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Entrepôt: Hubs, Scale, and Trade Costs 
 
 

Abstract 
 
Entrepôts are hubs that facilitate trade between various origins and destinations. We study the 
role these hubs, and the networks they form, play in international trade. Using novel data, we 
trace the paths of containerized goods entering the United States. We show that the majority of 
trade is indirect and sent through a small number of entrepôts, resulting in lower transport costs 
through scale economies by using larger ships. We build a model of endogenous entrepôt 
formation incorporating route choice by exporters within a Ricardian setting. We use the model 
to estimate trade costs on each shipping leg and develop a geography-based instrument to 
estimate a leg-level scale elasticity. Counterfactuals opening the Arctic Passage and Brexit 
quantify the effects of both network spillovers and scale economies. We find that spillovers 
from the transportation network doubles baseline welfare gains, with scale economies further 
tripling them. 

Keywords: trade costs, scale, hubs, transport costs, transportation networks, international trade, 
shipping. 
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International trade is generally thought of as a bilateral arrangement between an exporter

and an importer. However, the act of exchanging goods over borders involves more than the

production and consumption of these goods: shipping, transshipping, and distribution can

include multiple agents and additional countries beyond the producers and consumers.

These activities are concentrated at entrepôts, trading hubs where goods travel through—

from other origins, and bound for other destinations. The notion that countries stand to gain by

exploiting scale economies and becoming hubs for these commercial activities has a long history

and continues to be a powerful narrative. Governments and local port authorities invest billions

of dollars with the specific aim of becoming or maintaining their role as entrepôts.1

This paper studies the implications of the transportation network formed by entrepôts for

international trade. We seek to answer three questions: (1) How indirect is trade? (2) What

drives the formation of entrepôts? and (3) What are the impacts of indirect trade and entrepôts

on trade flows and welfare? Our central finding is that by concentrating shipments through

a relatively small number of nodes, entrepôts take advantage of scale economies in shipping;

furthermore, these hubs generate large trade spillovers through the network and have out-sized

impacts on global trade and welfare.

We begin by constructing two new datasets that jointly map individual journeys at the

shipping container level in order to document the ubiquity of indirect trade and describe the

role of entrepôts in concentrating international trade. We then build a model of international

trade where route choice endogenously gives rise to hubs and use the resulting estimation

equations to estimate leg-specific trade costs that rationalize observed shipping volumes with

minimal assumptions. Next, to assess the role of scale economies and the concentration of

commerce at entrepôts in reducing shipping costs, we estimate a scale elasticity and embed our

results in a quantitative general equilibrium model to quantify regional and global effects of

entrepôts on trade volumes and welfare.

Our novel data sets allow us to uniquely characterize the global trading network: a shipment-

level data set of bills of lading for the universe of US container imports, and a global data set on

container ships’ ports of call. Together, these two data sets enable us to reconstruct the origin

1Saudi Arabia has implemented a $7 billion project to expand the container capacity to “be a major east-
west marine transshipment location.”(Financial Times, 2015). India is spending $4 billion to to rival Chinese
facilities (Reuters, 2016). Established entrepôt Singapore is investing $1.1 billion to boost its capacity to “stay
ahead of the curve as a world-class hub port” (Port Technology, 2018) following a $3 billion project to construct
an automated container yard (Ship and Bunker, 2012).

1

https://www.ft.com/content/2913363e-09e6-11e5-a6a8-00144feabdc0
http://in.reuters.com/article/india-transshipment-port-adani-idINKCN10828O
https://www.porttechnology.org/news/singapore_pursues_1_billion_port_development
https://shipandbunker.com/news/apac/260844-singapore-in-s35-billion-port-investment


to destination journeys taken by individual shipments for nearly all in-bound containerized US

shipments. This is the first comprehensive look at how containerized shipments into the United

States travel through the global shipping network.

Three stylized facts emerge. First, the majority of trade arrives at US ports indirectly.

Figure 1 plots, by country of origin, the average number of stops made by containers. Very few

countries export directly to the US and the average shipment stops at two additional countries

(third-party countries). This significantly adds to the distance goods travel and their shipment

time. Second, this indirectness is incredibly concentrated, with a large number of shipments

channelled through a small number of entrepôts. Third, increasing ship sizes, which is known

to reduce costs, is correlated with both entrepôt activity and indirect shipping patterns. In

sum, indirectness is ubiquitous and concentrated at entrepôts, and the shipping network is a

hub-and-spoke system where large ships connect global hubs and smaller ships service small

local routes. By centralizing shipments, entrepôts appear to reduce shipping costs through

scale economies.2

<1 (direct)
(1,2]
(2,3]
>3
No data

Figure 1: Number of Stops between Origin and US Destination
Notes: Stops are by country and weighted by container volume (Twenty-foot equivalent shipping units -
TEU). The destination country US is excluded. Landlocked countries are also excluded, since they would need
to stop at a coastal country. 34 of the shipment origin countries are landlocked accounting for 1.6 percent of
total TEUs. The missing remaining countries are either due to lack of overall trade with the US (e.g. Somalia)
or due to the merge process (e.g. Namibia). China is not direct because we consider Hong Kong, Macau, and
Taiwan as separate countries.
Source: Authors’ calculations using AIS and Bill of Lading data.

To understand the forces behind observed indirectness, we build a general equilibrium model

of global trade with entrepôts. Individual firms choose shipping routes and compete for con-

2This network structure is not specific to containerized shipping but is also prevalent in air transport and
freight services like UPS or DHL (Rodrigue, Comtois and Slack, 2013).
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sumers in destination countries in a generalized Ricardian setting, flexibly accommodating

input-output linkages. Low-cost routes can involve shipments through third-party countries,

and entrepôts endogenously arise at ports through which shipping costs are lowest. Crucially,

scale economies may work to reduce shipping costs on individual links as traffic grows at indi-

vidual ports or links.

Using global data on shipment flows, we use the model to estimate trade costs for each

country pair. An advantage of our modeling approach is that we need to make very few

structural assumptions on the production and consumption setting; our model recovers a full

trade cost matrix for every origin and destination that best rationalizes the observed traffic

given the observed trade flows. Likewise, although we allow for one, we do not take a stand on

scale economies in trade cost estimation.

With our cost estimates, we find that scale economies are part of the mechanism driving

network concentration and their existence would alter how shocks affect global welfare through

entrepôts. To estimate the scale elasticity—the causal effect of quantity on trade costs—we

construct an instrument using the geography of the trade network. Embedded in our model

is the intuition that some legs are inherently higher traffic (higher demand) routes because

they lie closer to the shortest path between large origins and destinations.3 Leveraging this,

we construct a novel instrument for demand. For each leg, we compute the distance to and

from the leg relative to the shortest distance between each origin and destination, recovering

a weighted average of each leg’s proximity to global trade. Using this instrument, we estimate

a strong scale elasticity. Our results imply that a 1% increase in traffic on a given leg reduces

costs on the same leg by over 0.05%.

Finally, to estimate the impact of the trade network on global shipping and welfare, as well

as the localized effects and spillovers from hubs, we adopt further structure to our general model,

and use the resulting quantified general equilibrium model to run counterfactual predictions.

We run two sets of counterfactuals to quantify and illustrate the effects of the network structure

and scale economies on trade volumes and welfare. Our first series of counterfactuals consider

the effects of global warming opening up the Arctic Ocean to regular year-round shipping,

significantly reducing shipping distances between many Asian, North American and European

ports. Our second set of counterfactuals considers the ramifications of worsening relations

3The emergence of entrepôts as hubs in geographically advantageous locations is consistent with the findings
of Barjamovic et al. (2019).
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between the United Kingdom and its trading partners. The baseline effects of these shocks

are first doubled by the network structure of trade and further tripled by the feedback loop

imposed by scale economies in container shipping.

This paper characterizes the nature of the global container shipping networks and its im-

plication for international trade. It contributes to the literatures on the presence of networks

in trade, on endogenous trade costs, and on trade and transportation technology.

Our main contributions are to a growing quantitative literature investigating the role of trade

networks (Fajgelbaum and Schaal, 2017; Redding and Turner, 2015; Allen and Arkolakis, 2019).

Our data is a first and systematic observation of indirect trade through the (containerized)

shipping network.4 We extend the Allen and Arkolakis (2019) Armington framework where

route cost shocks are born by consumers to a general Ricardian setting, where traffic volumes

reflect both route choice and head-to-head competition on prices at destinations and show

how to estimate the model in a multi-industry setting with missing traffic flows. Comparing

our estimation to micro-data on US shipment routes, we assess the validity of the Allen and

Arkolakis (2019) approach, reporting a tight match between predictions and data.

We also contribute to a growing literature on endogenous transport costs.5 In our set-

ting, trade costs are endogenously determined in equilibrium with trade flows as part of the

transportation network.6 Brancaccio, Kalouptsidi and Papageorgiou (2017) estimate a model

of endogenous trade costs arising from search frictions between exporters and dry bulk ships

carrying homogeneous commodities, where all trade is direct. We model transport costs as

part of a global network of container shipping routes, a dramatically different setting which

accounts for two-thirds of annual trade moved by sea (World Shipping Council).7 Because our

model is within a general equilibrium spatial trade framework, our counterfactuals contribute

to this literature by addressing the overall welfare impacts of the endogenous transportation

4We provide our estimated data on indirect flows which can be used for future empirical work. Previous
work have either imputed indirect trade or just used port of call data alone (Wang and Wang, 2011; Kojaku
et al., 2019; Lazarou, 2016). They cannot directly observe indirect trade since they do not have information on
the loading or unloading of shipments.

5See Hummels (2007) and Limao and Venables (2001) for reviews of this literature.
6There are a number of papers studying endogenous transport costs in the context of market power, including

Hummels, Lugovskyy and Skiba (2009) and Asturias (Forthcoming). We follow Sutton (1991) and allow larger
markets to induce entry and competition to lower prices, but do not directly measure market structure.

7Like taxis, dry bulk ships depart from destinations without cargo and therefore have to search for it.
Containerships, like buses, travel on fixed schedules between many locations. As a result, indirect trade, and
the network structure giving rise to systematic trade spillovers due to network linkages, are absent from the
bulk carrier setting.
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network and its spillovers through entrepôts.8

Finally, we contribute to the literature on transportation technology and trade. Several

papers investigate the effects of containerization (Coşar and Demir, 2018; Bernhofen, El-Sahli

and Kneller, 2016; Wong, 2019). Ducruet et al. (2019) is a complementary study which inves-

tigates the aggregate and distributional impact of node-level infrastructure investment-—new

port technologies from containerization in the 1970s. We document the global network effects

of the container shipping technology and of the network formed by these nodes on trade.

One important aspect of transportation technology in our model is the scale economy in ship-

ping, which is empirically important, and in line with findings from the literature on economies

of scale in trade.9 Our paper shows how scale economies, acting through the global shipping

network, can generate shipping hubs and have out-sized impacts on trade volumes and welfare.

In this respect, we are also related to a literature in economic geography which considers the

role of localized scale economies in the emergence of agglomerations (Allen and Arkolakis, 2014;

Allen and Donaldson, 2018). Trade costs typically act as dispersive forces in this literature,

we show that with scale economies in transportation this relationship is inverted: the presence

scale in trade costs contributes to agglomeration, particularly for entrepôts.

2 Data

We compile and combine two proprietary data sets in this project: global ports of call data for

containerships, which allows us to reconstruct the routes taken by specific ships, and US bill of

lading data for containerized imports, which gives us shipment-level data on imports into the

United States. Independently, these datasets allow us to partially describe the global shipping

network. By merging them, we reconstruct nearly the entire journey of shipments entering the

United States, from their origin to their US port of entry. To our knowledge, we provide the

most comprehensive reconstruction of the global shipping network and routes undertaken by

individual shipments into the US.10

8Our estimates provide a matrix of bilateral trade costs and market access measures that can be used for
further empirical work.

9See especially Alder (2015); Holmes and Singer (2018); Anderson, Vesselovsky and Yotov (2016); Asturias
(Forthcoming); Skiba (Forthcoming).

10Data Appendix A.1 explains both data sets and their merge procedure in detail.
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Figure 2: Map of Global Port of Call Network

Notes: Each dot represents a port (total of 1,203 ports). Each line represents a journey between port pairs
undertaken by a containership (total of 4,986 ships). Source: Authors’ calculations from AIS data.

Port of call data Our proprietary ports of call data from Astra Paging captures vessel

movements using ship Automatic Identification System (AIS) transponders.11 For each vessel,

this captures identifying information, time-stamped ports of call, capacity and height in the

water before and after stopping in the port, the latter two jointly indicating the vessel’s load.

Using these data elements, we can observe the volume shipped between each port pair.

Our sample covers a six months period, from April to October 2014. Over this period, we

have information on 4,986 unique container ships with a combined capacity of 18.13 million

twenty-foot equivalent shipping units (TEUs)—over 90% of the global container shipping fleet—

making 429,868 calls at 1,203 ports.

Figure 2 shows the coverage of the shipping network in our port of call data. Each line

represents a journey between port pairs, the dots, undertaken by a containership. Some ports,

not necessarily in the largest countries, are more connected than others. The Suez Port and

Port of Balboa (due to the Suez and Panama Canals), Singapore and Rotterdam—well-known

entrepôts—are particularly connected.

Bill of lading data We put together proprietary bills of lading data, which captures

shipment-level information for all containerized imports into the United States. Our data

11Port receivers collect and share AIS transponder information (including ship name, speed, height in water,
latitude and longitude). Using geographic AIS variables, we track global port entry and exit data.
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captures the foreign location where the shipment originated from, the foreign port where it

was loaded on the containership (port of lading) which brings it into the US, and the US port

where it was unloaded from the containership (port of unlading). In addition, we know the

name and identification number of the containership which transported the shipment as well as

the shipment’s weight, number of containers (TEUs), and product information. Over the same

six months period, we see a total of 14.8 million TEUs weighting 106 million tons were imported

into the US from 227 shipment origin countries, and 144 countries with ports of lading.

Reconstructing shipment routes Using the containership information, port of arrival

information, timing of unlading and ports of call at US ports, and port of lading information,

we are able to match the bills of lading to the journeys of specific containerships, then use the

ports of call between lading and unlading to reconstruct each shipment’s path from its foreign

origin to US destination. Over 90% of containerized TEUs entering the US on bills of lading

can be matched to routes using this method. Appendix Figure A.1 visualizes this merge.

What remains unobserved is the shipment’s journey between origin and the first stop (port

of lading) we observe in our data. In particular, this initial portion of the shipment’s journey

could take place overland (by trucks or rail) or by sea on another ship. This information is

impossible for us to observe, leading us to under-count the overall level of indirectness. However,

this will not affect our model estimation, which is not reliant on observing the full path.

3 Stylized Facts

We use the datasets above to explore the nature of the international shipping network and

the routes taken by goods entering the US along that network. Our analysis generates three

stylized facts about trade and entrepôts. First, the global container shipping network forms a

hub-and-spoke system where ships act as busses on city streets, carrying goods through multiple

stops and meeting at central depots or transfer points. Second, this network concentrates

shipments through entrepôts, generating large costs for individual shipments, in the form of

added distance. Third, the indirectness is optimal, and the resulting concentration allows for

the use of supersized cargo ships with lower unit costs.
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3.1 The majority of trade is indirect

We begin by asking: how realistic is the bilateral view of trade? Panel (A) in Figure 3 reports

the distribution of the number of observed country stops made by each shipment, weighted

by TEU. Only about 20 percent of containers are exported to the US directly from the origin

country, making stops in no other country along the way. The average TEU entering the US

stops at around 2 countries that are not involved as either a producer or a consumer (mean of

1.5 and s.d. of 1.3). The average number of port stops is higher (Figure A.3, mean of 4.6 and

standard deviation of 3.5). This result is robust for shipment weight and value (Figure A.7).

Figure 3: Indirect trade distributions, by container and country

(A) Country Stops per Container
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Notes: Panel (A) shows the distribution of containers by the number of countries the containers visited. Panel
(B) show the distribution of countries, by the share of shipments that are transhipped to the United States.
This plot is weighted by the aggregate exported containers (TEU).
Source: Authors’ calculations using AIS and Bill of Lading data.

This is also true at the country level: the majority of US trading partners export indirectly

to it. This can be roughly gleaned from Figure 1 where many countries have more than one

stop (i.e. have darker shades of blue). On average, a country’s shipments stop at two other

countries before reaching the US (mean of 2.1 and standard deviation of 0.74).12 Shipments

come directly to the US from only 9 countries.13

Another aspect of indirectness is transshipment, which we define as when the origin country

12At the port-level, the average stops are 5.2 with a standard deviation of 1.7.
13The 9 direct countries are Canada, Mexico, Panama, Japan, South Korea, Spain, Portugal, South Africa,

and New Zealand. China is not included in this list due to Hong Kong, Taiwan, and Macau being considered
separate countries in our data set.
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of a shipment is not the same as the country where it was loaded onto the containership bound

for the US (Stop 1 in Figure A.1). 27% of shipments by volume are transshipped in third-party

countries. Moreover, the average good from a majority of non-landlocked US trading partners

is transshipped in a third-party country and over 60% of non-landlocked US trading partners

transship more than 90% of US-bound goods in third countries (Panel (B), Figure 3).14

Appendix C explores the high degree of variation in connectivity evident already in Figure

1, showing that that variation is reasonably explained by traditional gravity variables, and

further explores variation in routes from unique origins into the US.15

3.1.1 Indirect trade increases shipping distances

Are the additional country stops simply incidental stops along the way, or do they constitute

a trip that is meaningfully distinct from what a “direct” path would look like? One possibility

is that the observed indirectness is optimal but only incidental—perhaps additional stops only

have small effects on cost, and therefore may be optimal even if the benefit of indirectness

is small. However, the significant additional distance and time incurred by indirect travel,

documented here, implies this is unlikely to be the case.

On average, the actual traveled distance between a shipment’s origin and its US destination

is 31 percent more than its direct ocean distance (Panel (A) in Figure 4). Panel (B) shows

the actual traveled distance between a shipment’s lading location and its final destination and

here we see that the gap is smaller at 14 percent. Table A.1 further evaluates the relationship

between indirectness and journey length, finding that doubling the number of stops adds 10%

to distance travelled and 33% to time travelled, even after controlling for direct journey length

or origin-by-destination fixed effects.

Furthermore, beyond the distance costs we document, pecuniary costs of transshipment and

time costs of stopping at additional ports will increase the cost of indirectness. We conclude

that indirectness is meaningful in the sense that it is costly. The fact that this organizational

structure remains optimal implies that it carries with it a cost reduction over and above these

costs. From these results, we can summarize our first stylized fact:

14Examples include Denmark, Bangladesh, Cambodia, and Ecuador. See Figure A.4 for a map of the per-
centage of goods transshipped for each country of origin.

15The existence of within-origin route variation is an important assumption in our model and is used in our
validity checks.
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Figure 4: Difference between Traveled Distance and Direct Distance for Indirect Shipments

(A) Shipment Origin to Destination (B) Place of Lading (Stop 1) to Destination

Notes: These figures show only indirect shipments, with different direct and travelled distances. Figure (A)
compares the direct shipping distance from the country of origin to the US to the actual route travelled.
Figure (B) compares the direct shipping distance from the place a container was last loaded on a ship before
arrival to the US to the actual route travelled. The local linear fit line is a locally weighted regression of the
observed on direct pair-wise distance.
Source: Authors’ calculations using AIS and Bill of Lading data.

Stylized Fact 1. The majority of containerized trade into the US is indirect and results in a

significant increase in shipping distance and time.

3.2 Indirect trade is routed through entrepôts

When shipments stop in third-party countries, how are they routed? In this section, we show

that the stops along indirect shipping routes are not arbitrarily distributed throughout the

world. Shipments in our data are channelled through well-known entrepôts. These locations

disproportionately service shipments originating in other countries.

Panel (A) of Figure 5 scatters each country’s percent of total stops against percent of total

trade. Here we see where the above concentration is taking place. Some locations like Taiwan,

are both popular stopping points but also major countries of origin for goods. A few key

countries, especially Korea, Singapore, Panama, and Egypt, are not only high on the Y-axis,

denoting they are especially important third-party countries, but they are above the 45◦ line,

indicated that they disproportionately participate in trade as a third-country in US-bound

shipments. This metric captures countries long-associated with entrepôst, including Singapore

(SG), Belgium (BL), Netherlands (NL), Korea (KR), and Panama (PA), as well as others. Panel

(B) plots each country’s total volume as a first stop (lading volume) against their origin volume.

10



A similar set of countries lies above the 45◦ line.16 Countries with the largest concentrations of

lading shipments are also more likely to be disproportionately used as entrepôts.17

Figure 5: Direct vs Indirect Shipments

(A) Percent Originated vs Transit Volume
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Notes: Figure (A) compares the share of world container that originated in the country versus the share that
passed through that country, but did not originate there. Figure (B) compares the share of shipments to the
United States that originated in a country to the share of shipments that were last loaded onto a ship in that
country. For scale, China is omitted.
Source: Authors’ calculations using AIS and Bill of Lading data.

Overall, how concentrated are third-party country stops (the Y-axes)? Table A.2 reports

99-50, 95-50, and 90-50 concentration ratios for all third-party shipments, transshipments, and

trade volumes. For shipments, the 99th-percentile country, Korea, acts as a third-party country

for almost 400 times the number of shipments (by TEU) compared to the median country, Iraq

(99-50 ratio). This ratio is high by most standards.18 Transshipment is similarly concentrated

(more than 400 for the 99-50 ratio, for example). A natural benchmark to compare these ratios

to might be the concentration ratio in trade. The same 99-50 ratio for trade is only 96, and at

all reported ratios, trade is significantly less concentrated than third-party country stops and

transshipment. These relationships can be summarized in our second stylized fact:

Stylized Fact 2. Indirect shipping routes are concentrated through well-known entrepôts.

16For top 10 countries by country stops and lading volumes, Figure A.5 tabulates the percent of all goods
entering the US stopping in that country, broken into goods originated there and elsewhere.

17Since this dataset is only for US imports, this relative ranking may miss entrepôts that deal mainly in
non-US-bound traffic or may overemphasize the importance of US-proximate locations. Figure A.6 repeats the
exercise in Panel (B) using all our global AIS data (no longer merged with US bills of lading). We find that
many of the entrepôts who play a major role in US trade continue to do so in global trade

18The same ratio in employment in the highly concentrated IT sector across US cities is 300 (Moretti, 2019).
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3.3 Indirect trade increases ship sizes

In the standard gravity model, trade costs are a function of geographic characteristics like dis-

tance. By revealed preference, shipping through entrepôt appears to generate a cost reduction

over and above the costs incurred by travelling indirectly. What is the nature of the cost reduc-

tions attracting indirect trade to entrepôts? A number of mechanisms may well account for the

unobserved cost reduction at entrepot and may be at work similtaneously.19 In this subsection,

we focus on the relationship between indirect shipping and ship size, which we directly observe.

A well-documented inverse relationship exists between unit shipping costs and ship size.20 In

what follows, one might interpret ship size as a mechanism that lowers shipping cost or equally

as a proxy variable for (unobserved) shipping cost.

Ports with higher volumes of transshipments send goods on larger ships. The regression

line in Figure 6 shows a positive country-level relationship between the volume of US imports

and the average size of the incoming ships; unsurprisingly, larger trade volumes require larger

ships to transport. However, some of the smaller US import partners also arrive to the US in

similarly large ships like Hong Kong (HK) and Singapore (SG). Many of these origin points

are entrepôts, where originated shipments are able consolidated onto larger ships filled with

goods transshipped through the entrepôt. The blue circles in Figure 6 shows the lading sizes

of these countries. The skew of larger vs smaller circles relative to the regression line implies

that countries with larger volumes of lading ship on larger ships.

Table 1 displays regression on the same data at the shipment level (weighted by shipment

TEU) which confirms these findings. Column 1 regresses, for our sample of shipments, the log

of ship size against the log of total origin origin country volumes shipped (TEUs), confirming

a positive relationship at the shipment level. Column 2 adds the log of quantity laded at each

shipment’s port of lading. Both coefficients are positive but the coefficient on origin volumes is

almost halved (0.084 in Column 1 compared to 0.043 in Column 2). This indicates that much

of the correlation between origin volumes and ship size acts through the size of the lading port.

While shipments’ ship sizes are correlated with their origin country volumes, shipments laded

in larger ports disproportionately lade on larger ships.

19High-traffic routes are served by many carriers, using ships capable of carrying 25,000 containers with
automated lading and unlading technologies. Internal and external scale economies in shipping, and competition
among shippers could all generate a negative relationship between volume and costs, as could factors such as
port infrastructure.

20Cullinane and Khanna (2000) find that shipping costs decrease as ship size increases.
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Figure 6: Link between US trade and ship size
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arrives at the United States. The size of the circle represents the total volume of exports that was last loaded
onto a ship in that country. Countries without direct shipments to the United States are denoted with solid
black dots.
Source: Authors’ calculations using AIS and Bill of Lading data.

Furthermore, goods that use third countries as transshipment points come on larger ships

than would be predicted by their own country’s trade volumes. The dark highlighted points in

Figure 6 indicate countries where all shipments coming into the US are always laded elsewhere.

These countries, who disproportionately use entrepôts, are outliers, having shipments arriving

on ships much larger than what would be expected given their trading volumes.

Turning again to the shipment-level data, column 3 of Table 1 fully interacts variables

in column 2 with an indicator variable for shipments that are laded in their origin countries

(1(Lading is Origin)), effectively splitting the specification into two samples. For those ship-

ments whose origin country differs from lading country, which have an indicator value of 0, the

correlation between ship size and lading volume is considerably and significantly higher (0.13,

Column 3). Furthermore, as suggested by the figure, shipments’ ship sizes are not strongly

correlated with origin country volumes when they lade in third countries (0.009, Column 3).

Finally, we note that goods lading at smaller transshipment points along major routes

are also on larger ships. Figure 6 shows that goods from Malaysia appear to arrive on ships

disproportionate to both its origination or lading volumes. In our data, a significant number

of ships stopping in Malaysia also stop in Singapore. Shipment laded at small ports on ships

bound for or coming from much larger ports, may also benefit from disproportionately larger
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Table 1: Determinants of ship size

(1) (2) (3) (4)
ln Ship Size ln Ship Size ln Ship Size ln Ship Size

ln Volume at Origin 0.0843 0.0432 0.00925
(0.0163) (0.0179) (0.0121)

ln Volume at Lading 0.0803 0.127 0.0282
(0.0202) (0.0230) (0.0182)

1(Lading is Origin) -0.0220
(0.300)

1(Lading is Origin) × ln Volume at Lading -0.0937
(0.0295)

1(Lading is Origin) × ln Volume at Origin 0.0861
(0.0220)

ln Largest Port Stop 0.121
(0.0250)

Observations 215,656 215,656 215,656 215,656
R2 .124 .174 .199 .21
F-stat 26.82 14.66 13.51 26.73

Notes: Observations represent all matched imported containers to the United States. Observations weighted
by the size of shipment (TEU). Standard errors clustered by lading and destination ports.
Source: Authors’ calculations using AIS and Bill of Lading data.

ship size.

In column 4 we investigate this possibility by regressing shipments’ log ship size against the

log volume laded at their port of lading and the log volume laded at the largest port at which

we observe the shipment making a port call. The effect of the max-port-size variable is large,

positive, and overall stronger than the effect of lading port volumes alone. Over and above the

size of their port of lading, shipments lade onto larger ships when, on route to the US, those

shipments also stop at entrepôt, and indirectness appears to facilitate larger ship size beyond

transshipment alone. These relationships are summarized in the following stylized fact:

Stylized Fact 3. Goods from and through entrepôts are loaded onto larger ships.

These facts outline an inherent trade-off: indirectness increases the distance and time costs

of trade, but the resulting concentration appears to lower costs. The level of indirectness and

concentration we have documented in the data are shaped by this trade-off, and the goal of

our empirical estimation is to understand the forces underlying this trade-off. We first present

our theoretical framework, which uses Allen and Arkolakis (2019) to recover trade costs from

observed global trade and shipping patterns. We implement this estimation, then estimate the

role of scale using underlying geography as an instrument for shipping volumes.

14



4 Theoretical Framework

In this section, we present a model of global trade where shipments are sent indirectly through

an endogenously formed transport network. We embed the Allen and Arkolakis (2019) route se-

lection model in a generalized Eaton and Kortum (2002) framework where production technolo-

gies in each industry and country are non-stochastic, but idiosyncratic variation in a product’s

optimal route generates random variation in the price of each product-origin pair.

Entrepôts emerge as ports through which goods flow but which are neither the goods’ origins

nor their destinations. Throughout, we maintain a production and consumption setting that is

as general as possible, allowing for any number of goods, industries, and input-output linkages.

This model is agnostic to scale economies or dis-economies in transportation costs, which could

work to either amplify or attenuate shipments through entrepôts. Restrictions on route cost

heterogeneity generate moment conditions that can be matched to the data to yield estimates

of leg-specific shipping costs.

4.1 Setup

Consumption and Production In each country j, consumers consume goods ωn ∈ Ωn

from each of N industries n according to some function Uj = Uj(Cj), where Uj is a continuous,

twice differentiable function and Cj is a matrix of quantities of an arbitrarily large number of

goods ωn in industry n ∈ N in country j.21 Within each industry and product category, goods

are homogeneous and normal.22

Goods can be produced using a variety of traded and non-traded inputs including labor,

capital, and traded and non-traded varieties from any industry. The production technology for

good ω is common for all goods in the same industry n, and includes a vector of factor inputs

L, as well as inputs of other goods.23 Production functions can vary across industries and

countries. Crucially, cost minimization leads the competitive fringe of firms in each country

21The utility function itself is allowed to vary across destinations, and the number of goods in each industry
need not be a continuum, but can be.

22The model and empirics can accommodate arbitrarily fine industry classifications in order to ensure this
assumption holds.

23The production function is given by qin(ω) = fin(zin, Lin, Qin) where fin is a continuous, twice differentiable
country-industry-specific production function, zin is a production technology common to industry n and country
i, Lin is a vector of non-tradable factor inputs, and Qin is a country-industry specific matrix of inputs of other
goods ω from all industries. All inputs are treated as homogeneous.
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and industry to have the same marginal cost of production. Marginal cost of a good ω is

cin ≡ cin(zin,Wi, Pi),

where Pi is the matrix of prices of all goods ω in industries n in i and Wi is the vector of

factor prices in country i. Because producers in the same industry and country share the same

input prices and production function, costs are shared within country-industries. These costs

correspond to the classic Ricardian comparative advantage.

Pricing In order to sell goods abroad at any destination j ∈ J , a firm producing product ω

in industry n must pay tariffs κijn and iceberg transport costs τijn(ω) after optimally choosing

the route r between i and j to minimize the shipping costs incurred. Competitive firms selling

from i to j price their goods at marginal cost. Observed prices for these products at j are

pijn(ω) = cinκijnτijnr(ω).

where purchasers of good ω in industry n at j source the lowest cost supplier globally.24

Shipping Producers seek to minimize shipping costs by choosing the lowest cost shipping

route available. A shipping route r is comprised of a series of Kr legs of a journey with Kr − 1

stops along the way between the origin, i, (or k = 1) and destination j, (or k = Kr).

Following Allen and Arkolakis (2019), we assume that moving from stop to stop involves

iceberg transport costs as well as product- and route-specific idiosyncratic cost shocks εijnr(ω).25

This shock is drawn from the Fréchet distribution such that Fijn(ε), the cumulative distribution

function of the idiosyncratic draws is the following:26

Fijn(ε) ≡ Pr{εijnr(ω) ≤ ε} = exp
{
−ε−θ

}
,

where shape parameter θ > 0 captures the randomness or dispersion in the choice of routes

from i to j. A higher εijnr(ω) draw means that industry n has a lower cost for route r.

Accordingly, product ω’s shipping cost along route r from country i to country j is:

τijnr(ω) =
1

εijnr(ω)

Kr∏
k=1

tkr−1,kr ≡
1

εijnr(ω)
τ̃ijr, (1)

24Here, non-tradable goods can be assumed to have infinite transport costs.
25Because of the max-stable property of the Frechét distribution, an isomorphic specification would have

firm-specific cost shocks with a finite mass of potential competitive firms in each country. This would affect
the interpretation of the source of idiosyncratic variation (firm variation or product variation) and of shape
parameter θ.

26This distribution is the same for each product across industries so product-industry subscripts n is dropped.
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where τ̃ijr is the product of all leg-specific costs tkr−1,kr and is common to all products taking

the same route r. While transport costs are usually a function of distance, we place no structure

on these leg trade costs, allowing them to be a flexible function of exogenous and endogenous

variables: t = f(Xexog, Xend). Our estimation will first maintain maximally flexible in estimates

of t, then estimate a scale economy, where t is a function of distance and volume.

This structure is consistent with a host of mechanisms, including but not limited to port-level

effects and leg-level scale economies.27 In terms of market power, we do not directly model the

decision of shipping firms, but rather consider an overall industry equilibrium within a Sutton

(1991) framework, where larger markets induce more entrants and lower marginal costs, with

profits being absorbed by fixed costs.28 As discussed further in the text, differences between

these mechanisms will not impact the model estimation but will manifest in the interpretation

of scale economies and for counterfactual predictions.

Each product’s ultimate shipping cost from i to j will be the minimum transport cost route

over a set of all other routes for origin i, destination j, and product ω in industry n.29

4.2 Equilibrium

We use the properties of the Fréchet distribution to find expressions for two observables: (1) the

equilibrium mass of products that will be shipped from any origin to any destination through

a specific leg and (2) the total volume of trade between any country pair. Closing the model,

which we defer to Section 7, imposes goods and labor market clearing conditions, the former

generating a within-industry gravity equation, the latter generating an expression for wages.

Route volume Firms from origin country i select the lowest-cost route before consumers

in j select the lowest-cost intermediate good supplier across all the origin countries. We observe

ω being shipped on route r from i to j only if the final price of ω, which includes both the

marginal cost of production and shipping cost on route r from i to j (pijnr(ω)), is lower than

all other prices of good ω from all other origin country-route combinations.

We can then use the properties of the Frechét distribution to consider the probability that

a given country and route r′ will be selected as the lowest cost route-supplier combination for

27It also allows for spatial correlation in link costs, say between tkl and tlm.
28We omit discussion of the optimal shipping network from the perspectives of a firm with market power,

and focus on leg-level scale instead.
29The price of a product ω in industry n from i to j conditional on route r is pijnr(ω) = cinwiτijnr(ω).
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good ω conditional on price p:

Gjnω(p) ≡ Pr

{
min

i∈I,r∈Rij\r′
pijnr(ω) > p)

}
= 1− exp

−pθ ·∑
i

(cinκijn)−θ ·
∑
r∈Rij

τ̃−θijr

 .

We can define the joint probability that a route r is the lowest-cost route from i to j for good

ω and that country i is the lowest-cost supplier of good ω to j as:

πijnrω ≡ Pr

{
pijnrω ≤ min

i′∈I\i, r′∈Rij\r
pi′jnr′ω)

}
=

[
cinκijn · τ̃ijr

]−θ∑
i′∈I

[
(ci′nκi′jn)−θ ·

∑
r′∈Ri′j

τ̃−θi′jr′
] . (2)

By the law of large numbers this is also the share of all goods sold in j in industry n that come

from i and take route r.30 We define two matrices following Allen and Arkolakis (2019). First,

An = [aijn ≡ t−θijn], (3)

where each element is a function of the leg-specific trade cost aijn ≡ t−θij . Second, we define the

matrix B, the expected trade cost matrix, as,

Bn = [bijn] ≡ (I − A)−1. (4)

Using these and substituting for the definition of τ̃ij (equation (1)) and summing across routes

r that pass between leg k to l, we can express the share of imports in industry n in destination

j that come from origin i which passes through leg k, l as:

πklijn =
[
(cinκijn)−θ · bnikanklbnlj

]
· Φ−1

jn , (5)

where Φjn =
∑

i′(ci′nκi′jn)−θ ·bni′j is a multilateral resistance term that accounts for the average

costs, openness, and connectivity of competitors from all other countries i′. This equation is the

direct analogue to equation (7) in Allen and Arkolakis (2019). The key distinction here is Φjn,

which accounts for the Ricardian selection of lowest-price sources for each good ω. Intuitively,

the traffic flowing on a given leg responds both to that leg’s effectiveness in reducing route

costs as well as to competitive forces which make trades increasingly less likely to be pursued

for more expensive routes. However, multilateral resistance is j, i-level, and therefore enters

proportionately into traffic flows for all k, l-pairs – a fact that will be crucial for our estimation.

30Recall the number of goods in each industry is set arbitrarily large so that the law of large numbers will hold.

The unconditional (pre-selection) average transport cost from i to destination j: τijn = γ−1/θ
(∑

r∈Rij
τ̃−θijr

)−1/θ
where γ is the function Γ(t) =

∫∞
0
xt−1 exp−x dx evaluated at

(
1+θ
θ

)−θ
.
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Furthermore from summing across industries, origins, and destinations, we can recover the

share of observed global shipping that passed through leg k, l:

πkl =
∑
n

ankl ·
∑
j

bnlj
Φkn

Φjn

. (6)

Equations (5) and (6) correspond the shares of goods passing through leg k to l, including

shipments bound for l and those continuing onward to other destinations. Because they ac-

count both for optimal route selection and competition on price, they correspond to observable

volumes after route selection and competition among producers.

The sum of products sold in j in industry n from country i is equal to the share of all

products sold in j in industry n that come from i and take route r, summed across all r routes:

πijn ≡
∑
r

[
cinκijn · τ̃ijr

]−θ∑
i′∈I

[
(ci′nκi′jn)−θ ·

∑
r′∈Ri′j

τ̃−θi′jr′
] =

(
cinκijnτijn

)−θ
Φjn

. (7)

Closing the model Factor and goods market clearing and balanced trade conditions

close the model. Unnecessary for estimation, we defer them to Section 7 when we conduct

counterfactuals.

4.3 The Network Effect of Adjustments on Trade

A change in the leg cost between k and l (tkl) can affect trade volumes between an origin i and

destination j through the trade network. However, Ricardian competition can interact with

the trade network to generate unexpected effects. For any change to the cost tkl, trade volumes

between i and j will adjust according to the following equation:

dXijn

dtkl
=
∂Xjn

∂tkl
· πijn +Xjn ·

[
∂c−θin
∂tkl

· πijn
c−θin

+
∂τ−θijn
∂tkl

· πijn
τ−θijn

+
∂Φ−θjn
∂tkl

· πijn
Φ−θjn

]
.

The first term on the right is the effect of tkl on trade with i through a change in the total

volume consumed at j in industry n. The first term in parentheses is the effect through any

changes to the production costs at i, which can happen if the price of inputs changes or through

a change in wages. The second term in parentheses the effect through trade costs between i

and j in industry n, and the final term is the effect through multilateral resistance. This final

term is the effect of a change in tkl on trade volumes from i via multilateral resistance.

What can we say about the signs on these terms? When the trade cost matrix is endogenous

to trade volumes, as it would be in the presence of scale economies, these terms are ambiguous,
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as a change in tkl, by changing trade volumes, changes traffic volumes at each leg, and therefore

equilibrium effects on the full matrix of trade costs.

When there is no endogenous scale response, only the final term can be negative. Intuitively,

a reduction in trade costs between k and l can increase consumption at j, reduce expected trade

costs between i and j, and reduce production costs at i. All of these result in an increase in

trade volumes between i and j. However, a reduction in trade costs between k and l also stiffens

competitions at j. If this last effect is large enough, it can overturn the sign of the first three.

In this scale-free case, the total effect is positive if and only if the following condition is true:

εXjn,tkl + εcin,tkl + ετin,tkl > −εΦj ,tkl . (8)

That is, if the elasticities of consumption at j (εXjn,tkl), production costs at i (εcin,tkl), and trade

costs between i and j (ετin,tkl) with respect to tkl are larger than the elasticity of multilateral

resistance at j with respect to tkl (εΦj ,tkl). Rearranging terms, we have
∂Xijn

∂tkl
> 0 if and only if:

εXjn,tkl +
[
εcin,tkl + ετin,tkl

]
(1− πijn) >

∑
i′ 6i

(εci′n,tkl + ετi′jn,τkl)πijn. (9)

The sum of the effects on production and transport costs between all other countries i′

(other than i) and j has to be less than a function of the effects on production and transport

cost at i and the overall propensity of consumption at j to grow. This last expression shows

most clearly that the effect of a decline in trade costs between k and l has the potential to

negatively affect trade flows between i and j. In particular, if the shift differentially favors

trade and production costs from other countries to j, trade volumes from i to j will suffer.

Finally, because the elasticity ετin,tkl is equivalent to the proportion of trade from i to j that

goes through k, l, a decline in tkl is more likely to positively affect Xij the more k, l is used in

proportion to other routes and the higher that proportion is relative to the same proportion for

other countries i′. The higher the same proportion is in other countries, the more likely trade

volumes between Xij will fall with a fall in trade costs tkl.

5 Trade Cost Estimation

To estimate counterfactuals that alter the geography of container trade, we need point-to-point

container trade costs, the matrix A. In this section we estimate A using observable data.
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5.1 Estimation Equation

Using equations (5) and (7) we can calculate the probability of any good traveling through leg

k, l conditional on being sold from origin i to destination j. If Xijn is the total value of trade

between i and j in industry n, we can express the total volume of traffic between k and l in a

given industry n as:

Ξkl
n ≡

∑
i

∑
j

Xijn · biknaklnbljnb−1
ijn. (10)

This equation is identical to Allen and Arkolakis (2019). Conditional on the observed trade

values Xijn, the contribution of trade between i and j to the traffic between legs k and l

is invariant to multilateral resistance, tariffs, or technology. This is despite the significant

differences between our frameworks. In particular, expensive trade routes here suffer from

Ricardian selection at destination markets, where the route’s impact on prices make them less

competitive. Yet, this does not impact the estimation of trade costs.

The intuition for this result is that Ricardian selection, tariffs, and multilateral resistance

all operate through adjusting the total value of trade, but do not differentially favor one route

from an origin i to a destination j. Put differently, any change to a non-transportation related

costs in one country will affect trade from that country and others proportionally on all routes.

Equation (10) gives us a relationship between trade values, trade costs, and traffic for a

given industry. To map our model into the data we make one final assumption: there is a set

of industries N̄ for which trade costs are identical and all trade
(
XN̄ ≡

∑
n∈N̄ Xn

)
and traffic(

ΞN̄ ≡
∑

n∈N̄ Ξkl
n

)
are observable. Summing equation (10) over industries n ∈ N̄ yields

Ξkl
N̄ =

∑
i

∑
j

XiN̄ · bN̄ikaN̄klbN̄ljb−1
N̄ij
. (11)

Equation (10) tells us that to accurately measure transport costs, we only need data on

transportation and traffic for all goods in an industry. Equation (11) tells us that we can use

traffic across multiple industries so long as we have the correct trade aggregate, we see all

traffic for those industries, and we can assume transport costs are identical in those industries.

We implement equation (11) using observed total containerized traffic, isolating containerized

industries, and assuming that transport costs are similar across containerized industries.
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5.2 Recovering Trade Costs

Our estimating equation requires two observable objects: trade values and traffic volumes.31

We use 2014 US Customs data on containerized and non-containerized shipments to construct

the share of each HS 4-digit commodity code that is transported by container. All commodities

with a containerized share above 80% are labeled as containerized.32 We then collapse the 2014

EORA International Input-Output database at the country level, segregating containerized

and non-containerized commodities (Lenzen et al., 2012).33 We can then extract a country-

level trade matrix for containerized commodities, X, for all countries in the database. For

clarity, we drop industry subscript n, only considering containerized industries.

In an ideal world, estimation would recover the trade costs that directly rationalize observed

bilateral containerized traffic flows—a just identified case. While we directly observe ocean

traffic, our data omits land based trade and internal within-country trade. This is an issue for

network links between geographically contiguous countries.34

We overcome this limitation by assuming a functional form that allows for estimation with-

out requiring the direct observation of overland links. We consider the exponential mapping:35

aij = t−θij =
1

1 + exp (Zβ)
∈ [0, 1] ,

where aij is an element of the matrix A and the matrix Z is a vector of covariates defined as

Zβ = β0 + β1 log sea distanceij + β2 log trafficij + β3 log traffici

+ β4 log trafficj + β51backhaul + β61 {i, j ∈ Land Borders} ,

where β0 is an intercept, β1 considers sea distance between the nearest principal port,36 and

31This procedure is agnostic to the exact specification of any particular trade model that generates trade
value flows X. By conditioning estimation on these flows X, all origin, destination, and origin-destination
factors are controlled for. In particular, items such as all origin-destination tariffs and non-tariff barriers are all
accounted for. This does not mean that we can disentangle the two, rather we can directly account for these
factors collectively.

32In practice we find a bimodal distribution, with some commodities being never containerized (e.g. oil and
iron ore) and others always containerized (e.g. washing machines and children’s toys).

33We are implicitly shutting down the substitution between containerized and non-containerized transport.
This is supported by our bi-modal distribution of goods. While in the past, some ports did not handle con-
tainerized trade, by 2014, nearly all ports had some ability to handle containerized trade.

34For example, containerized trade from Canada to the US can occur via truck or train, and will not be
observed in our traffic matrix Ξ, even though it appears in the trade matrix X.

35This functional form maps from the real numbers to the unit interval, as is required by our theory.
36For each country pair, we calculate the volume-weighted mean sea distance across all port pairs. These

data are available for download from our websites.
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β2 considers port-to-port traffic. β3 and β4 consider the total incoming and outgoing traffic at

ports i and j respectively. β5 considers the role of the backhaul problem from Wong (2019),

where ship capacity is fixed by the shipping direction with the higher demand. Finally β6

considers an indicator variable for two countries that share a land border.37

It is crucial to note two things about this strategy. First, the above equations posit rela-

tionships between observables, such as distance and traffic flows to trade costs. However, at

this stage these relationships are not of interest to us. Our objective is not the vector β of

coefficients, but the resulting predictions for aij. We accept that elements of the vector β will

be endogenous, seeking instead to fully saturate the variation in the data in order to generate

the closest prediction the data can yield for the matrix A relative to the just-identified case.

This recovers the trade costs while being agnostic to their underlying determinants, including

potential market power as well as possible geographic indicators. Secondly, note that parame-

ters for β will yield estimates of every trade cost aij, but we need not discipline β by comparing

traffic on every link. We can omit within-country traffic as well as traffic between countries

that share overland routes and still recover estimates of aij.

Our estimation finds the vector β that that minimize the differences of expected traffic,

Ξ̂
(
A (β) ;X

)
, which is constructed from estimates of β as well as trade data X and observed

traffic for countries that do not share a land border:

argβ min
∑

ij 6=land borders

∣∣∣Ξkl − Ξ̂
kl (
A (β) ;X

)∣∣∣ .
As noted before, sharing a land border indicates that we may not fully observe traffic of

containerizable goods on that given leg, and we do not match traffic data from these countries

with our expected traffic. Yet, disciplined by non-land border traffic flows, guesses for akl for

overland link k to l are still generated from any guess of β, and these along with observed trade

flows X generate predicted traffic flows for sea-only legs where traffic is observed.

Appendix Figure A.12 graphs our resulting matrix of pairwise trade costs. We present the

vector β estimates in the Appendix Table A.5 as purely predictive parameters, not fundamentals

that we can alter in the counterfactuals. Instead, we simply need to know if our β estimates

produce containerized ship traffic that reflects the world. With a full A matrix, we also can

37We do not estimate the diagonals aii, the cost of shipping from one’s own port back to itself. We assume
that these costs do not change in the counterfactual and we only estimate our data on international trade data,
abstracting away from domestic trade. Allen and Arkolakis (2019) provide estimates of internal trade costs.
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generate a full B matrix, or average bilateral transport cost between points. Appendix Table

A.6 compares these bilateral trade costs to distance measures more commonly used.38

Alternative Data Definitions Estimates of aij are at the country-level. With port level

traffic, estimation of a port-level cost matrix is possible. However, that estimation requires sub-

national trade data X, which is not broadly available. Using port traffic and imputed trade

data, we can guess bilateral port trade data and run a version of the above estimation. Results

from the port-level estimation are broadly in line with results of main estimation and later

scale elasticity estimation, with the correlation between weighted port-pair costs and country-

pair costs of 0.6. However, due to the highly speculative assumptions required to estimate

sub-national trade data, we view country-level estimates as more accurate.

5.3 Model Fit and External Validity

First, we check our estimation results by comparing our model-predicted traffic and trade

values against their observed counterparts in the data (Figure 7). In Panel (A), we compare

actual observed global container traffic shares with the our model-predicted shares using our

β variables and estimated trade costs. We include both a best fit line and a 45 degree line.

As we achieve the ideal just identified case, all observations would line up along the 45 degree

line. In general, we fit the data extremely well, with a correlation between the observed and

predicted shares (in logs) of 0.97. In Panel (B), we compared actual observed trade shares to

our estimated trade shares.39 Even though our model does not explicitly target trade values,

we still fit the data well with a high correlation (in logs) of 0.73.

To assess the model’s ability to capture the actual paths of goods, we compare model

predictions for traffic for US-bound shipments to our US microdata. Our estimation, which uses

global traffic data rather than US microdata, delivers predictions for how US-bound shipments

travel through the shipping network–the routes US imports take. Specifically

π̂kliUS = bikaklbljb
−1
ij ,

is the ratio of all shipments from i to the US that are observed flowing through leg k, l.

This ratio can be matched to our compiled microdata on shipment-level observations of

38Using the B-matrix, we make our bilateral transport cost estimates and country-level measures of market
access available for future research.

39To generate trade flows, we close the model using the full setup in 7.
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Figure 7: Model Fit Comparisons

(A) Traffic volumes (targeted) (B) Trade value (untargeted)

Notes: Panel (A) compares our predicted container traffic volumes from any two ports to the actual container
traffic volumes (normalized as a share to total world container traffic). Panel (B) compares aggregate trade
shares versus predicted trade shares for containerized traffic. This computation uses the full model described
in Section 7. These moments are not targeted by the trade cost estimation.
Source: Authors’ calculations using AIS and Bill of Lading data.

individual routes for US-bound trade in Sections 2 and 3. Note that this microdata is not used

in the estimation. The model is instead estimated using containership port of call data at the

global level. We can compare the above value from the estimation to the proportion of goods

coming into the US from any origin i on leg k, l in our microdata, which we call πkliUS,Data.

Table 2: External Validity Checks

(1) (2) (3) (4)

π̂kliUS π̂kliUS Ξ̂kl Ξ̂kl

πkliUS,Data 0.846 0.872
(0.119) (0.121)

Ξkl,Data 1.224 1.240
(0.128) (0.126)

Observations 13813 366010 652 2153
Data Nonzero Global Nonzero Global
R2 0.513 0.513 0.659 0.669
F 50.58 51.79 91.75 97.04

Notes: Standard errors clustered by origin and destination countries. π̂kliUS is the model-predicted share of

goods from origin i to US destination flowing through leg k, l and Ξ̂kl is the model-predicted total US-bound
traffic on a given leg k, l. Their corresponding variables observed in the compiled microdata are indicated with
subscript “Data”, πkliUS,Data and Ξkl,Data. Columns (1) and (3) are restricted to nonzero traffic volumes in the
US microdata (Nonzero Data). Columns (2) and (4) includes journeys with zero traffic volumes in the US
microdata (Global Data).
Source: Authors’ calculations using AIS and Bill of Lading data.
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Column 1 of Table 2 reports the univariate regression, weighted by total origin TEU. The

coefficient is strong and positive, and we cannot exclude a 1-to-1 relationship. Over half of the

variation in the observed distribution can be explained using the predicted probabilities.

In Column 2, we add back in legs for which there are no observed journeys, or zero traffic

volumes, in the microdata. Our model predicts that there should be some small amount of

traffic volume on every leg as demonstrated by the 30-fold jump in observations. However,

because our model predicts extremely low volumes of trade on these legs, including these links

does not significantly change our estimates or model fit.

Next, summing predicted probabilities across origins, the model delivers a prediction for

the total amount of US-bound traffic on a given leg:

Ξ̂kl =
∑
i

XiUSπ
∗
ijkl, (12)

where XiUS is the total volume of trade from origin i to the US. Again, we can compare this to

the total volume of shipments in the data moving between a given leg, which we call Ξkl,Data.

Column 3 and 4 report these univariate regressions, again adding back in legs with zero

observed volumes in 4. Here as well, the coefficient is significantly positive and not different

from 1. The R-squared is now higher – close to 0.70. These results are also robust to tobit

specifications which allow for lower and upper censoring limits.

By showing that there is a tight fit between our model estimates to our micro-data on US

shipment routes, our paper serves as a check to the validity of the Allen and Arkolakis (2019)

approach. Allen and Arkolakis (2019) imputed traffic and trade flows within the US highway

system for their estimation since this data is not readily available.40

6 Scale Economy Estimation

Results from Section 3 imply that scale economies in shipping are crucial to understanding the

role of entrepôts play in global trade. As we turn to counterfactual estimation, the existence

of such a scale economy implies that perturbations to the global shipping network that change

trade volumes will in turn impact the leg cost matrix estimated in the previous section. Such

effects must be accounted for in order to correctly estimate counterfactual adjustments. In this

40They assume that the observed traffic for a link is proportional to the underlying value of trade on that
link. This assumption is later on verified by comparing their predicted trade flows to actual flows from the
Commodity Flow Survey.

26



section, we estimate the causal impact of scale, or traffic volume, on leg-level trade costs.

6.1 Naive Scale Elasticity

As discussed in Section 4, scale economies, a negative relationship between the volume of goods

traveling on a leg and the cost on that leg, could result from a number of different mechanisms.

We begin by estimating a “reduced form” relationship between leg costs obtained from our

estimation and traffic volumes. Column 1 of Table 3 reports the following specification

ln ckl = α0 + α1 · ln Ξkl + α2 · ln dkl + εkl, (13)

where α0 is a constant, α1 is the ordinary least squares (OLS) relationship between price and

quantity, α2 · ln dkl is the coefficient and measure of log sea-distance from k to l respectively,

and ckl = a−1
kl − 1, which allows us to interpret α1 as the elasticity between cost and traffic

volumes to a trade elasticity θ. That is, to interpret our results as elasticities, they must be

deflated by trade elasticity θ, which we do not recover directly.

Column 1 of Table 3 reports the OLS relationship between leg-level transport costs and

traffic. Unsurprisingly, the strong negative coefficient echoes the strong negative relationship

between costs and traffic found in our GMM estimation. For a trade elasticity value of θ = 4.5

(Simonovska and Waugh, 2014), this relationship implies legs with 1% more traffic volume are

associated with 0.18% lower transport costs. Although we are estimating a leg-level elasticity,

this is similar to what has been established in the ocean shipping and scale literature.41

Of course, this OLS relationship between price and quantity cannot be taken as causal.

Lower cost legs may face larger demand precisely because unobserved cost-reducers induce

higher levels of demand on those legs. Essentially, we wish to observe the supply elasticity, but

we have only market-clearing prices and quantities. We therefore need a demand shifter.

6.2 Geography-Based Instrumental Variables

We build such a shifter by using the intuition of our model to construct a geography-based

instrument for demand. Demand for a given leg will be higher if the leg lies along an other-

wise lower-cost route between an origin and a destination. Routes from South Korea to the

Netherlands that include the leg China-Singapore, for example, are closer to the direct route

between Korea and the Netherlands compared to the leg China-Australia. As such, more Korea-

41Asturias (Forthcoming) reports an origin-destination country trade-volume trade-cost elasticity of 0.23 while
Skiba (Forthcoming) reports an elasticity of 0.26 using product-level import data from Latin America.
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Table 3: Scale Elasticity Estimates

(1) (2) (3) (4) (5)
ln ckl ln ckl ln Ξkl ln ckl ln ckl

ln Ξkl -0.814 -0.267 -0.423
(0.0113) (0.128) (0.0919)

ln zkl -0.0419 0.157
(0.0274) (0.0372)

ln dkl 0.495 0.652 -0.272 0.580 0.649
(0.0329) (0.0607) (0.0769) (0.0499) (0.0732)

k-level FE Y
Specification OLS RF 1st St IV IV
Observations 1947 1947 1947 1947 1947
R2 .89 .14 .55 .74
KP F-stat 17.79 15.27

Notes: Robust standard errors in parentheses clustered two-ways by nodes k and l.
Source: Authors’ calculations using AIS and Bill of Lading data.

Netherlands trade should flow through the China-Singapore link than the China-Australia link,

which would involve a longer detour before eventually arriving in the Netherlands.

Effectively, we wish to calculate how far out of the way a given leg would be for most

journeys. To operationalize this intuition, we relate the direct sea-distance between an origin

and a destination to the distance of two legs as part of a four-leg journey, where the omitted

middle leg is the object of interest. For each kl pair, we calculate the instrument zkl as:

zkl =
∑
i\k,l

Popi,1960

∑
j\{k,l}

Popj,1960

d2
ij

(dik + dlj)2
, (14)

where dij is the sea distance between origin i and destination j, and the square of the relative

excess distance between legs i− k and l− j (dik + dlj) is weighted by the year 1960 population

at each origin i and destination j, Popi,1960 and Popj,1960.42

Links including Singapore score favorably on this measure; its strategic location by the

Straits of Malacca makes it “on the way” for many key country pairs. Column 2 of Table 3

reports estimates from the reduced-form relationship between our instrument and link costs:

ln ckl = β0 + β1 · ln zkl + β2 · ln dkl + εkl. (15)

We find that higher values of the instrument–more strategic locations–are indeed associated

421960 Population here stands in place of GDP, which may be endogenous to the trade costs in our model.
The year is chosen both because immigration and populations prior to 1960 could not plausibly be impacted
by 2014 containerized shipping costs.
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with lower costs as we predict. Our first stage results are given by the following (Column 3):

ln Ξkl = γ0 + γ1 · ln zkl + γ2 · ln dkl + υkl. (16)

The F-statistic confirms the instrument is strong. Both reduced-form and first-stage show

relatively strong variation in the direction we expect. On average, strategic legs along more

distance-minimizing journeys exhibit higher traffic volumes.

Column 4 reports our instrumented scale elasticity from our second stage regression (equa-

tion (13)). Our demand shifter reduces the scale elasticity in Column 1, roughly halving the

result. This is consistent with the direction of bias we would expect from reverse causation.

For the widely used value θ = 4.5 (Simonovska and Waugh, 2014), the interpretation of our

causal estimate is that increasing volume on a route by 1% would reduce costs by 0.05%. 43

These results are consistent with our third stylized fact linking trade and ship-size in Section 2.

and lend support to our initial hypothesis that a major role of entrepôts are their facilitation

of scale through concentration of shipments.

An important note is that many specific mechanisms may be at work generating this ob-

served scale economy, including ship size and market power among others. Indeed, because a

multitude of such mechanisms may be at work simultaneously, we choose a model-consistent,

agnostic approach in our estimation of scale. Yet different mechanisms may generate different

out of sample results, and further work should be done to isolate and test for these.

6.3 Validity of Identification Strategy

In order for the IV strategy to be valid, our demand shifter instrument has to be generally uncor-

related with unobserved changes in cost determinants for a particular leg (corr(εkl, ln zkl) = 0).

We include leg-level sea-distance to directly control for the physical leg-level costs of shipping.

What are the possible threats to identification? We are chiefly concerned with port-level

omitted variables that could put a downward bias on our estimates, rather than differences in

at-sea costs. For example, port level infrastructure investments could reduce costs and increase

demand, showing up as a scale economy where none exists.

To address this concern we add origin-port fixed effects to the regression in column 5. The

coefficient becomes larger in magnitude, closer to the OLS. This is not what we should expect

43This leg-level elasticity is more modest, but broadly consistent with the strong scale economies from ship
size in Cullinane and Khanna (2000), which measure origin-destination elasticites that would compound, on
average, three leg level elasticites.
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if omitted port-level cost reduces are correlated with our demand shifter, but is the direction

we expect if port-level congestion is being accounted for. Accordingly, we rely on our column

4 elasticity, our most conservative and model-consistent estimate, to account for the effects of

higher volumes on route costs in counterfactuals.

A second threat to identification could be that locations that are strategically close to each

other in sea distance are also close to each other in land distance and have easier access to

other modes of transportation like road or rail. This availability of other modes along such kl

legs could be potentially correlated with any unobserved cost determinants εkl. To address this

concern, we recalculate our instrument in equation (14) by omitting the shortest 10 percentile

distances for each origin i and destination j respectively.44 Our results are robust to this

setting—our coefficients retain the same signs and stay within a standard error of the baseline

results (Table A.3). We find a stronger negative correlation (higher scale elasticity) between

costs and more strategic locations that are further away. This may imply that strategic locations

play a bigger role in reducing trade costs through scale when they are further away.

While it is not possible to directly test the validity of our exclusion restriction, we can show

the lack of correlation between our instrument and an approximation of εkl. We can interpret

εkl as the error or difference between the model-implied cost ckl and the true leg transport cost.

Using external measures of freight costs from Wong (2019), we can calculate the difference

between these external costs to our model-implied costs for a subset of legs. This difference

should approximate εkl and be correlated with εkl. Figure 8 shows a weak and insignificant

correlation between this residualized approximation of εkl, after controlling for sea-distance,

and our instrument. This is insufficient to concretely validate our instrument, but performs the

same role as a balancing test, showing an absence of evidence of exclusion restriction violations.

7 Counterfactuals

In order to estimate our counterfactuals, we now introduce structural assumptions into our gen-

eral theory model to deliver a quantifiable general equilibrium framework. With a fully specified

model and estimates of both trade costs and scale elasticizes, we consider two counterfactuals.

The first considers the trade cost effects of global warming, with the Arctic opening up to trade

44To use our previous example, this means the set of routes from South Korea to the Netherlands would
exclude the shortest legs from South Korea (like Japan) as well as the shortest legs to the Netherlands (like
Belgium or France).
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Figure 8: Balancing Test: Residualized plot of correlation between instrument and
approximation of unobserved cost determinants

Coeff=0.0266, SE=0.12
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Notes: The approximation of unobserved cost determinants on the y-axis is the difference between external
measures of freight costs and the model-implied costs. This difference is residualized after controlling for
sea-distance. Robust standard errors are clustered two-ways by nodes k and l.
Source: Container freight rates from Wong (2019), Authors’ calculations using AIS and Bill of Lading data.

between the Pacific and Atlantic Oceans, bypassing the Suez and Panama canals. The second

considers the role of a negative trade shock, the United Kingdom leaving the European Union.

7.1 Closing the Model

To close our model, we adopt the Caliendo and Parro (2015) framework. A continuum of

intermediate goods ωn are used in the production of composite goods that are in turn used

domestically both as final goods and as materials for intermediate production by firms in each

industry n. We assume there are three sectors (N = 3): containerized tradables c, non-

containerized tradables nc, and nontradables nt (n ∈ [c, nc, nt]). Intermediates in the nt sector

are only sourced domestically while ωnc and ωc goods are sourced internationally. Trade routes

are modeled for all three sectors but will only be estimated for intermediates ωc.

Consumption In each country i, consumers consume composite goods min from each

sector n, maximizing Cobb-Douglas utility.

Ui =
N∏
n

mηn
in ; where

∑
ηn = 1,
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where ηn is the Cobb-Douglas industry share,
∑

n ηn = 1. Since each product ω in sector n is

homogeneous, consumers in country j will choose the lowest-cost provider of each such product.

Intermediate goods production The traded goods are intermediates, which are used in

each country as building blocks for industry composite goods. In each country i and industry

n, firms produce a continuum of intermediate goods, indexed in each industry by ωn ∈ Ωn.

There are two types of input required for the production of ω: labor and composite goods. The

production of intermediate goods across countries differs in their efficiency by a country-industry

specific constant zin, a Ricardian technology. The production technology for intermediate ω is

qin(ω) = zin [lin]γin
N∏
n′

[
mn′

in

]γn′
in

,

where lin is labor. γn
′

in is share of materials from sector n′ used in production of intermediate

good ω, γin is share of value added, with
∑N

n′ γn
′

in = 1− γin.

The marginal cost of production for firms is

cin ≡
Υinw

γin
i

∏N
n′ P

γn
′

in

in′

zin
, (17)

where wi is the wage in country i, Pin′ is the price of a composite good from sector n′, and

constant Υin =
∏N

n′

(
γn

′
in

)γn′
in

(γin)γin .

Composite goods production In each country i, composite goods in industry n are

produced using a CES aggregate of intermediates Ωn, purchased and sold domestically at

marginal cost. In traded industries, intermediates are sourced internationally from lowest-cost

suppliers. For a given product, the price available to composite producers in j is

pjn(ω) = mini,r
{
ciκijnτijnr

}
, (18)

where τijnr is the realized trade cost from i to j in industry n.

When compared to the relevent equation in Caliendo and Parro (2015), it’s clear that

idiosyncratic route draws are generating the stochastic price dispersion usually assumed to be

idiosyncratic TFP. Using the standard aggregation, the resulting price at j of the composite in

industry n is expected to be the following (where An is a constant):

Pjn = An

 I∑
i=1

c−θni κ−θnijn τ̃
−θn
ijn

 (19)
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7.1.1 Equilibrium in changes

The general equilibrium can be defined using hat algebra which dictate how equilibrium-set

parameters adjust to a change in trade costs t̂kl = t′kl/tkl through a change in expected trade

costs τ̂ijn = τ ′ijn/τijn. Changes in tariffs, trade costs, and/or productivity alter the endogenous

costs of production, price indices, wage levels, trade flows, and welfare.45 See Appendix F

for full details. Formally we solve for how wages and prices change
{
ŵi, P̂i

}
as a function of

changes of our model primitives,
{
τ̂ijn, ẑin, κ̂ijn

}
. We compute welfare as the change in real

wages,
{
ŵi, P̂i

}
as a function of changes

{
τ̂ijn, ẑin, κ̂ijn

}
. Furthermore, we can also compute

changes in marginal costs ĉin and trade volumes X̂ij.

7.2 Counterfactual Methodology

Algorithm 1 Scale Counterfactual Algorithm

1: procedure Welfare Change(X0,Ξ0, t̂) . Find a new equilibrium
2: Initialize current trade flows X0 and traffic Ξ0

3: Initialize changes in cost fundamentals τ̂ . Example: shipping distances changes
4: Compute A0 = A(Ξ0; τ̂) . Following equation 13
5: Compute B0 = (I − A0)−1

6: Initialize difference = ∞, tolerance = ε
7: while difference < tolerance do
8: Update trade flows X1 = X(B0) . Solving 7.1.1
9: Update traffic Ξ1 = Ξ(X1, A0, B0) . Following equation 11

10: Update leg costs A1 = A(Ξ1)
11: Update trade costs B1 = (I − A1)−1

12: Compute difference = Σij(B1 −B0)2

13: Update A0 = A1 and B0 = B1

14: Return final trade flows X1

15: Compare welfare and price index changes between X1 and X0 . Solving 7.1.1

We combine our trade volume data with country level input-output data from the EORA

database aggregating over three sectors: non-traded goods, container-shipped traded goods

and non-container traded goods and use country level consumption and production data to

compute Cobb-Douglas shares η and γ.46 We follow the literature and conservatively set θ = 4

(Simonovska and Waugh, 2014). For any change in trade costs τ̂ , we can calculate changes in

any country’s price index P̂ and trade flows X̂.

45As in the literature we assume that trade is balanced up to a constant deficit shifter.
46We hold trade deficits constant in all our counterfactuals.
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We map the change in distance to trade costs through equation (13), with α2 relating the

change in distance to our trade costs. We use this, translated through the model, to reflect

changes in the realized trade cost matrix B between every bilateral trading in our data - even

those that are not directly connected with each other. For scale, we model a new equilibrium in

the short-to-medium run, by following an iterated procedure in Algorithm 1. In this procedure,

we start at today’s equilibrium and allow all shippers optimize their transportation patterns.

We then allow trade costs to shift due to scale economies for all origin-destination pairs. We

then iterate allowing re-optimization until a new stable equilibrium is reached. By construction,

there may be many alternative equilibrium, however we focus on the unique equilibrium from

our current starting point - the world today.47

Table 4: Aggregate Counterfactual Outcomes

Directly Full Trade Allowing
Affected Network Scale
Routes Effects Economies

Panel A: Arctic Passage
∆ Average Global Welfare 0.015% 0.033% 0.089%
∆ Container Trade Volumes 0.174% 0.382% 1.018%

Panel B: Brexit
∆ Average Global Welfare -0.023% -0.100%
∆ Container Trade Volumes -0.245% -1.127%

Notes: Notes: In Panel A, we first only reduce the trade costs between country pairs, whose distance is
shortened by crossing the Arctic Ocean. Second, we allow for the full network structure B to allow for indirect
shipping to also cross the Arctic Ocean. Third, we allow for scale economies to create a feedback loop. In
Panel B, we model Brexit as an effective 5% tariff increases for all trade originating or destined for the United
Kingdom. The three columns reflect the naive effect only on British trading partners, the full network effect
over all trade partners, and finally include the full effects of scale economies. See text for full details.

7.3 The Arctic Passage

We model the opening of the once-fabled Northeast and Northwest Passages through the Arctic

Ocean between North America, Northern Europe and East Asia as a viable shipping route due

to global warming. As an example, a ship traveling from South Korea to Germany would take

roughly 34 days via the Suez Canal but only 23 days via the Northeast and Northwest Passages

47Kucheryavyy, Lyn and Rodŕıguez-Clare (2019) establishes a common mathematical structure that charac-
terizes the unique equilibrium in multi-industry gravity trade models with industry-level external economies of
scale. Their structure requires that the product of the trade and scale elasticities to be not higher than one,
which is satisfied in our case.
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(the Economist, 2018). Today, a small number of ships make this journey, but within the next

5-10 years, regular trips are expected (Reuters, 2019). For every bilateral pair, we consider the

change trade cost for containerized trade due to changes in shipping distance using the shortest

ocean-going distance between ports.48 We find a more than 30% reduction in average shipping

distances for the top 15 routes. This has a direct effect on the underlying trade cost matrix

A for these Northern European, North American, and Asian countries, with no difference for

all other routes. Figure 9 compares the top 150 existing shipping routes today and shortest

ocean-going distance of these routes after the Arctic sea passage is viable. Existing shipping

routes are highlighted in blue, new routes going through the Arctic passage are in red, and non-

changing routes are in brown. We compute the change in distance using Dijkstra’s algorithm

on a world map with and without arctic ice caps (Appendix A.2).

Figure 9: Comparison of shipping routes: existing and after the opening of the Arctic sea

Notes: Blue lines indicate existing shipping routes, red lines indicate the Arctic sea routes, and brown lines
indicate routes that do not change. The width of each route reflects the total number of containers (TEU) on
that route. Source: Authors’ calculations based on AIS and Bill of Lading data.

To decompose the effects of (1) bilateral distance, (2) the global container transportation

network, and (3) scale economies on modeled trade costs τ̂ , we run three variants. First, we

48We measure the mean ocean-going distance between all bilateral ports within each origin-destination pair.
The opening of Arctic sea routes, allows for ships to pass through the Bering sea from the Pacific to the Arctic
Ocean and through the Labrador/Norwegian seas from the Atlantic to the Arctic.
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directly only allow for changes in trade costs only on routes that are directly affected by our

counterfactual scenario. This captures the direct effect of distance. Second, we then allow

for these trade costs to affect all trade, including indirect trade. This reflects the notion that

even countries that do not directly ship between each other - for example between China and

landlocked Ukraine - have changes in trade costs. Third, as trade costs change, trade volumes

change, causing a feedback loop through our estimated scale elasticity.

In each of the three simulations, we first show the aggregate gains, averaging across global

welfare, before decomposing our heterogeneity. We display the summary statistics for all three

scenarios in Panel A of Table 4. The first column, shows that with our simply input-output

structure, the direct effects of the Arctic Passage are positive, with aggregate welfare increas-

ing 0.015%, and container trade volumes increasing 0.2%. Allowing for the full trade network,

including indirect shipping, doubles the aggregate welfare effect to 0.03% and increases world-

wide container volumes 0.4%. Finally, allowing for scale economies increases welfare six-fold

and trade volumes five-fold, with a 0.09% welfare gain and a full 1% increase in global traffic.

However these relatively small global effects mask significant heterogeneity across countries.

Figure A.8 show changes in the relative wage-adjusted price index (interpreted as national

welfare, if we omit the costs of climate change) across our three scenarios. (Appendix Figure A.8

shows related changes in country-by-country containerized exports.) In the baseline scenario in

Panel (A), we see increases from trade between countries on the Northeast passage, but very

little spillover effects - only those reflecting the classic multilateral resistance term in trade

models and cascading effects from value chains. These direct changes in trade costs due to the

Northeast passage only have moderate affects on the relative price index, which the biggest

effects seen in trade between East Asian and North European countries. Panel (B) allows for

indirect trade, allowing the benefits of trade to pass on to nearby countries, including those

without direct transcontinental trade routes. Panel (C) allows for scale economies to amplify

effects, with the gains from trade being particularly pronounced in East Asia, who are able to

cheaply ship a large amount of products for consumption in Europe. While we find welfare

improvements in general, countries near the Panama and Suez Canals see smaller increases in

welfare, highlighting the effects from route diversion towards the Arctic Passage.

Figure 11 zooms in on the welfare changes of Singapore, Hong Kong, and Taiwan as well

as their surrounding countries as a result of the opening of the Arctic Passage. In the baseline

scenario in Panel (A), we see that these entrepôts have a direct welfare increase from the passage
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Figure 10: Welfare Changes - Arctic Passage

(A) Only Directly Affected Routes

(B) Full Trade Network Effects

(C) Full Trade Network Effects and Scale Economies

Notes: These three plots show the percent change in welfare (the relative price index) for all countries in our
dataset. Darker reds reflects a greater increase and blue represents no change. White represents omitted
countries. Panel (A) reflects changes if we only allow trade costs to decrease on routes whose distance is
directly reduced to the Arctic Passage. Panel (B) reflects changes if we allow all countries to indirectly access
the Arctic Passage through the trade network. Panel (C) allows for scale economies and allows for a feedback
loop for all countries.

opening since they have direct routes to Northern European countries and North America.

When allowing for indirect trade in Panel (B), the neighboring countries of these entrepôts see

an increase in welfare because they are now able to benefit from using these entrepôts to trade
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with the Northern European countries and North America. As a result of this indirect trade,

entrepôts are going to benefit further. When allowing for scale economies to amplify effects in

Panel (C), the entrepôts and their neighboring countries are going to benefit even further. The

concentration of welfare gains in entrepôts from this counterfactual highlights a novel source of

agglomeration—scale economies in transportation and transport networks can help contribute

to and shape entrepôts. This is in contrast to the general literature in economic geography

where transport costs act as a dispersive force on agglomeration.

Figure 11: Welfare Changes on Asian Entrepôts - Arctic Passage

(A) Only Directly Affected
Routes

(B) Full Trade Network
Effects

(C) Full Trade Network
Effects and Scale Economies

Notes: These three plots are a magnified part of figure 10 to show the percent change in welfare (the relative
price index) for a subset of Asian Entrepôts in our dataset. Darker reds reflects a greater increase and blue
represents no change. White represents omitted countries. Panel (A) reflects changes if we only allow trade
costs to decrease on routes whose distance is directly reduced to the Arctic Passage. Panel (B) reflects
changes if we allow all countries to indirectly access the Arctic Passage through the trade network. Panel (C)
allows for scale economies and allows for a feedback loop for all countries.

7.4 Hard Brexit

We model one potential issue of a “Hard” Brexit, increases in the costs for only goods that

originate or are destined for British use.49 We assume that these tariffs and related costs will

not spill over to goods that are only transhipped or temporarily stop at British ports on their

way to far flung destinations. In a traditional setup, the affects of Brexit will only be felt

through changes in costs through either direct trade relationship or through the traditional

multilateral resistance term (including the direct effect on global value changes). However,

with scale economies, a decrease in the viability of British trade will have a spillover effect.

Potential tariffs will decrease trade volumes, increasing trade costs, not only affecting Britain,

49Alternatively, we can model the effect of port infrastructure improvements either between bilateral pairs or
for any single nation.
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but countries that currently find the United Kingdom as a preferred entrepot.

We model this scenario in two steps. First, we replicate a naive Brexit counterfactual,

where the cost of shipping doesn’t increase, but the cost of entering/exiting the British market

increases by 5%. Irish exports destined for Britain will face an increase tariff cost, while Irish

exports destined for the United States will not be directly affected - even if the good stops in

the British port of Felixstowe first. Second, we additionally allow for scale economies. Now, as

British trade volumes fall, trade costs increase. Irish exports to the United States will be more

costly, as they will have to pay either the increased costs of travelling through Britian, find an

alternative entrepot (perhaps Le Havre, France), or take a low-volume and costly direct trip.

Panel B in Table 4 highlights our results. The direct effect decreases global welfare by

0.04% and scale economies decrease global welfare by 0.16%. Trade volumes follow a similar

pattern. Figure 13 highlights the distributional effects in terms of welfare (see Appendix Table

A.9 for trade volumes). Direct effects are only significantly felt in the United Kingdom and

Ireland, but the structure of global trade and intermediate good use spreads out welfare effects

to much of the European Union. Finally scale economies amplify effects, significantly impacting

the rest of Europe. Significant effects are also seen in Iceland and in other Nordic countries.

Many of these small countries rely on local United Kingdom feeder routes to get goods to large

vessels that ply transoceanic trade with Shanghai and New York. Some countries see small

effects, such as Norway and Sweden, as they can substitute through Rotterdam, Netherlands

and Bremerhaven, Germany. However, Irish and Icelandic exporters and importers suffer, as

their trade is not as easily routed through alternatives.

8 Conclusion

World trade does not all get shipped directly from an origin to a destination. It often takes

meandering routes, aided by scale economies that consolidates trade in hubs, or entrepôts.

We characterize this global container shipping network and its implications for international

trade. Guided by a series of novel and salient facts, we model world trade with endogenous

trade costs, estimating both the underlying trade costs on all containership routes, as well as

scale economies. We develop a novel geography-based IV in order to causally identify the scale

impact of traffic on trade costs. Our results imply that a 1% increase in traffic flows on a leg

would reduce its corresponding trade costs by 0.05%.
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Figure 12: Welfare Changes - Brexit - Largest Trading Partners
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Notes: This show the percent change in welfare (the relative price index) of a simulated 5% increase in trading
costs with the United Kingdom the largest 15 trading partners. The first bar reflects changes if shipping costs
remain constant, reflecting only welfare changes due to changes in prices. The second bar allows for scale
economies and allows for a feedback loop for all countries.

Armed with estimates, we show that accounting for both the network effects of the full trade

network and their associated scale economies have quantitatively significant welfare and trade

volume effects. Combined, they globally increase the effect of trade shocks more than five-

fold. The concentration of welfare gains in entrepôts from our Arctic Passage counterfactual

highlights a novel source of agglomeration—scale economies in transportation and transport

networks can help contribute to and shape entrepôts. This is in contrast to the general literature

in economic geography where trade cost typically act as a dispersive force on agglomeration.

While such hub and spoke networks have been studied in contexts such as airline travel,

we take our trade costs and embed them into a tractable general equilibrium framework to

be able to quantify welfare effects. We are singularly focused on containerized shipping in

our setting as containerized trade accounts for the majority of global seaborne trade. It is

worth emphasizing, however, that the hub and spoke network and its implications for trade

is not specific to just containerized trade. Such networks are also prevalent in freight services

like UPS or DHL in addition to air transport (Rodrigue, Comtois and Slack, 2013). Our

treatment of scale economies in this paper is intentionally agnostic to the multitude of potential

underlying mechanisms that are likely at work. Future work should especially be done to
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Figure 13: Welfare Changes - Brexit

(A) Tariff Change, No Network Scale Effects

(B) Full Trade Network Effects and Scale Economies

Notes: These two plots show the percent change in welfare (the relative price index) of a simulated 5%
increase in trading costs with the United Kingdom for all countries in our dataset. Darker reds reflects a
greater increase and blue represents no change. White represents omitted countries. Panel (A) reflects
changes if shipping costs remain constant, reflecting only welfare changes due to changes in prices. Panel (B)
allows for scale economies and allows for a feedback loop for all countries.

consider mechanisms the roles of fixed costs in enabling the scale economies in containerized

shipping, such as the costs incurred by potential oligopolies in setting shipping networks.

References

Alder, Simon. 2015. “Chinese roads in India: The effect of transport infrastructure on eco-
nomic development.” Working Paper.

Allen, Treb, and Costas Arkolakis. 2014. “Trade and the Topography of the Spatial Econ-
omy.” The Quarterly Journal of Economics, 129(3): 1085–1140.

Allen, Treb, and Costas Arkolakis. 2019. “The welfare effects of transportation infrastruc-
ture improvements.” National Bureau of Economic Research.

Allen, Treb, and Dave Donaldson. 2018. “The geography of path dependence.” Working
Paper.

Anderson, James E, Mykyta Vesselovsky, and Yoto V Yotov. 2016. “Gravity with
scale effects.” Journal of International Economics, 100: 174–193.

41



Asturias, Jose. Forthcoming. “Endogenous Transportation Costs.” European Economic Re-
view.

Barjamovic, Gojko, Thomas Chaney, Kerem Coşar, and Ali Hortaçsu. 2019. “Trade,
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Appendix (For Online Publication Only)

Appendix A Data Construction

A.1 Shipment Microdata

We compile and combine two proprietary micro-data sets in this project: global ports of call

data for all containerships, which allows us to reconstruct the routes taken by specific ships, and

United States bill of lading data for containerized imports, which gives us shipment-level data

on imports into the United States. Independently, each of these datasets allow us to partially

describe the global shipping network. By merging them, we are able to reconstruct nearly the

entire journey most shipments entering the United States take, from their initial origin point

or place of receipt, to the port of entry into the United States. To our knowledge, we provide

the most comprehensive reconstruction of the global shipping network and routes undertaken

by individual shipments into the United States.

Port of call data We partner with Astra Paging, which provides us with port of call data

for containerships. Astra Paging’s data captures vessel movements using the transponders on

these ships (known as the automatic identification system, AIS). A network of receivers at ports

collects and shares AIS transponder information (including ship name, speed, height in water,

latitude, and longitude). Using the geographic variables in the AIS data, Astra Paging marks

entry and exit into a number of ports all over the world and provides us with a dataset of ships’

entry and exit from ports of call, timestamps, and ships’ height in the water, or draft. Using

these data elements, we are able to calculate an estimated shipment volume between each port

pair by taking the observed draft relative to maximum observed draft and multiplying by total

ship capacity.

Our sample covers the a six months period, from April to October 2014. Over this period,

we have information on 4,986 unique container ships with a combined capacity of 18.13 million

TEU. This represents over 90% of the global container shipping fleet. These ships make 429,868

calls at 1,203 ports. Ports with no AIS receivers or where information is not shared do not

show up in our data. In addition, if transponders are turned off or transmissions are not

recorded, ports of call can be missed. However transponders are required to be operational by

the International Maritime Organization on ships engaging in international voyages 300 gross
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tons, applying to all containerships in our sample International Maritime Authority (2003).

Bill of lading data We partner with Panjiva Inc. (Now a division of Standard and Poor’s)

to acquire bill of lading information for all seaborne US imports from April to October 2014.

Panjiva cleans this data to standardize the names of the ports, ships, companies, and container

volumes. We subset this data to only consider goods that arrive on seaborne container ships.

We put together proprietary bills of lading data, which captures shipment-level informa-

tion for all containerized imports into the United States. International shipping relies on an

industry-standardized system of bills of lading, which act as receipts of shipment, recording all

information on the shipment, all the parties involved in the shipping process. The US Customs

and Border Patrol (CBP) agency collects these bills in addition to customs information at all

ports of entry into the US and this data is obtained from the agency by Panjiva.1

Our data captures the foreign location where the shipment originated from, the foreign port

where it was loaded on the containership which brings it into the US, and the US port where

it was unloaded from the containership. In addition, we know the name and International

Maritime Organization identification number of the containership (IMOs) which transported

the shipment as well as the shipment’s weight, number of containers (TEUs), and product

information. For a subset of the shipments, we observe value information.

Over a six months of US imports from April to October 2014, we see a total of 14.8 million

TEUs weighting 106 million tons were imported into the US from 227 shipment origin coun-

tries, 225 place of receipt countries, and 144 countries with ports of lading. This accounts for

about three quarters of the 2014 TEU and tonnage imports, 77 percent and 74 percent re-

spectively (Maritime Administration, US Department of Transportation).2 Non-containerized

goods, including goods on roll-ons (vehicle carriers), bulk cargo liners (for commodities), and

non-containerized cargo ships are not observed in our data.

Specifically, for the purposes of this study, our data captures the following location infor-

mation for each shipment into the US: the foreign location where the shipment originated from

(shipment origin), the foreign port where it was loaded on the containership which brings it into

the US (port of lading), and the US port where it was unloaded from the containership (port of

1US Bill of Lading data is immediately available for direct purchase from the Department of Homeland
Security or though a lag using a Freedom of Information Act. However, this raw data requires substantial
computing resources for processing and needs to be standardized over time.

2In particular, we miss containers that arrive on trucks and trains from either Mexico or Canada. Our
estimation strategy explicitly accounts for this unobserved data.
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unlading). In addition, we know the name and identification number of the containership which

transported the shipment as well as the shipment’s weight, number of containers (TEUs), and

product information. For a smaller subset of the shipments, we observe value information.

This data set allows us to start tracing the journey of a shipment from its origin to its

destination US port, in particular we can determine whether this shipment was loaded at its

origin location onto the vessel that brings it directly to its final US destination, or if it went

through at least one other location during its journey. When matched with the port of call

data, we can reconstruct most of the remaining journey after its port of lading.

Reconstructing shipment routes Using the containership information, port of arrival

information, timing of unlading and ports of call at US ports, and port of lading information,

we are able to match the bills of lading to the journeys of specific containerships, then use the

ports of call between lading and unlading to reconstruct each shipment’s path from its foreign

origin to US destination.

We use Vessel IMOs which are identifiers that are unique to containership vessels and stay

with vessel hulls for the lifetime of their operation. Only about 4000 ships are identified in

Bills of lading by IMO. An additional (roughly) 2,000 ships are matched to IMOs using a fuzzy

string match, after which matches are made with the help of excellent undergraduate research

assistants.

Ports of arrival are recording using UNLOCODEs in the AIS data and US Census Schedule

D codes in the Bill of Lading data. We construct a crosswalk with the excellent help of

undergraduate research assistants.

Port of lading are recorded using CBP’s Schedule K Foreign ports on Bill of Lading and

UNLOCODES in the port of call data. We construct a crosswalk between these with the help

of our excellent undergraduate research assistants.

What remains unobserved is the shipment’s journey between its Origin and the first stop

(port of lading location) we observe in our data. In particular, this initial portion of the

shipment’s journey could take place overland (by trucks or rail) or by sea on another ship. This

information is not recorded by both our datasets and therefore is impossible for us to observe.

This will under-count overall indirectness overall, but will not affect our model estimation.

For each bill of lading, we match ship, date of unlading and port of unlading to the AIS

data on ships’ port of call. Once we match shipments to ships, we record each port of call in
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the AIS data before the port of unlading as a stop the shipment makes, then remove all stops

observed before the ship stopped at the port of lading. If the port of lading is not observed, the

route is discarded and the shipment remains unmatched. Furthermore, any routes that include

the port of unlading before the date of unlading are discarded, as they represent loops where

the port of call for the port of lading is missing.

Over 90% of containerized TEU entering the US are on Bills of Lading can be matched to

routes using this method. Appendix Figure A.1 visualizes this merge. Unmatched shipments

may have missing and unrecoverable ship information, or ports of call that do not match lading

and unlading records on bills of lading. In addition, a small number of reconstructed routes

have implicit voyage speeds above 50KPH, and are discarded.

Figure A.1: Combined Dataset: Routes Undertaken by Shipments into the US

Origin

(Foreign)

Stop 1

(Foreign)

Stop 2

(Foreign)

Stop X

(Foreign)

Destination

(US)

Containership

Notes: Origin is the foreign location where shipment originated from, Stop 1 is the location where the
shipment was loaded on its US-bound containership (also known as the port/location of lading), Stop 2 to
Stop X are the subsequent stops that the US-bound containership made while the shipment remains on the
ship, and Destination is the US port where the shipment was unloaded from containership.
Source: Authors’ calculations of AIS and Bill of Lading Data.

As an example, Figure A.2 plots for all containerized trade from the United Arab Emirates

(UAE), the proportion that stops in each country. This illustrates the paths shipments take

when being transported from the UAE on to the US. Shipments from the UAE collectively

stop in many countries before continuing onto the US. Many of the most popular are regional

neighbor hubs, including Egypt, Pakistan, but Spain and China also facilitate UAE-US trade.

A.2 Geographic Distance Data

Geographic distance data is computed using two rasterized (with pixels) world maps. One map

consists of the all the navigable oceans and large seas, with a polar ice cap, as well as the Suez

and Panama canals. The second map, assumes that the Arctic ice sheet melts away due to

anthropogenic climate change. In both maps we compute the sea distance between ports of

call, and aggregate to the national level using using port-to-port container flows. We do this

computation in R using using Dijkstra’s algorithm on a world map with and without Arctic ice

A4



Figure A.2: Percent of UAE-US trade that stops in each country
Notes: Each country’s color represents the share of shipments from the UAE to the United States that stop in that country.
Stops computed at the country level and weighted by total container volume (TEU).
Source: Authors’ calculations from AIS data and US Bill of Lading data.

caps.3

A.3 Aggregate Economic and Trade Statistics

For our main estimation, we also require data on the value of containerized trade between

countries. We use aggregate trade data from Centre d’études Prospectives et d’Informations

Internationales (CEPII) and their BACI international database for 2014. This database aggre-

gate data from the UN Comtrade Database, aligning data from origin and destination countries.

This provides us data on trade volumes from origin to destinations by industry using Harmo-

nized System (HS) codes.

To aggregate industry trade to industries that use container shipments versus trade that

does not, we use aggregate data from 2014 from the United State Customs, as disseminated by

Schott (2008).4 This data reports the share of shipments by HS Codes that arrive by contain-

erships. We consider 4-digit HS Codes as a consistent level of aggregation. The distribution

of containership share by HS code is bi-modal, with one peak around 0% and another around

100%. We use a cutoff of 80%. So HS codes that are shipped by containership to the US over

80% of the time are classified as “containerizable” trade.

For aggregate trade and economic statistics for using in the counterfactual, we use the

3For more information, see the ‘gdistance’ package.
4This data has been continually updated by the author following the initial publication
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Eora global supply chain database with a multi-region input-output table (EORA-MRIO).5 We

collapse all world trade into three categories; those that are non-tradable, those that typically

traded over oceans by containerized vessels, and those that are not typically traded over oceans

by containerized vessels.6 We again classify industries using the methods of Schott (2008).

Appendix B Additional Figures and Tables

Figure A.3: Distribution of Port Stops per Container (TEU)
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Notes: Landlocked countries are excluded. Mean of 4.6 with standard deviation of 3.5.
Source: Authors’ calculations of AIS and Bill of Lading Data.

Table A.1: Relationship between Indirectness vs Distance and Time

(1) (2) (3) (4) (5)
ln Observed Dist ln Observed Dist ln Observed Dist ln Observed Dist ln Time Travelled

ln Country Stops 0.112 0.109 0.101 0.104 0.333
(0.0223) (0.0237) (0.0270) (0.0300) (0.0819)

ln Direct Dist 0.881 0.918 0.896
(0.0276) (0.0347) (0.0282)

Lading Port FE Y
Unlading Port FE Y
Lading-Unlading Ports FE Y Y
Observations 215,655 215,655 215,655 215,656 215,656
R2 .942 .954 .945 .966 .774
F-stat 1360.62 1818.20 1242.46 12.11 16.49

Notes: Indirectness is measured in number of country stops between foreign origin and US destination.
Distance is measured in kilometers while time is measured in hours. Shipment-level observations are weighted
by TEU. Shipments originating in landlocked countries are omitted. Standard errors in parentheses are
clustered at the port of lading and port of unlading levels.
Source: Authors’ calculations of AIS and Bill of Lading Data.

5Freely available for academic use from https://worldmrio.com/.
6This includes bulk shipping, roll-on roll-off ships, as well as air freight.
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Figure A.4: Transshipped Trade Share between Origin and US Destination

[0,25]
(25,50]
(50,75]
(75,99]
(99,100]
No data

Notes: Lighter colors indicated lower levels of transshipped trade share (ie. more direct trade). The US is not
included since it is the destination country. Landlocked countries are also not included, since by definition
they would need to stop at a coastal country. 34 of the shipment origin countries are landlocked accounting
for 1.6 percent of total TEUs. The missing remaining countries are either due to lack of overall trade with the
US (e.g. Somalia) or due to the merge process (e.g. Namibia).
Source: Authors’ calculations of AIS and Bill of Lading Data.

Figure A.5: Roles of Countries in Bilateral Trade: Origin vs Entrepôts

(A) Share of shipments stopping in country,
for top ten countries
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(B) Share of shipments laded in country,
for top ten countries
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Originated Transshipped

Notes: The blue portion in Panel (A) highlights shipment shares that originate in that country while the red
accounts for shipments stopping in that country (not originated). Many entrepôts are listed among the top
ten countries, including Korea, Panama, Singapore, and Egypt. Also, more than 50% of the containers
entering into the US stop in China. Panel (B) replicates Panel (A) but for country of lading. China again
dominates as a source of lading. A few of these top countries, like Germany in (A) and Italy in (B) are
majority blue, implying they are important to the US because of their role as an origination country. Other
countries, like Singapore, are differentially red, and appear to play a bigger role as an entrepôt rather than as
countries of origin.
Source: Authors’ calculations of AIS and Bill of Lading Data.
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Figure A.6: Percent Originated vs Percent Third-Country Volume

(A) US Shipment Imports Data
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Notes: China is omitted as it is out of the data frame. Panel (A) is reproduced from Panel (A) in Figure 5.
Panel (B) repeats this exercise in the previous panel using our global AIS data (no longer merged with US bills
of lading), scattering percent of global trade against percent of global AIS traffic. Many of the entrepôts who
play a major role in US trade continue to do so in global trade, like Hong Kong, South Korea, and Singapore.
Source: CEPII, Authors’ calculations of AIS and Bill of Lading Data.

Figure A.7: Distribution of Third-Party Countries Involved in Bilateral Trade by Weight
and Value

Panel (A) Number of Countries per Ton
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Notes: Landlocked countries are excluded. We find that only about 20% by weight (measured in tons) and less
than 20% by value are transported between an exporting origin and the US directly with no stops in between.
Source: Authors’ calculations of AIS and Bill of Lading Data.
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Table A.2: Concentration Ratios

Third-Party Stops Transshipment Trade
Max/50 426 476 400
99/50 398 476 96
95/50 213 135 27
90/50 112 91 15

Notes: Data represent the ratio between a numerator and denominator, where ports are ranked by percentile.
For example, the largest port has 426 times the number of third-party stops at the median (50th-percentile)
port.
Source: Authors’ calculations of AIS and Bill of Lading Data.

Table A.3: Robustness check of scale estimates:
Removal of shortest 10 percentile distances for each origin and destination

(1) (2) (3) (4) (5)
ln(ckl) ln(ckl) ln(Ξkl) ln(ckl) ln(ckl)

ln(Ξkl) -0.814 -0.328 -0.459
(0.0113) (0.122) (0.0896)

ln(zkl) -0.0522 0.159
(0.0293) (0.0414)

ln(dkl) 0.495 0.647 -0.233 0.570 0.629
(0.0329) (0.0595) (0.0752) (0.0464) (0.0710)

k-level FE Y
Specification OLS RF 1st St IV IV
Observations 1947 1947 1947 1947 1947
R2 .89 .14 .62 .77
KP F-stat 14.82 12.05

Notes: Robust standard errors in parentheses clustered two-ways by node k and node l. Instrument zkl in
equation (14) is recalculated by omitting the shortest 10 percentile distances for each origin i and destination
j respectively.
Source: Authors’ calculations using AIS and Bill of Lading data.
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Figure A.8: Export Volume Changes - Arctic Passage

(A) Only Directly Affected Routes

(B) Full Trade Network Effects

(C) Full Trade Network Effects and Scale Economies

Notes: These three plots show the percent change in exports from all countries in our dataset. Darker reds
reflects a greater increase in exports. White represents omitted countries. Panel (A) reflects changes if we only
allow trade costs to decrease on routes whose distance is directly reduced to the Arctic Passage. Panel (B)
reflects changes if we allow all countries to indirectly access the Arctic Passage through the trade network.
Panel (C) allows for scale economies and allows for a feedback loop for all countries.
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Figure A.9: Export Volume Changes - Brexit

(A) Tariff Change, No Network Scale Effects

(B) Full Trade Network Effects and Scale Economies

Notes: These two plots show the percent change in exports of a simulated 5% increase in trading costs with
the United Kingdom for all countries in our dataset. Darker reds reflects a greater increase. White represents
omitted countries. Panel (A) reflects changes if shipping costs remain constant, reflecting only trade changes
due to changes in prices. Panel (B) allows for scale economies and allows for a feedback loop for all countries.
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Appendix C Variation in Connectivity

There is a high degree of variance in indirectness across countries, as shown in Figures 1 and

A.4. This variation is reasonable explained by traditional gravity variables. In Panel (A) of

Figure A.10, we plot number of stops against country GDP and find that countries with higher

GDPs are more likely to have less stops on their journeys to the US. In Panel (B), we plot

number of stops against distance instead and find that countries which are closer have more

direct trade with the US. These results are robust to using port stops instead of country stops

(table A.4) as well as to weighting by containers, tons, and value. One natural interpretation

of this would be the endogenous response of shippers to the scale of shipments from these

countries. Of course, the availablility of direct trade to the US could in principle reverse the

causality.

Figure A.10: Larger and closer countries have lower number of average stops

(A) Stops vs Country Size

Coef=-0.091, Robust SE=0.033
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(B) Stops vs Distance

Coef=0.29, Robust SE=0.141
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Notes: Binned scatter plot with observation at the origin level. Robust standard errors weighted by total
container TEU trade by origin.
Source: World Bank WITS, Seadistance.org, and author’s calculations of AIS and Bill of Lading Data.

Do shipments from a given origin follow a unique path to the US? Panel (A) in Figure A.11

shows the distribution in the number of unique routes to the US by origin country. With an

average of about 397 routes with wide variation (sd 681), observed routes from a single origin

are indeed varied. The countries with the highest number of unique routes are big trading

partners like China, the United Kingdom, Germany, and well-established entrepôts like Hong

Kong. Countries with the lowest unique routes are smaller trading partners like American

Samoa, Nauru, Tonga, and Montserrat. The existence of this within-origin route variation will
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Table A.4: Relationship between stops and country size as well as distance

(1) (2) (3) (4) (5) (6)
ln Ctry Stops ln Ctry Stops ln Ctry Stops ln Port Stops ln Port Stops ln Port Stops

ln GDP -0.0371 -0.0488 -0.00226 -0.00935
(0.0187) (0.0140) (0.00966) (0.00719)

ln Distance 0.166 0.212 0.119 0.128
(0.0851) (0.0934) (0.0352) (0.0384)

Observations 133 133 133 133 133 133
F-stat 3.933 3.795 8.878 0.0546 11.50 5.644
R2 0.120 0.142 0.339 0.00185 0.305 0.335

Notes: Robust standard errors in parentheses. Weighted by TEUs and excluding landlocked countries.
Source: Penn World Table, CERDI-SeaDistance (Bertoli, Goujon and Santoni, 2016), Authors’ calculations of
AIS and Bill of Lading Data.

be a particularly important assumption in our model and external validity checks.

We can measure the concentration of these unique routes by constructing a Herfindahl-

Hirschman Index (HHI) for each origin country using the container shares of each route. Panel

(B) in Figure A.11 shows that almost 70 percent of origin countries have fairly low concentration

of routes (HHI less than 1500). The average HHI overall is 1475 (sd 1974). Examples of

countries with high levels of concentration are like Vanuatu, Cuba, and Liberia while countries

with low levels of concentration are Macau, Hong Kong, and Belgium-Luxembourg.

Figure A.11: Variation in trade indirectness

(A) Number of Unique Routes by
Origin-Destination Pair
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Notes: Source: Authors’ calculations of AIS and Bill of Lading Data.
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Table A.5: Predictive Trade Cost Estimates

Coefficient Estimate
β0 (intercept) 7.95

β1 (log distance) 0.17
β2 (log route traffic) -1.04

β3 (log outgoing port traffic) 0.28
β4 (log incoming port traffic) 0.28

β5 (land borders) -0.39
β6 (back-haul) -0.05

Notes: These results are not causal, and cannot be used for either inference or counterfactuals. They represent
the predictive power of various (possibly endogenous) variables in predicting a trade cost matrix that
rationalizes leg-level containerized traffic flow.

Appendix D Recovery of Predicted Trade Costs

Table A.5 shows the results of our estimation that predicts leg-level trade costs. Positive values

for β indicate increases in trade costs and negative values indicate decreases in trade cost. We

find that distance increases trade cost and increased shipping traffic decreases trade costs, after

fully accounting for the role of total trade values in X.

However, these estimates are not casual, and cannot be used for either inference or coun-

terfactuals. They represent the power of various (including highly endogenous) variables in

predicting a trade cost matrix that rationalizes leg-level containerized traffic flow. The fit of

our predictions is highlighted in Figure 7.7

In spirit, such analysis reflects the spirit of pure prediction and cannot satisfy the “Lucas

Critique”, as they are purely observational and do not reflect fundamental economic parameters,

forces, or relationships. In Section 6 we address endogeneity and causality, using an instrument

to find the relationship between route-level volume and trade costs. 8

7If we had more possible useful predictive variables, we would use a machine learning technique to tease out
the best basis of variables to predict model-consistent trade costs.

8This estimation follows Allen and Arkolakis (2019) and abstracts away from endogeneity and model mis-
specification concerns.
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Figure A.12: Trade Cost Estimates, All Legs

Notes: This map display the recovered trade cost between all origins and destinations for containership legs in
the AIS data. Lighter colors indicate lower trade costs.
Source: Authors’ calculations of AIS and Bill of Lading Data.

Appendix E Additional Estimation Results

Below, estimated route costs are drawn. Thicker and lighter colors are lower-cost routes.

Shorter and more heavily trafficked routes are the cheapest. The effect of scale is observable

here: Syria to France is one of the highest cost legs, significantly higher than Singapore to

Gibraltar, a much longer distance. Even among the subset of bilateral pairs for which we

observe traffic, the triangle inequality is violated 280 times.

Figure A.13 plots bilateral incoming and outgoing trade costs for Singapore and Lebanon

separately. Singapore is not only well-connected but both as an origin and destination has some

of the cheapest legs. Singapore ships to Lebanon which has both fewer and shorter connections.

Figure A.14 plots country-level averages of the expected trade cost (from the B-matrix).

Entrepôts such as Egpyt, Panama, and (not visible) Singapore and Gibraltar have generally
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Figure A.13: Trade Costs by Country

(A): Singapore, Origin (B): Singapore, Destination

(C): Lebanon, Origin (D): Lebanon, Destination

Notes: Lighter colors indicate lower trade costs.
Source: Authors’ calculations of AIS and Bill of Lading Data.
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Figure A.14: Expected Trade Costs, Country Average

Notes: Lighter colors indicate lower expected trade costs.
Source: Authors’ calculations of AIS and Bill of Lading Data.
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cheaper trade costs, as does China, due to the scale of shipping as well as acecss to nearby

low-cost entrepôt (Korea, Singapore, and Japan).

Table A.6 reflects the log-linear relationship between our estimated trade cost τ , aggregate

bilateral trade values, and distance. These results highlight the reduced form relationships

between these three variables, as well as the predictive power of our computed trade costs.

Without origin or destination fixed effects, our trade costs alone can explain 29% variation of

global trade. The logarithm of distance can account for less than 3% . However, we caution

against reading too far into this; as we do use trade values on operational sea routes to predict

trade costs.

Table A.6: τ vs Distance

(1) (2) (3) (4) (5) (6)
Log trade volumes

Log τ−θij 0.462 0.449 0.758 0.524
(0.0296) (0.0308) (0.0313) (0.0287)

Log dist -0.752 -0.406 -1.325 -0.652
(0.0980) (0.0909) (0.0621) (0.0599)

Constant 12.67 14.76 16.16 15.63 19.87 19.11
(0.352) (0.892) (0.746) (0.312) (0.554) (0.435)

Orig, Dest FEs No No No Yes Yes Yes
Observations 22,985 22,985 22,985 22,985 22,985 22,985
R-squared 0.286 0.029 0.294 0.760 0.751 0.770

Robust standard errors in parentheses
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Appendix F General Equilibrium Model in Changes

The production costs in country i and industry n respond to a shock to a given tkl according

to the equation:

ĉin = ŵγini

N∏
k=1

P̂ γink

ik . (20)

The change in the price of the composite intermediate good in country i and industry n

relative to shock to tkl is:

P̂in =

 J∑
i=1

πijn[τ̂ijnĉin]−θn

−1/θn

. (21)

Bilateral trade shares between i and j in industry n will change according to standard

changes through production and transport costs:

π̂ijn =

[
ĉinτ̂ijn

P̂in

]−θn
. (22)

Trade volumes similarly adjust:

X ′in =
N∑
k=1

γink

I∑
j=1

π′ijn
1 + κijn

X ′jk + αinI
′
i. (23)

Lastly, trade is balanced to a deficit shifter such that:

N∑
n=1

I∑
i=1

π′ijn
1 + κijn

Xin −Di =
N∑
n=1

I∑
i=1

π′jin
1 + κjin

Xjn, (24)

where I ′i = ŵiwiLi +
∑N

n=1

∑I
i=1 τ

′
ijn

π′
ijn

1+κijn
X ′in +Di.
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