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Abstract 
 
Using a novel dataset that contains qualitative firm survey data on sales forecasts as well as 
balance-sheet data on realized sales, we document that only major forecast errors are predictable 
and display autocorrelation. This result is a particular violation of the Full Information Rational 
Expectations hypothesis that requires explanation. In contrast, minor forecast errors are neither 
predictable nor autocorrelated. To arrive at this result, we develop a novel methodology to 
quantify qualitative survey data on firm forecasts. It is generally applicable when quantitative 
information, e.g. from balance sheets, is available on the realization of the forecasted variable. 
Finally, we provide a model of rational inattention that explains our empirical results. Firms 
optimally limit their degree of attention to information when operating in market environments 
where information processing is more costly. This results in major forecast errors that are 
predictable and autocorrelated. 
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1 Introduction

Do �rms make substantial errors in forecasting their future sales? Are these errors predictable

and do they display autocorrelation? We address these questions using a novel panel dataset that

contains qualitative survey data on manufacturing �rms' own sales forecasts as well as corresponding

balance-sheet data on realized sales. In answering the above questions, we document that only when

�rms make major forecast errors are these predictable and display autocorrelation. Hence, �rms'

behavior violates the Full Information Rational Expectations (FIRE) hypothesis. In contrast, minor

forecast errors do not violate FIRE. These di�erences in �rms' forecasting behavior have not been

documented before. Major forecast errors are those that lie in the two tails of the distribution. Key

to demonstrating this empirical result is our novel methodology to quantify forecasts when the survey

data on expectations is only available in categorical form. A requirement for this methodology is the

parallel availability of quantitative data on �rm realized actions from accounting or administrative

sources. We provide a model of rational inattention that explains our empirical �ndings. Firms

optimally limit their degree of attention to new information when operating in market environments

where information processing is particularly costly. Limited attention results in substantial forecast

errors that are autocorrelated and predictable.

Given the dynamic nature of �rm activity, expectations play a major role in �rms' economic

behavior. Economic models that explain �rm behavior are naturally dynamic and contain assump-

tions about expectations. Many papers have emphasized the importance of obtaining evidence on

expectations formation that is independent of model assumptions (see Nerlove (1983) and Manski

(2004) among others). This makes the use of survey data on expectations particularly useful. How-

ever, many important questions, such as the aforementioned ones, cannot be answered with many

survey-based measures for expectations, as they are typically categorical. Our paper provides a rem-

edy to this obstacle, as we develop a novel methodology that converts categorical survey data on

expectations to continuous quantities.

We develop a unique dataset by matching con�dential information on �rms' monthly qualita-

tive forecasts on own sales together with annual quantitative balance-sheet information on sales.
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The dataset covers Greek �rms in manufacturing for the period of 1998 to 2015. After generating

quanti�ed measures of expectations, we test and �nd that forecast errors are both predictable and

autocorrelated. This is in accordance with existing results in the literature that concern either �rm-

level or aggregate variables (see Gennaioli et al. (2016), Massenot and Pettinicchi (2018), Bordalo

et al. (2018), Tanaka et al. (2019)). These are clear violations of the FIRE hypothesis. Where we

di�er from previous papers, however, is that we show that, in our dataset, this rejection is entirely

due to forecast errors in the upper and lower 18% of the distribution. Only these major forecast

errors are predictable and autocorrelated. Forecast errors in the middle 64% of the distribution are

still often economically signi�cant, but are neither predictable nor autocorrelated. We derive this

novel �nding using a modi�ed version of the Dynamic Panel Threshold estimator of Seo and Shin

(2016). This estimator endogenously determines the 18% threshold, that distinguishes minor from

major forecast errors, to �t the data best. Major forecast errors may lead �rms to make suboptimal

decisions, pointing to the possibility that policy design can be geared to helping �rms avoid these.1

Clearly, one cannot carry out such analysis with qualitative data and this points to the importance

of our quanti�cation exercise.

Our quanti�cation methodology builds on the work of Pesaran (1987) and Smith and McAleer

(1995) and extends it to retain the panel nature of the dataset. We use higher-frequency (monthly)

qualitative survey data on expected sales growth and actual sales growth together with lower-

frequency (annual) quantitative data on actual sales growth to estimate quanti�ed expected annual

sales growth. In order to retain the panel nature of the dataset we need to overcome challenges such

as unobserved �rm heterogeneity and the need to derive proxies for forecast errors. This requires

some identifying assumptions that allow us to derive two nonlinear equations. The �rst one relates

observed quantitative annual sales to observable variables and the second one relates unobserved

quantitative expected sales to observable variables. The key is that both of these relationships de-

pend on the same parameters. Then, we estimate the common parameters from the �rst equation

using Nonlinear Least Squares (NLS), and use these estimated parameters in the second equation

1We document that the vast majority of �rms, independent of their size, make minor as well as major forecast

errors. Major and minor forecast errors (or short series thereof) tend to alternate.
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to derive �tted values for quantitative expectations on sales. We would like to stress that this

methodology can be applied to any �rm variable as long as there is a quantitative counterpart to

a high-frequency categorical survey variable. We compare our methodology to two alternative ones

for obtaining quanti�ed predictions based on ordered logit and probit. We �nd that our method

performs best, in the sense that it is highly consistent with the direction indicated by survey-based

annualized qualitative forecasts.

To interpret our empirical results, we use a framework of rational inattention to study how agents

make optimal forecasts when attention to information is costly.2 In particular, we study the behavior

of forecast errors when �rms' sales growth follows an auto-regressive process and �rms endogenously

choose the degree of inattention to information. We show that information cost spikes lead to major

forecast errors that are predictable and negatively autocorrelated. In the absence of these cost spikes,

�rms make fully informed and rational forecasts with minor forecast errors.

Quantifying forecast errors using qualitative survey data is a very important matter for many

questions, but there has been little work on this and no generally accepted methodology. Theil (1952)

and Anderson Jr (1952) developed the so called `probability method'. It provides the theoretical

grounds for the `balance statistics' that are widely used for the published business and consumer

sentiment indexes. Pesaran (1987) provides a useful analysis of the limitations of this approach (see

also Pesaran and Weale (2006)). A very useful �rst step to overcoming such limitations is Bachmann

and Elstner (2015). They �rst restrict their survey sample to �rms that reported expected output

to be unchanged over the following three months. Then, they classify non-zero percentage change

of �rm's reported utilization as a forecast error. This technique has some limitations compared to

our quanti�cation method. Our method does not only deliver continuous forecast errors but also

expectations themselves. It further is not limited to the quanti�cation of �rms' production, but can

be applied to any variable in principle, given the data requirement outlined above. Importantly, our

method can be used on the entire sample rather than only on a potentially small subset of �rms.

Important early work on the use and pitfalls of survey data to analyze how �rms form expectations

2The seminal work here is Sims (2003). Mackowiak et al. (2018) provide a recent survey of the literature on

rational inattention.
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includes de Leeuw and McKelvey (1981) and Nerlove (1983). Our work is part of a now fast growing

literature that uses information from surveys to understand �rms' decision making. Enders et al.

(2019a) use German data from the IFO Business Survey to study how �rms' expectations about

future production a�ect their current decisions on production and price setting. Tanaka et al. (2019)

use novel Japanese data to study how �rm characteristics a�ect their GDP forecasts. To the best

of our knowledge, these two datasets are the only ones constructed so far to contain categorical

survey data with corresponding quantitative data, e.g. from balance sheets or national accounts.

We contribute to the survey literature by providing a novel dataset that combines responses to a

rich �rm level survey with the corresponding balance sheet information for Greece. There are many

other contributions in the literature that use survey data to help our understanding of �rm-level

and aggregate variables. Enders et al. (2019b) for example use German data from the IFO Business

Survey to study how monetary policy announcements a�ect �rms' expectations. Bachmann and Zorn

(2013) use this survey to understand the drivers of aggregate investment. Bloom et al. (2019) use

survey responses to understand the causes and consequences of Brexit for the UK economy. Coibion

et al. (2018) study how �rms form expectations about macroeconomic conditions using novel survey

evidence from New Zealand.

Our �ndings also contribute to the broader literature on testing whether agents form expecta-

tions rationally. In addition to papers mentioned above, there are several key contributions in this

literature. For example, Coibion and Gorodnichenko (2015) use data from professional forecasters

to test the FIRE hypothesis. They �nd that agent's expectation formation violates the FIRE hy-

pothesis and show, in line with the spirit of our model, that this is consistent with the presence of

information rigidities. Coibion and Gorodnichenko (2012) use survey data from �rms, households

and professional forecasters and show that expectation formation is better aligned with models of

noisy information, similar to our model, rather than with frameworks in which information is sticky.

The paper is organized as follows. Section 2 discusses the data. Section 3 lays out our methodol-

ogy to quantify �rms' forecasts. It further provides an overview of the characteristics of the estimated

forecasts and the resulting forecast errors. Section 4 discusses our empirical results on the predictabil-
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ity and autocorrelation of forecast errors. In Section 5 introduces a model with rational inattention

that can explain these empirical results. Section 6 provides concluding remarks.

2 Data

Our dataset is constructed by merging two databases that cover Greek �rm-level data. The �rst

database includes annual information on �rms' balance sheets and income statements. We obtain

this data from ICAP S.A., a private consultancy �rm, which collects and digitalizes this information

from o�cial publicly available records. The �nancial statements are compiled by certi�ed audi-

tors (chartered accountants) and are used among other things for reporting to tax authorities and

investors. They are available to us at an annual frequency from 1998 to 2015 which determines

our sample horizon. As such, our dataset includes two distinct episodes of the Greek economy, a

long boom up to 2008 and the subsequent severe recession. We use �rms' sales from the �nancial

statements, which is de�ated using the implicit gross value added de�ator from Eurostat.3

The second database comprises �rms' responses to a monthly survey conducted by the Foundation

for Economic and Industrial Research (IOBE). This survey is used by the IOBE to construct the

much-followed business climate index for the Greek economy since 1985 and is part of the European

Commission's business climate index for the European Union.4 All survey questions concern current,

past or expected future �rm-level developments. The survey does not include any questions about

aggregate macroeconomic or sector-level conditions. Since participation is con�dential and voluntary,

�rms have no strategic interest in misreporting. Further details about the survey are provided in

Appendix A.1.

The IOBE classi�es �rms in four broad sectors � manufacturing, construction, retail trade, and

services � and sends out surveys that include somewhat di�erent questions across these sectors. We

3Nominal and real (2005 base year) value added for Greece is available from Table nama_10_a64.
4The survey is commissioned by the European Commission and conducted for the Greek economy in compli-

ance with the guidelines of the European Commission's Directorate General for Economic and Financial A�airs (see

DGECFIN (2017)). A corresponding survey is conducted for the European Commission for example for the United

Kingdom by the Confederation of British Industry and for Germany by the IFO Institute.
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focus on the manufacturing sector as this sector's survey includes questions about anticipated and

current sales developments. Responses to these two questions, and the fact that the question on

current sales has a direct counterpart in the �nancial statements data, are key for the quanti�cation

of forecast errors.5 The relevant (translated) questions in the survey are

Question A.2: During the previous 3 months, your aggregate sales, has increased/remained

unchanged/decreased.

Question D.2: During the next 3 months, you expect your aggregate sales to increase/remain

unchanged/decrease.

These qualitative survey responses are coded in the data as +1/0/-1 indicating an increase/remain

unchanged/decrease, respectively. In the following, we label the variables that include the responses

of �rm i in month m to questions A.2 XSim, and to question D.2 XSeim. The qualitative survey

variable on current sales developments, XSim, has a direct quantitative counterpart with sales growth,

denoted as xiy for �rm i in year y, in the �nancial statements. For the remainder of the paper,

variables in capital letters denote qualitative variables and lower case letters stand for quantitative

variables.

Under a strict con�dentiality agreement, we were given access to the un-anonymized survey data.

Using the �rm's unique tax identi�er, we merged their survey responses with the respective balance

sheet data. Details about the cleaning procedures for the two parts of our dataset are outlined in

Appendix A.2 and A.3. Our cleaned and merged dataset includes 799 �rms with 25,764 monthly

responses from the survey on the above two questions and 4,104 annual balance sheet observations

on sales. Table 1 provides an overview of the �rms in our sample. Our sample includes very small

but also large �rms with more than 4,000 employees and annual sales turnover of over six billion

Euros. On average, �rms respond in six out of the 11 months in which surveys are sent out. In

Appendix A.4 we provide evidence that our sample is representative for the manufacturing sector

5The manufacturing sector is also the largest of these broad sectors as it includes 38% of survey observations and

36% of observations in the �nancial statements data.
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and establish in several exercises the high quality of the survey responses. Appendix B.5 shows the

distribution of survey expectations on sales growth and documents their evolution over time.

Table 1: Sample Characteristics.

Min. Max. Mean Median St. Dev.
Firm-Year Characteristics

# of Employees 1 4,089 163 75 285
Real Sales (in 2005 Euros) 5,825 6,710,000,000 29,100,000 7,201,930 179,000,000
Survey Responses per Annum 3 11 6 6 3

Firm Level Characteristics

Age at First Appearance in Sample 0 110 25 24 17
Time-Series Length in Sample (Years) 1 18 5 4 4

3 Quantitative Forecast Errors

The forecast error on sales growth is de�ned as the di�erence between actual sales growth and its

forecast for the corresponding period. Evaluating the size of �rms' forecast errors hence requires

quantitative data on sales growth forecasts and their subsequent realization. While the �nancial

statements data provide an annual quantitative measure for the latter, quantitative data on �rm's

sales growth forecasts is not readily available. Section 3.1 shows how we can use the qualitative in-

formation from the survey and the quantitative data from the �nancial statements, to derive a quan-

titative estimate for �rms' sales growth forecasts. In particular, to quantify the survey responses we

extend the methodology by Pesaran (1987) and Smith and McAleer (1995) who aggregate qualitative

�rm observations cross-sectionally to derive quantitative time series. We extend their work and show

how the panel dimension of our dataset can be retained by using the monthly survey observations

to derive annual quantitative sales growth forecasts. Retaining the panel dimension comes with new

challenges, such as dealing with unobserved heterogeneity and an omitted variable problem, and

we show how to address these in our quanti�cation framework. Section 3.2 subsequently discusses

the quality of our estimate for sales growth forecasts and provides an overview about the implied

quanti�ed forecast errors.
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3.1 Quantifying Expected Sales Growth

Theoretically, we can decompose the expected annual growth rate of sales for �rm i in year y, xeiy, into

its monthly components. The monthly expected growth rates can in turn be separately expressed,

for �rm i in month m, using their positive, xe,+im , and negative, xe,−im , components.6 The aggregation

of monthly growth rates to an annual frequency can be formalized as the following weighted average

xeiy =
∑
m∈y

W+
imx

e,+
im +

∑
m∈y

W−
imx

e,−
im , (1)

where the weights are de�ned as W+
im = Wim1[XSe

i,m=+1] and W
−
im = Wim1[XSe

i,m=−1] and consist of

two components. The �rst component in each weight, Wim, accounts for the fact that some months

have a higher level of sales than others and therefore represent a larger share of the �nal annual

outcome. It is de�ned as

Wim ,
wim∑
m∈y wim

, (2)

where wim is the ratio of the seasonally unadjusted over the seasonally adjusted real gross value added.

Intuitively, when this ratio exceeds unity, unadjusted gross value added is higher than the seasonally

adjusted one, meaning that during this month value added is above normal levels, and this month is

more important than others for the annual outcome. While a purely theoretical decomposition would

allow for individual weights for each �rm, in our practical implementation below, data availability

limits the design of wim to be the same across all �rms in the manufacturing sector at quarterly

frequency.7 The second component of the weights are dummy variables which take a value of unity

if the expected sales growth rate is either positive, 1[XSe
i,m=+1], or negative, 1[XSe

i,m=−1]. While we

do not observe any of the variables about quantitative expectations on sales growth in equation (1)

� xeiy, x
e,+
im and xe,−im � our dataset includes survey responses on the qualitative expected change in

6Zero growth rates have no e�ect on the decomposition. We separate positive and negative components to allow

below for possible di�erences in relationships with their annual counterparts.
7We use 2-digit seasonally unadjasted and adjusted real gross value added for the manufacturing sector from

Eurostat, Table namq_10_a10 for Greece, both in 2005 Chain Linked Volumes. We use value added since information

on sales is not available at monthly or quarterly frequency.
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sales, XSei,m. The aim of this section is to derive a quantitative estimate for annual expected sales

growth, xeiy.

As a �rst step towards this, we follow Pesaran (1987) and assume that for each �rm the monthly

expected sales growth rates are linearly positively correlated with the corresponding annual expected

sales growth. We also allow for this linear correlation to be asymmetric, as in Smith and McAleer

(1995), depending on whether the monthly variable is positive or negative. This is the �rst identifying

assumption (ID1) we make to quantify �rms' forecast errors. It can be formalized as

xe,+im = α + γ1x
e
iy + ν+im, and xe,−im = −β + γ2x

e
iy + ν−im, [ID1] (3)

where the error terms, ν+im and ν−im, are assumed to be normally and independently distributed across

equations, time and �rms. We further allow for the coe�cients α, β, γ1 and γ2 to di�er across boom

and bust periods (1998-2008 and 2009-2015 in our sample). We will specify this at the end of this

section, but abstain from accounting for this state dependence in the notation for now to ease the

exposition.

Equations (3) are not formulated to conduct any inference, but merely to re�ect that for each �rm

the annual expected growth rate should be correlated with their corresponding monthly components.

In fact, this linear relationship in equations (3) can be used to algebraically eliminate the unob-

served variables xe,+im and xe,−im from equation (1). Combining equations (1) and (3) yields (detailed

derivations are shown in Appendix B.1)

xeiy =
αPiy − βNiy

1− γ1Piy − γ2Niy

+ ξiy, with ξiy =

∑
m∈yW

+
imν

+
im +

∑
m∈yW

−
imν

−
im

1− γ1Piy − γ2Niy

, (4)

where we de�ned

Piy ,
∑
m∈y

Wim1[XSe
im=1], and Niy ,

∑
m∈y

Wim1[XSe
im=−1], (5)

to ease the notation. Piy (Niy) denotes the weighted share of months per year that record a rise
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(decline) in expected sales. These qualitative variables are directly available from the survey data so

that we can observe Piy and Niy. However, we cannot estimate equation (4) since we do not observe

quantitative expectations about annual sales growth, xeiy, in the data. In fact, deriving quantitative

sales growth expectations was our goal in the �rst place. Instead, if we had estimates for the pa-

rameters and knowledge of the error term � and given that we observe Piy and Niy � we could use

equation (4) to derive �tted values for xeiy. We turn to exactly this next.

We know that for each �rm i, realized sales growth in year y is the sum of expected sales growth

in that year and a forecast error, xiy = xeiy + xfeiy , where x
fe
iy denotes the forecast error. Using this

expression to replace xeiy in equation (4) yields after rearranging

xiy =
αPiy − βNiy

1− γ1Piy − γ2Niy

+ xfeiy + ξiy. (6)

This equation can be estimated as the �nancial statements data includes quantitative information

about realized annual sales growth, xiy. While the forecast error, xfeiy , is still unobserved, estimating

equation (6) without this variable is simply an omitted variable problem. This means, we need to �nd

a proxy variable that is correlated with the unobserved xfeiy to remove its e�ect from the error. For

the rest of this subsection, we construct such a proxy and deal with unobserved �rm heterogeneity

to obtain an expression of equation (6) that can be estimated.

Forecast Error Proxy. We assumed in ID1 � consistent with Smith and McAleer (1995) �

that the quantitative monthly sales forecasts are correlated with their annual counterparts. The same

argument applies for the qualitative observed survey responses. Next, we assume that also the qual-

itative monthly survey forecasts, XSeim, are correlated with the corresponding quantitative annual

forecasts, xeiy; and analogously that the qualitative monthly survey realizations, XSim, are correlated

with the corresponding quantitative annual realizations, xiy.
8 This leads to our second identifying

8For the realized values, we show the assumed positive correlation is actually present in our data in Table 3.A of

Appendix A.4. A simple intuition supports the correlation between the monthly forecasts and the annual predictions:
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assumption (ID2): the forecast error in qualitative monthly survey data is linearly correlated with

the forecast error in annual quantitative data. This means that we can use the survey data to �nd

a proxy variable that is correlated with the unobserved forecast error, xfeiy , as the following auxiliary

regression holds

xfeiy = xiy − xeiy = δ0
(
XSim −XSeim

)
+ νfeiy , [ID2] (7)

where δ0 > 0 is the correlation coe�cient, and νfeiy the approximation error. Multiplying both sides

of this equation with the monthly weights Wim and summing up all the monthly observations within

a year gives9

xfeiy = δ0XS
fe
iy + νfeiy , where XSfeiy ,

∑
m∈y

Wim[XSim]−
∑
m∈y

Wim[XSeim]. (8)

We can now use the observed weighted monthly quantitative survey forecasts as a proxy for the

unobserved (omitted) variable xfeiy in equation (6) and obtain the following equation for which all

variables are observable

xiy =
αPiy − βNiy

1− γ1Piy − γ2Niy

+ δ0XS
fe
iy + νfeiy + ξiy. (9)

This equation can be estimated with Nonlinear Least Squares (NLS). The resulting parameter esti-

mates and the error term can then be used to compute �tted values for the quantitative expected

sales growth rates, xeiy via equation (4).

Unobserved Firm Heterogeneity. The last remaining issue with the NLS estimation of

equation (9) is to control for unobserved �rm heterogeneity. To estimate the coe�cients of equa-

tion (9), the error term νfeiy + ξiy needs to be mean-independent of all the right-hand side vari-

even though information can be updated every month, a part of it should coincide with the information set used for

the annual prediction. As a result, monthly survey forecasts will be correlated with the one for the entire year.
9Note that the term

∑
m∈yWim in front of xfeiy and νfeiy is then equal to unity.
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ables, i.e. E[νfeiy + ξiy|Piy, Niy, XS
fe
iy ] = 0. A su�cient condition for this equality to hold is that

E[νfeiy |{XSeim, XSim}m=1,...] = 0 and E[ξiy|{XSeim, XSim}m=1,...] = 0.10 We will focus on these two

expressions in turn.

Firstly, we will focus on the error term, ξiy. From equation (4), we know that this error term is a

non-linear function of XSeim, ν
+
im and ν−im. Without loss of generality, we can focus on either of the

two errors, ν+im and ν−im, and drop the superscripts +/− for the moment to ease the exposition. Our

third identifying assumption (ID3a) is to assume that

νim = ψi + ν̃im, and E[ν̃im|{XSeim, XSim}m=1,...] = 0, [ID3a]

where ν̃im is an idiosyncratic error which is mean-independent of XSim and XSeim, for all m. The

unobserved �rm heterogeneity, ψi, is in fact an omitted variable hidden in the error term νim and

is endogenous. The reason is that the �rm heterogeneity is related to the past, current and future

values of XSim and XSeim, so that E[ψi + ν̃im|{XSeim, XSim}m=1,...] = E[ψi|{XSeim, XSim}m=1,...] 6= 0

from assumption IDE3a. To control for the unobserved heterogeneity, we need to approximate

E[ψi|{XSeim, XSim}m=1,...].
11 However, the unobserved heterogeneity parameter ψi appears in equa-

tion (3) which has purely expectational terms and hence is independent of the realization variable

XSim. Therefore, we only need to approximate E[ψi|{XSeim}m=1,...].

A widely used approximation for this purpose is the one suggested in Mundlak (1978).12 The

original Mundlak (1978) speci�cation is linear, but we also include higher order terms due to the non-

10In Appendix B.2 we provide a proof of this statement.
11The structure of the non-linear equation (4) that we want to estimate does not allow us to derive an estimator

for ψi analytically, and we cannot use dummy variables either, because the cross-sectional dimension is very large.

Another possibility would be to linearise the equation with Taylor series expansion. However, Taylor expansion around

a speci�c point holds locally, only in a small area around this point, otherwise the higher order terms that will appear

into the linearised regression error will be endogenous to the lower order terms included in the estimation. To avoid this

endogeneity problem, we would need to use local polynomial �tting methods which are too complex both algebraically

and computationally in our context with even two explanatory variables.
12See e.g. Bartelsman et al. (1994), Semykina and Wooldridge (2010) and Kosova (2010)). The Mundlak (1978)

approximation is the standard tool used in non-linear models in panel data and in linear ones it is equivalent to the

least squares dummy variable and the standard within estimator.
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linearity of our equation. Our fourth identifying assumption (ID4a) is to assume that the conditional

expectation of the unobserved �rm heterogeneity in the error term ξiy is

E[ψi|{XSeim}m=1,...] = δ′XSei + δ′′(XSei )
2, [ID4a]

which results in the following auxiliary regression for ψi

ψi = δ′XSei + δ′′(XSei )
2 + ωi, (10)

where ωi is the approximation error for which E[ωi|{XSeim}m=1,...] = E[ωi|{XSeim, XSim}m=1,...] = 0,

and XSei is the simple arithmetic mean of the survey variable XSeim across time for each �rm i.13

We can now substitute equation (10) for ψi in νim = ψi + ν̃im, and if we distinguish again between

ν+im and ν−im, this yields

ν−im = δ1XSei + δ2(XSei )
2 + ω−i + ν̃−im, and ν+im = δ3XSei + δ4(XSei )

2 + ω+
i + ν̃+im, (11)

where δ1, δ2, δ3 and δ4 are coe�cients.

Next we turn to the requirement on the forecast error proxy residual, E[νfeiy |{XSeim, XSim}m=1,...] =

0. Analogous to the case above, we can assume that νfeiy = ν̃feiy + ψfei , where only the unobserved

�rm heterogeneity ψfei is endogenous and ν̃feiy is the idiosyncratic error which is mean-independent

of XSim and XSeim, for all m. This is our identifying assumption ID3b. So, we need to approx-

imate E[ψfei |{XSeim, XSim}m=1,...]. As with ID4a, we use the Mundlak (1978) approximation. We

assume as our identifying assumption ID4b that the conditional expectation of the unobserved �rm

heterogeneity in the forecast error residual νfeiy is

E[ψfei |{XSeim, XSim}m=1,...] = δ5XS
fe
i . [ID4b]

13The fact that the right-hand-side variables of equation (10) are continuous functions of XSe
im and that

E[ωi|{XSe
im}m=1,...] = 0 imply that E[ωi|{XSe

im, (XS
e
im)2}m=1,...] = 0. The fact that the unobserved heterogene-

ity comes from the expectational equations implies that E[ωi|{XSe
im}m=1,...] = E[ωi|{XSe

im, XSim}m=1,...].
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This results in the following auxiliary regression for ψfei

ψfei = δ5XS
fe
i + ωfei (12)

where δ5 is a coe�cient and XSfei = XSi − XSei is an average of the overall �rm mis-prediction

behavior. ωfei is the residual which is mean-independent of XSim, XS
e
im.

14 Since the forecast error

approximation (equation (8)) is linear, we abstain from including higher order terms in the approxi-

mation to economize on variables in the non-linear estimation.

The Final Equation to be Estimated. As we have provided a way to approximate the unob-

served �rm heterogeneity, we can now derive the �nal estimable equation. We substitute equations

(11) and (12) into the error terms of (9) and obtain

xiy =
αPiy − βNiy + δ1XSeiPiy + δ2(XSei )

2Piy + δ3XSeiNiy + δ4(XSei )
2Niy

1− γ1Piy − γ2Niy

+δ0XS
fe
iy + δ5XS

fe
i + ξ̃iy, (13)

where

ξ̃iy = ν̃feiy + ωfei +

∑
m∈yW

+
im(ν̃+im + ω+

i ) +
∑

m∈yW
−
im(ν̃−im + ω−i )

1− γ1Piy − γ2Niy

. (14)

Overall we obtained equation (13) that is estimable because the error term ξ̃iy is mean-independent

of the explanatory variables.15 This addresses the issue of the unobserved heterogeneity in equation

(9), so that we can obtain consistent and unbiased estimates of the coe�cients of interest, α, β, γ1

and γ2, of the non-linear expectation equation.16

Summary of the Quanti�cation Method. Given the identifying assumptions ID1-ID4, we

14As previously, mean-independence of ωfe
i from XSim and XSe

im implies also it's mean independence from XSfe
i .

15In Appendix Section B.2 we provide a detailed proof.
16The error term, ξ̃iy, in equation (13) is likely to be heteroscedastic and autocorrelated within each �rm. When we

estimate such an equation, we will use the heteroscedasticity robust estimator for the standard errors which addresses

both problems � this robust estimator treats errors as clustered within cross-sectional units.
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derived two nonlinear equations. Equation (13), relates observed quantitative annual sales to ob-

servable variables, and equation (9) relates unobserved quantitative expected sales to observable

variables. The key is that both of these relationships depend on the same parameters. We estimate

the parameters from the �rst equation using Nonlinear Least Squares (NLS), and use these estimated

parameters in the second equation to derive �tted values for quantitative expectations on sales.

The practical implementation of the estimation methodology to derive quantitative forecasts on

sales growth can be summarized in the following steps:

1. Compute the annualized forecast error proxy from the survey data using equation (8) with

weights based on equation (2).

2. Compute the the weighted shares of months per year that record a rise (decline) in expected

sales Piy (Niy) from survey data, using equation (5).

3. Compute the �rm heterogeneity proxies XSi = 1
Ti

∑
mXSim and XSei = 1

Ti

∑
mXS

e
im, as well

as XSfei = XSi −XSei from the monthly qualitative survey data.

4. Estimate equation (13), using NLS including all the �xed e�ects proxies on the right hand side,

as well as the forecast error proxy. Run the estimation separately for the boom (y ≤ 2008) and

bust period (y > 2008).

5. Use the NLS estimated coe�cients of equation (13) to compute the �tted values for quanti�ed

sales growth forecast, x̂eiy, from equation (4). Neither the forecast error proxy nor the �xed

e�ects proxies should be included.

Our parameter estimates of the NLS estimation of equation (13) are documented in Appendix

B.3. The di�erence between the sales growth rate available from the �nancial statements, xiy, and the

quanti�ed forecast on sales growth for the corresponding year, x̂eiy, then gives the quanti�ed forecast

error on sales growth, x̂feiy . In the following sections, we will drop the hat from the expression for the

forecast error to ease notation. Our methodology to quantify forecasts and forecast errors obviously

extends beyond sales growth. It is applicable to any qualitative (survey based) variable on future
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developments, as long as a qualitative and a quantitative corresponding variable on the subsequent

realization is available.

3.2 Quanti�ed Forecasts and Forecast Errors

The subsection above outlines how we can derive annual quantitative forecasts for sales growth, and

subsequently forecast errors, using monthly qualitative survey data and annual quantitative data

from the �nancial statements. This subsection �rst provides an overview of the estimated sales

forecasts and then turns to the characteristics of the resulting forecast errors.

Quanti�ed Forecasts. We can use the observable survey data on expected sales developments to

benchmark how well our quanti�ed forecasts match the direction of the corresponding survey expec-

tations. To facilitate the comparison of the monthly survey data with our annual forecast estimates,

we annualize the survey responses by computing a weighted yearly average
∑

m∈yWim[XSeim], where

the weights are based on equation (2). The distributions of the raw monthly survey expectations as

well as their annualized counterparts are reported in Appendix B.5. While the annualized survey

forecasts cannot provide a detailed indication about the size of the forecasts, as they are based on

trinomial and purely qualitative monthly data, they can still be informative about the direction of

the observed forecasts.

To benchmark our quanti�ed forecasts against the annualized survey forecasts, we split responses

in each variable into three categories � positive, zero or negative � and cross-tabulate the three

directions. Panel A.1 in Table 2 reports how well our quanti�ed forecasts match the direction of the

annualized observable. The main diagonal shows the share of observations that exhibit directionally

consistent movements across the two variables when classi�ed as either positive, zero or negative.

Overall, the direction of our quanti�ed forecasts are highly consistent with the one of the annualized

survey responses � their direction coincides for 96.89% of all observations (the sum of the main

diagonal). The small share of observations for which the directions do not coincide can be explained

by the limited directional guidance of the annualized qualitative survey data. In practice, even if

the majority of all monthly forecasts in one year point in the same direction, a single large monthly
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forecast in the opposite direction could dominate the annual response. This however cannot be

captured by annualizing purely qualitative monthly forecasts. For this reason, we also report in

Table 2 results based on a restricted sample that only includes annualized observations for years

in which all underlying monthly survey responses indicated sales forecasts in the same direction.

This ensures that the direction implied by the annualized survey data is accurate for all considered

observations. Panel A.2 shows results for this restricted sample which comprises 24% of the full

sample used in Panel A.1. It is evident that now the direction of all quanti�ed forecasts is consistent

with the ones of the annualized survey responses.17 Overall, these exercises show that our forecasts

based on NLS are highly consistent with the direction of the qualitative survey responses.

Table 2: Directional coincidence between survey based sales forecasts and forecasts based on di�erent
quanti�cation methodologies (share in total observations)

Entire Sample Restricted Sample

Panel A.1: NLS Panel A.2: NLS

Negative Zero Positive Negative Zero Positive
Negative Forecasts 24.97% 0.00% 0.41% 11.21% 0.00% 0.00%
Zero Forecasts 0.26% 14.71% 0.34% 0.00% 56.96% 0.00%
Positive Forecasts 2.09% 0.00% 57.21% 0.00% 0.00% 31.83%

Directional Consistency: 96.89% Directional Consistency: 100.00%
Panel B.1: Ordered Logit Panel B.2: Ordered Logit

Negative Zero Positive Negative Zero Positive
Negative Forecasts 15.26% 0.00% 10.85% 9.30% 0.00% 2.59%
Zero Forecasts 4.30% 0.00% 11.15% 15.68% 0.00% 41.62%
Positive Forecasts 11.27% 0.00% 47.18% 3.03% 0.00% 27.78%

Directional Consistency: 62.44% Directional Consistency: 37.08%
Panel C.1: Ordered Probit Panel C.2: Ordered Probit

Negative Zero Positive Negative Zero Positive
Negative Forecasts 15.29% 0.00% 10.82% 9.30% 0.00% 2.59%
Zero Forecasts 4.30% 0.00% 11.15% 15.68% 0.00% 41.62%
Positive Forecasts 11.24% 0.00% 47.20% 3.03% 0.00% 27.78%

Directional Consistency: 62.49% Directional Consistency: 37.08%

Rows refer to forecasts on sales growth based on annualized weighted average of the �rm-month survey responses. Variables
in columns refer to estimates for quanti�ed sales growth forecasts using Non-Linear Least Squares (Panel A), Ordered Logit
(Panel B) and Ordered Probit (Panel C). The restricted sample only considers annualized survey observations for which,
in a given year, all underlying monthly observations report forecasts in the same direction.

17Results are even fully directionally consistent if we consider annualized observations for which 51% or more of

all underlying monthly survey responses of a particular year indicated sales forecasts in the same direction. This

comprises 53% of the observations of the full sample used in Panel A.1.
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Even though these results speak for the quality of our forecast estimates, there are potentially

alternative ways to quantify sales growth forecasts � most notably ordered response models such as

logit and probit � which we want to discuss brie�y. We outline the details of these alternatives in

Appendix B.4. Panels B.1 and C.1 in Table 2 show the �t of forecasts based on ordered response

models with the annualized survey data. Again, the observations in each variable have been split into

three categories � positive, zero or negative � before we cross-tabulate the three directions. The

overall share of observations that exhibit directional consistency between the annualized survey data

and the forecast estimates is only about 62% for both ordered logit and probit. For the restricted

sample shown in Panels B.2 and C.2, these shares even drop to 37%, pointing to substantial direc-

tional di�erences between forecasts based on logit or probit and the observable survey responses.

An important drawback of relying on estimates based on ordered response models is that these are

conditional on the information contained in the right hand side variables. It is very likely however

that, due to data limitations, the econometrician's information set is much smaller than the infor-

mation set actually available to �rms when they make forecasts. Our discussion suggests, our sales

growth forecasts based on NLS massively outperform alternatives based on ordered response models

in terms of alignment with the actual survey data. We next turn to the forecast errors computed

using the NLS based sales growth forecasts.

Quanti�ed Forecast Errors. Figure 1 shows the distribution for our forecast errors and we

report moments on this distribution in Table 3. The average forecast error in our sample is negative

but close to zero (-0.05) and slightly larger than the median (-0.07). This implies the average forecast

on sales growth is �ve percentage points more optimistic than the subsequent average realization.

Interestingly, Table 3 shows that the distribution of forecast errors is very stable across the boom

and the severe depression in our sample. During both periods their shares are close to the 18% of

the full sample which is imposed by construction.18 Overall, a number of forecast errors made by

18Appendix B.5 documents that the share of major positive and negative forecast errors can vary somewhat in

particular years � e.g. in 2009, the �rst year of the Greek depression, the share of negative forecast errors increased.

Overall, the shares are rather stable though, also when averaging over fewer years than included in the boom and
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Figure 1: Distribution of Quanti�ed Sales Growth Forecast Errors. The 1% of forecast errors
at the top of the distribution are omitted to ease visibility.

�rms are small (in absolute value), as these are centred close to zero, but still a signi�cant number of

forecast errors made are quite substantial. Since the remainder of the paper will be concerned with

such major forecast errors, we now also provide some statistics about these. For this purpose, we

classify the top and bottom 18% of forecast errors to be major, which is in line with the estimates

for this threshold obtained in the next section. At the bottom (top) 18 percentiles, �rms expected

sales growth to be 25.6 (12.0) percentage points higher (lower) than subsequently realized. Hence,

also a large number of the remaining 64% of forecast errors in the center of the distribution, which

we call minor, are still economically signi�cant.

Table 3: Descriptive Statistics for Quanti�ed Sales Growth Forecast Errors.

Mean Median Stand. Share of Forecast Errors (in %)
Dev. Major Negative Minor Major Positive

Full Sample -0.05 -0.07 0.34 18 64 18
Boom -0.05 -0.07 0.34 17 65 18
Bust -0.05 -0.07 0.35 19 63 18

Major forecast errors are de�ned for the purpose of this table as the 18% of forecast errors at the top and bottom
of the distribution. The boom (bust) period spans the years 1998-2008 (2009-2015).

How are these major and minor forecast errors distributed over di�erent dimensions of our sample?

bust subperiods. Further, the shares of major positive and negative forecast errors are also very similar across 2-digit

sectors � results are available upon request.
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Panel A of Table 4 sorts the sample according to the share of major forecast errors in a �rm's total

number of observations. For a large number of �rms (378 of the total of 799 �rms) this share is

positive up to 60%, so that they make major as well as minor forecast errors. These �rms are present

in our sample for a relatively long time as they also account for the vast majority of the �rm year

observations (2,663). 126 (196) �rms make exclusively major (minor) forecast errors, however these

account only for 199 (481) �rm year observations in our sample and are hence quite short lived.

Panel B of Table 4 shows that the share of major forecast errors in the total observations of a �rm

is relatively constant across di�erent �rm sizes. It varies between 28% and 40% across the �rm size

distribution where the larger �rms make slightly fewer major forecast errors.

Table 4: Major Forecast Errors (MaFE) and Di�erent Cuts of the Sample.

Panel A: Sorting: Share of MaFE in Firm's Observations Panel B: Sorting: Total Net Assets

Share of # of Firms # �rm-year obs. Total �rm-year Percentile of Share of MaFE
MaFE with MaFE observations Total Net Assets in �rm-year obs.
0% 196 0 481
(0%,30%] 154 239 1274 (0%,30%] 36.52%
(30%,60%] 224 588 1389 (30%,60%] 39.58%
(60%,90%] 85 367 525 (60%,90%] 34.31%
(90%,100%] 126 199 199 (90%,100%] 27.59%

Major forecast errors are de�ned for the purpose of this table as the upper or lower 18% of forecast error distribution. The percentile of
total net assets has been determined using �rm's average percentile in the pool distribution.

Table 5: Transition matrix of Major Forecast Errors (MaFE) and Minor Forecast Errors over Time.

Negative MaFE in y Minor FE in y Positive MaFE in y Total
Negative MaFE in year y − 1 23.67% 53.36% 22.97% 100%
Minor FE in year y − 1 14.93% 69.40% 15.67% 100%
Positive MaFE in year y − 1 21.49% 58.72% 19.79% 100%

Major positive (negative) forecast errors are de�ned for the purpose of this table as the upper (lower) 18% of forecast error distribution.

The evidence in Table 4 shows that, independent of their size, most �rms make major as well as

minor forecast errors. Table 5 provides the average year-on-year transition matrix between minor,

positive and negative major forecast errors for the pooled data. It suggests that �rms don't tend to

make many consecutive major forecast errors, but that major and minor forecast errors are likely to

alternate. Following either a negative or a positive major forecast error in year y− 1, the probability
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of making another major forecast error of either type in year y is always lower than the probability of

making a minor forecast error. Further, the likelihood of being in the left or right tail is approximately

equal.

Overall the above evidence suggests that major forecast errors are distributed relatively evenly

across all �rms (when sorted by size) and across the observations of individual �rms. Forecast errors

are not highly persistent and both major and minor forecast errors tend to alternate. Additionally,

this section documented that the share of major positive and negative forecast errors is very stable

across the boom and bust periods in our sample. Given that forecast errors do not exhibit distinctly

di�erent distributions across the boom and bust period, we focus our analysis in the next section on

the full sample.

4 Predictability and Autocorrelation of Forecast Errors

In this section, we study how the size of �rms' forecast errors can a�ect results on their predictability

and serial correlation. Crucial for this investigation is the quanti�cation of forecast errors in the

previous section. We start our analysis with the predictability of forecast errors.

4.1 Predictability of Forecast Errors

To provide some context on the predictability of forecast errors, assume that a �rm-level variable

evolves as a �rst order auto-regressive process, zt = ρzt−1 (without loss of generality, we omit the

error term for simplicity). The �rm forms a forecast using an estimated autocorrelation coe�cient,

ρe, such that zet = ρezt−1, and the forecast error is zt − zet = (ρ − ρe)zt−1. If ρ − ρe = 0, then �rms

correctly extrapolate without any bias and forecast errors are not predicable from past realizations

and are purely random. If ρ−ρe 6= 0, this is a violation of the e�ciency property (Pesaran (1987)) of

the full information rational expectations (FIRE) hypothesis. For (ρ−ρe) < (>)0, the �rm estimates

the autocorrelation of the variable with a positive (negative) bias.

21



We estimate the extrapolation bias, ϕ , ρ− ρe, using the following equation

xfeiy = ϕxi,y−1 + Ψy + Ψi + ηiy, (15)

where Ψi and Ψy control for the unobserved �rm heterogeneity and aggregate annual e�ects, respec-

tively, and ηiy is the idiosyncratic error. If ϕ is statistically signi�cant, �rms extrapolate incorrectly.

To evaluate the e�ects of major forecast errors on sales growth, we further estimate the following

threshold regression which allows for shifts in the extrapolation bias

xfeiy = ϕ1xi,y−1 ∗ (1− FELqi,y−1) + ϕ2xi,y−1 ∗ FELqi,y−1 + ϕ3FEL
q
i,y−1 + Ψy + Ψi + ηiy, (16)

where FELqiy takes the value 1 when there is a major forecast error. A major forecast error occurs

when a forecast error lies at either the lower or upper q% of the distribution. Accordingly, we call

all forecast errors in the center of the distribution minor forecast errors. The extrapolation bias for

minor forecast errors is ϕ1, whereas following a major forecast error, �rm's bias is ϕ2. Given the

estimated cut-o� q%, if ϕ1 = 0 and ϕ2 6= 0, then forecast errors are predictable only following major

forecast errors. ϕ3 indicates whether the occurrence of a major forecast error has any e�ect on the

forecast error in the following period.

We estimate equation (16) using a slightly adapted version of Dynamic Panel Threshold estimator

of Seo and Shin (2016).The original estimator is widely used in applications with thresholds (see e.g.

Asimakopoulos and Karavias (2016) and Polemis and Stengos (2019)) and consists of two steps. The

�rst step involves estimating equation (16) for all the values of q% in the pre-determined interval

q% = 5%, 6%, 7%...30% to obtain the value of the objective function of the estimator.19 The original

Threshold estimator of Seo and Shin (2016) uses Arellano and Bond (1991) First-Di�erence GMM

(FD) for this estimation. The �rst-di�erencing results in loss of observations which is a substantial

problem in severely unbalanced panels such as ours (see e.g. Roodman (2009) and Gorbachev (2011)).

19There is no speci�c guidance in the literature on the choice of interval, but it will become apparent below that

our estimates turn out to be well in the middle of the interval. We remain agnostic and specify a fairly wide interval

that covers up to 50% of all observations.
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Instead we use the Arellano and Bover (1995) Forward Orthogonal Transformation (FOT) GMM to

estimate the equation, which is the only di�erence to the original Seo and Shin (2016) Threshold

estimator. The FOT subtracts from each observation the �rm-speci�c arithmetic mean of its future

values to eliminate the �rm �xed e�ects, and hence avoids the loss of observations through �rst-

di�erencing. In the second step, in line with the original Seo and Shin (2016), for all values of q%

we �nd the one that minimizes the objective function which then determines the �nal estimates for

ϕ1, ϕ2 and ϕ3, as well. For our baseline estimation of equation (16) we use the Arellano and Bover

(1995) FOT GMM estimator with collapsed instruments, limited lag length and Windmeijer (2005)

corrected standard errors as it is standard in the literature (see e.g. Gorbachev (2011) and Caselli

and Tesei (2016)).20 Our approach signi�cantly limits the risks of data loss by the use of FOT,

and the risk of over-identi�cation bias by avoiding the `proliferation of instruments' in our sample

through collapsed instruments and limited lag length (Roodman (2009)).21 Finally, we also estimate

the linear equation (15) with the Arellano and Bover (1995) Forward Orthogonal Transformations

GMM.22

In Table 6, we document the results from the estimation of equations (15) and (16). Column (1)

reports results from the simple linear equation and documents a highly signi�cant negative estimate

for the coe�cient on xi,y−1.
23 This result is in line with �ndings in the literature which documents that

20We use the Windmeijer (2005) corrected standard errors as standard errors might otherwise be biased downwards

since we have a large number of instruments compared to the number of �rms for inference.
21If a GMM system is excessively over-identi�ed, the estimated coe�cients are biased on the direction of the Nickell

(1981) bias and the Hansen statistic is also biased. To limit the over-identi�cation bias, we collapse the instruments,

and only use �ve lags of instruments length. Our instruments are the lagged right hand side variables. We discuss our

choice of instruments in Appendix C.1, where we also provide evidence that our results are robust to using fewer lags.
22We collapse the instruments and use Windmeijer (2005) corrected standard errors. We use only four lags (system

is just identi�ed) because the Hansen criterion indicated weak instruments for more lags. We document this in

Appendix C.1.
23In all estimations in Section 4 the two-step estimated covariance matrix is singular and therefore the generalized

inverse is used to construct robust standard errors. This does not a�ect the consistency of our estimated coe�cients,

but only indicates that the estimated standard errors are not the ideally e�cient (Roodman (2009)). Although this

could signal problems of over-identi�cation or of instrument proliferation, we have have avoided this by limiting the

lag length and collapsing the instruments. We further discuss the matter in Appendix C.1. There, we also show that
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�rm's forecast errors are predictable by past realizations (see e.g. Gennaioli et al. (2016), Massenot

and Pettinicchi (2018) and Bordalo et al. (2018)). This violation of the e�ciency property of the

FIRE hypothesis implies �rms use a biased estimate of the autocorrelation coe�cient to forecast

sales growth. Column (2) reports estimation results for equation (16). The threshold for major

forecast errors is estimated to include those observations at the top and bottom q = 18% of the

distribution. These forecast errors are substantial and economically signi�cant. A forecast error at

18% (82%) of the distribution implies that sales growth was expected to be 25.6 (12.0) percentage

points higher (lower) than the subsequent realization.24 Importantly, the coe�cient of the lagged

realization is now only statistically signi�cant when it is interacted with FELqi,y−1. Our results in

column (2) of Table 6 show that �rms form biased predictions on sales growth and violate the FIRE

hypothesis only following major forecast errors. In fact, only major forecast errors are negatively

correlated with past sales growth. Unless �rms make these major forecast errors, their predictions are

more in line with the FIRE hypothesis as the estimate on the interaction with (1−FELqi,y−1) is not

statistically di�erent from zero. The Hansen p-value and the Arellano-Bond test of serial correlation

of order two (m2 test) are both substantially larger than 0.1 and hence strongly reject the null that

the speci�cation is weak. This indicates that the non-linearity indeed exists and our speci�cation is

valid. Appendix C.1 shows our results are robust to using di�erent lag length and to the one step

estimator. We also document why the original Seo and Shin (2016) FD GMM would be unsuitable

all of our estimates are extremely similar to using the one step estimator.
24We attempted to estimate the threshold equation with distinct thresholds for upper and lower cut-o� %. However,

the estimation is unreliable for a number of reasons (results can be made available upon request). Firstly, none of the

estimated coe�cients were signi�cant, indicating low e�ciency. Secondly, none of the cut-o� values nor the coe�cient

estimates were robust to using di�erent lag lengths. This is to be expected as by introducing a further non-linearity in

the only variable that we have on the RHS, we sacri�ce e�ciency and accuracy. To estimate this model one needs more

observations and particularly a much larger cross-sectional dimension. Moreover, with the added non-linearity the

instruments can be very weakly correlated with the RHS variables. In the extreme case of uncorrelated instruments

the asymptotic normality and variance of the estimated coe�cients do not hold, i.e. inference is not valid. Stock et al.

(2002) indicate that sensitivity of estimates to di�erent lag lengths can be a symptom of weak identi�cation. We stress

that our baseline estimates with a symmetric threshold do not deviate much from ones based on speci�cations with

di�erent lag lengths.

24



with our data.

Table 6: Predictability of �rms' forecast errors of sales growth.

(1) (2)
Estimation FOT FOT
Stand. Errors Windmeijer corrected Windmeijer corrected
Lags as Instruments 2-5 2-6
Estimated Threshold q N.A. 18%

Dependent Variable: Sales Forecast Error, xfeiy
xi,y−1 -0.150*** �
xi,y−1 ∗ (1− FELqi,y−1) � -0.0803
xi,y−1 ∗ FELqi,y−1 � -0.177**
FELqi,y−1 � 0.0192

Observations 2,805 2,069
# of Firms 590 432
Over-identi�ed No Yes
Hansen p-value N.A. 0.393
m2 test p-value 0.534 0.570

Column (1) shows estimates of equation (15) without the threshold. Column (2) is the Dynamic
Panel Threshold estimator of Seo and Shin (2016) using the Arellano and Bover (1995) FOT GMM
for equation (16). Instruments are collapsed in both speci�cations. In column (1), the instruments
are with lags dated from y − 2 to y − 5 (more lags yielded Hansen p value < 0.1). In column (2)
lags dated from y− 2 to y− 6. The Arellano-Bond p-value (m2 test) shows no serial correlation of
order two in the errors. y dummies are included in all estimations, but are omitted to maintain a

simple representation. xfeiy is the forecast error of sales growth for year y; xi,y−1 is lagged realized

sales growth. FELiy takes value one when the forecast error lies at the lower or upper q = 18% of
its empirical pool distribution. ***, ** and * indicates statistical signi�cance at the 1%, 5% and
10% level, respectively.

4.2 Autocorrelation of Forecast Errors

Under the full information rational expectations hypothesis, forecast errors should be neither pre-

dictable by past realizations nor serially correlated. In this section, we turn to the latter and show

that again any �ndings crucially depend on the size of forecast errors.

To examine the autocorrelation of the quanti�ed forecast errors on sales growth, we estimate the

following equation

sfeiy = ρxfei,y−1 + Ψy + Ψi + ηiy, (17)

where ρ is the autocorrelation coe�cient, Ψi and Ψy control for unobserved �rm heterogeneity and

year �xed e�ects, and ηiy is the idiosyncratic error.
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As with the predictability of the forecast errors, we want to evaluate whether the size of forecast

errors matters for their autocorrelation. To allow for asymmetries in the autocorrelation coe�cient

we additionally estimate the following threshold regression

xfeiy = ρ1x
fe
i,y−1 ∗ (1− FELqi,y−1) + ρ2x

fe
i,y−1 ∗ FEL

q
i,y−1 + ρ3FEL

q
i,y−1 + Ψy + Ψi + ηiy, (18)

where FELqiy again is a dummy variable that takes the value one when there is a major forecast error.

A major forecast error is de�ned as a forecast error in the top and bottom q% of the distribution.

The persistence following minor forecast errors is given by ρ1, while following a major forecast error,

forecast errors are autocorrelated with coe�cient ρ2. If only ρ2 is statistically signi�cant for the

estimated threshold q%, then forecast errors show persistence only following a major forecast error.

We estimate equations (17) and (18) using the exact same estimators and speci�cations as for

the corresponding equations (15) and (16) on forecast error persistence. Table 7 shows the estima-

tion results for former two equations. Column (1) reports that based on the simple linear equation,

forecast errors are negatively autocorrelated.25 This violates the FIRE hypothesis as �rms fail to

incorporate all new information to their forecasts, for example because they may be inattentive to

new information. While estimates of this simple regression are indicative, we found in the previous

section that only major forecast errors are predictable, very much in contrast to the result for minor

forecast errors. For this reason we estimate the threshold equation (18) and report results in column

(2). The results are consistent with the ones in the previous section. Only major forecast errors at

the tails of the distribution are autocorrelated and violate the FIRE hypothesis. The estimate on

the coe�cient of xfei,y−1 ∗ FEL
q
i,y−1 is highly signi�cant and suggests a negative autocorrelation of

forecast errors. In contrast, the estimate on the coe�cient of xfei,y−1 ∗ (1 − FELqi,y−1) is not signi�-

cantly di�erent from zero so that minor forecast errors are not autocorrelated. It is reassuring that

25In the literature (see e.g. Gennaioli et al. (2016) and Tanaka et al. (2019)) unobserved �rm heterogeneity is

usually dealt with using the within estimator. However, the within estimator is negatively biased when the time

dimension of the panel is �nite (Nickell (1981)). Instead, we use the unbiased, consistent and e�cient Arellano and

Bover (1995) Forward Orthogonal Transformations (FOT) GMM.
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the cut-o� q = 17% for the threshold is remarkably close to the one, independently estimated, for

the equation on forecast error predictability (18%). For the non-linear threshold model both Hansen

p-value and the Arellano-Bond test of serial correlation of order two (m2 test) strongly reject the

null that the speci�cation is weak. Similarly to the predictability equation, this indicates that our

model speci�cation is valid, i.e. the non-linearity indeed exists. In Appendix C.2 we show that our

results are robust in multiple dimensions, including to the use of di�erent lag length and the one step

estimator. We also document why the original Seo and Shin (2016) FD GMM would be unsuitable

for our dataset.

Overall, we have documented in this section that with respect to autocorrelation and predictabil-

ity, only for major forecast errors �rms violate the FIRE hypothesis. For smaller (absolute) forecast

errors we �nd �rms' forecasts are more in line with the FIRE hypothesis. One explanation for the vi-

olation of this hypothesis can be that when �rms make major forecast errors the underlying forecasts

are based on a limited information set, while smaller absolute forecast errors are based on (nearly)

full information forecasts. In the next section, we rationalize our empirical �ndings in a model where

the quality of �rm's forecasts on sales growth depends on the potentially costly level of attention to

information on current sales.

5 Model of a Firm with Rational Inattention

In this section, we outline a simple framework in which forecast errors result from the fact that a �rm

cannot perfectly observe its current sales growth, but has to solve a signal-extraction problem. This

framework is subsequently extended, in the spirit of rational inattention models in Gabaix (2014),

to endogenize the �rm's choice on signal precision. The �rm can choose its degree of attention to

information which potentially comes at a cost. We subsequently show that a simple model with

limited attention to information and variations in the cost for attentiveness can rationalize the

empirical �ndings of Section 4.
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Table 7: Autocorrelation of �rms' forecast errors on sales growth.

(1) (2)
Estimation FOT FOT
Stand. Errors Windmeijer corrected Windmeijer corrected
Lags as Instruments 2-5 2-6
Estimated Threshold q N.A. 17%

Dependent Variable: Sales Growth Forecast Error, xfeiy
xfei,y−1 -0.190*** �

xfei,y−1 ∗ (1− FELqi,y−1) � -0.0118

xfei,y−1 ∗ FEL
q
i,y−1 � -0.201**

FELqi,y−1 � 0.0106

Observations 2,069 2,069
# of Firms 432 432
Over-identi�ed No Yes
Hansen p-value N.A. 0.479
m2 test p-value 0.688 0.725

Column (1) shows estimates from equation (17) without the threshold. Column (2) is the Dynamic Panel
Threshold estimator of Seo and Shin (2016) using the Arellano and Bover (1995) FOT GMM for equation
(18). In both speci�cations instruments are collapsed. In column (1), the instruments are with lags dated
from y − 2 to y − 5 (Hansen p with more lags indicated invalid instruments). In column (2) lags dated from
y − 2 to y − 6. The Arellano-Bond p-value (m2 test) shows no autocorrelation of order two in the errors.

y dummies are included in all estimations, but are omitted to maintain a simple representation. xfeiy is the
forecast error of sales growth for year y; xi,y−1 is the lagged realized sales growth. FELiy takes value one
when the forecast error lies at the lower or upper 17% of its empirical pool distribution. ***, ** and * indicates
statistical signi�cance at the 1%, 5% and 10% level, respectively.

5.1 Forecasts in a Simple Signal-Extraction Framework

A �rm i cannot observe its current sales growth xy, but only a noisy signal sy = xy + εy, where

the noise term is i.i.d. with Eεy = 0, Eε2y = σ2
ε and Exyεy = 0, for all years y. We abstain from

a subscript i for the remainder of this section to ease notation. We assume sales growth follows an

AR(1) process,

xy = ρ0 + ρxy−1 + uy, (19)

with i.i.d. shocks uy ∼ N
(
0, σ2

u

)
. It follows that the mean of xy is µ , E[xy] = ρ0/(1− ρ), and that

its variance is σ2
x , V [xy] = σ2

u/(1−ρ). Without loss of generality, we assume henceforth that µ = 0.

Finally, we assume that the shock, uy, and the noise term, εy, are independent.

At time y the �rm wants to obtain a one period ahead forecast, x̃y+1, that minimizes the expected
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squared forecast error, but its information set only includes the noisy signal sy and not the true value

xy.
26 Then the optimal forecast, xey+1, is

27

xey+1 = arg min
x̃y+1

E
[

1

2

(
x̃y+1 − xy+1

)2|sy].
The �rst order condition yields xey+1 = E

[
xy+1|sy

]
and using the fact that xy+1 follows the AR(1)

process (19), we obtain

xey+1 = ρE
[
xy|sy

]
+ E

[
uy+1|sy

]
,

where E
[
uy+1|sy

]
= E

[
uy+1|xy + εy

]
= 0, because uy and εy are independent and E

[
uy+1|xy

]
= 0.

In line with Gabaix (2014), and given the linear process for the signal and normally distributed

errors, Bayesian updating implies the following linear decomposition of the conditional expectation

E
[
xy|sy

]
,

xey+1 = ρE
[
xy|sy

]
= ρλ0 + λρsy, where λ =

Cov(xy, sy)

V (sy)
, and λ0 = (1− λ)µ = 0. (20)

Since we further know that Cov(xy, sy) = E
[
xysy

]
= E

[
xy(xy + εy)

]
= E

[
x2y
]

= σ2
x, and that

V (sy) = E
[
s2y
]

= σ2
x + σ2

ε due to the independence of xy and εy, it follows that

λ =
σ2
x

σ2
x + σ2

ε

. (21)

Equation (21) shows that in presence of noise, σ2
ε > 0, λ is strictly between 0 and 1. This has

implications on the optimal forecast (20), which is, when applying the de�nition for the signal,

xey+1 = λρxy + λρεy. (22)

26This assumption about the information set is consistent with managerial practice. When, towards the end of

the (�nancial) year, forecasts are made about next year's sales, the �nancial statements are not yet �nalized so that

managers have to rely on intermediate reports or not yet fully compiled information which only provide an imperfect

signal.
27Minimizing the quadratic forecast error implies that on average �rm's predictions will be correct, i.e. the mean

forecast error will be zero.
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Equation (22) links the �rm's optimal sales growth forecast with the current value of sales growth.

It shows that if the signal is contaminated by noise the �rm's optimal forecast underestimates the

persistence, ρ, of sales growth, since 0 < λ < 1. Under perfect information (in the absence of noise

σ2
ε = 0), λ = 1 and equation (22) becomes the full information optimal forecast.

Another interpretation of the discussed simple setup with a noisy signal is provided by the liter-

ature on rational inattention: the �rm can potentially perfectly observe all information on current

sales growth, but it would choose not to pay attention to all information when making a forecast,

e.g. because information processing is costly. The degree of limited attention to information is cap-

tured in an abstract way by the noise. In this section the noise variance, and hence the degree of

attention, was given exogenously. In the next section, we will endogenize this choice. Then the �rm

can choose its level of attention to information by determining the parameter λ; and technically, in

the framework above this is equivalent to varying the noise variance σ2
ε . If the �rm pays attention

to all information the noise variance equals zero and λ = 1. For a positive noise variance, attention

to information is limited and 0 < λ < 1. We will develop in the next subsection the simple signal-

extraction framework into a model with rational inattention in which the �rm can endogenously

determine the level of attention, λ.

5.2 Introducing Rational Inattention

While the �rm's level of attention to information was determined exogenously in the above signal

extraction framework, it will now be endogenized. Based on the discussion in the previous section

the �rm wants to make an optimal forecast given the utility

W
(
x̃y+1, λsy

)
, −1

2

(
x̃y+1 − ρλsy

)2
,

where the parameter λ determines the �rm's degree of attention to the signal about current sales

growth.28 The full information optimal forecast (λ = 1) would be xey+1 = ρsy which is in line with

28As implicitly assumed in the simple model above, also in this extended model the �rm only relies on current

information to make a forecast. The underlying assumption is that processing information on past signals or past
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the underlying AR(1) process (19) for sales growth. For 0 < λ < 1 the �rm pays limited attention to

the signal and for λ = 1 the �rm pays full attention to all information. We de�ne the value of x̃y+1

that maximizes �rm's utility as

xey+1(λ) , arg max
x̃y+1

W (x̃y+1, λsy),

which is now a function of the attention parameter λ. If we substitute the optimal forecast, xey+1(λ),

into the utility function, we obtain the indirect utility function

U(λ) = W
(
xey+1(λ), λsy

)
, (23)

which transforms the �rm's problem to one that requires the choice of the attention parameter λ.

Increasing the precision of the signal through information accumulation, re�ected in the choice of λ,

potentially comes at a cost. We assume the cost function

C(λ, cy) = cyK(λ), (24)

where K(λ) is a continuous increasing and convex function in λ. Note that this function depends

on the cost shock cy, which is assumed to be independently and identically distributed across time

and is bounded between zero and a positive upper bound.29 The �rm observes the cost shock at the

beginning of the period prior to any choice on the level of attention.

Given the above assumptions, the �rm �rst chooses an optimal level of attention λ∗, and condi-

relizations is just as costly per unit as processing current information. Hence, it would always be optimal for the �rm

to rely on the most up to date information for the forecast. This assumption makes our model much more tractable.

It is similar to an assumption in Mackowiak and Wiederholt (2009) who assume that past realizations of the state

variable are never observed.
29We make minimal assumptions about the stochastic process for cy. The actual choice of the upper bound may

depend on the functional form of K(λ) as can be seen from equations (26) below. The only requirement on the positive

upper bound on cy is that it is speci�ed to ensure that λ > 0.
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tional on this choice, it obtains in a second step the optimal forecast for sales growth.30 We will look

at these two steps in turn. First, the �rm's objective is to choose the attention parameter so that it

maximizes the di�erence between the expected indirect utility (23) and the cost function (24). This

can be formalized as

max
λ

[
EU(λ)− C(λ, cy)

]
.

One can show (detailed steps are provided in Appendix D.1) that the �rm obtains the optimal level

of attention, λ∗ by solving the following intratemporal problem

λ∗y , arg max
λ

[
− 1

2
σ2
s(1− λ)2 − cyK(λ)

]
, (25)

where σ2
s denotes the variance of the signal. It becomes apparent now that, given the time varying

cost cy, also the optimal level of attention �uctuates over time. The �rst order condition is then31

σ2
s(1− λ∗y)− cyK ′(λ∗y) = 0,

where K ′(·) denotes the �rst derivative of K(·). Our results that follow in this section below do not

require us to specify a particular functional form for K(·).32 However, to brie�y provide intuition

about how the optimal level of inattention depends on the information cost and the variance of the

signal, we specify K(λ) = λa where a ≥ 1. Then the �rst order condition has, for the cases a = 1

30The reason why we can equivalently have a two-step approach is that in the �rst step the decision is independent

of sales growth, xy.
31Note, it is satis�ed only for cy > 0 and 0 < λ∗ < 1. When cy = 0, then optimal attention is equal to 1.
32In fact, our assumptions on K(λ) are consistent with several speci�c functional forms used in the literature. For

example K(λ) = 1
2 log2((1−λ)

−1), in the tradition of Sims (2003), would be a micro-founded functional form based on

the Shannon entropy. Alternative functional forms could be based e.g. on Caplin and Dean (2015) or Gabaix (2014).
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and a = 2, the following simple analytical solutions

λ∗y =
σ2
s − cy
σ2
s

, for a = 1.

(26)

λ∗y =
σ2
s

σ2
s + 2cy

, for a = 2.

These two parameterizations exemplify that the optimal level of attention is positively related to the

variance of the signal on sales growth, σs, and negatively related to the cost shock, cy. In other words

the �rm acquires more information if the variance of the signal is high, and it reduces the level of

attention in light of an increase in the cost of information acquisition. In general, for cy = 0 so there

is no cost for information, λ∗y = 1. Given the parameterization for a, we assumed an upper bound

for cy that guarantees 0 < λ∗y < 1.

Having chosen the optimal level of attention via (25), the �rm's optimal forecast is given by

xey+1 , arg max
xy+1

[
− 1

2
(x̃y+1 − λ∗yρsy)2

]
,

so that the optimal forecast is

xey+1 = λ∗yρsy. (27)

As in the simple signal extraction problem above, the �rm underestimates the signal on sales growth

in the case of imperfect information (0 < λ∗y < 1). If λ∗y = 1 the �rm makes the full information

rational forecast. In the above, we extended the simple framework of Section 5.1 so that the �rm

may pay limited attention to information. This will be key to explaining our empirical facts on

predictability and autocorrelation of forecast errors, which we will show next.

The Size of Forecast Errors, their Predictability and Autocorrelation. In this section,

we show, based on the above framework, how rational inattention leads to large (absolute) forecast

errors and that these are serially correlated and predictable by past sales growth.
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Using the process for sales growth (19) and the optimal forecast (27), the ex-post forecast error

in the framework with rational inattention is given by

xfey+1 , xy+1 − xey+1 = (1− λ∗y)ρxy − λ∗yρεy + uy+1, (28)

where we used that sy = xy + εy. We will use this equation to derive three results from our model.

Result 1. An increase of the cost cy from zero to a positive value will result in larger absolute

forecast errors and a violation of the full information rational expectations hypothesis.

Without costs for attention, λ∗y = 1 and �rms make rational forecasts since the absolute forecast

error is given by

∣∣xfey+1

∣∣ =
∣∣xy+1 − xey+1

∣∣ =
∣∣ρxy + uy+1 − λ∗yρ(xy + εy)

∣∣ =
∣∣uy+1

∣∣,
which is purely random. Note that the noise, εy, is zero for λ∗ = 1 as implied by equation (21).

A positive cost, cy > 0, will reduce λ∗y to positive values strictly lower than unity. In this case the

absolute forecast error is

∣∣xfey+1

∣∣ =
∣∣xy+1 − xey+1

∣∣ =
∣∣(1− λ∗)ρxy − λ∗εy + uy+1

∣∣ ≤ ∣∣(1− λ∗)ρxy − λ∗εy∣∣+
∣∣uy+1

∣∣.
Since

∣∣(1−λ∗)ρxy−λ∗εy∣∣ will typically be larger than zero, this absolute forecast error for 0 < λ∗ < 1

will be larger than the one for the case λ∗ = 1.33 In presence of positive cost, �rms subsequently

underestimate the persistence of sales growth by 100 · λ∗y%. The forecast error's dependence on un-

derestimated persistence of sales growth, rather than solely on the random variables, implies �rms

violate the FIRE hypothesis. This �nding is consistent with our empirical results in Section 4.1 on

33Only in the exceptional case of zero sales growth and at the same time a zero realization for the noise shock, this

term would be exactly zero and the forecast error would be not strictly larger, but of the same size as the one without

information costs.

34



di�erences between major and minor forecast errors. In this section, we document that the estimated

coe�cient on past sales growth in equation (16) � which corresponds to (1−λ∗y)ρ in model equation

(28) � is signi�cantly di�erent from zero for large absolute forecast errors. Hence, for these major

forecast errors it implies 0 < λ∗y < 1.34 For minor forecast errors though, we �nd the coe�cient

estimate is not statistically signi�cant anymore which implies that λ∗y is (close to) unity.

Result 2. For a strictly positive cost cy, forecast errors are predictable by past realizations, and

the forecast error is negatively correlated with lagged sales growth if (and only if) ρ < 0. Forecast

errors are not predictable if cy = 0.

This result follows from equation (28) and the discussion of Result 1. As explained above, follow-

ing an increase in the cost cy from zero to a positive value, the attention parameter λ∗y reduces from

unity to positive values strictly lower than one. For λ∗y = 1, the forecast error as given in equation

(28) is not predictable as it only depends on the i.i.d. shock uy+1. For 0 < λ∗y < 1, the forecast error

is predictable as it additionally depends on sales via the term (1 − λ∗y)ρxy. The forecast error can

only be negatively correlated with lagged sales growth if the coe�cient (1− λ∗y)ρ in equation (28) is

negative, which only is the case if ρ < 0. In Appendix B.6 we provide empirical evidence from our

dataset that the autocorrelation of sales growth is indeed negative. Taken together, Results 1 and 2

are also consistent with the empirical �ndings based on equation (16) in Section 4.1. In this section,

we document the predictability of major forecast errors as well as a negative relation between these

major forecast errors and lagged sales growth. We further �nd that minor forecast errors are not

predictable.

Result 3. For a strictly positive cost cy the autocorrelation of forecast errors is negative if (and

only if) ρ < 0. Zero cost for attention, cy = 0, implies the autocorrelation of forecast errors is zero.

34It will become clear in the discussion of Result 2 why the coe�cient estimate for large forecast errors is negative

in equation (16).

35



Substituting xey+x
fe
y for xy in equation (28) and using that x

e
y = λ∗y−1ρsy−1 as well as the de�nition

of the signal, we obtain

xfey+1 = (1− λ∗y)ρxfey + (1− λ∗y)λ∗y−1ρ2(xy−1 + εy−1)− λ∗yρεy + uy+1.

The coe�cient on the forecast error, xfey , in the equation above is negative for 0 < λ∗y < 1 only if

ρ < 0, and it is zero for λ∗y = 1. We know from the discussion of Results 1 and 2 that a positive value

of the cost cy implies 0 < λ∗y < 1, and that cy = 0 implies λ∗y = 1. Also Result 3 is consistent with our

empirical �ndings. The estimation results of equation (18) in Section 4.2 show that major forecast

errors are negatively autocorrelated. We further document in that section that the autocorrelation

of minor forecast errors is not signi�cantly di�erent from zero.

Overall, our model showed that at times without the attention cost, the �rm is fully informed

and makes decisions in line with the FIRE hypothesis. In this case, forecast errors on sales growth

are neither predictable nor autocorrelated. As soon as the cost for information occurs in the market

environment in which the �rm operates the FIRE hypothesis will be violated, absolute forecast

errors will increase, forecast errors are predictable (negative correlation) by past sales growth and

they exhibit negative autocorrelation. All these implications of our theoretical model are consistent

with our empirical results documented in Section 4. The model can also rationalize our negative

estimates of the coe�cients on persistence and autocorrelation for major forecast errors. We show

that the negative sign of these estimates is the result of the negative autocorrelation of sales growth

in our data.

The above has shown that, despite its simplicity, our model is able to rationalize our main

empirical �ndings. Key for the model results to hold are variations in �rm's optimal level of rational

inattention, λ∗y, that depends on the cost for information governed by cy. The literature on rational

inattention often remains agnostic about the speci�c drivers of the cost for information in such

models. We use our dataset to provide some �rst guidance. The empirical evidence in Section 3.2

documents that major forecast errors are not speci�c to a particular time, sector or selected �rms,

36



but occur relatively evenly throughout the panel. They further don't have a very high persistence and

hence have a tendency to alternate with minor forecast errors. This suggests that changes in rational

inattention through variations in cy would, in our case, be less likely to capture macroeconomic

or low-frequency shocks, but may be linked to high-frequency e�ects.35 These could for example be

changes in the speci�c market environment, or adaptations to �rm internal processes that temporarily

limit the �rm's attention to information. The information cost is � as typically used in the literature

on rational inattention � an abstract way of capturing changes in �rms' behavior over time. Given

that our aim was to develop a parsimonious model to rationalize our empirical results, a model with a

fully endogenous cost function goes beyond the scope of this paper and we leave it for future research.

6 Conclusion

In this paper we document that only major errors in �rms' sales forecasts are predictable and auto-

correlated. In contrast, minor forecast errors are neither predictable nor autocorrelated. To arrive

at this result, we have developed a novel methodology to quantify qualitative survey data on �rm

forecasts. This methodology is applicable generally when quantitative information is available on the

realization of the forecasted variable. In order to interpret our empirical results that show that the

Full Information Rational Expectations hypothesis is violated, we also provide a model of rational

inattention. Firms optimally limit their degree of attention to information when operating in market

environments where information processing is more costly. This limited attention leads to larger

forecast errors that are predictable and autocorrelated.

Some questions emerge naturally from these �ndings. For example, under which circumstances

do �rms make major forecast errors and how do these a�ect �rm decisions? Our unique dataset

together with our novel methodology to quantify forecast errors is highly suitable to answer such

35Time variation in the level of attention increases the complexity of solving the information problem substantially

if one goes beyond a simple setup such as ours. Other papers in the literature develop theoretical frameworks where

attention varies at business cycle frequencies and use simplifying assumptions to keep the problem tractable. See for

example Acharya and Wee (2020) or Macaulay (2019).
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questions. In a companion paper (Botsis et al. (2020)), we analyze the causes of major forecast errors

and their e�ects on �rm production, investment, and �nancing decisions. Our aim is to explore the

underlying market environments that result in di�erent degrees of limited attention. This could help

in the appropriate calibration of the information cost in rational inattention models.

Provided that major forecast errors lead �rms to make suboptimal decisions, a question that

arises is whether policy design can be geared to helping �rms avoid these. Such policy would likely

aim to limit uncertainty and stabilize expectations. This could involve a combination of transparency

and stable rules. Clearly, this requires analysis with appropriate models and is a useful direction for

further research.
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Supplementary Appendix

A Data

In the following we provide further details about the conduct of the IOBE survey (Section A.1) and

the cleaning procedures on the IOBE and ICAP data (Sections A.2 and A.3). Section A.4 provides

additional information about our matched sample and discusses representativeness and quality of

survey responses.

A.1 Details on the Survey Data

The �rm-level survey data are collected every month by IOBE. IOBE sends surveys to a sample of

�rms included in the ICAP �rm directory. This directory covers more than 75% of the economy's

output. The sample of surveyed �rms is chosen to represent the distribution of �rm sizes in terms

of gross value added in each 2-digit sector. Every 4-5 years it is replenished by removing those �rms

who never replied and those who have stopped replying. These are replaced with new �rms, following

the same sampling principles, while the �rms that have been responsive are retained in the sample.

According to IOBE researchers, the response rate is somewhat smaller than 20% which is in line with

response rates of surveys conducted for the European Commission in other countries.

IOBE send surveys by mail and email between the 22th and the 25th of each month � surveys

refer to the following month. More than 80% of �rms that reply do so by the 15th of the month the

survey refers to, and more than 95% reply by the 20th. Responses that arrive well past the month

they refer to, are dropped by the IOBE as it is unclear to which month responses refer. Less than

10% of responses are received by email. The vast majority of surveys are completed on paper and

returned by mail in a prepaid envelope. The IOBE requests that surveys are completed by managers

or a person who has complete knowledge of the entire activity of the surveyed �rm.

Surveys are conducted monthly with the exception of August. In August the majority of �rms

are closed as managers and employees take their annual leave. For this reason, there are no surveys

sent out at the end of July to record the responses for August. IOBE uses imputation methods to
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produce data for August and for monthly non-responses.36 We will remove imputed observations in

the cleaning section A.2.

A.2 Cleaning the Survey Data

The wording of the survey question is so that it asks about sales expectations for the next three

months. This means expectations that include the last two months of a year would also be concerned

with sales in the �rst one or two months of the following year. Similarly, the survey questions about

realized sales asks about sales in the previous three months, so that responses at the beginning of

the year may include sales developments of months in the previous year. For this reason we make

adjustments to the submitted responses on realizations and forecasts in the concerning months, which

are standard treatment of survey data in the literature. For forecasts, we multiply the survey variable

with 2/3 in November and with 1/3 in December, as only two thirds and one thirds respectively, of the

period over which expectations are recorded, belongs to the current calendar year. For realizations

a similar argument applies and we set the responses in January to missing and use this observation

with weight 1 in the �nal month of the preceding year. We further multiply recorded responses by

1/3 in February, and 2/3 in March. The intuition is that e.g. the response submitted in beginning

to mid-February will cover sales relizations that concern November to January and hence only one

out of three months included in the response is concerned with the current year. The underlying

assumption for our adjustment is that the respondents attach the same weight to the three months

covered in their response. This is a standard assumption in the survey literature and implicitly

assumed for example in Bachmann et al. (2013) and Massenot and Pettinicchi (2018).

IOBE uses imputation techniques for missing monthly responses and for August, a month for

which they do not send out surveys. We set to missing all the survey variables of the �rm-month

observations that were imputed.

Finally, we have set to missing all �rm-month observations in one particular year if we have less

36This is standard practice of survey providers. Lui et al. (2011) for example report that for the UK business climate

survey, the Confederation of British Industry (who administer the survey) also implements imputation techniques for

missing data.
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than three monthly survey responses of this �rm within the year. This was necessary because our

quanti�cation aggregates (and quanti�es) the �rm-month observation to the �rm-year frequency.

The informativeness of this aggregation is rather limited when during the year, a �rm has responded

only once or twice. These cleaning steps leave us with 1,093 �rms in the manufacturing sector that

provide survey responses.

A.3 Cleaning the Financial Statements Data

We have �nancial statements data available from ICAP. In the following we outline the consecutive

steps undertaken to prepare and clean the �nancial statements database. Prior to these steps this

data comprised 1,219 �rms with 18,786 �rm-year observations in the manufacturing sector. After

the cleaning we retained all 1,219 �rms and 18,213 �rm-year observations.

1. The way the data is recorded, Net Worth is included in Total Liabilities. Therefore, Total

Net Assets should equal Total Liabilities, i.e. TotalNetAssetsi,y = TotalLiabilitiessi,y, for

every the �rm i, year y. For the �rm i-year y observations for which TotalNetAssetsi,y 6=

TotalLiabilitiessi,y, we replaced their values with those from an alternative Balance Sheet

data-base of Hellastat S.A.37,38 We con�rmed that for the replaced values of TotalNetAssetsi,y

and TotalLiabilitiessi,y the equality holds, and that the net value of the sub-categories included

in the Assets sum up to the Total Net Assets. If these variables did not add up, we set to

missing all the �nancial statement variables of these �rm-year observations.

2. The following equality should hold:

TotalGrossSalesi,y = GrossOpertingProfiti,y+CostOfSoldGoodsi,y, for every the �rm i, year

y. For the observations for which the above equality does not hold, we replaced their values with

37Non-satisfaction of the accounting identity is entirely due to human error, and since the data providers are

di�erent, the person making the error is also di�erent, so we can assume that the two data-bases do not include the

same errors.
38Hellastat S.A. is a private consultancy �rm collecting and digitalizing the �nancial statements from o�cial and

publicly available sources. This database is very similar to our ICAP data, but includes a less detailed break-down of

�nancial statement variables.
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those from Hellastat. Then we con�rmed that for the replaced values of TotalGrossSalesi,y,

GrossOpertingProfiti,y and CostOfSoldGoodsi,y the equality holds. If these variables did not

add up, we set to missing all the �nancial statement variables of these �rm-year observations.

3. We set to missing all the �nancial statement variables for the �rm-year observations for which

the following equality does not hold.

TotalNetV alueOfFixedAssetsi,y + TotalAccumulatedDepreciationi,y

=GrossV alueOfMachinery&Equipmenti,y +GrossV alueOfBuilding&Facilitiesi,y

+GrossV alueOfIntangibleAssetsi,y + V alueOfLandi,y + V alueOfHoldingsi,y

+ V alueOfLongTermReceivablesi,y

4. For some �rm-year observations the NACE classi�cation was the version 1 or its Greek analogue,

STAKOD 2003. We used ELSTAT (2002), EUROSTAT (2008a) and EUROSTAT (2008b) to

translate all NACE classi�cations to NACE v. 2.

5. GrossDepreciablePropertyV aluei,y is de�ned as the sum of the Gross Values of Building &

Facilities, Machinery & Equipment and Intangible Assets, for every �rm i, year y. We set to

missing all the �nancial statement variables for the �rm i-year y observations for which at least

one of the Gross Depreciable Property, the Gross Sales, the Total Net Fixed Assets, the Total

Net Assets or the Owner's Equity is lower or equal to 0, as this would indicate that the �rm

was under dissolution in that year.

6. To derive values of Real Total Net Assets, Real Owner's Equity, Real Total Sales we used the

annual implicit gross added value de�ator (ratio of nominal over real value) from Eurostat Table

nama_10_a64 for Greece. To derive Real Total Net Fixed Assets and Real Gross Depreciable

Property we used the implicit de�ator of capital stocks from Eurostat Table nama_10_nfa_st.

7. In the �nal cleaning steps, we deal with extreme observations that likely result from miscoding.

When the growth rate of any the following variables was at the lower 0.5% of its empirical

distribution we set to missing all the �nancial statement variables: Real Total Net Assets, Real
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Total Net Fixed Assets, Real Gross Depreciable Property, Real Owner's Equity, Real Total

Sales.

8. When the real growth rate of any the following variables was at the upper 1% of its empirical

distribution we set to missing all the �nancial statement variables: Real Total Net Fixed Assets,

Real Gross Depreciable Property, Real Total Sales.

A.4 The Matched Sample and Quality of Survey Responses

We match �rms' �nancial statements data with the corresponding survey responses using the �rm's

unique tax identi�er. As described in Section A.2, our cleaned survey data comprised 1,093 �rms.

We could match 73.1% of these �rms (76.7% of the �rm-month observations), so that the sample for

which we have both survey and �nancial statement data comprises of � after the cleaning procedures

described above � 799 �rms in the manufacturing sector with 25,764 monthly responses from the

survey on the two questions A.2 and D.2 and 4,104 annual balance sheet observations on sales. This

section �rst establishes that our sample is representative for the manufacturing sector. Then we

evaluate the quality of survey responses.

Representativeness. We evaluate representativeness of our sample in a number of ways using

data from the survey and the �nancial statements.

First, we report a time-series correlation of 0.95 between the o�cial IOBE business sentiment

index for the manufacturing sector and a recalculated sentiment index based on our manufacturing

sector dataset.39 This high correlation shows that our dataset is still highly representative when

responses are aggregated, even though we abstain from using the imputed survey responses and

we dropped observations if �rms responded fewer than three times in a calendar year. Second,

39The monthly sentiment index for the manufacturing sector is computed as
QSim+QSe

im−INVim

3 , where INVim

corresponds to the question `The level of �nished goods inventories you deem it is...' with the possible responses being

above/at/below normal levels and coded as +1/0/ − 1, respectively; and QSim corresponds to the survey question

`For the preceding 3 months you assess that your production did...', QSe
im corresponds to the question `For the next 3

months you foresee that your production will...', and the possible responses are rise/no change/fall, coded as +1/0/−1,

respectively.
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we report a correlation of 0.64 between the average real growth rate of output in our sample as

reported in the �nancial statements and the corresponding manufacturing sector output growth

from Eurostat.40 We perform this comparison using output since Eurostat only publishes sales for

the Greek manufacturing sector from 2008. Third, to further examine the representativeness of our

�nal sample we study the share of each 2-digit sector in the total manufacturing sector sales. We

compare the contributions based on our sample with the ones from the o�cial Eurostat data. Table

1.A exempli�es these statistics for two years � 2009 and 2012 � and we observe that most of the

shares based on our dataset are close to the ones reported by Eurostat with few exceptions of over-

and under- representativeness.

Quality of Survey Responses. In this section we �rst establish that the survey responses

are consistent across di�erent questions and then, we show they are consistent with data from the

�nancial statements.

In the spirit of Coibion et al. (2015) we use a regression-based approach to evaluate the consistency

of the survey responses across questions. We conduct two exercises to establish consistency that will

jointly cover around two thirds of the survey questions. Turning to the �rst exercise, economic

intuition suggests that if a �rm expects excess future production capacity relative to sales, it is more

likely to (i) report higher than normal inventory levels (ii) expect a drop in the sales (iii) expect it

will have to decrease employment (iv) have lower capacity utilization that would allow it to increase

production if need be. To con�rm that this economic intuition holds in our data we estimate the

following linear equation:

D3im = β0 + β
[
INVim, SS

e
im, L

e
im, Uim

]′
+ ψi + ψy + ηim, (29)

where the vector β = [β1, β2, β3, β4], ψi and ψy control for �rm and year �xed e�ects respectively,

40Output from the �nancial statements is the sum of sales plus the contemporaneous �rst di�erence of �nal goods

inventories. We de�ated the �rm-year output of the �nancial statements using the ratio of the nominal over real (chain

linked volumes) gross value added at the NACE 2-digit level. We use the simple arithmetic mean of the �rm-year

observations to obtain the average growth rate of our sample. The manufacturing growth rate of real output from

Eurostat for Greece is from Table nama_10_a64.
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Table 1.A: Share of NACE 2-digit industry sales in the total manufacturing sales in
years 2009 and 2012.

2009 2012
NACE Code Sample Data Eurostat Data Sample Data Eurostat Data

10 13.35% 20.23% 16.01% 19.74%
11 10.11% 3.94% 6.03% 2.98%
12 2.67% 1.01% 1.60% 0.74%
13 1.99% 1.93% 1.94% 1.26%
14 0.58% 3.16% 0.29% 1.84%
15 0.74% 0.50% 0.20% 0.21%
16 0.95% 1.50% 0.06% 0.82%
17 1.63% 2.02% 0.89% 1.76%
18 0.84% 1.63% 0.30% 1.06%
19 19.71% 21.77% 45.19% 36.54%
20 5.58% 4.44% 4.22% 3.48%
21 10.70% 2.63% 6.08% 1.80%
22 2.42% 3.24% 2.17% 3.04%
23 6.95% 5.90% 1.92% 2.78%
24 7.23% 7.49% 1.19% 8.62%
25 6.93% 7.60% 7.29% 5.31%
26 2.60% 0.68% 1.00% 0.68%
27 0.68% 2.49% 0.57% 2.68%
28 2.14% 2.39% 1.57% 1.68%
29 0.53% 0.51% 0.25% 0.27%
30 0.39% 1.12% 0.78% 0.36%
31 0.62% 1.76% 0.21% 0.91%
32 0.38% 0.96% 0.23% 0.58%
33 0.28% 1.11% 0.00% 0.87%

For our sample, total manufacturing sales is the sum of sales of all �rms in a particular year. The shares
reported show the sum of sales in a 2-digit sector over total manufacturing sales in our sample for a
particular year. The shares in the `Eurostat' columns are the corresponding ratios based on Eurostat
sales data based on Table sbs_sc_sca_r2 for Greece.

and ηim is the idiosyncratic error. The variables D3im, INVim, SS
e
im, L

e
im, and Uim denote current

production capacity, inventory level, sales, the number of employees, and capital utilization of �rm

i in month m and are derived from survey questions.41

41The precise questions are as follows. INVim, question E.1: `The level of your �nal goods inventories is:

above normal/normal/below normal'. D3im, question E.2: `Given the outstanding orders you have at the moment

and the possible evolution of demand during the next months, the current production capacity is more than su�-

cient/su�cient/insu�cient'. SSe
im refers to question D.2 outlined in the main body. Le

im, question D.3: `During the

next 3 months, you expect your number of employees to increase/remain unchanged/decrease'. In these questions, a

numerical value −1 refers to reduction or lower than normal level or insu�cient production capacity as appropriate;
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We estimate equation (29) twice: �rst, by eliminating ψi using standard �xed e�ects tools and

second, by substituting NACE sector dummies for ψi. In Panel A of Table 2.A we report the results

from estimating equation (29). We observe that the signs of the variables under examination are

as expected based on the economic intuition outlined above and that all estimates are statistically

signi�cant at the 1% level. The relatively low R2 indicates that there are other factors that explain

expected movements in production capacities. However, for the purpose of verifying the consistency

of survey answers we are only interested in the directional relationship between variables.

In the second exercise, we focus on production. When we observe an increase in production,

economic intuition indicates one factor behind this could be a rise in capacity utilization. We check

this by estimating the following linear equation:

QSim = β0 + β1[Ui,m−1 − Ui,m−3] + ψi + ψy + ηim, (30)

where Uim corresponds to the survey question asking about the percentage of capacity utilization for

�rm i in month m, QSim indicates the change in past production, ψi and ψy control for �rm and year

�xed e�ects respectively, and ηim is the idiosyncratic error.42 As previously, we estimate equation

(30) in two ways: �rstly, we eliminate ψi using standard �xed e�ects tools and secondly, we substi-

tute NACE sector dummies for ψi. Results are reported in Panel B of Table 2.A. These are in line

with economic intuition: an increase in production is positively and signi�cantly correlated with a re-

ported three-month increase in capacity utilization (from m−3 to m−1) over the same time horizon.

Having substantiated the consistency of survey responses across questions, we now turn to eval-

uating their consistency with the information in the �nancial statements. Annual sales growth of

�rm i in the income statements, xiy, should be positively correlated with the survey question A.2

+1 refers to an increase or higher than normal level or more than su�cient as appropriate; and 0 refers to no change

or normal level or su�cient capacity as appropriate. Uim, question E.3: `During the ongoing period, what is your

percentage (%) utilization of your production capacity?. Firms respond to this question with a quantitative answer.
42QSim corresponds to question A.1: `During the previous 3 months, your production, has increased/remained

unchanged/decreased.'
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Table 2.A: Consistency of survey responses across questions

PANEL A: Dependent Var. D3im PANEL B: Dependent Var. QSim

INVim 0.137*** 0.140*** Ui,m−1 − Ui,m−3 0.00506*** 0.00508***
SSeim -0.0485*** -0.0489***
Leim -0.179*** -0.185***
Uim -0.00418*** -0.00413***
Constant 0.336*** 0.242*** Constant 0.277*** 0.363***

RE/FE FE RE RE/FE FE RE
NACE FE NO YES NACE FE NO YES

Observations 22,168 22,168 Observations 9,411 9,411
Overall R2 0.243 0.262 Overall R2 0.0537 0.0767
Number of �rms 791 791 Number of �rms 627 627

Estimations with NACE FE were made with Random E�ects pool OLS (RE). All variables (apart from NACE 2-digit
code) are survey questions. NACE �xed e�ects are taken at the 2-digit level. Fixed year e�ects are omitted to simplify
representation but are included in the estimation. D3im is the su�ciency of production capacity; Uim is the percentage
capacity utilization; QSim is the recent change of production; INVim is the level of inventories; SSe

im is a forecast about
sales; Le

im is a forecast about the number of employees. Complete details about the exact wording of the questions are in
the text of this section. *** denotes signi�cance at the 1% level.

concerning the evolution of current sales, XSim.

We examine this by estimating the following linear equations

XSim = β0 + β1xiy + ψi + ψy + ηim, (31)

where ψi and ψy control for �rm and year �xed e�ects respectively and ηim is the idiosyncratic error.

As previously, we estimate equation (31) in two ways, using standard �xed e�ects tools or NACE

sector dummies. To estimate this regression, the �rm-year observations from �nancial statements

are treated as the same for each month in a particular year. We can do so as the survey data is

qualitative while the data from �nancial statements is quantitative and we are simply interested in a

correlation between the two. In Table 3.A, we observe that the monthly responses are positively and

highly signi�cantly correlated with the growth rates from the �nancial statements. In other words,

qualitative survey responses on changes in current sales and production are on average consistent

with their quantitative counterparts reported in the �nancial statements.

Overall, based on the results in Tables 2.A and 3.A, we �nd that survey responses are consistent,
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Table 3.A: Consistency of survey responses
with variables in �nancial statements

Dependent Variable XSim
xiy 0.221*** 0.227***
Constant 0.155*** 0.223***

Observations 24,261 24,261
Number of Firms 785 785
Overall R2 0.0670 0.0801
RE/FE FE RE
NACE FE NO YES

Estimations with NACE FE were made with Ran-
dom E�ects pool OLS (RE). NACE �xed e�ects are
taken at the 2-digit level. Fixed year e�ects are omit-
ted to simplify representation but are included in the
estimation. xiy is gross sales growth from �nancial
statements. Signi�cance at the 1% level is indicated
by ***.

both with each other within the questionnaire, but also with the information in the �nancial state-

ments. In addition, the fact that survey responses are positively correlated with the corresponding

�nancial statement variables is consistent with the information from IOBE that surveys are com-

pleted by executives who have a complete overview about the �rm's activities. We can draw this

conclusion, because the �nancial statements are published after the respondents �ll in the survey.

B Quanti�cation of Forecast Errors

B.1 Derivation of Equation (4)

This section shows how equation (4) can be derived using equations (1) and (3). First, we substitute

equation (3) into (1)

xeiy =
∑
m∈y

W+
im

[
α + γ1x

e
iy + ν+im

]
+
∑
m∈y

W−
im

[
− β + γ2x

e
iy + ν−im

]
.
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Then, using the de�nition for W+
im and W−

im, we get

xeiy =
[
α + γ1x

e
iy

]∑
m∈y

Wim1[XSe
im=1] +

∑
m∈y

Wim1[XSe
im=1]ν

+
im

+
[
− β + γ2x

e
iy

]∑
m∈y

Wim1[XSe
im=−1] +

∑
m∈y

Wim1[XSe
im=−1]ν

−
im. (32)

To simplify the notation we de�ne

Piy ,
∑
m∈y

Wim1[XSe
im=1], and Niy ,

∑
m∈y

Wim1[XSe
im=−1],

where Piy (Niy) denotes the weighted share of months within a year indicating that indicate a rise

(fall) in expected sales. Rearranging to solve equation (32) for xeiy yields

xeiy =
αPiy − βNiy

1− γ1Piy − γ2Niy

+ ξiy, with ξiy =

∑
m∈yW

+
imν

+
im +

∑
m∈yW

−
imν

−
im

1− γ1Piy − γ2Niy

,

which is equation (4) in Section 3.1.

B.2 Proof Related to the Estimation of Equation (9)

To estimate the coe�cients of equation (9), the error term νfeiy + ξiy needs to be mean-independent

of all the right-hand side variables, i.e. E[νfeiy + ξiy|Piy, Niy, XS
fe
iy ] = 0 � this is `Assumption NLS.1'

in Wooldridge (2010). The underlying mathematical form of this (and any) conditional expectation

is E[νfeiy + ξiy|σ(Piy, Niy, XS
fe
iy )], where σ(Piy, Niy, XS

fe
iy ) is the minimal sigma-algebra generated by

Piy, Niy and XS
fe
iy . Given that all Piy, Niy and XS

fe
iy are continuous (and hence Borel) functions of

XSeim and XSim, then from the Doob-Dynkin Lemma (see Proposition 3 in Rao and Swift (2006))

we know that σ(Piy, Niy, XS
fe
iy ) ⊂ σ(XSeim, XSim). As a result, from the standard properties of the

conditional expectations we have that E[E[νfeiy + ξiy|{XSeim, XSim}m=1,...]|Piy, Niy, XS
fe
iy ] = E[νfeiy +

ξiy|Piy, Niy, XS
fe
iy ]. Therefore, if E[νfeiy |{XSeim, XSim}m=1,...] = 0 and E[ξiy|{XSeim, XSim}m=1,...] = 0,

then E[νfeiy + ξiy|Piy, Niy, XS
fe
iy ] = 0.
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We provided a way to approximate the unobserved �rm heterogeneity, and we derived the �nal

estimable equation (13). For equation (13), by the same principles as above, it su�ces to prove that

E[ξ̃iy|{XSeimXSim}m=1,...] = 0. Then, ξ̃iy is also mean-independent of all the right hand side variables

of equation (13) which are all continuous functions of XSeim and XSim. This means that Wooldridge

(2010)'s `Assumption NLS.1' is satis�ed. Indeed, from equation (14)

E
[
ξ̃iy|{XSeim, XSim}m=1,...

]
= E

[
ν̃feiy |{XSeim, XSim}m=1,...

]
+ E

[
ωfei |{XSeim, XSim}m=1,...

]
+

1

1− γ1Piy − γ2Niy

∑
m∈y

W+
imE
[
(ν̃+im + ω+

i )|{XSeim, XSim}m=1,...

]
+

1

1− γ1Piy − γ2Niy

∑
m∈y

W−
imE
[
(ν̃−im + ω−i )|{XSeim, XSim}m=1,...

]
= 0,

where the terms W+
im, W

−
im, Piy and Niy `go outside' the conditional expectation as they are con-

tinuous functions of XSeim and XSim and therefore σ(XSeim, XSim)-measurable. This follows from

the Doob-Dynkin Lemma and the standard properties of the conditional expectations. From ID3a

we have that E
[
ν̃+im|{XSeim, XSim}m=1,...

]
= E

[
ν̃−im|{XSeim, XSim}m=1,...

]
= 0; and from ID3b that

E
[
ν̃feiy |{XSeim, XSim}m=1,...

]
= 0. From ID4a we have that E

[
ω+
i |{XSeim, XSim}m=1,...

]
= 0 and

E
[
ω−i |{XSeim, XSim}m=1,...

]
= 0; and from ID4b that E

[
ωfei |{XSeim, XSim}m=1,...

]
= 0. This com-

pletes the proof.

B.3 Nonlinear Least Squares Estimation

Table 4.B reports the results of the NLS estimation of equation (13). Column (1) shows estimation

results for the boom period up to 2008 and column (2) for the following recession. The signs of the

coe�cients are as expected by economic intuition, although the denominator coe�cients γ1 and γ2

are only statistically signi�cant for the bust period post 2008.
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Table 4.B: NLS Estimation of Equation (13)

(1) (2)
Coe�cients Dependent Variable: xiy
α 0.321*** 0.133***
β 0.316*** 0.153***
γ1 -0.0338 0.464**
γ2 -1.397 0.467**
δ0 0.168*** 0.149***
Firm-Year Observations 2,471 1,397
R2 0.073 0.084
Period y ≤ 2008 y > 2008

Fixed e�ects of equation (13) are omitted � but are included in the
estimation � to maintain a simple representation. We use robust stan-
dard errors and ***, ** and * indicates 1%, 5% and 10% signi�cance.

B.4 Alternative Quanti�cation Techniques

Ordered response models � probit or logit � are alternatives to the NLS based method outlined in

Section 3.1 to quantify sales growth forecasts.

For the ordered response models, we assume that there is an unobserved latent variable XSe,∗im

which de�nes the outcome of the observed survey response, XSeim, as follows

XSeim = −1 if XSe,∗im ≤ a1,

XSeim = 0 if a1 < XSe,∗im ≤ a2,

XSeim = +1 if XSe,∗im > a2,

with a1, a2 ∈ R being the unobserved threshold parameters. Now assume that XSe,∗im is linearly

determined by a vector of explanatory variables, XSe,∗im = δXXS
im + ψi + eim, with ψi being the

unobserved �rm heterogeneity and eim the idiosyncratic error term. The assumed distribution of eim

determines whether the model will be probit (standard normal) or logit (logistic). The explanatory

variables XXS
im can be from both the survey and the �nancial statements. We can eliminate the

unobserved heterogeneity ψi using the Mundlak (1978) approximation, that is the cross-time �rm-

speci�c averages of all the panel dependent variables ψi ≈ 1
Ti

∑Ti
m X

XS
im , where Ti is the number of

months each �rm i is present in the sample.
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After accounting for unobserved �rm heterogeneity in the ordered response models, we can get

(maximum likelihood) consistent and unbiased estimations of δ̂ and compute the estimated latent

variable values, X̂S
e,∗
im. These will be the quanti�ed values of the survey variable, X̂S

e

im That is

X̂S
e

im = X̂S
e,∗
im = δ̂XXS

im . The estimated X̂S
e

im, are the quanti�ed value of the �rm's monthly re-

sponse conditional on XXS
im .43 Finally, we can derive their annualized quanti�ed values using the

weighted average x̂eiy ,
∑

m∈yWim[X̂S
e

im], using the weights given in equation (2).

Table 5.B reports the estimation results of the ordered probit and logit models. The variables that

we have used in the vector of explanatory variables, XXS
im , are (i) XSem = (Nm)−1

∑
iXS

e
im, where

Nm is the number of �rms that responded in month m. This will capture aggregate time-speci�c

e�ects and aggregate information. (ii) the growth rate of sales in the preceding year, xi,y−1, from

the �nancial statements (iii) ORDSim which is a categorical variable from the survey indicating the

level of orders.44

B.5 Statistics on Forecasts and Forecast Errors

Statistics on Survey Forecasts. This section provides an overview about the information on sales

forecasts in the survey. The left subplot of Figure 1.B shows the distribution of monthly responses

to survey question D.2 on �rms' expected sales during the next three months. These possible re-

sponses, increase/no change/decline, are coded as +1/0/1, respectively. The right subplot of Figure

1.B shows the distribution of annualized survey forecasts based on the same question. We annualize

the monthly survey responses by computing a weighted yearly average
∑

m∈yWim[XSeim], where the

weights are based on equation (2). The right subplot of Figure 2.B documents the number of survey

43An alternative would be to obtain the probability estimates for each possible response, XSim = −1/0/+ 1, and

then compute the mean response. But that would require to use 1
Ti

∑Ti

m XXS
im for the mean response, because the

estimated cut-o� values, a1, a2, are conditional on all explanatory variables, including the �xed e�ects speci�cation.

The problem with using 1
Ti

∑Ti

m XXS
im for the estimation is that we would introduce information to the �rm's forecasts

that were not available to the �rm at the time of the forecast.
44It is based on question B.1 `Your total orders outstanding (from either domestic or foreign markets) you deem,

for this period of the year, to be high/normal/low.'
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Table 5.B: Ordered Probit and Logit Estimations of �rm-month survey responses on
sales growth forecasts

Probit Logit
(1) (2) (2) (3)

Period y≤2008 y>2008 Period y≤2008 y>2008
Dep. Variable: XSeim Dep. Variable: XSeim

XSem 1.631*** 1.565*** XSem 2.784*** 2.666***
xi,y−1 0.0836** 0.0106 xi,y−1 0.141** 0.0176
ORDSim 0.358*** 0.372*** ORDSim 0.615*** 0.645***
a1 -0.958*** -1.211*** a1 -1.620*** -2.023***
a2 0.583*** 0.366*** a2 0.994*** 0.620***

Observations 13,554 8,740 Observations 13,554 8,740
Pseudo-R2 0.0575 0.0750 Pseudo-R2 0.0561 0.0751

Fixed e�ects speci�cation are omitted � but are included in the estimation � to maintain a simple
representation. XSe

im is the sales forecast reported based on survey question D.2, xi,y−1 is the growth
rate of sales in the preceding year, from the from the �nancial statements, ORDSim indicates the level
of orders based on survey question B.1. We use robust standard errors and ***, ** and * indicates 1%,
5% and 10% signi�cance.

responses on sales expectations (survey question D.2) per year. The number of responses is relatively

constant across our sample. Towards the end of the sample it is somewhat lower. The reason is that

responses are digitized only about 2 years after they have been received. At the time we obtained

the data not all responses at the end of the sample had been digitized. The left subplot of Figure

2.B shows for each year the share of survey responses on sales growth expectations that indicate an

increase/unchanged/decrease (shown in green/orange/blue). The share of optimistic (pessimistic)

responses is higher in the �rst (second) half of our sample, consistent with the strong boom that

ended in 2008 and the following severe depression.

Statistics on Quanti�ed Forecast Errors. Figure 3.B shows the share of observations classi-

�ed as major positive/negative or minor forecast errors per year. It is evident that the share across

these classi�cations can vary substantially across years, e.g. during 2009, the �rst year of the Greek

crisis resulted in a relatively high share of major negative forecast errors.
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Figure 1.B: Distribution of Sales Forecasts based on Qualitative Survey Data. The �gure on
the left shows the distribution of �rm-month sales forecasts based on survey question D.2. The �gure on
the right shows the distribution of the survey based �rm-year sales forecasts when the monthly survey
responses are annualized using a yearly weighted average.

Figure 2.B: Qualitative Survey Responses on Expected Sales Growth over Time (Survey

Question D.2). The �gure on the left shows the responses indicating an increase/unchanged/decrease
in green/orange/blue as share of total monthly observations per year. The �gure on the right shows the
total number of monthly survey responses per year distribution of �rm-month sales forecasts based on
survey question D.2. The �gure on the right shows the distribution of the survey based �rm-year sales
forecasts when the monthly survey responses are annualized using a yearly weighted average.
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Figure 3.B:Distribution of Quanti�ed Sales Growth Forecast Errors across years. Blue (green)
indicates the share of major negative (major positive) forecast errors and red stands for the share of
minor forecast errors. Major forecast errors are de�ned for the purpose of this �gure as the 18% of
forecast errors at the top and bottom of the distribution.

B.6 Autocorrelation of Sales Growth

In Table 6.B report estimates for the autocorrelation of sales growth. In the �rst column, to eliminate

�rm �xed e�ects, we use the biased LSDV estimator. In the other four columns, we used the Arellano

and Bover (1995) Two Step Forward Orthogonal Deviations GMM (FOT). We use distinct number

of lags (for instruments) for robustness (see Roodman (2009), Caselli and Tesei (2016)). Addition-

ally, because of the small number of �rms (relatively to the moment conditions) we collapsed the

instruments and we used the Windmeijer (2005) corrected standard errors (Roodman (2009), Caselli

and Tesei (2016)). Table 6.B shows that annual real sales growth from the �nancial statements has

a negative autocorrelation, and the estimated coe�cient is robust to di�erent lag lengths. Moreover,

the autocorrelation coe�cient of the FOT estimator is higher than that of the LSDV. This is to be

expected as the latter is negatively biased for samples with �nite time dimension (see e.g. Pesaran

(2015)).
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Table 6.B: Autocorrelation of �rms' realized sales growth

(1) (2) (3) (4)
Estimation LSDV FOT
Stand. Errors Robust Windmeijer corrected
Lags as Instruments N.A. 2-11 2-6 2-4

Dependent Variable: Sales Growth Forecast Error, xiy
xi,y−1 -0.122*** -0.0995*** -0.103*** -0.0997***
Constant 0.260*** � � �

Observations 15,211 13,994 13,994 13,994
# of Firms 1,217 1,214 1,214 1,214
Over-identi�ed N.A. Yes Yes No
Hansen p-value N.A. 0.251 0.0369 N.A.
m2 test p-value N.A. 0.553 0.617 0.549

Column (1) is with the standard �xed e�ects (LSDV); (2), (3), (4) and (5) are the Arellano
and Bover (1995) 2-Step Forward Orthogonal Deviations GMM (FOT). y �xed e�ects are
included in all estimations, but are omitted. In (2)-(5), we use distinct number of lags (for
instruments) for robustness, all are collapsed. The instruments are lagged values of the
right hand side variable dated as indicated. The Arellano-Bond p-value (m2 test) shows
no serial correlation of order 2 in the errors. xiy is the sales growth observed from the
�nancial statements. ***, ** and * indicates statistical signi�cance at the 1%, 5% and
10% level, respectively.

C Forecast Error Predictability and Autocorrelation

This appendix includes additional results that corroborate the robustness of the results on pre-

dictability and autocorrelation of forecast errors shown in the main body and justi�es our choice of

baseline estimation strategy.

Amongst other things, we show that our results on threshold regressions are robust to using fewer

lags as recommended by Roodman (2009) and to using the less e�cient one step estimator. Our

results also show that the estimates of the original Seo and Shin (2016) FD GMM are sensitive to

the lags of instruments and close to the biased LSDV estimates. This further justi�es our choice for

FOT.

Before getting into the details of our robustness checks we want to discuss the singularity of

the two-step weighting matrix. Generally, this could signal problems of excessive over-identi�cation

coming from instrument proliferation. This could lead to biased estimates and Hansen p-values. We

demonstrate throughout our exposition that with our choice of instruments, we have taken all the
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necessary steps and have avoided excessive over-identi�cation. Our instruments do not use the entire

lag length and are collapsed in all estimations. In all of our estimations we report the number of

lags we use as instruments. We also report the Hansen p-values which are all below 0.55 � these

are hence not upwards biased resulting in values towards unity which would be indicative of excess

over-identi�cation due to a large number of instruments. Finally, our results are not sensitive to the

lags used as instruments which further demonstrates that over-identi�cation is not the reason why

the covariance matrix is singular.

C.1 Robustness on Forecast Error Predictability

This section provides additional evidence related to the results on forecast error predictability in

Section 4.1.

Table 7.C summarizes results of alternative estimations of the predictability without the threshold,

equation (15). Column (1) is estimated with the Arellano and Bover (1995) FOT GMM, but with

more lags than our baseline estimate. The results in column (1) have Hansen p-value< 0.05 indicating

weak instruments, which justi�es our choice of fewer lags in the baseline estimation of the equation

without the thresholds. Column (2) shows estimation results with the LSDV which serves as a

benchmark for the dynamic panel bias. Given that the LSDV estimates su�er from the negative

Dynamic Panel bias (Nickell (1981)), and our estimates using Dynamic Panel Data methods are

higher than the LSDV ones, we can conclude that our baseline speci�cation corrects this bias.

Table 8.C provides robustness on the estimation of equation (16) which includes the threshold.

Columns (1), (6) and (7) are estimated using the biased LSDV for pre-estimated threshold cut-o�

values. In column (1), we document a coe�cient estimate of −0.271 for xi,y−1FEL
q
i,y−1, compared

to the −0.177 in our baseline estimation. This indicates that we corrected the dynamic panel bias

in the baseline speci�cation. Column (2) shows that using the one step estimator for the standard

errors does not a�ect our estimates: the estimated threshold is the same as our baseline, 18%, and

the estimated coe�cient is −0.185 vs. −0.177 in our baseline estimation. Column (3) shows that

our baseline speci�cation with fewer lags as instruments delivers estimated coe�cients (−0.18 vs.
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Table 7.C: Predictability of �rms' forecast errors of sales growth � Robustness
Checks for the Speci�cation without Threshold.

(1) (2)
Estimation FOT LSDV
Stand. Errors Windmeijer (2005) corrected Robust
Lags as Instruments 2-6 N.A.

Dependent Variable: Sales Forecast Error, xfeiy
xi,y−1 -0.148*** -0.238***
Constant � 0.121***

Observations 2,805 3,559
# of Firms 590 754
Over-identi�ed Yes N/A
Hansen p-value 0.014 N.A.
m2 test p-value 0.527 N.A.

Table shows alternative estimations of equation (15) without the threshold. Column (1) is
estimated with the Arellano and Bover (1995) FOT GMM; column (2) with the LSDV. In
column (1), the instruments are with lags dated from y − 2 to y − 6 collapsed. The two-step
covariance matrix is singular, so the generalized inverse is used instead. The Arellano-Bond
p-value (m2 test) shows no serial correlation of order two in the errors. y dummies are included

in all estimations, but are omitted to maintain a simple representation. xfeiy is the forecast

error of sales growth for year y; xi,y−1 is the lagged realized sales growth. ***, ** and *
indicates statistical signi�cance at the 1%, 5% and 10% level, respectively.

−0.177 in our baseline estimation) and a threshold cut-o� (16% vs. 18% in baseline) close to the

corresponding �gures based on our baseline setup. Our estimates in Section 4.1 are robust to using

fewer lags and the less e�cient one step estimator. In columns (4) and (5), with the FD GMM, the

estimated threshold cut-o� is very sensitive to the lag length of instruments: 18% with lags from

y−2 to y−6, and only 6% with lags y−2 and y−3. In addition, the coe�cient estimates (−0.23) are

close to the biased LSDV ones (−0.27). These two facts justify our choice of FOT for our baseline

results.

Overall, evidence in this section corroborates our baseline result and choice of estimation method-

ology. The extrapolation coe�cient becomes non-zero following a major forecast error which is robust

to the lag length of instruments. With our data, the original Seo and Shin (2016) estimation with the

Arellano and Bond (1991) FD delivers biased results sensitive to the lag length of the instruments,

which justi�es our choice of Arellano and Bover (1995) FOT estimator as a baseline.
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Table 8.C: Predictability of �rms' sales growth forecast errors � Robustness Checks for the Threshold Speci�cations.

(1) (2) (3) (4) (5) (6) (7)
Estimation LSDV FOT FOT FD FD LSDV LSDV
Stand. Errors Robust 1-Step, Windmeijer (2005) corrected Robust

Robust
Lags as InstrumentsP N.A. 2-6 2-3 2-6 2-3 N.A. N.A.
Estimated Threshold q P18% 18% 16% 18% 6% P18% P6%

Dependent Variable: Gross Sales Forecast Error, xfeiy
xi,y−1 ∗ (1− FELqi,y−1) -0.112* -0.0817 -0.0860 -0.0951 -0.0886 -0.112* -0.186***
xi,y−1 ∗ FELqi,y−1 -0.271*** -0.185*** -0.180*** -0.231** -0.234*** -0.271*** -0.272***
FELqi,y−1 0.0171 0.0251 0.0304 0.0254 -0.0550 0.0171 -0.000298
Constant 0.100*** � � � � 0.100*** 0.105***

Observations 2,643 2,069 2,069 1,915 1,915 2,643 2,643
# of Firms 574 432 432 423 423 574 574
Over-identi�ed N.A. Yes No Yes No N.A. N.A.
Hansen p-value N.A. 0.393 N.A. 0.392 N.A. N.A. N.A.
m2 tes pt-value N.A. 0.566 0.546 0.831 0.663 N.A. N.A.

Instruments in all speci�cations are collapsed; P indicates pre-estimated threshold cut-o� value. The table shows alternative estimations of
equation (16). Columns (1), (6) and (7) are estimated using the biased LSDV for pre-estimated threshold cut-o� values. For Columns (1) we
used the estimated threshold from the baseline speci�cation of Table 6; for column (6) the threshold is estimated in column (4); for (7) the
threshold is estimated in column (5). Columns (2) and (3) are the adapted Dynamic Panel Threshold estimator using the Arellano and Bover
(1995) FOT GMM: (2) is with the one-step estimator; (3) with fewer lags as instruments than the baseline speci�cation. Columns (4) and (5)
are with original Seo and Shin (2016) with the Arellano and Bond (1991) First-Di�erence GMM (FD), with lags dated from y− 2 to y− 6 and
to y − 3. In (3), (4) and (5) the two-step covariance matrix is singular, so the generalized inverse is used instead. The Arellano-Bond p-value
(m2 test) shows no serial correlation of order two in the errors. y dummies are included in all estimations, but are omitted to maintain a simple

representation. xfeiy is the forecast error of sales growth for year y; xi,y−1 is the lagged realized sales growth. FELiy takes value one when the

forecast error lies at the lower or upper q% of its empirical pool distribution. ***, ** and * indicates statistical signi�cance at the 1%, 5% and
10% level, respectively.

C.2 Robustness on Forecast Error Autocorrelation

In this subsection we show that our results on the autocorrelation of sales growth forecast errors in

Section 4.2 also hold using alternative estimations techniques for the threshold regression.

Table 9.C, summarizes results of alternative estimations of the predictability equation (17) with-

out the threshold. Column (1) is estimated with the Arellano and Bover (1995) FOT GMM and

�ve lags in instruments. The results in column (1) have Hansen p-value < 0.05 indicating weak in-

struments, which justi�es our choice of fewer lags in the baseline estimation of the equation without

the thresholds. Column (2) shows estimates with the LSDV which serves as a benchmark for the

dynamic panel bias. Given that the LSDV estimates su�er from the negative Dynamic Panel bias

(Nickell (1981)), and our estimates using Dynamic Panel Data methods are higher than the LSDV
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ones, we can conclude that our baseline speci�cation corrects this bias.

Table 9.C: Autocorrelation of �rms' forecast errors of sales growth � Robust-
ness the Speci�cation without Threshold.

(1) (2)
Estimation FOT LSDV
Stand. Errors Windmeijer (2005) corrected Robust
Lags as Instruments 2-6 N.A.

Dependent Variable: Sales Forecast Error, xfeiy
xfei,y−1 -0.191*** -0.262***
Constant � 0.0795**

Observations 2,069 2,643
# of Firms 432 574
Over-identi�ed Yes N.A.
Hansen p-value 0.0489 N.A.
m2 test p-value 0.712 �

Table shows alternative estimations of equation (17) without the threshold. Column (1) is
estimated with the Arellano and Bover (1995) FOT GMM estimator; column (2) shows esti-
mates based on the LSDV. Column (1) uses collapsed instruments with lags dated from y − 2
to y − 6 (Hansen criterion indicates invalid instruments). The Arellano-Bond p-value (m2
test) shows no serial correlation of order two in the errors. y dummies are included in all

estimations, but are omitted to maintain a simple representation. xfeiy is the forecast error of

sales growth for year y. ***, ** and * indicates statistical signi�cance at the 1%, 5% and 10%
level, respectively.

Table 10.C provides robustness on the estimation of equation (18) which includes the threshold.

Columns (1), (6) and (7) are estimated using the biased LSDV for pre-estimated threshold cut-o�

values. In (1) we observe the estimated coe�cient to be at −0.273 compared to the −0.201 in our

baseline estimation. This indicates that we corrected the dynamic panel bias. From column (2), we

observe that the one-step estimates are very close to our baseline �gures: the threshold is at 18%

(17% in baseline) and the coe�cient is −0.195 (−0.201 in baseline). From column (3), we see that

our baseline estimator with fewer lags as instruments also delivers estimated coe�cients, −0.202

(−0.201 in our baseline estimation), and a threshold cut-o�, 16% (17% in baseline), that are close

to the ones in our baseline results. Therefore, our estimates are very robust to using fewer lags or

the one-step estimator. In columns (4) and (5), with the FD GMM, estimated threshold cut-o� is

very sensitive to the lag length of instruments: it is 24% with lags from y− 2 to y− 6 and 31% with

lags y − 2 and y − 3. In addition, the coe�cient estimates are much lower −0.23 and closer to the
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biased LSDV ones, −0.27. These two facts justify our choice of FOT for our baseline results. Note

also that the sample size drops substantially when using the FD GMM due to the �rst-di�erencing.

Overall, this section shows our baseline result that the forecast errors are autocorrelated following

a major forecast error is robust to the lag length and to using the one-step estimator. Moreover, we

showed that with our data the original Seo and Shin (2016) estimation with the Arellano and Bond

(1991) delivers biased estimates sensitive to the lag length of the instruments, fully justifying our

choice of Arellano and Bover (1995) FOT estimator in our baseline results.

Table 10.C: Autocorrelation of �rms' forecast errors on sales growth � Robustness for the Threshold Estimation.

(1) (2) (3) (4) (5) (6) (7)
Estimation LSDV FOT FOT FD FD LSDV LSDV
Stand. Errors Robust 1-Step, Windmeijer (2005) corrected Robust

Robust
Lags as Instruments N.A. 2-6 2-3 2-6 2-3 N.A. N.A.
Estimated Threshold q P17% 18% 16% 24% 31% P24% P31%

Dependent Variable: Sales Forecast Error, xfeiy
xfei,y−1 ∗ (1− FELqi,y−1) -0.0952 -0.0315 -0.0469 0.0583 -0.0254 -0.0783 -0.216

xfei,y−1 ∗ FEL
q
i,y−1 -0.273*** -0.195*** -0.202*** -0.225** -0.228*** -0.266*** -0.263***

FELqi,y−1 0.00147 0.0139 0.0165 -0.00745 -0.0138 -0.0141 -0.000537
Constant 0.0894*** � � � � 0.0915*** 0.0812**

Observations 2,643 2,069 2,069 1,915 1,915 2,643 2,643
# of Firms 574 432 432 423 423 574 574
Over-identi�ed N.A. Yes No Yes No N.A. N.A.
Hansen p-value N.A. 0.470 N.A. 0.547 N.A. N.A. N.A.
m2 test p-value N.A. 0.669 0.710 0.911 0.952 N.A. N.A.

Instruments in all speci�cations are collapsed; P indicates pre-estimated threshold cut-o� value. The table shows alternative estimations of
equation (18). Columns (1), (6) and (7) are estimated using the biased LSDV for pre-estimated threshold cut-o� values. For Columns (1) we
used the estimated threshold from the baseline speci�cation of Table 7; for column (6) the threshold is estimated in column (4); for (7) the
threshold is estimated in column (5). Columns (2) and (3) are the adapted Dynamic Panel Threshold estimator using the Arellano and Bover
(1995) FOT GMM: (2) is with the one-step estimator; (3) is with fewer lags as instruments than the baseline speci�cation. Columns (4) and (5)
are with original Seo and Shin (2016) with the Arellano and Bond (1991) First-Di�erence GMM (FD), with lags dated from y − 2 to y − 6 and
to y − 3. In (3), (4) and (5) the two-step covariance matrix is singular, so the generalized inverse is used instead. The Arellano-Bond p-value
(m2 test) shows no serial correlation of order two in the errors. y dummies are included in all estimations, but are omitted to maintain a simple

representation. xfeiy is the forecast error of sales growth for year y; xi,y−1 is the lagged realized sales growth. FELiy takes value one when the

forecast error lies at the lower or upper q% of its empirical pool distribution. ***, ** and * indicates statistical signi�cance at the 1%, 5% and
10% level, respectively.

65



D Model Derivations

D.1 Derivation of Equation (25)

To derive equation (25) for the optimal choice of attention, we begin from the original problem,

max
λ

[
EU(λ)− C(λ)

]
. (33)

and we follow Gabaix (2014). We take the Taylor expansion of U(λ) around the rational expectations

solution, λ = 1,45

U(λ)− U(1) =
∂U

∂λ

∣∣∣∣
λ=1

(
λ− 1

)
+

1

2

∂2U

∂λ2

∣∣∣∣
λ=1

(
λ− 1

)2
+ o(λ3), (34)

where o(λ3) = 0, because the utility is quadratic, so higher order derivatives with respect to λ are

zero. U(λ) is given by equation (23), so that for the derivatives in equation (34) we need to calculate

∂xey+1(λ)/∂λ. Before we proceed, we introduce some useful notation. Our utility has the general

form: U(A,B) = −1
2
(A−B)2. Then, we can de�ne the trivial derivatives U1 , ∂U/∂A, U2 , ∂U/∂B,

U11 , ∂2U/∂A2 = −1, U22 , ∂2U/∂B2 = −1 and U12 , ∂2U/∂A∂B = 1.

Recall that xey+1(λ) , xey+1

(
λsy
)

= arg maxxy+1 U(xy+1, λsy). The �rst order condition implies

U1

(
xey+1(λ), λsy

)
= 0. Therefore, we can use the implicit function theorem on the �rst order condition

and obtain
∂xey+1(λ)

∂λsy
= −U12

U11

= 1, ∀λ.

Subsequently:
∂xey+1(λ)

∂λ
=
∂xey+1(λ)

∂λsy

∂λsy
∂λ

= −U12

U11

sy = sy, ∀λ.

45Even though the utility function is quadratic, we cannot directly analytically solve equation (33), because of the

presence of term xey+1(λ) which is unknown without knowing the choice for λ. However, with the Taylor expansion

around λ = 1, this term reduces to xey+1(1) which is the known rational expectations solution.
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We can now calculate the partial derivatives of the Taylor polynomial (34). Firstly, for the �rst

order term:

∂

∂λ
U

(
xey+1(λ), λsy

)
= U1

∂xey+1(λ)

∂λ
+ U2

∂λsy
∂λ

= U2sy, ∀λ,

because U1 = 0 at the optimum (recall that we are working with the indirect utility). Next, for the

second order term:

∂2

∂λ2
U

(
xey+1(λ), λsy

)
= U21

∂xey+1(λ)

∂λ
sy + U22

∂λsy
∂λ

sy = −s2y, ∀λ,

because, the cross-partial derivatives of the indirect utility are zero at the optimum, U21 = 0, and

U22 = −1.

Substituting these results of the Taylor expansion into the maximization problem of equation

(33), we obtain

max
λ

{
− E

[
1

2
s2y(λ− 1)2

]
− C(λ, cy)

}
.

This result follows from the fact that U2

∣∣
λ=1

= 0 and U(1) = 0.

Finally, using the fact that Esy = Exy = 0 and that Eεyxy = 0, ∀y, we have that Es2y = σ2
s =

σ2
x + σ2

ε . This results in equation (25) in the main body.
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