14

To place Proposition 4 in a broader context note that the effects stated in (5.1) may be
split up into a partial and a general equilibrium effect. Indeed, with Proposition 2 one
finds

dR̄
dK

=
∂R̄
∂K

+

[
∂R̄
∂qa

dq̄a

dK
+

∂R̄
∂qb

dq̄b

dK

]
,

dw̄
dL

=
∂w̄
∂L

+

[
∂w̄
∂qa

dq̄a

dL
+

∂w̄
∂qb

dq̄b

dL

]
, (5.2)

dR̄
dL

=
∂R̄
∂L

+

[
∂R̄
∂qa

dq̄a

dL
+

∂R̄
∂qb

dq̄b

dL

]
,

dw̄
dK

=
∂w̄
∂K

+

[
∂w̄
∂qa

dq̄a

dK
+

∂w̄
∂qb

dq̄b

dK

]
. (5.3)

Here, the first term of each expression captures the partial equilibrium effect of changing
factor endowments for a given technology. The terms in brackets represent the general
equilibrium effects due to induced technical progress.

Partial Equilibrium Effects

To understand the link between Proposition 4, (5.2), and (5.3) consider the real wage.
From (3.15), the sign of the partial equilibrium effects are determined by diminishing
returns to labor and the super-modularity of F as ∂w̄/∂L = (1 + q̄a)2 F22

(
q̄b, q̄a, K, L

)
< 0

and ∂w̄/∂K =
(
1 + q̄b) (1 + q̄a) F21

(
q̄b, q̄a, K, L

)
> 0. An analogous argument applies to

the equilibrium rental rate of capital.

General Equilibrium Effects

To provide an understanding of the general equilibrium effects, one needs to study first
the partial effect of technical change on factor prices.

14In fact, Proposition 4 may also be expressed in terms of the relative scarcity of factors of production
measured by θ. Then, it would state that dR̄/dθ = Rκ (κ(θ)) κθ(θ) < 0 and dw̄/dθ = wκ (κ(θ)) κθ(θ) > 0
where the signs follow from Theorem 1 according to which R̄ = R (κ (θ)) and w̄ = w (κ (θ)). To the extent
that changes in θ may result from simultaneous variations in capital and labor, rephrasing Proposition 4 in
this way is slightly more general.
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Proposition 5 At
(
q̄b, q̄a, K, L

)
, it holds that

∂R̄
∂qb < 0,

∂R̄
∂qa > 0,

∂w̄
∂qb > 0,

∂w̄
∂qa < 0. (5.4)

Since equilibrium factor prices are equal to the equilibrium net marginal products of the
corresponding factor, the findings of Proposition 5 follow immediately from (4.4) and
(4.5) and the corresponding expressions for capital V23 > 0 > V13. In other words, they
reflect the fact that the technology

(
qb, qa) is neither strongly factor saving nor strongly

factor complementary.15

To highlight the importance of Proposition 5 it is worth contrasting the effects of techni-
cal change on factor prices with those of exogenous factor-augmenting technical change
that arise in the neoclassical growth model. In this model and the present notation, final
output equals F

((
1 + qb)K, (1 + qa) L

)
. Marginal cost pricing leads to an equilibrium

real wage equal to ŵ = (1 + qa) F2 so that

∂ŵ
∂qa = F2 + (1 + qa) LF22 R 0, (5.5)

where F is evaluated at
((

1 + qb)K, (1 + qa) L
)
. Hence, technology qa may increase or

decrease the price of labor. This reflects the tension between a positive productivity
effect and a negative effect due to diminishing returns (see Irmen (2014) for details).
With endogenous technical change, the effect of qa on w̄

(
q̄b, q̄a, K, L

)
is derived from

Proposition 2 as

∂w̄
∂qa =

[
F2 − (1 + q̄a) iq(q̄a)− i(q̄a)

]
+ (1 + qa) LF22

(5.6)

= (1 + qa) LF22 < 0,

where F is evaluated at
((

1 + q̄b)K, (1 + q̄a) L
)
. The sign is unequivocally negative since

V2
(
q̄b, q̄a, K, L

)
= L

[
F2 − (1 + q̄a) iq(q̄a)− i(q̄a)

]
= 0. This suggests that the ambiguity

of (5.5) is due to an asymmetry in the analytical setup rather than to properties of the
production function: if technical change is exogenous, then competitive firms compete
in factor markets but not for their technology. If technical progress is endogenous, then
firms compete for the resources that make technical progress happen. As a consequence,
the positive productivity effect that appears in (5.5) is competed away. In other words, a
higher qa cannot have a positive effect on the equilibrium real wage since the competitive
equilibrium technology maximizes net output. Mutatis mutandis, the same reasoning
applies to the effect of qb on the equilibrium rental rate of capital.

15In the taxonomy of Acemoglu (2007), technology qb is absolutely biased towards labor whereas technol-
ogy qa is absolutely biased towards capital.
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Finally, observe that the models with and without endogenous technical change predict
the same factor price movements for the cross-effects. Here, only the properties of F
matter. More precisely, its super-modularity means that ∂R̂/∂qa = ∂R̄/∂qa = V32 > 0
and ∂ŵ/∂qb = ∂w̄/∂qb = V14 > 0.

In light of Proposition 3 and Proposition 5, it is now straightforward to sign the general
equilibrium effects. For brevity, I denote those of (5.2) by ∆R̄K and ∆w̄L, and the ones of
(5.3) by ∆R̄L and ∆w̄K.

Proposition 6 It holds that

∆R̄K > 0, ∆w̄L > 0, ∆R̄L < 0, ∆w̄K < 0. (5.7)

Hence, a larger capital stock leads to induced technical change that increases the price of
capital and decreases the price of labor, and, mutatis mutandis, for labor. These results
follow immediately from Propositions 3 and 5. The latter implies that all products
that appear in (5.2) are strictly positive and those of (5.3) are strictly negative. As a
result, induced technical change increases the price of the factor that has become more
abundant and reduces the one of the factor that becomes scarcer.

To grasp the intuition consider ∆R̄K > 0. If K becomes more abundant, then there are
two effects on R̄. On the one hand, the incentive to substitute capital with the capital-
augmenting technology falls and q̄b declines. This diminishes the efficient amount of
capital and increases R̄ due to diminishing returns. On the other hand, a higher pro-
ductivity of the complementary factor becomes more valuable. Therefore, q̄a increases
which increases R̄, due to the super-modularity of F.16 Mutatis mutandis, the intuition
is analogous for the remaining three ∆s.

Total Effects

Summing up, the total effects shown in Proposition 4 reflect the tension between partial
and general equilibrium effects of opposite sign. However, in all cases the partial effect
dominates the general equilibrium effect.17 In particular, (equilibrium) inverse factor
demand functions are declining in the respective factor endowment. However, due to

16In the taxonomy of Acemoglu (2007), there is weak absolute equilibrium bias with respect to K and L
since ∆R̄K > 0 and ∆w̄L > 0. Therefore, Proposition 6 is in line with Theorem 2 in Acemoglu (2007),
p. 1394 saying that under fairly mild conditions there is weak absolute equilibrium bias. However, here
the intuition for this result is quite different from Acemoglu’s given on page 1373. Moreover, it should be
noted that the signs in (5.2) and (5.3) can only be different from zero if the equilibrium technology does not
maximize equilibrium factor prices. See Section 6.1.2 for further discussion.

17In the taxonomy of Acemoglu (2007), there is no strong absolute equilibrium bias since dR̄/dK < 0 and

dw̄/dL < 0. This result may also be traced back to the fact that the Hessian of V
(

q̄b, q̄a, K, L
)

in
(

qb, qa, K
)

or
(

qb, qa, L
)

is negative definite. In fact, V is jointly strictly concave in both
(

qb, qa, K
)

and
(

qb, qa, L
)

as
V14 > 0 and V23 > 0.
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induced technical progress, the response of a factor price to a change in ‘its’ factor
endowment is attenuated.

Finally, observe that Proposition 4 encompasses the cases where only one or none of
the technologies are available.18 If only one technology is available, then one product
representing a general equilibrium effect in (5.2) and (5.3) vanishes. If no technology
is available, only the partial effect matters and we are back in the neoclassical growth
model without technical change.

5.2 Relative Factor Prices

The symmetry of the results on absolute factor prices leads to clear-cut predictions for
the effect of technical progress and factor scarcity on the relative factor price. Through-
out, the findings of this section are expressed in terms of the relative price of capital
R̄
(
q̄b, q̄a, K, L

)
/w̄
(
q̄b, q̄a, K, L

)
. The main result is the following.

Proposition 7 At
(
q̄b, q̄a, K, L

)
it holds that

d(R̄/w̄)

dK
=

∂(R̄/w̄)

∂K
+

[
∂(R̄/w̄)

∂qa
dq̄a

dK
+

∂(R̄/w̄)

∂qb
dq̄b

dK

]
< 0,

(5.8)
d(R̄/w̄)

dL
=

∂(R̄/w̄)

∂L
+

[
∂(R̄/w̄)

∂qa
dq̄a

dL
+

∂(R̄/w̄)

∂qb
dq̄b

dL

]
> 0.

Proposition 7 establishes two distinct outcomes. First, it shows that the total effect
of a larger capital stock on the relative price of capital is negative whereas the effect
of a larger labor endowment is positive. This finding can be directly deduced from
Proposition 4. For instance, since a larger capital stock reduces R̄ and increases w̄, the
relative price of capital must also fall.

Second, the derivatives on the left hand side of (5.8) represent total effects that may
be decomposed into a partial and a general equilibrium effect. From the discussion of
the partial effects on absolute factor prices, it is immediate that ∂ (R̄/w̄) /∂K < 0 and
∂ (R̄/w̄) /∂L > 0. To sign the general equilibrium effects, observe that Proposition 5

implies that

∂
(

R̄
(
q̄b, q̄a, K, L

)
/w̄
(
q̄b, q̄a, K, L

))
∂qb < 0 and

∂
(

R̄
(
q̄b, q̄a, K, L

)
/w̄
(
q̄b, q̄a, K, L

))
∂qa > 0.

18This is immediate from the proof of Proposition 4. Indeed, if only one technology is available, then one
of the elasticities in the denominator of (3.6) is zero. If none of the technologies are available, then κ̄ = θ

and εκ
θ = 1.
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It is in this sense that technology qb is biased towards labor whereas technology qa is
biased towards capital.

In the taxonomy of Hicks (1932), p. 121-122, technical change associated with an increase
in qb is called capital-saving since it decreases the ratio of the (net) marginal product of
capital to that of labor. Technical change associated with an increase in qa is called
labor-saving since it increases this ratio. Hence, ‘labor-saving inventions’ in the termi-
nology of Hicks are those that exhibit a relative bias towards capital in the sense that
∂
(

R̄
(
q̄b, q̄a, K, L

)
/w̄
(
q̄b, q̄a, K, L

))
/∂qa > 0. Here, q̄a captures this type of invention.

Using these results in conjunction with Proposition 3 reveals that the general equilibrium
effects satisfy19

∂(R̄/w̄)

∂qa
dq̄a

dK
+

∂(R̄/w̄)

∂qb
dq̄b

dK
> 0, and

∂(R̄/w̄)

∂qa
dq̄a

dL
+

∂(R̄/w̄)

∂qb
dq̄b

dL
< 0. (5.9)

In light of Proposition 3 and Proposition 5 all products associated with dK are positive
whereas those associated with dL are negative. Hence, the total effects shown in Propo-
sition 7 reveal a tension between partial and general equilibrium effects. While their sign
is determined by the partial effect, the general equilibrium effects weakens the response
of the relative price of capital to changes in the respective factor endowment.

At this stage, the link between the results derived so far and the famous contention of
John Hicks becomes apparent (Hicks (1932)). On page 124 he asserts that

A change in the relative prices of the factors of production is itself a spur to
invention, and to invention of a particular kind - directed to economising the
use of a factor which has become relatively expensive.

These incentives are implied by the first-order conditions of cost-minimization (2.7) and
(2.8). At

(
qb, qa), they may be rearranged to

R
w

=

(
1 + qb)2 iq

(
qb)

(1 + qa)2 iq (qa)
. (5.10)

Since the numerator of the right-hand side increases in qb and the denominator increases
in qa, a hike in R/w induced either by an increase in R or by a decrease in w implies a
greater ratio qb/qa. In other words, the higher firms expect the relative price of capital
to be, the more attractive is it for them to substitute capital with technology rather than
labor with technology.

Of course, factor prices and the technology are endogenous. Hicks suggests changing
factor endowments as the driving force behind factor prices and technical change (Hicks
(1932), 124-125):

19According to the taxonomy of Acemoglu (2007) the signs of the expressions in (5.9) imply a weak relative
equilibrium bias with respect to K and L.
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The general tendency to a more rapid increase of capital than labour which
has marked European history during the last few centuries has naturally
provided a stimulus to labour-saving inventions.

Following the discussion of Propositions 3 and 4, it is indeed the case that a higher
capital intensity, θ, means a lower q̄b, a larger q̄a, a lower R̄, and a higher w̄. Hence,
when firms expect a larger capital intensity, they rightly anticipate the price of labor to
increase and the price of capital to fall. The induced innovation investments attenuate
these price movements. This is the role of the general equilibrium effects. However, in
spite of induced innovations, the relatively scarcer factor becomes more expensive.

6 Extensions

6.1 Alternative Environments

This section studies two alternative economic environments and establishes the relation-
ship to the model of endogenous task-based technical progress discussed so far. Sec-
tion 6.1.1 establishes the equivalence between the model introduced in Section 2 and the
three-sector economy studied in Irmen (2011) where tasks correspond to intermediate
goods. Section 6.1.2 shows the link between the model of Section 2 and a static variant
of the competitive one-sector growth model proposed in Hellwig and Irmen (2001a).
Here, the key difference is the absence of diminishing returns of tasks in the production
of the final good.

6.1.1 Competitive Three-Sector Economy

Consider a competitive economy with a final-good sector and two intermediate-good
sectors, one producing the first intermediate with capital, the other producing the sec-
ond intermediate with labor. Refer to these intermediates as the capital-intensive and
the labor-intensive one. The final good serves as numéraire.

Technology and Profit-Maximization

The representative final-good firm manufactures the final-good out of two intermediate
inputs according to the production function (2.1). Now, M and N denote the respective
aggregate amounts of the capital-intensive and the labor-intensive intermediate inputs.
The firm maximizes profits equal to Y − pK M− pLN where pK and pL denote the real
price of the respective intermediate. The respective first-order conditions are pK =

F1(M, N) and pL = F2(M, N).
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Intermediate-good firms either belong to the capital- or to the labor-intensive intermediate-
good sector. Each sector is represented by the set R+ with Lebesgue measure. All firms
of a sector have access to the same sector-specific production function

yk(m) = min {1, b(m)k(m)} and yl(n) = min {1, a(n)l(n)} , (6.1)

where yk(m) and yl(n) is the output of firm m ∈ R+ or n ∈ R+, respectively. There is a
capacity limit equal to 1,20 b(m) and a(n) denote a firm’s capital and labor productivity,
and k(m) and l(n) is the capital and labor input. The firms’ respective capital and labor
productivity is given by (2.3). Firms may increase their factor productivity by investing
i(qb) and i(qa) units of the final good, where i has the same properties as stated in and
before (2.4).

Intermediate-good firms maximize profits, i. e., pKyk(m)−Rk(m)− i(qb(m)) or pLyl(n)−
wl(n)− i(qa(n)) where pKyk(m), pLyl(n), is the respective firm’s revenue from output
sales, Rk(m), wl(n), its capital cost or wage bill, and i

(
qb(m)

)
, i (qa(n)), its outlays for

the innovation investment. Each firm chooses a production plan
(
yk(m), k(m), qb(m)

)
and (yl(n), l(n), qa(n)) taking prices, (pK, pL, R, w) as given.

To derive the optimal production plan a firm reasons as follows. If it innovates, there
will be an investment cost i

(
qj) > 0. Such an innovation investment is only profit-

maximizing if the firm’s profit margin is strictly positive, i. e., if pK > R/b(m) or pL >

w/a(n). If this is the case then there is a positive scale effect, i. e., an innovating firm
wants to apply the innovation to as large an output as possible and produces at the
capacity limit, i. e., yk(m) = 1 or yl(n) = 1. The choice of

(
k(m), qb(m)

)
and (l(n), qa(n))

must then minimize the costs of producing the capacity output, i. e., assuming w >

0 and R > 0 these input combinations must satisfy k(m) = 1/
(
1 + qb(m)

)
, l(n) =

1/ (1 + qa(n)) and solve

min
qb(m)≥0

R
1 + qb(m)

+ i
(

qb(m)
)

and min
qa(n)≥0

w
1 + qa(n)

+ i (qa(n)) .

The solution to this problem gives rise to first-order (sufficient) conditions that coincide
with (2.7) and (2.8).

The aggregate capital demand is equal to
∫ M

0 k(m)dm where M is the ‘number’ of firms
producing each one unit of the capital-intensive intermediate. Mutatis mutandis, the ag-
gregate labor demand is

∫ N
0 l(n)dn. Accordingly, the factor market clearing conditions

are given by (3.1). To prevent excess factor demands in both factor markets, M and N
must be finite, i. e., in equilibrium some intermediate-good firms must not enter. There-
fore, the maximum profit of any intermediate-good firm producing the capital- or the

20The analysis is easily generalized to allow for an endogenous capacity choice requiring additional
capacity investments, with investment outlays being a strictly convex function of capacity (see, Hellwig
and Irmen (2001a) for details).
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labor-intensive intermediate must be zero in equilibrium.21 Using pK = F1(M, N) and
pL = F2(M, N), these zero-profit conditions coincide with (2.9) and (2.10) as equalities.

Equilibrium

An equilibrium of the three-sector economy consists of production-cum-entry decisions{
yk(m), k(m), qb(m)

}
of all firms m ∈ [0, M] and {yl(n), l(n), qa(n)} of all firms n ∈

[0, N], measures (M, N) of entering firms in both sectors producing one unit each, and
prices (pK, pL, R, w). These variables solve the firms’ first-order conditions for cost-
minimization, the zero-profit (free-entry) condition as well as the factor market clearing
conditions (3.1) given (K, L) ∈ R2

++.

Proposition 8 Given (K, L) ∈ R++, the competitive three-sector economy has a unique equi-
librium. The equilibrium values for (q̄b, q̄a), R̄, w̄, M̄, and N̄ coincide with those of Theo-
rem 1. In addition, the equilibrium determines ȳk(m) = ȳl(n) = 1, p̄K = F1 (M̄, N̄), and
p̄L = F2 (M̄, N̄) .

Proposition 8 holds since the conditions for profit-maximization and zero-profits of the
three-sector economy coincide with (2.7) - (2.10). Moreover, in both economies the factor
market clearing conditions are given by (3.1). As a consequence, all concepts derived
in Section 3 and the results that appear in Section 4 and Section 5 carry over to the
three-sector economy.

6.1.2 Competitive One-Sector Economy

In the competitive one-sector economy studied in Hellwig and Irmen (2001a) firms pro-
duce a final good with the production function yl(n) of (6.1). Firms are represented by
the set R+ with Lebesgue measure, hence n ∈ R+ indexes firms. The final good is the
numéraire. A new element is that innovation investments have to be undertaken and
financed one period before they are used in production. Let R = 1+ r > 0 denote the ex-
ogenous real interest factor.22 Firms maximize profits equal to yl(n)−wl(n)− Ri(qa(n))
where yl(n) is the respective firm’s revenue from output sales, wl(n), its wage bill, and
Ri (qa(n)), its outlays for the innovation investment.

Firms choose a production plan (yl(n), l(n), qa(n)) taking factor prices (R, w) as given.
Let N denote the measure of firms that enter and produce output. Following the rea-
soning set out for the intermediate-good firms in the three-sector economy, this leads to

21Firms that do not enter choose the plan (0, 0, 0) that delivers zero-profits just as for entering firms. This
also applies to the competitive one-sector economy of Section 6.1.2.

22In Hellwig and Irmen (2001a), R is endogenous and coordinates the inter-temporal decisions of firms
and households. Since the latter sector is missing here, R is taken to be exogenous as would be the case,
e. g., in a small open economy.
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symmetric profit-maximizing choices for all n ∈ [0, N] firms satisfying l = 1/(1 + qa)

and −w/(1 + qa)2 + Riq(qa) = 0, which is the counterpart of (2.8). To exclude an excess
demand for labor, N must be finite, i. e., in equilibrium some firms must stay out of the
market. Therefore, entering and producing firms must earn zero-profits in equilibrium,
i. e., 1−w/(1+ qa)− Ri(qa) = 0. Finally, full employment of labor pins down the ‘num-
ber’ of entering firms as N = (1+ qa)L. These conditions determine unique equilibrium
values

(
q̄a, l̄, w̄, N̄

)
∈ R4

++ as functions of R, and ȳl(n) = 1.

Interpreting yl(n) as the ‘number’ of tasks performed by firm n, the link to the model
of Section 2 becomes obvious. In equilibrium, each firm performs one task at min-
imum costs. Moreover, aggregate output is equal to the ‘number’ of entering firms
N̄, i. e., there are no diminishing returns associated with the number of performed
tasks. Moreover, net output at given factor endowments is the difference between
aggregate output, N = (1 + qa)L, and total investment outlays, (1 + qa)LRi (qa) , i. e.,
V (qa, L; R) = (1 + qa) [1− Ri (qa)] L. This leads to the following results corresponding
to Theorem 1, Proposition 1 and Proposition 2.

Proposition 9 (One-Sector Economy)

1. Equilibrium Technology

(a) The equilibrium technology satisfies

q̄a = g (R) , where g : R++ → R++ and gR (R) < 0. (6.2)

(b) If q̄a is the equilibrium technology then

q̄a = argmaxqa∈R+
V (qa, L; R) . (6.3)

Moreover, any qa ∈ R2
+ that solves (6.3) is an equilibrium technology.

2. Equilibrium Wage

(a) The equilibrium wage satisfies

w̄ = max
qa∈R+

∂V (q̄a, L; R)
∂L

. (6.4)

(b) The equilibrium wage is independent of L. Moreover, there is a function w : R++ →
R++ such that

w̄ = w (R, g (R)) with
dw̄
dR

=
∂w̄
∂R

< 0. (6.5)
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According to Claim 1.(a), the equilibrium technology is independent of the economy’s
labor endowment. Hence, there is no direct analogy to Proposition 3. This is due to the
absence of diminishing returns, i. e., each performed task adds the same amount to final
output. Therefore, the equilibrium innovation incentives are the same for all firms. The
equilibrium technology declines in the real interest factor reflecting higher marginal and
total investment costs as R increases. Claim 1.(b) is the counterpart to Proposition 1 and
confirms the validity of the two welfare theorems for this economy.

Claim 2.(a) states two findings. First, it confirms Proposition 2, that is, the equilibrium
wage is equal to the net marginal product of labor at q̄a. Second, unlike the model of
Section 2, the equilibrium technology also maximizes the real wage. The reason is again
the absence of diminishing returns. Therefore, V (qa, L; R) is linear in L, the equilibrium
wage is equal to net output per worker, and q̄a maximizes net output and the real
wage. Claim 2.(b) reveals that the equilibrium wage necessarily falls in response to an
increase in the price of the innovation investment. This reflects the direct price effect on
investment outlays. By the envelope theorem, the indirect effect via induced innovation
investments, (∂w̄/∂qa) (∂q̄a/∂R), is mute since the equilibrium technology maximizes
the real wage.

To establish a closer link between Claim 1.(a) and Claim 2.(b) and a potential role of
factor endowments, one may want to think of R as being determined by (the world’s)
capital stock K with RK(K) < 0. Then, these claims imply that both q̄a and w̄ increase
with K. This confirms dq̄a/dK > 0 of Proposition 3 as well as dw̄/dK > 0 of Proposi-
tion 4. Moreover, the latter comparison leads to the interesting conclusion that there is
no weak absolute bias (or weak relative) bias in models where the equilibrium technol-
ogy maximizes equilibrium factor prices.

6.2 Endogenous Factor Supplies

Factor supplies may respond to changing factor prices. Accordingly, the relative scarcity
of employed factors of production becomes endogenous. This section allows for the
labor supply to depend on the real wage and for the capital supply to depend on the real
rental rate. The question is then how changing factor endowments affect the equilibrium
technology and equilibrium factor prices. Conceptually, these two cases differ insofar as
the real wage affects the intensive margin of the supply of labor whereas the real rental
rate determines the extensive margin of the supply of capital.

6.2.1 Endogenous Labor Supply

In the short run, individuals may want to increase their labor supply in anticipation
of a higher wage. Under full employment this behavior reduces, ceteris paribus, the
ratio of capital to employed labor. In this sense, labor becomes more abundant. Then,
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Proposition 3 and Proposition 4 suggest that the productivity of labor and the wage
decline in equilibrium.

To address this tension assume that the individual labor supply is a function of the real
wage. To be precise, denote τ ∈ [0, 1] the fraction of an individual’s time endowment
that she supplies to the labor market and normalize this endowment to unity. Assume
further that τ = τ(w) where τ : R++ → (0, 1) with τw (w) > 0. From Theorem 1,
w = w (κ) which results from firms’ first-order conditions. Accordingly, τ = τ (w (κ)),
and

ετ
κ (κ) ≡

d ln τ

d ln κ
> 0

is the elasticity of τ (w (κ)) with respect to κ. To find the equilibrium task intensity note
that the aggregate labor supply is equal to Lτ (w (κ)) and, for any strictly positive real
wage, the labor market clearing condition (3.1) delivers N = ((1 + ga (κ)) Lτ (w (κ)).

Proposition 10 There is a unique equilibrium task intensity, κ̄ > 0, that solves

κ̄ =
1 + gb(κ̄)

1 + ga(κ̄)

θ

τ (w (κ̄))
. (6.6)

In addition,

εκ
θ =

1
1 + εb

κ + εa
κ + ετ

κ

∈ (0, 1), (6.7)

where all terms are evaluated at κ̄.

Proposition 10 extends equations (3.5) and (3.6) to the case of an endogenous labor
supply. It is readily verified that τw(w) > 0 is sufficient for the existence of a unique
κ̄ > 0 that satisfies (6.6). Equation (6.7) states the elasticity of κ̄ to changes in θ which
is positive. Hence, κ̄ increases in θ. However, compared to (3.6), the responsiveness is
weaker since ετ

κ > 0. This is due to an adjustment in the individual supply of labor
and leads to the main result of this section: if individuals increase their labor supply
at the intensive margin in response to a higher wage, then the effect of changing θ of
the equilibrium task intensity weakens but does not change its direction. Therefore,
Proposition 3 and Proposition 4 remain valid.23

23Proposition 3 and Proposition 4 may also remain valid if one allows for τw(w) < 0 for some w > 0.
This means that ετ

κ (κ) is negative for some κ. As long as a unique κ̄ exists and εκ
τ (κ̄) is not too negative,

εκ
θ of (3.6) exists and remains positive. However, in this case a higher wage reduces the supply of labor

at the intensive margin which strengthens the responsiveness of κ̄ to changes in θ relative to the case of
exogenous labor supply.
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6.2.2 Endogenous Supply of Capital

Denote the supply of capital by K = K (R) where K : R++ → R++ with KR (R) > 0.
Theorem 1 implies R = R (κ) with Rκ (κ) < 0. Hence, the equilibrium capital supply
satisfies K = K (R (κ)) and

εK
κ (κ) ≡

d ln K
d ln κ

< 0.

The capital market clearing condition (3.1) delivers M =
(
1 + gb (κ)

)
K (R (κ)). Hence,

the equilibrium task intensity solves

κ =
1 + gb(κ)

1 + ga(κ)

K (R (κ))

L
. (6.8)

The same line of reasoning as used in Proposition 10 leads to the conclusion that (6.8)
pins down a unique κ̄ > 0. Moreover, with εκ

L = d ln κ/d ln L one readily verifies that

εκ
L =

−1
1 + εb

κ + εa
κ − εK

κ

< 0. (6.9)

As expected, increasing the supply of labor reduces the equilibrium task intensity.
Therefore, the qualitative predictions made in Proposition 3 and Proposition 4 con-
cerning changes is the labor endowment remain valid. However, the elastic supply of
capital weakens this link. The intuition for this is straightforward. Given K an increase
in L reduces the task intensity. This shifts the rental rate of capital upwards, leads to
an increased supply of capital, and, therefore, to a greater task intensity. This general
equilibrium effect weakens but does not dominate the effect of L on the equilibrium task
intensity.24

6.3 Exogenous Factor Prices: The Case of a Minimum Wage

What is the role of factor scarcity for technology and factor prices if one factor price is
fixed above its equilibrium value determined in Theorem 1? To answer this question I
introduce an exogenous minimum wage into the model of Section 2.25 Accordingly, the

24Following similar arguments as in Footnote 23 one readily verifies that Proposition 3 and Proposition 4

may also remain valid if one allows for KR (R) < 0 for some R > 0.

25Alternatively, one could address this topic in a small open economy (SOE) facing an exogenous rental
rate of capital under perfect international capital mobility. If the rental rate paid in the worldwide capital
market exceeds R̄ of Theorem 1, then there will be strictly positive net capital exports in equilibrium. This
is the counterpart to the equilibrium level of unemployment of labor under a binding minimum wage in
the closed economy under scrutiny here. Moreover, in the SOE the effect of changing the labor endowment
on the equilibrium values of technology, factor prices, and net capital exports mimics the effect of changing
the capital endowment as stated in Proposition 11 below.
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equilibrium factor market clearing condition for labor stated in (3.1) must be extended.
With wmin > 0 denoting the real minimum wage this condition becomes

w ≥ wmin,
∫ N

0
l(n)dn ≤ L, (w− wmin)

(∫ N

0
l(n)dn− L

)
= 0. (6.10)

Hence, the actual wage must not be lower than the minimum wage, and, if it is equal
to the minimum wage an excess supply of labor may occur in equilibrium. The equilib-
rium of the economy is then defined as in Section 3 with (6.10) replacing the respective
condition in (3.1).26

Clearly, what matters is whether the minimum wage is binding or not. If it is not binding
then w > wmin and there must be full employment. In other words, the equilibrium is as
described in Theorem 1. However, if it is binding then w = wmin and the character of the
equilibrium changes drastically. Firms adjust their investment behavior, the rental rate
of capital falls, and there is unemployment of labor. To see why the remainder of this
section assumes that the minimum wage exceeds its equilibrium level under laissez-
faire, i. e., wmin > w̄. Moreover, the subscript min is used to denote the equilibrium
values associated with wmin.

The analysis starts with the cost-minimizing choice of qa(n) given by (2.8). Now, this
equation directly determines qa

min. To make this more precise, let qa(w) denote the
functional relationship between qa and w defined by (2.8). Then, qa : R++ → R++ and,
with cq (qa) ≡ 2iq (qa) + (1 + qa) iqq (qa) > 0, one has qa

w (w) =
[
(1 + qa) cq (qa)

]−1
> 0.

Hence,

qa
min = qa (wmin) > q̄a = qa (w̄) . (6.11)

Intuitively, competitive firms must raise the productivity of labor to meet the challenge
of an excessive real wage.

Upon combining (2.8) and (2.10) for a given wage one finds

f (κ)− κ fκ (κ)− (1 + qa (w)) iq (qa (w))− i (qa (w)) = 0 (6.12)

as the equilibrium condition that equates the value product of the marginal task N
to the minimized cost of tasks performed by labor. Since w pins down qa, (6.12) im-
plicitly defines a functional relationship κ (w) where κ : R++ → R++ and κw (w) =

−cq (qa) qa
w (w) / (κ fκκ (κ)) > 0. Hence, the equilibrium task intensity under a binding

minimum wage satisfies

κmin = κ (wmin) > κ̄ = κ (w̄) . (6.13)

26To simplify the exposition, here F (M, N) satisfies the usual Inada-conditions, i. e., limκ→0 fκ(κ) = ∞
and limκ→∞ fκ(κ) = 0.
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Intuitively, the cost minimum of tasks performed by labor is higher under a binding
minimum wage. Therefore, the value product of the marginal task N must also increase.
Accordingly, the equilibrium task intensity increases.

A higher task intensity reduces the value product of the marginal task M. Therefore,
the equilibrium incentive to invest in the capital-augmenting technology will fall. To
confirm this intuition formally, combine (2.7) with (2.9), and use κ (w) as defined above.
This gives the equilibrium condition that equates the value product of the marginal task
M to the minimized cost of tasks performed by capital as

fκ (κ (w))−
(

1 + qb
)

iq

(
qb
)
− i
(

qb
)
= 0. (6.14)

The latter defines a functional relationship qb (w), where q : R++ → R++ with qb
w (w) =

fκκ (κ(w)) κw (w) /cq
(
qb) < 0 and cq

(
qb) ≡ 2iq

(
qb)+ (1 + qb) iqq

(
qb) > 0. Hence,

qb
min = qb (wmin) < q̄b = qb (w̄) . (6.15)

As to the rental rate of capital, let R
(
qb) denote the functional relationship between R

and qb implied by (2.7). Then, R : R++ → R++ with Rq
(
qb) =

[(
1 + qb) cq

(
qb)]−1

>

0. Now, the function qb(w) defined above provides the link between the rental rate
of capital and the wage. Indeed, one has R

(
qb(w)

)
with Rw = Rq

(
qb(w)

)
qb

w (w) <

0. Accordingly, the equilibrium rental rate of capital under a binding minimum wage
satisfies

Rmin = R
(

qb
min

)
< R̄ = R

(
q̄b
)

. (6.16)

Intuitively, the rental rate of capital falls below its laissez-faire level so that the cost-
minimum is attained at qb

min < q̄b.

Hence, under a binding minimum wage the equilibrium technology as well as the equi-
librium rental rate of capital is fully determined by wmin. In addition, these variables
also depend on the functional forms chosen for f and i but, unlike under laissez-faire,
not on factor endowments. However, it is important to see that the capital stock is a
determinant of the level of equilibrium employment.

Under a binding minimum wage, the level of employment is equal to the demand for
labor, Ld = N/ (1 + qa (w)) < L. At the same time full employment of capital requires
M/

(
1 + qb (w)

)
= K. Then, the equilibrium level of employment satisfies κ (w) =

M/N, or

κ (w) =
(1 + qa (w))K
(1 + qb (w)) Ld . (6.17)

Since qa
w (w) > 0 > qb

w (w), and κw (w) > 0, the latter implicitly defines a function
Ld (w, K) where Ld : R2

++ → R++. A higher (minimum) wage reduces the level of
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employment, i. e., ∂Ld (w, K) /∂w < 0. Intuitively, this reflects two reinforcing chan-
nels. First, the number of tasks performed by labor declines since Nmin = Mmin/κmin =(
1 + qb

min
)

K/κmin < N̄. Second, each of the Nmin tasks requires less labor as qa
min > q̄a.

Hence, induced labor-saving technical change reinforces the employment reducing effect
of a binding minimum wage. As a consequence,

Lmin = L (wmin, K) < L. (6.18)

A higher capital endowment unequivocally increases the level of employment, i. e.,
∂Ld (w, K) /∂K > 0. Intuitively, for a given equilibrium technology, a higher K implies a
proportionate increase in M. To keep κ (wmin) constant, this requires a proportionate in-
crease in N, hence also in Ld. The following proposition summarizes the results derived
in this section.

Proposition 11 Consider a binding minimum wage in the economy of Section 2, i. e., wmin > w̄.
Then, the equilibrium technology satisfies

qa
min > q̄a with

dqa
min

dwmin
> 0 and qb

min < q̄b with
dqb

min
dwmin

< 0.

Moreover, the equilibrium real rental rate of capital satisfies

Rmin < R̄ with
dRmin

dwmin
< 0.

Finally, the level of employment satisfies

Ld
min < L with

∂Ld
min

∂wmin
< 0, and

∂Ld
min

∂K
> 0.

Finally, observe that net output under a binding minimum wage is strictly smaller than
under laissez-faire. To see this, consider net output of (3.10) evaluated at qb (w), qa (w) ,
and Ld (w, K) as defined above. This gives

V (w) ≡ V
(

qb (w) , qa (w) , K, Ld (w, K)
)

.

In light of (6.12) and (6.14), one finds

dV (w)

dw
= F2

((
1 + qb (w)

)
K, (1 + qa (w)) Ld (w, K)

)
(1 + qa (w))

∂Ld (w, K)
∂w

< 0,

i. e., the adjustments of the equilibrium technology induced by a higher real wage have
no first-order effect on net output. Intuitively, one may think of the competitive technol-
ogy choice as maximizing net output in an economy where factor endowments are given
by K and Ld

min. Accordingly, a higher minimum wage affects net output only because it
reduces employment.
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7 Concluding Remarks

Many macroeconomic studies stipulate an aggregate production function with an ex-
ogenous factor-augmenting technology of the form Y = F (bK, aL). The present paper
shows that this feature obtains as an equilibrium phenomenon in a competitive model
of endogenous task-based technical progress. Firms choose the technology to minimize
costs per task. Since tasks are factor-specific, this choice hinges on factor prices. More-
over, since the total number of tasks performed by each factor is determined through a
full-employment condition, it hinges on factor endowments.

This setup captures some fundamental ideas enunciated by Hicks and later by the lit-
erature on “induced innovations”, namely, that factor scarcity and factor prices play
an essential role for our understanding of the direction of technical change. Here, it
is shown that the scarcity of a factor increases its equilibrium productivity. This oc-
curs even though the equilibrium technology is not strongly factor saving in the sense
of Acemoglu (2010). Moreover, changing either factor endowment has an intuitive ef-
fect on absolute and relative factor prices. For instance, the long-run factor demand
schedules remain declining in the respective factor price.

Clearly, there are open and new questions left for future research. They include the
robustness of the results for heterogeneous tasks or for more than two factors of pro-
duction. Moreover, to establish the link between the present setup and the modern
literature on Schumpeterian growth initiated by Romer (1990), Segerstrom, Anant, and
Dinopoulos (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992), one
may want to allow for technology monopolists developing and selling the factor saving
technologies to the competitive firm sector considered here. The approach proposed in
Acemoglu (2007) and Acemoglu (2010) suggests a way to accomplish this.
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8 Appendix

8.1 Proof of Theorem 1

The choice of (M, N) is only consistent with finite factor supplies if (2.9) and (2.10) hold as an equality.
Then, combining (2.7), (2.9) with F1(M, N) = fκ(κ), and (2.8), (2.10), with F2(M, N) = f (κ)− κ fκ(κ) delivers

fκ(κ) = c
(

qb
)

and f (κ)− κ fκ(κ) = c (qa) , (8.1)

respectively. Here, c
(

qb
)
≡ i(qb) + (1 + qb)iq(qb) and c (qa) ≡ i(qa) + (1 + qa)iq(qa) are the minimized

costs per task of the respective types. Using the properties of f and i it is straightforward to show that
there are maps gb : R++ → R++ and ga : R++ → R++ such that qb = gb(κ) > 0 with gb

κ(κ) < 0, and
qa = ga(κ) > 0 with ga

κ(κ) > 0. Using these findings in (2.7) and (2.8) reveals that the factor prices satisfy

R =
(

1 + gb(κ)
)2

iq
(

gb(κ)
)
≡ R(κ) > 0 with Rκ(κ) < 0,

(8.2)

w = (1 + ga(κ))2 iq (ga(κ)) ≡ w(κ) > 0 with wκ(κ) > 0,

where R : R++ → R++ and w : R++ → R++. Moreover, with k = 1/b and l = 1/a in (3.1), one has
M = bK =

(
1 + gb(κ)

)
K and N = aL = (1 + ga(κ)) L. Hence, the equilibrium task intensity is indeed

determined by (3.5). There is a unique κ̄ > 0 that solves the latter equation. To see this, denote its right-
hand side by RHS(κ), which is a continuous function RHS : R++ → R++ with RHSκ(κ) < 0 since
ga

κ(κ) > 0 > gb
κ(κ). Moreover, it satisfies limκ→0 RHS(κ) > 0. Hence, there is a unique κ̄ > 0 that satisfies

κ̄ = RHS (κ̄). Implicit differentiation reveals that κ̄ = κ(θ) with κθ(θ) > 0 and θ ≡ K/L. �

8.2 Proof of Proposition 1

(⇒) By construction, the equilibrium technology
(

q̄b, q̄a
)

satisfies the first-order conditions (2.7) - (2.10) as

equalities and the full employment conditions (3.1). I show that the solution to max(qb ,qa)∈R+
V
(

qb, qa, K, L
)

coincides with (3.2). This establishes the first part of the proposition.

Consider V
(

qb, qa, K, L
)

of (3.10) and recall that, by definition, net output at given factor endowments

includes the full employment conditions (3.1) for symmetric technology choices, i. e., M =
(

1 + qb
)

K and

N = (1 + qa) L. Then, with
((

1 + qb
)

K, (1 + qa) L
)

being the argument of F, the first-order conditions are

V1

(
qb, qa, K, L

)
= K

[
F1 − c

(
qb
)]

= 0, and V2

(
qb, qa, K, L

)
= L [F2 − c (qa)] = 0. (8.3)

These conditions deliver a global maximum since

V11 = K
[
KF11 − cq

(
qb
)]

< 0, V22 = L
[
LF22 − cq (qa)

]
< 0,

(8.4)

and V11V22 − [V12]
2 > 0 as cq

(
qb
)

cq (qa)− Kcq (qa) F11 − Lcq

(
qb
)

F22 > 0.

As F has constant returns to scale, (8.3) may be written as (8.1). Hence, (8.3) gives rise to the same functions
as stated in (3.2).

(⇐) Suppose that
(

qb, qa
)
∈ R2

+ solves (3.11). Then, it satisfies (8.3), hence qb = gb (κ) and qa = ga (κ).

Since V
(

qb, qa, K, L
)

implies the factor market conditions (3.1), the equilibrium task intensity κ̄ must be

given by (3.5). Hence, qb = gb (κ̄) = q̄b and qa = ga (κ̄) = q̄a. �
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8.3 Proof of Corollary 1

From Theorem 1 any technology
(

qb, qa
)

that qualifies as an equilibrium technology satisfies qb = g (qa)

of (3.7). From Proposition 1, the equilibrium technology is a global maximum of V
(

qb, qa, K, L
)

on R2
+.

Hence, the equilibrium technology also solves (3.12). �

8.4 Proof of Proposition 2

The first-order conditions (2.7) and (2.8) deliver qb(m) = qb and qa(n) = qa. Market clearing (3.1) means that
M = (1+ qb)K and N = (1+ qa)L. Using this information in (2.9) and (2.10) reveals that equilibrium factor

prices are equal to the net marginal products of (3.14) and (3.15), respectively, where
(

qb, qa
)
=
(

q̄b, q̄a
)

.�

8.5 Proof of Proposition 3

The equilibrium technology is given by q̄b = gb (κ(θ)) and q̄a = ga (κ(θ)). Therefore, dq̄b/dK = gb
κ(κ̄)κθ(θ)/L <

0, dq̄a/dL = ga
κ(κ̄)κθ(θ)× (−θ/L) < 0, dq̄a/dK = ga

κ(κ̄)κθ(θ)/L > 0, and dq̄b/dL = gb
κ(κ̄)κθ(θ)× (−θ/L) >

0. �

8.6 Proof of Proposition 4

From Theorem 1, R̄ = R(κ̄), Rκ(κ) < 0, and dκ̄/dK = κθ(θ)/L > 0. Hence, dR̄/dK = R̄κ(κ̄)dκ̄/dK < 0.
Similarly, using w̄ = w(κ̄), wκ(κ) > 0, and dκ̄/dL = κθ(θ) (−θ/L) < 0, I find dw̄/dL = wκ(κ̄)dκ̄/dL < 0. In
the same vein, dR̄/dL = R̄κ(κ̄)κθ(θ) (−θ/L) > 0 and dw̄/dK = wκ(κ̄)κθ(θ)/L > 0. �

8.7 Proof of Proposition 5

One readily verifies that ∂R̄/∂qb = V13 = bKF11 < 0, ∂R̄/∂qa = V23 = bLF12 > 0, ∂w̄/∂qb = V14 > 0, and

∂w̄/∂qa = V24 < 0, where all derivatives are evaluated at
(

q̄b, q̄a, K, L
)

. �

8.8 Proof of Proposition 6

Recall the partial effects derived in the proof of Proposition 5. Then, with (3.2) and (3.4) of Theorem 1 the
proposition follows immediately. �

8.9 Proof of Proposition 7

Use (3.3) to study the total effect of changing K and L on R̄/w̄, i. e.,

dR̄/w̄
dK

=
d(R(κ̄)/w(κ̄))

κ
κθ(θ)/L < 0 and

dR̄/w̄
dL

=
d(R(κ̄)/w(κ̄))

dκ
κθ(θ)× (−θ/L) > 0. (8.5)

The first term is strictly negative since wκ(κ) > 0 > Rκ(κ). Moreover, κθ(θ) > 0. �
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8.10 Proof of Proposition 8

To be found in the main text.

8.11 Proof of Proposition 9

Claim 1.(a): The equilibrium technology q̄a minimizes costs and satisfies the zero-profit condition men-
tioned in the text. Upon combining these two conditions, i. e., −w/(1 + qa)2 + Riq(qa) = 0 and 1−w/(1 +
qa)− Ri(qa) = 0, one finds that the equilibrium technology is determined by 1/R = c (qa), i. e., total min-
imized unit costs are equal to the present value of the firms’ revenue. It is readily verified that the latter
defines the function g (R) mentioned in (6.2).

Claim 1.(b): One readily verifies that V (qa, L; R) is strictly concave in qa. Then, the desired argument of
the maximum is given by ∂V (qa, L; R) /∂qa = 1− Rc (qa) = 0. From the proof of Claim 1.(a), this is the
defining condition for g (R).

Claim 2.(a): Consider the zero-profit condition at qa(n) = qa. Solving for the real wage gives w = (1 +

qa) [1− Ri(qa)] = ∂V (q̄a, L; R) /∂L. Since V (q̄a, L; R) is linear in L, q̄a also maximizes w.

Claim 2.(b): The equilibrium wage satisfies w̄ = (1 + g (R)) [1− Ri (g (R))]. This immediately deliv-
ers dw̄/dR = ∂w̄/∂R + (∂w̄/∂qa) (∂q̄a/∂R), where ∂q̄a/∂R = g (R) < 0. Since q̄a maximizes the wage
∂w̄/∂q̄a = 0 which establishes (6.5). Since V (q̄a, L; R) is linear in L, w̄ does not depend on it. �

8.12 Proof of Proposition 10

Noting that τw(w) > 0 the existence and uniqueness of κ̄ > 0 follows from the same argument as set out in
the proof of Theorem 1. Total differentiation of (6.6) delivers (6.7). �

8.13 Proof of Proposition 11

Given in the main text of Section 6.3.
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