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Abstract 
 
News reports and communication are inherently constrained by space, time, and attention. As a 
result, news sources often condition the decision of whether to share a piece of information on 
the similarity between the signal and the prior belief of the audience, which generates a sample 
selection problem. This paper experimentally studies how people form beliefs in these contexts, 
in particular the mechanisms behind errors in statistical reasoning. I document that a substantial 
fraction of experimental participants follows a simple “what you see is all there is” heuristic, 
according to which they exclusively take into account information that is right in front of them, 
and directly use the sample mean to estimate the population mean. A series of treatments aimed 
at identifying mechanisms suggests that for many participants unobserved signals do not even 
come to mind. I provide causal evidence that the frequency of such incorrect mental models is a 
function of the computational complexity of the decision problem. These results point to the 
context-dependence of what comes to mind and the resulting errors in belief updating. 
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1 Introduction

News reports and communication are both inherently constrained by space, time, and

attention. As a result, news sources often condition the decision of whether to share

a piece of information on the similarity between the signal and the prior belief of the

audience. In some cases, news reports and communication disproportionately focus on

events that are likely to move the audience’s priors, such as the occurrence of terror

attacks, large movements in stock prices, or surprising research findings. While these

types of events are routinely covered, the corresponding non-events are not: one rarely

reads headlines such as “No terror attack in Afghanistan today.” In other cases, news

providers supply news that align with people’s priors but omit those that do not. For

example, social networks like Facebook exclude stories from newsfeeds that go against

users’ previously articulated views. Regardless of the specific direction of the sample

selection problem, all of these contexts share the feature that whether a specific signal

gets transmitted depends on how this signal compares to the audience’s prior. In the

presence of such selection problems, people need to draw inferences from (colloquially

speaking) “unobserved” signals.

While an active theoretical literature has linked selection problems in belief updat-

ing to various economic applications,¹ empirical work on people’s reasoning in such

contexts is more limited. Moreover, if people actually do fail to take into account un-

observed information, a perhaps even more fundamental open question concerns the

mechanisms behind such a bias. As reflected by a recent comprehensive survey paper

on errors in statistical reasoning (Benjamin, 2018), researchers have accumulated a

broad set of reduced-form judgmental biases. Yet despite early calls for empirical work

on the micro-foundations of biases (Fudenberg, 2006), relatively little is known about

the mechanisms that underlie judgment errors. In the present context, a promising can-

didate mechanism is the idea that agents maintain an incorrect mental model of the

environment because selection does not even come to mind when a decision is taken:

people may never even ask themselves what it is that is not directly in front of them.

This paper tackles these two sets of issues – how people process selected information

and the role of mental models therein – by developing a tightly structured individual

decision-making experiment that operationalizes the selection problems discussed in

the opening paragraph. In the experiment, the entire information-generating process

is computerized and known to participants. Subjects estimate an unknown state of the

world and are paid for accuracy. The true state is generated as an average of six i.i.d. ran-

dom draws from the simple discretized uniform distribution {50,70, 90,110, 130,150}.
I will refer to these random draws as signals. Participants observe one of these six sig-

¹See Levy and Razin (2015), Han and Hirshleifer (2015), Jehiel (2018), and Jackson (2016).
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nals at random and subsequently indicate whether they believe the true state to be

above or below 100. Thereafter, participants observe additional signals by interacting

with a computerized information source. Just like in the motivating examples, this in-

formation source transparently conditions its behavior on the participant’s first stated

belief. On a participant’s computer screen, the information source shares all signals that

“align” with the participant’s first stated belief (e.g., are smaller than 100 if the first be-

lief is below 100) but not all signals that “contradict” the first belief (e.g., are larger

than 100 if the first belief is below 100). Afterwards, participants guess the state.

Bayesian inference would require participants to draw an inference about signals

that do not appear on their computer screens, just like readers should infer something

from the fact that a news outlet does not report on the stock market on a given day. In

what follows, I will colloquially say that participants “do not see” these latter signals,

even though in an information-theoretic sense, this constitutes coarse information.

In a between-subjects design, I compare beliefs in this Selected treatment with those

in a Control condition in which subjects receive the same objective information as those

in Selected except that all signals physically appear on subjects’ screens. Comparing

beliefs across the two treatments allows us to causally identify participants’ tendency

to neglect selection problems in processing information, holding fixed the objective

informational content of the signals.

The results document that beliefs exhibit large and statistically significant differ-

ences across the two treatments. Whenever participants’ first signal is above 100, their

final stated beliefs tend to be upward biased and conversely for initial signals below

100. I show that this pattern is robust against the provision of some feedback.

To disaggregate these cross-treatment differences, I analyze individual decision

rules. Participants’ responses are often heuristic in nature and reflect significant round-

ing to multiples of five or ten. Yet while individual decisions are noisy, these heuristics

appear to have a systematic component. To identify this systematic part, the analysis

estimates an individual-level parameter that pins down updating rules in relation to

Bayesian rationality. Here, the distribution of updating types follows a bimodal struc-

ture: the modal responses of 60% of all participants are either Bayesian or reflect full

neglect. In fact, even 87% of those participants that exhibit stable identifiable decision

types can be characterized as exactly rational or exactly full neglect. Thus, a signifi-

cant fraction of participants states beliefs whose stable component corresponds to fully

ignoring what they do not see and averaging the visible data.

Economists are increasingly interested in the mechanisms behind reduced-form er-

rors in statistical reasoning, probably due to the view that this may help develop ap-

propriate debiasing strategies or inform theoretical work. In the present context, the
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patterns are prima facie consistent with two alternative accounts of the data. A first

is that – as posited in much recent theoretical work discussed below – neglect reflects

an incorrect mental model of the data-generating process that arises because certain

aspects of the problem do not even come to mind. Here, people may never even ask

themselves which signals they do not see and why. Relatedly, a recent literature in

cognitive psychology on the metaphor of the “naïve intuitive statistician” argues that

people are reasonably skilled statisticians but often naïvely assume that their informa-

tion samples are unbiased and that sample properties can be directly used to estimate

population analogs (Fiedler and Juslin, 2006; Juslin et al., 2007). According to this “in-

correct mental models” perspective, the probability that selection comes to mind may

be a function of the computational complexity of the decision problem. Decision-makers

need to allocate scarce cognitive resources between (i) setting up a mental model and

(ii) computational implementation. Thus, people should be less likely to develop a cor-

rect mental model if they are cognitively busier with (or distracted by) computationally

implementing a given solution strategy.

A plausible second view of the mechanisms behind neglect, however, is that people

are aware of the unobserved signals but struggle with the conceptual or computational

difficulty of correcting for selection. To investigate the relative importance of these

two accounts, I implement three sets of follow-up treatments. Each of these treatment

variations predicts a change in behavior under only one of these accounts.

First, I design a treatment in which the presence of a selection problem is eliminated,

yet subjects still need to process unobserved signals. If neglect was largely about the con-

ceptual or computational difficulty of correcting for selection, then neglect should dis-

appear in this treatment. Operationally, subjects observe four randomly selected signals,

while four additional signals are not directly communicated to them. As in the baseline

condition, participants do have information about the unobserved signals, which in this

case is their unconditional expectation. Nonetheless, a considerable fraction of subjects

again follows a “what you see is all there is” heuristic of averaging the visible data. This

shows that people struggle not (only) with conceptually thinking through a potential

selection problem. Instead, they appear to have a more general tendency to estimate

population means through sample means, where the “sample” is given by what is right

in front of them and hence top of mind.

Second, I devise treatments that hold the conceptual difficulty of accounting for se-

lection constant but vary the cognitive resources that participants have at their disposal

to set up a correct mental model. To this effect, I vary the computational complexity of

computing beliefs in such a way that it plausibly affects only the probability that the un-

observed signals come to mind. The experiments operationalize complexity in two dif-
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ferent ways: the complexity of the signal space and the number of signals. First, to vary

the complexity of the signal space, I implement treatments Complex and Simple. In Sim-

ple, the signal space is given by {70, 70,70, 70,70, 70,130, 130,130, 130,130, 130}. In
Complex, it is {70, 70,70, 70,70, 70,104, 114,128, 136,148, 150}. In both treatments,

whenever a participant states a first belief above 100, the selection problem can be

overcome by remembering that an unobserved signal must be a 70. Thus, these treat-

ments leave the conceptual and computational difficulty of accounting for selection

constant (if the first belief is above 100). At the same time, these treatments vary the

computational difficulty of computing a posterior belief and problem-induced cognitive

load. Second, to manipulate the number of signals, participants in condition Few were

confronted with the same signal space as those in Complex, but the true state was gen-

erated as the average of only two, rather than six, random draws. Because all of these

treatments fix the difficulty of backing out an unobserved signal, complexity can only

matter to the extent that it induces cognitive load and reduces the probability that the

unobserved signals come to mind.

The results show that increases in complexity (in terms of both the number of signals

and the complexity of the signal space) lead to substantially more neglect than in the

respective comparison treatments. This is even though participants in the more complex

treatments work longer on the problems. The fact that variations in complexity matter

for neglect even though the difficulty of accounting for selection is unchanged again

highlights the role of (endogenous) incorrect mental models.

As a third test between the two alternative mechanisms explained above, I imple-

ment an experimental condition that includes a simple nudge on participants’ decision

screen to pay attention to, or remember, those signals that they “do not see.” This in-

tervention decreases neglect by about 50%, which again suggests that the unobserved

signals did otherwise not come to subjects’ minds in the first place.

In summary, the takeaways from the analysis of mechanisms are twofold. First, in-

correct mental models play an important role in generating neglect. Unobserved signals

do not seem to come to mind in the first place, which leads people to directly use the

sample mean to estimate the population mean. Second, what comes to mind and the

resulting mental models are not exogenously given “neglect parameters” – instead, they

are context-dependent and endogenous to the computational complexity of the envi-

ronment. These insights are potentially relevant not only for modeling updating errors

but also for policy in terms of what will be an effective method to correct biased beliefs.

The paper proceeds as follows. Section 2 describes the experimental design. Sec-

tions 3–5 present the results and study mechanisms. Section 6 discusses related litera-

ture and offers concluding thoughts.
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2 Experimental Design

2.1 Setup

The experiment was designed to achieve the following objectives: (i) full control over

the data-generating process, (ii) exogenous manipulation of the degree of selection,

(iii) a control condition that serves as a benchmark for updating without selected in-

formation, and (iv) incentive-compatible belief elicitation. Most importantly, a clean

identification requires subjects’ full knowledge of the data-generating process.

The main idea behind the design is to construct two sets of signals (two treatments)

which result in the same Bayesian posterior, but only one information structure features

a problem of selection. Subjects were asked to estimate an ex-ante unknown state of

the world θ and were paid for accuracy. The computer generated θ by drawing six

times, with replacement, from the set X = {50,70, 90,110, 130,150}. Draws from X are

uniform. The average of these six draws then constituted the true state θ , which in the

experiment is referred to as the “variable” that subjects needed to estimate. Henceforth,

I will refer to the random draws as signals.

In the course of the experiment, a subject interacted with a computerized infor-

mation source that showed the subject (subsets of) the signals. An experimental task

consisted of multiple stages, as summarized in Table 1. First, after the computer gener-

ated the true state, a subject observed one randomly selected signal. Second, based on

this first signal, subjects provided an incentivized guess b1 about whether they believed

θ to be smaller or larger than 100, b1 ∈ {low, high}.²
Third, the information source showed the subject additional signals. This is the only

stage in which treatments Selected and Control differed, as detailed below. Finally, after

subjects observed the messages of the information source, they stated an incentivized

belief about the state b2 ∈ [50,150], with at most two decimals.

In Selected, the information source faced a budget constraint and hence conditioned

its decision of which out of the remaining five signals to show the subject on the subject’s

first guess. Specifically, if the subject’s first guess was higher than 100, the information

source showed the subject all signals above 100, but at least three signals. Likewise,

if the subject’s first guess was smaller than 100, the information source showed the

subject all signals below 100, but at least three signals. For example, if a participant’s

first guess was above 100 and only two of the remaining five signals were above 100,

the information source showed the subject these two signals and one randomly selected

signal of those below 100. If four signals were above 100, the subject would be shown

(only) these four. In what follows, I will refer to the signals that the information source

²If the true state equalled 100, subjects received the full payment for either guess.
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Table 1: Overview of the experimental design

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

Computer deter-
mines state by
drawing six signals

Subject receives
one signal

First binary
guess b1 based
on signal

Subject observes
messages of infor-
mation source

Continuous
guess b2

did not share with subjects as “unobserved” or as signals that subjects “do not see.”

This terminology is purely colloquial in nature and meant to make it salient that these

signals do not appear on subjects’ decision screens. In an information-theoretic sense,

these “unobserved” signals constitute coarse information.

In summary, subjects in Selected faced a selection problem akin to the examples

discussed in the Introduction in that the information source conditions its messages

(whether or not to send a signal) on the subject’s prior. Given the simplified discretized

uniform distribution over the signal space, it was rather straightforward for subjects

to infer which types of signals were unobserved. Being sophisticated about selection

requires subjects to understand that when they first guessed b1 = high, an unobserved

signal was 70, in expectation, while it was 130 when they first guessed b1 = low.

Treatment Control was designed to deliver the same Bayesian posterior as Selected

without the presence of a selection problem. In the Control condition, participants ob-

served two types of signals on their decision screens. First, they observed those signals

that subjects in the Selected treatment also observed. Second, they were also shown

a coarse version of the signals that subjects in the Selected condition did not observe.

Specifically, if an unobserved signal was in {50,70, 90}, the information source com-

municated 70 to the subject, while if the unobserved signal was in {110,130, 150}, the
information source communicated 130.³ These coarse messages equal the expected sig-

nal conditional on a subject’s first guess in Selected. Thus, the informational content of

the Selected and the Control treatments is identical.

Participants solved eight tasks with independent signal draws. To keep the experi-

mental setup close to the motivating examples in which people need to process informa-

tion about multiple variables of interest, the baseline experimental setup was such that

subjects completed two tasks at the same time (on the same decision screen). In the

instructions and in the computer program, this was referred to as estimating “variable

A” and “variable B,” respectively. Accordingly, subjects observed a first signal for each

variable, then provided a first guess for each variable, and were then shown the subse-

quent messages of the information source, again for both variables. To avoid confusion,

both the experimental instructions and the computer program specified which variable

³On their computer screens, there was no way for subjects to tell apart a “realized” 70 and an
“expected” 70. I made this design choice because telling them apart is redundant for rational inference.
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Table 2: Overview of the experimental tasks

True First Observed Observed Observed Observed Unobs. Unobs. Bayesian Neglect
State signal Signal A Signal B Signal C Signal D Signal E Signal F Belief Belief

96.67 130 130 150 70 – 50 50 103.33 120.00

110.00 150 110 150 110 – 50 90 110.00 130.00

93.33 50 90 50 130 – 110 130 96.67 80.00

90.00 110 150 90 50 – 50 90 90.00 100.00

103.33 150 110 130 70 – 70 90 100.00 115.00

116.67 90 90 70 150 – 150 150 110.00 100.00

116.67 110 150 130 150 110 50 – 120.00 130.00

86.67 130 130 90 110 – 70 50 90.00 100.00

Notes. Overview of the belief formation tasks in order of appearance. The categorization into observed and
unobserved signals applies to the case in which subjects follow their first signal, i.e., guess ≥ 100 if their sig-
nal was larger than 100, and < otherwise. Subjects in the Selected treatment observed only their own signal
and the “observed” signals. Subjects in the Control condition additionally had access to a coarse version of
the “unobserved” signals, i.e., if the corresponding signal was less than 100, they saw 70, and if the signal
was larger than 100, they saw 130. See equations (2) and (3) for the Bayesian and neglect benchmarks.

a signal belongs to by adding a capital letter. For example, subjects’ first signals in the

first period (the first two tasks) would be given by A−130 and B−150. This procedure

was the same in Control and Selected. In total, subjects completed four periods (eight

tasks), summarized in Table 2. All subjects were exposed to the same sets of signal

realizations. Below, I discuss a treatment that verifies that very similar results hold if

subjects complete these eight tasks strictly sequentially.

The intrinsic interest of this study is in subjects’ second guesses; the first guess only

serves the purpose of imposing a selection problem akin to the examples described

in the Introduction. Thus, to reduce noise, the instructions mentioned that subjects’

earnings from the first guess would be maximized in expectation if they followed the

first signal, i.e., stated a guess above (below) 100 if the signal was above (below) 100.

Control questions ensured that subjects understood the process generating their

data. For example, subjects were asked, “Assume that you issued a first guess of larger

than 100. Which draws will the information source show you no matter what? (a) None.

(b) Those above 100. (c) Those below 100.” Only once subjects had correctly solved

all control questions could they proceed to the experiment.⁴ Appendix H contains the

experimental instructions and control questions.

⁴The control questions followed a multiple choice format with 3–4 questions per screen. Thus, trial-
and-error was very cumbersome. Moreover, the BonnEconLab has a control room in which the experi-
menter can monitor the decision screens of all experimental subjects. Thus, whenever a subject appeared
to have problems in answering the control questions, an experimenter approached the subject, clarified
open questions (if any), and excluded the subject from the experiment if they did not appear to under-
stand the instructions.
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2.2 Theoretical Considerations

This subsection develops a simple, mechanical formal framework to fix ideas about the

experimental design above. I will use this framework below for model-based empirical

analyses. The true state of the world is given by θ =
∑6

k=1 sk/6. Let Z(b1) denote the

set of signals a subject actually sees on their computer screen, which depends on b1.

Denote N = |Z|. Given a set of signals, a Bayesian would compute the mean posterior

belief bB as

bB =

�∑N
k=1 sk∈Z(b1)

�

+ (6− N) · E[sk 6∈Z(b1) | b1]

6
, (2)

where sk ∈ Z(b1) denotes a signal that appears on the decision screen. The second term

in the numerator corresponds to the inference of a Bayesian of those signals that are

not shown, which is the expectation conditional on the first belief.

I now introduce theoretical benchmarks for neglect. A first possibility is that the

agent applies a heuristic of “what you see is all there is” and does not draw any infer-

ences from unobserved signals but just averages the observed data:

bN ,1 =

∑N
k=1 sk∈Z(b1)

N
. (3)

Comparing this benchmark with equation (2), we see that averaging the visible data

generates two potential sources of error. First, the sample may be biased: because only

sk ∈ Z(b1) appear in the numerator, b1 determines whether predominantly high or low

signals are taken into account. This is the traditional sample selection problem.

A second source of error, however, arises because even if Z did not depend on b1

(if there were no systematic sample selection), equation (3) would still ignore the un-

observed signals. This is important because even if Z was determined at random, the

decision maker has prior knowledge about the unobserved signals that he can make use

of, which is that E[sk] = 100.

A plausible alternative specification of a neglect benchmark eliminates the second

type of error by positing that participants are aware of the signals they do not see but

fail to understand the sample selection problem created in the process. Such a decision

maker imputes the unconditional expectation of E[sk] = 100 for any unobserved signal.

The second neglect benchmark is given by

bN ,2 =

�

∑6
k=1 sk∈Z(b1)

�

+ (6− N)E[sk 6∈Z(b1)]

6
. (4)

It is perhaps helpful to provide an interpretation of the psychological difference

between the two neglect benchmarks in equations (3) and (4). The agent in (4) only
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struggles with understanding (or computing) conditional expectations. The agent in (3)

ignores the unobserved signals altogether, plausibly because he never actively thinks

about how many signals there are. Because the unobserved signals are not top of mind,

he naïvely uses the (visible) sample mean to estimate the population mean. Indeed, a

long literature in cognitive psychology on the metaphor of a “naïve intuitive statisti-

cian” posits that people have a tendency to directly use sample moments to estimate

population analogs (Fiedler and Juslin, 2006; Juslin et al., 2007).

The main experiments were not designed to distinguish between these two ne-

glect benchmarks. The correlation between bN ,1 and bN ,2 in my experimental tasks

is ρ = 0.99, and they make quantitatively very similar predictions. However, in follow-

up experiments to be discussed in Section 4, I use the distinction between the two

benchmarks to tease out the mechanisms behind neglect. The results will show that a

large majority of those subjects that are not Bayesian appear to follow the first neglect

benchmark. I will hence use bN ,1 in what follows.⁵

Let χ ∈ [0,1] parameterize the degree of neglect such that χ = 1 implies full

neglect. Then, a decision-maker’s belief b can be expressed as a weighted average of

bB and bN ,1 plus decision noise ε:

b = (1−χ)bB +χ bN ,1 + ε= bB +χ
6− N

6

�

s̄k∈Z(b1) − E[sk 6∈Z(b1)|b1]
�

︸ ︷︷ ︸

≡d

+ε (5)

= bB +χd + ε, (6)

where s̄k∈z(b1) is the average visible signal and ε is a mean zero random computational

error. The systematic component of a subject’s belief b can be expressed as Bayesian

belief plus a distortion term d times the neglect parameter χ. I will use this formal

framework to compute estimates of neglect χ̂ and decision noise |ε̂|.

2.3 Procedural Details

Apart from the treatments described above, I implemented eight additional treatments

that will be discussed below. Table 3 provides an overview of all treatments; horizontal

lines indicate which treatments were randomized within experimental sessions.

The experiments were conducted at the BonnEconLab of the University of Bonn and

computerized using z-Tree (Fischbacher, 2007). Participants were recruited using hroot

(Bock et al., 2014). After the written instructions were distributed, subjects had ten

minutes to familiarize themselves with the task. Each period consisted of two computer

⁵Table 10 in Appendix B and Figure 10 in Appendix C reproduce the main results using the bN ,2
benchmark. The results are almost identical to those to be presented below.
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Table 3: Treatment overview

Treatment # of subjects Ave. earnings (euros)

Selected 74 12.77

Control 40 17.83

Sequential 75 11.28

Feedback 75 15.08

Random 75 12.10

Complex 75 14.28

Simple 75 14.47

Few 75 17.43

Nudge 72 12.18

Selected replication 75 12.48

Notes. Horizontal lines indicate which treatments were randomized
within the same experimental sessions. Payments included a show-up
fee of €10 in Feedback and of €6 in all other treatments.

screens. On the first screen, subjects were informed of the first signal and issued a binary

guess. On the second screen, participants received the messages from the information

source and stated a point belief. Sessions lasted 50 minutes on average.

All decisions were financially incentivized, in expectation: in total, subjects took

16 decisions, one of which was randomly selected for payment. This constitutes an

incentive-compatible mechanism in such a setup (Azrieli et al., 2018). The probability

that a second (point) belief was randomly selected for payment was 90%, while one

of the binary first guesses was chosen with probability 10%. The binary first guess

was incentivized such that subjects received €18 if the guess was correct and nothing

otherwise. The continuous point beliefs were incentivized using a quadratic scoring

rule with maximum variable earnings of €18, i.e., variable earnings of subject i in task

j equalled π j
i =max{0;18− 0.2× (b j

i − θ
j)2}.

3 Results

3.1 Baseline Results

Preliminaries. The object of interest in the analysis is a potential treatment difference

in the second beliefs that subjects state. For completeness, across the two treatments,

93% of all first binary guesses follow the first signal and enter a high (low) first guess
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if the first signal is above (below) 100. Appendix A presents a set of robustness checks

that restrict the analysis to observations that followed the first signal.

Beliefs across tasks. Table 4 presents an overview of the results in each of the eight

tasks. For ease of comparison, I provide the benchmarks of full neglect and Bayesian

beliefs, respectively. Reassuringly, beliefs in the Control condition follow the Bayesian

prediction very closely, suggesting that the experimental setup was not systematically

misconstrued by subjects: in the absence of selected information, people state rational

beliefs. In the Selected treatment, however, beliefs are distorted away from the Bayesian

benchmark towards the full neglect belief. In all eight tasks, beliefs significantly differ

between treatments at least at the 10% level, and usually at the 1% level (Wilcoxon

ranksum tests).

Econometric analysis. In the remainder of the paper, treatment comparisons will be

conducted by pooling the data across tasks, both for brevity and to eliminate potential

multiple testing concerns. Pooling the data requires transforming the beliefs data into a

scale that has the same meaning across tasks. For this purpose, I make use of the simple

belief formation rule introduced in Section 2.2, which has the additional advantage that

going forward, all estimated quantities will have direct theoretical counterparts. I use

equation (6) to estimate the neglect implied in the belief of subject i in task j:

χ̂
j
i = E[χ j

i |b
j
i ] =

b j
i − b j

B

d j
=

6(b j
i − b j

B)

(6− N j)
�

s̄ j
k∈z(b1)

− E[s j
k 6∈Z(b1)

|b j
i,1]
� . (7)

Note that this analytical tool corresponds to a simple linear transformation of the raw

beliefs data (subtract the Bayesian belief and divide by the distortion term d, which is

only a function of the signal realizations). This method only converts the data into a

consistent interval, so that subjects’ beliefs (i) are on the same scale across tasks and

(ii) can be directly interpreted as reflecting Bayesian (χ̂ = 0), full neglect (χ̂ = 1), or

intermediate levels.

While χ̂ j
i should, in principle, be between zero and one, in the experimental data

naturally not all observations lie within this interval, likely at least partly due to typ-

ing mistakes and random computational errors. This produces outliers that are partly

severe. Across the treatments in Table 3 (N = 5,416 belief statements), the minimum

implied χ̂ j
i is −21 and the maximum 12.7. To avoid arbitrary exclusion criteria while at

the same time dealing with outliers, throughout the paper I present three different sets

of regression specifications. First, I present an analysis with median regressions that

includes the full sample of beliefs, including large outliers. Second, an OLS analysis
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Table 4: Overview of beliefs across tasks

(1) (2) (3) (4) (5) (6) (7) (8) (9)
True First Bayesian Neglect Median Belief Median Belief Mean Belief Mean Belief p-value
State Signal Belief Belief Control Selected Control Selected (Ranksum)

96.67 High 103.33 122.00 103.00 110.00 104.84 107.67 0.0661

110.00 High 110.00 130.00 110.00 120.00 109.79 119.36 0.0001

93.33 Low 96.67 80.00 96.50 90.00 96.58 90.88 0.0130

90.00 High 90.00 100.00 90.00 90.00 90.21 94.00 0.0536

103.33 High 100.00 115.00 100.00 110.00 98.79 107.78 0.0001

116.67 Low 110.00 100.00 110.00 110.00 110.29 108.08 0.0635

116.67 High 120.00 130.00 120.00 123.00 118.29 122.04 0.0099

86.67 High 90.00 100.00 90.00 90.00 89.16 95.89 0.0022

Notes. Overview of the estimation tasks in order of appearance. See Table 2 for details on the signals in each task
as well as the computation of the Bayesian and full neglect benchmarks. High (low) private signals are defined as
signals above (below) 100. The p-value refers to a Wilcoxon ranksum test between beliefs in Selected and Control.

in which I winsorize the data at |χ̂ j
i | = 3. That is, I replace each belief that is larger

(smaller) than 3 (−3) by the corresponding value. This affects 3% of all observations.

Third, I present an OLS analysis on a trimmed sample, where I drop all observations

with |χ̂ j
i |> 3. For completeness, Appendix A presents an additional set of specifications

in which I implement OLS regressions on the full sample, including all outliers. The

results are similar to those reported in the main text.

Table 5 presents the results. In these analyses, the unit of observation is a subject-

task, for a total of usually eight observations per subject.⁶ The standard errors are

clustered at the subject level. All regressions include experimental session fixed effects,

leveraging random assignment into treatments within sessions.

The results confirm a large and statistically significant aggregate treatment differ-

ence between Control and Selected. In column (1), the median regression only controls

for session fixed effects. Column (2) adds a vector of controls: fixed effects for each

experimental task interacted with the first guess (high / low) of the subject, as well

as controls for individual characteristics. In columns (3)–(4), the dependent variable

is winsorized at |3|, and I estimate OLS regressions. In columns (5)–(6), the sample

excludes observations with |χ̂ j
i |> 3. Throughout, the coefficient is quantitatively large

and suggests that – relative to the control treatment – subjects in Selected exhibit a

neglect of 0.4− 0.6 units of χ.

The bias implies lower earnings of subjects in the Selected condition. The expected

profit from all eight belief formation tasks is €6.33 in Selected and €10.32 in Control.

Actual profits, which include a show-up fee and depend on a random draw, are€17.56

($20) in Control and €12.73 ($15) in Selected.

⁶In a few cases, subjects did not enter a belief on time, so these observations are missing.
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Table 5: Baseline results: Treatments Selected and Control

Dependent variable:
Neglect χ̂ j

i

Median regression OLS winsorized OLS trimmed

(1) (2) (3) (4) (5) (6)

0 if Control, 1 if Selected 0.40∗∗∗ 0.50∗∗∗ 0.54∗∗∗ 0.60∗∗∗ 0.51∗∗∗ 0.54∗∗∗

(0.08) (0.10) (0.09) (0.09) (0.09) (0.09)

Session FE Yes Yes Yes Yes Yes Yes

Task FE × prior No Yes No Yes No Yes

Controls No Yes No Yes No Yes

Observations 894 894 894 894 874 874
R2 0.07 0.10 0.09 0.11 0.10 0.11

Notes. Regression estimates, with robust standard errors (clustered at subject level) in parentheses.
The dependent variable is the neglect χ̂ j

i that is implied in a given belief. The sample includes each
of subjects’ eight beliefs in the Selected and Control conditions. Columns (1)–(2) report median re-
gressions, and columns (3)–(6) are OLS regressions. In columns (3)–(4), the dependent variable is
winsorized at |χ̂ j

i |= 3. In columns (5)–(6), the sample is trimmed at |χ̂ j
i |= 3. Controls include gender,

high school grades, and log monthly disposable income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

3.2 Robustness Treatments

Sequential Tasks. To assess the extent to which the simultaneous presentation of

two variables induces neglect, I implemented treatment Sequential. This treatment was

randomized along with Control and Selected within experimental sessions. Sequential

is identical to Selected, except that all eight tasks were presented in eight, rather than

four, consecutive rounds. Appendix D discusses the results from this treatment in detail.

Overall, the results are very similar to those in Selected. To illustrate, Figure 1 plots

the median and mean χ̂ j
i across treatments, along with standard error bars. While

the median neglect estimate is significantly lower in Sequential than in Selected, the

averages are very similar ( ¯̂χ j
i = 0.49 in Selected and ¯̂χ j

i = 0.42 in Sequential). Moreover,

neglect in Sequential is significantly higher than in Control.⁷

Feedback. A relevant question is whether people learn about their errors through feed-

back. In treatment Feedback, subjects first solved six tasks (again two per period) that

had the same structure as those in Selected but different signal realizations. Then, they

completed the same eight tasks as subjects in Selected. Thus, I can compare beliefs

across treatments for exactly the same tasks, yet subjects in Feedback have already com-

⁷As documented in Table 15 in Appendix D, median and average neglect are consistently lower in
Sequential than in Selected. While these differences are usually not statistically significant, they provide
some very tentative evidence that the simultaneous presentation of problems induces higher cognitive
load, which in turn increases neglect. See Section 4 for a dicussion along these lines.
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Figure 1: Overview of neglect χ̂ j
i across treatments. The left panel shows the median χ̂ j

i across all subject-
task observations. The right panel shows the average χ̂ j

i across all subject-task observations, where as
in columns (3)–(4) of Table 5 the data are winsorized at |χ̂ j

i | = 3. For treatment Feedback, the sample
median and average are computed for the last eight beliefs to keep the results comparable to the other
treatments. Standard error bars are computed based on clustering at the subject level.

pleted six tasks and received feedback on each of them. After each period, subjects

received feedback about their performance: (i) they were reminded of their continuous

belief statement; (ii) they were informed of the corresponding true state; and (iii) they

received information on the profits that would result from the respective task in case

it would be selected for payment. Appendix E provides a detailed analysis of the data.

The data show no indication that feedback reduces the amount of neglect. Figure 1

illustrates this result.

3.3 Decision Rules and Heterogeneity Analysis

Type distribution. To examine the subject-level distribution of neglect, I seek to iden-

tify a subject’s neglect type χ̂i, i.e., an estimate of a subject’s solution strategy, net of

computational errors and heuristic rounding. For this purpose, for each subject i and

candidate type t ∈ {−1,−0.9, . . . , 2}, I count how many of the implied χ̂ j
i (see eq. (7))

satisfy |t − χ̂ j
i | ≤ 0.05. Then, I classify each subject as χ̂i = tmax , where tmax is the

candidate type that rationalizes the largest number of beliefs (see Fragiadakis et al.,

2016, for a similar approach).⁸

The left panel of Figure 2 presents a histogram of these modal neglect types χ̂i in

treatments Selected, Sequential, and Feedback. The data reveal a bimodal type distribu-

tion: 60% of all subjects are best characterized as Bayesian (χ̂i = 0) or full neglect

(χ̂i = 1). For example, of those 150 subjects that are not approximately rational, one

third (51) are classified as exactly or almost exactly full neglect types (0.95 ≤ χi ≤

⁸If more than one type rationalizes the maximal number of beliefs, I compute the average across t.
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Figure 2: Distribution of modal neglect types χ̂i in treatments Selected, Sequential, and Feedback. The
left panel shows the distribution of all estimated neglect types, and the right panel the distribution of
neglect types for which at least three beliefs are type-consistent (53% of all subjects). For belief j to be
consistent with the estimated type means that |χ̂i − χ̂

j
i | ≤ 0.05.

1.05).⁹ In contrast, in treatment Control, 80% of all subjects are classified as exactly

χ̂i = 0; see Figure 11 in Appendix C.

Across-task consistency and heuristic responses. Because the left panel of Figure 2

shows modal types, the figure does not take into account the within-subject-across-task

consistency in stated beliefs. To address this, I look at the number of beliefs that are

consistent with a subject’s modal type, where type-consistent means that the neglect

parameter that is implied by a belief statement is close to the overall estimated type:

|χ̂i − χ̂
j
i | ≤ 0.05. Figure 5 in Appendix C shows a histogram of the number of type-

consistent beliefs. The average and median number of type-consistent beliefs are 3.2

and 3. The noisiness of the data in bounded rationality experiments – and the fact that

a considerable fraction of subjects does not appear to behave according to a stable type

– has recently been highlighted by Fragiadakis et al. (2016).¹⁰ They and Costa-Gomes

and Crawford (2006) propose that a subject should be viewed as having a stable type

if at least 40% of their experimental actions are type-consistent.

The right panel of Figure 2 shows the distribution of modal neglect types, restricting

attention to those 53% of all subjects for which at least three beliefs (∼ 40%) are type-

consistent. We see that the two spikes at χi = 0 and χi = 1 largely remain, yet the

⁹Figure 9 in Appendix C plots a histogram of the subject-task-specific χ̂ j
i , i.e., the underlying raw

beliefs data. Naturally, this distribution is noisier but also bimodal with spikes at zero and one.
¹⁰The noisiness of the beliefs data appears to be at least partly driven by heuristic rounding to the

nearest multiple of five or ten, akin to the patterns documented in a large survey literature on subjective
expectations about economic variables (Manski, 2004). In my data, 69% of reported beliefs are multiples
of ten and 84% are multiples of five. These numbers are probably inflated because the Bayesian or full
neglect benchmarks are themselves usually multiples of five or ten, compare Table 2. Yet when I exclude
beliefs that correspond to the Bayesian or full neglect benchmarks, still 53% are multiples of ten and
75% multiples of five.
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vast majority of all types χ̂i 6= 0, 1 are relatively inconsistent across tasks. A perhaps

remarkable 87% of those subjects that exhibit stable identifiable decision types can

be characterized as exactly rational or exactly full neglect. Very few subjects exhibit a

stable decision type of partial adjustment from neglect.

In the full sample of subjects, for the χ̂i = 0 types, 4.5 beliefs are type-consistent,

on average. For the χ̂i = 1 types, 3.4 beliefs are type-consistent, on average. However,

for all types χ̂i 6= 0,1, the average number of type-consistent beliefs is only 2.0. Overall,

these patterns suggest that across-task consistency is relatively low, in particular for the

χ̂i 6= 0, 1 types.¹¹ Still, to the extent that there is within-subject consistency in my data,

it points to the presence of two fundamentally different updating types.

As a final remark on within-subject consistency, it is worth pointing out that the rel-

atively inconsistent subjects are not just random noise around the rational benchmark.

The average and median task-level implied neglect parameters of relatively inconsistent

subjects are χ j
i = 0.35 and χ j

i = 0.40. This shows that the inconsistent types do neglect

selection – just in a quantitatively inconsistent fashion across tasks.

Correlates of Neglect. Table 11 in Appendix B investigates the correlates of neglect

in treatments Selected, Sequential, and Feedback. I find that both better high school

grades and longer response times are negatively correlated with neglect. The quanti-

tative magnitude of the relationship between response times and neglect is small. In-

terpreted causally, the regression coefficients suggest that response times would have

to increase by about four minutes per task to move a full neglect belief to a Bayesian

belief. However, the average response time in the data in the three treatments that are

considered here is only 48 seconds, and it is 52 seconds in treatment Control. These

magnitudes suggest that the type heterogeneity is not merely the result of the neglect

types being lazier than the rational types.

4 Mechanisms

4.1 Framework

Understanding the mechanisms behind errors in statistical reasoning is likely to be rele-

vant not only for theorists who are interested in formalizing and endogenizing people’s

errors, but also for policy in terms of what will be an effective method to correct biased

beliefs. To structure the analysis, I pit two hypotheses against each other.

¹¹The intra-correlations between modal, median and average neglect types are all between 0.75 and
0.92. Figures 6–8 in Appendix C present histograms of (i) median subject-level neglect; (ii) average
neglect parameters; and (iii) the subject-level standard deviation of implied neglect parameters.
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Theory A: Incorrect mental model. Participants have an initial mental default model

according to which the unobserved signals are not top ofmind. This default model could

result from intuitive system 1 reasoning (Kahneman, 2011), or it could be retrieved

from memory as the “normal” version of a class of problems that people know how to

solve (Kahneman and Miller, 1986). If the unobserved signals do not come to mind,

participants directly use the (visible) sample mean to estimate the population mean,

akin to the psychological metaphor of a “naïve intuitive statistician” who directly uses

sample moments to estimate population analogs (Fiedler and Juslin, 2006; Juslin et al.,

2007). This simple averaging process may be loosely summarized as “what you see is

all there is.”

If selection does come to mind, the participant reasons about whether and how it

needs to be corrected for. Whether this happens partly depends on how the decision-

maker allocates cognitive resources between (i) setting up a mental model and (ii) com-

putational implementation. In particular, people should be less likely to develop a cor-

rect mental model if they are cognitively busier with (or distracted by) computationally

implementing a given solution strategy.

Linking this account to the literature, the importance of incorrect mental models is

highlighted by an active theoretical literature (e.g., Esponda and Pouzo, 2016; Eyster

and Rabin, 2010; Jehiel, 2005; Schwartzstein, 2014; Gabaix, 2014; Spiegler, 2016;

Bohren and Hauser, 2017; Heidhues et al., 2017; Gagnon-Bartsch et al., 2018). For ex-

ample, the model in Spiegler (2017) focuses on how an agent naïvely extrapolates from

partial data, which is reminiscent of the sample selection problem in this paper. Indeed,

incorrect mental models are often implicitly, and sometimes explicitly, motivated and

modeled as resulting from attentional processes (Gennaioli and Shleifer, 2010).

Theory B: Conceptual or computational difficulty of accounting for selection. Par-

ticipants are aware of the signals they do not see, but struggle with the conceptual or

computational difficulty of correcting for selection.

It is worth highlighting that these two stories are not necessarily mutually exclusive

but relate to two distinct steps of a sequential reasoning process. In the first step, it gets

determined whether selection (the unobserved signals) are top of mind. In the second

step, the decision maker reasons about how to correct for selection, if it comes to mind

in the first place. It is in principle conceivable that selection does not come to mind, but

even if it did come to mind, the participant wouldn’t be able to account for it.

The experiments below test the relative importance of these two stories by exoge-

nously manipulating parameters that should lead to changes in reported beliefs accord-

ing to one theory but not the other. I conduct three such comparative statics exercises:
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1. Holding fixed the presence of unobserved signals, I eliminate the presence of

the selection problem. If neglect was largely driven by theory B, then it should

disappear in this treatment. If neglect was largely driven by theory A, then it

should remain roughly constant.

2. Holding fixed the conceptual and computational difficulty of accounting for se-

lection, I increase the computational complexity of following a “what you see is

all there is” averaging heuristic. If neglect was largely driven by theory B, then

such complexity variations should have no effect. Under theory A, higher compu-

tational complexity should increase neglect because the decision maker is “dis-

tracted” by computational implementation and hence devotes less recources to

thinking about what is not top of mind or visible.

3. Holding fixed the conceptual and computational difficulty of accounting for se-

lection, I exogenously draw participants’ attention to the unobserved signals. If

neglect was largely driven by theory A, it should substantially decrease. If neglect

was largely driven by theory B, it should remain constant.

4.2 Eliminating the Selection Problem

4.2.1 Experimental Design

To test comparative statics prediction 1. above, I implemented treatment Random. Ran-

dom closely follows treatment Selected. The true state to be estimated now consists of

the average of eight random draws from the same simple discretized uniform distribu-

tion as before.¹² Deviating from the procedure in Selected, in Stage 3 of the experiment,

a subject observed three signals that were selected at random, rather than based on a

subject’s first guess. The timeline of this treatment was otherwise identical to that in

treatment Selected. In this setup, the Bayesian belief is given by

bB =

�∑4
k=1 sk∈Z(b1)

�

+ 4 · E[sk 6∈Z(b1)]

8
, (8)

while a “what you see is all there is” benchmark is given by the same equation as before:

bN ,1 =

∑4
k=1 sk

4
. (9)

¹²In this treatment the true state was determined as average of eight rather than six random draws
to allow for a larger number of invisible signals. With only two invisible signals, the Bayesian and full
neglect benchmarks would have been too close to each other to allow for robust analyses that distinguish
between these two updating types.
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It is worth pointing out that this treatment also directly speaks to the two potential

neglect benchmarks for treatment Selected that I discussed in Section 2.2: (i) a decision

rule that assumes that subjects completely ignore information that is not visible on

their computer screen and (ii) a decision rule that posits that participants are aware

of the signals they do not see but wrongly assign them their unconditional rather than

conditional expectation. If (ii) was the empirically correct benchmark, then subjects in

Random should state Bayesian beliefs.

4.2.2 Results

The results are described in detail in Appendix F. To summarize, behavior in this treat-

ment is very similar to behavior in treatment Selected. I again compute implied subject-

level neglect parameters χi, where zero corresponds to the Bayesian and one to the full

neglect benchmark noted above. As shown in Figure 3, the distribution of stated beliefs

is again bimodal, with subjects either fully neglecting what they don’t see or behaving

rationally. Indeed, as shown in Appendix F, the distribution of neglect in this treatment

is statistically indistinguishable from the one in treatment Selected.

I view the results of this treatment as suggesting two implications. First, a “what you

see is all there is” heuristic describes behavior better than a theoretical benchmark in

which subjects actively impute unconditional expectations for unobserved signals. This

suggests that at least a majority, and probably a large majority, of those subjects that

are classified as “neglect” types in treatment Selected do not at all take into account

the unobserved signals. Second, the psychological mechanism behind neglect is likely

not (just) a conceptual misunderstanding of selection problems but instead a general

incorrect mental model according to which the unobserved signals do not even come

to mind in the first place.

4.3 Computational Complexity as Distraction

4.3.1 Experimental Design

Next, I study how computational complexity affects selection neglect, in particular the

ways in which it might induce cognitive load and hence distract participants from the

unobserved signals. The experiments below exogenously manipulate the computational

complexity of the updating problem but hold fixed the difficulty of accounting for selection

itself. This thought experiment has the attractive feature that it narrows down the path-

ways through which complexity can affect belief updating: if the difficulty of correcting

for selection remains unchanged, then differences in belief updating can plausibly be

attributed to an effect of computational complexity on how participants approach the
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Figure 3: Distribution of modal neglect types χ̂i in treatment Random. See the main text for the specifi-
cation of the Bayesian and full neglect benchmarks. The left panel shows the distribution of all estimated
neglect types, and the right panel the distribution of neglect types for which at least three beliefs are
type-consistent (61% of all subjects). For belief j to be consistent with the estimated type means that
|χ̂i − χ̂

j
i | ≤ 0.05.

problem (develop a mental model) in the first place. Given the absence of a general

theory of what is complex, the experiments operationalize computational complexity

in two different and arguably intuitive ways: (i) the complexity of the signal space and

(ii) the number of signals in a given updating problem.

Complexity I: The Complexity of the Signal Space. To exogenously vary the com-

plexity of the signal space, I conducted two treatments, Complex and Simple. These

two treatments were both identical to treatment Selected except that the set of num-

bers from which the true state was determined was varied. In Complex, the signal space

was given by

{70, 70,70, 70,70, 70,104, 114,128,136, 148,150}.

In Simple, it was

{70, 70,70, 70,70, 70,130,130, 130,130, 130,130}.

These two treatments are identical in a number of ways: (i) the prior is 100; (ii) the

conditional expectations of being above and below 100 are 130 and 70, respectively;

(iii) most importantly, these two treatments leave the difficulty of accounting for se-

lection constant if subjects state a first guess of above 100 (i.e., in practice, when

they receive a first signal above 100). In such cases, accounting for selection only re-

quires subjects to notice (remember) that they are missing a few 70’s on their decision

screens. Thus, in both treatments, people’s potential problems in computing conditional

expectations cannot drive any results. For example, in one task, subjects in Complex
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observed 150, 104,148, 114 on their decision screens, while those in Simple observed

130,130, 130,130.

Complexity II: The Number of Signals. Treatment Few was identical to Complex in

almost all dimensions. The only difference is the number of random draws (signals) that

determined the true state and were shown to subjects. In Few, the state was determined

as the average of two, rather than six, random draws.

Subjects in Few also observed a first signal and then issued a first binary guess.

Given that there are only two signals in total in this treatment, subjects then potentially

observed one additional signal from the information source. Subjects only observed

this second signal if it was above 100 and the subject’s first guess was above 100, or

if the second signal was below 100 and the subject’s first guess below 100. Thus, in

many tasks, subjects did not receive an additional (second) signal from the information

source on the second decision screen. Notice that if subjects observe both signals, there

is no selection problem, so that by design, the analysis of Few has to exclude the three

experimental tasks for which this was the case.

Comparing treatments Few and Complex leaves the signal space and hence the diffi-

culty of backing out unobserved signals unchanged. Still, the computational complexity

of computing posteriors differs across treatments. For example, in one task, subjects in

Complex observed 150,104, 148,114 on their decision screens, while those in Few ob-

served 150.

In summary, all treatments hold the diffculty of accounting for selection constant

but vary the computational burden of computing beliefs. A notable difference to earlier

cognitive load experiments is that here cognitive load arises endogenously as feature

of the decision problem, rather than being exogenously induced by the experimenter.

Finally, note that comparing treatments Simple and Few is not meaningful by design

because these two treatments differ in two dimensions in ways that operate in opposite

directions. Treatment Simple is simpler than Few in that is has a simpler signal space,

but treatment Few is simpler in that it features a smaller number of signals. Thus, the

analysis compares Complex to Simple and Complex to Few. Treatments Complex, Simple,

and Few were all randomized within the same experimental sessions; compare Table 3.

Tables 12 and 13 in Appendix B show the signal realizations in these treatments.

4.3.2 Manipulation Checks

Given that the treatment variations here are arguably relatively subtle and do not have

immediate antecedents in the literature, it is worth performing a manipulation check

to verify that the computational complexity is indeed meaningfully higher in Complex
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than in Simple and Few. To provide such evidence, I consider data on (i) response times

and (ii) the noisiness of responses across tasks. Higher computational complexity should

translate into (i) longer response times and (ii) beliefs data that are noisier, or less

consistent across tasks. Following equation (7), I estimate decision noise by comparing

a subject’s belief in task j with the belief they “should have” stated given their estimated

overall type χ̂i: |ε̂
j
i |= |χ̂

j
i − χ̂i|, where χ̂i is the overall estimate of i’s type across tasks

as derived in Section 3.

Table 14 in Appendix B shows that both response times and decision noise are in-

deed significantly lower in Simple and Few, as compared to Complex. This provides re-

assuring evidence that the treatment variations actually induced meaningful variations

in computational complexity as perceived by the experimental participants.¹³

4.3.3 Results

By design of the experiment, the analysis is restricted to those tasks in which subjects’

first signal was above 100 so that any unobserved signal had to be a 70 in all treatments.

Figure 4 plots median and average levels of χ̂ j
i across treatments. Here, just like in the

regression tables, |χ̂ j
i | is winsorized at 3 when I compute treatment averages. As pre-

dicted, treatment Complex generates substantially higher levels of neglect than Simple

and Few. The median implied neglect in Simple and Few is zero, though the averages

are strictly positive ( ¯̂χ j
i = 0.13 in Simple and ¯̂χ j

i = 0.22 in Few).

Table 6 provides a set of corresponding regression analyses. In all regressions, the

omitted baseline category is treatment Complex. By including treatment dummies for

Simple and Few, the regressions compare Complex with Simple and Complex with Few.

Both treatment dummies have negative coefficients that are statistically significant.

These results hold both in the analysis with median regressions (columns (1)–(2))

and in robustness checks in which the dependent variable is winsorized or trimmed

(columns (3)–(6)). In terms of quantitative magnitude, the coefficients suggest that

both types of complexity reductions caused a reduction in neglect by about 0.2− 0.3

units of χ̂ j
i . Thus, the increased cognitive load from the computational stage of the

problem appears to have systematic effects on how participants approach the concep-

tual stage of forming a mental model to begin with. This provides further evidence that

in this context selection neglect is not (just) driven by the conceptual or computational

¹³A potential issue with the interpretation that higher computational complexity increases decision
noise is that it is impossible for me to formally disentangle the story that decision error is lower for less
computationally complex tasks from a scenario where decision error conditional on type is independent
of computational complexity, but the more complex treatment changes the type distribution and decision
error are larger for neglect types. However, this alternative interpretation of the results is less plausible
because the calculations that are required to be Bayesian are unambiguously more complicated than
those required to follow the neglect benchmarks.
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Figure 4: Overview of neglect χ̂ j
i across treatments. The left panel shows the median χ̂ j

i across all subject-
task observations. The right panel shows the average χ̂ j

i across all subject-task observations, where as
in columns (3)–(4) of Table 5 the data are winsorized at |χ̂ j

i | = 3. Standard error bars are computed
based on clustering at the subject level. As explained in the text, by design, the analysis of treatments
Complex, Simple, and Few is restricted to those experimental tasks in which the first signal was above 100.
Moreover, also by design, for treatment Few the analysis excludes those tasks in which subjects observed
both (and hence all) signals, so no selection problem was present. As explained in the main text, these
data exclusions follow mechanically from the construction of the different treatments.

difficulty of accounting for selection – as this was held constant across treatments – but

by an incorrect mental model.

4.4 Nudge Evidence

4.4.1 Experimental Design

If it is true that participants in Selected entertain an incorrect mental model, then nudg-

ing their attention towards (or reminding them of) the existence of the selection prob-

lem might attenuate the bias. Specifically, treatment Nudge was identical to Selected,

except that both the end of subjects’ written instructions and their decision screens

contained the following hint:

HINT: Also pay attention to those randomly drawn balls that are not shown

to you by the information source.

Treatment Nudge was implemented along with a replication of treatment Selected to

facilitate within-session randomization of subjects into treatments.¹⁴

¹⁴To additionally investigate whether subjects are capable of computing the conditional expectations
that are required in the present experiment, treatments Selected and Sequential contained two incen-
tivized follow-up questions: “Suppose you knew that ten balls were randomly drawn and that all of these
balls had numbers GREATER than 100. What would you estimate is the average of these ten numbers?” Sub-
jects were asked the same question with GREATER replaced by SMALLER. For each question, subjects
received€0.50 for a correct response and€0.20 if the response was within 5 of the correct response. Fig-
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Table 6: Treatments Complex, Simple, and Few

Dependent variable:
Neglect χ̂ j

i

Omitted category: Median OLS OLS
Complex regression winsorized trimmed

(1) (2) (3) (4) (5) (6)

1 if Simple -0.29∗∗ -0.26∗∗∗ -0.28∗∗∗ -0.27∗∗∗ -0.25∗∗∗ -0.25∗∗∗

(0.12) (0.10) (0.09) (0.09) (0.08) (0.09)

1 if Few -0.29∗∗ -0.24∗∗ -0.17∗ -0.29∗∗∗ -0.18∗∗ -0.22∗∗∗

(0.12) (0.10) (0.09) (0.09) (0.08) (0.08)

Session FE Yes Yes Yes Yes Yes Yes

Task FE × prior No Yes No Yes No Yes

Controls No Yes No Yes No Yes

Observations 1177 1177 1177 1177 1138 1138
R2 0.01 0.02 0.03 0.08 0.04 0.06

Notes. Regresion estimates with robust standard errors (clustered at subject level) in parentheses.
The sample includes treatments Complex, Simple, and Few. By the design of the experiment, the
sample is restricted to those tasks in which following the first signal implies a first guess above
100. In treatment Few, experimental tasks in which subjects observe both signals are necessarily
excluded because there is no scope for neglecting selection. Columns (1)–(2) report median re-
gressions, and all other columns OLS regressions. In columns (3) and (4), |χ̂ j

i | is winsorized at
3. In columns (5)–(6), the sample is trimmed at |χ̂ j

i | = 3. Controls include gender, high school
grades, and log monthly disposable income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

4.4.2 Results

Figure 4 shows that treatment Nudge generates lower levels of neglect than Selected

replication. Table 7 provides a set of corresponding regression analyses. Treatment

Nudge reduces neglect by about 0.2−0.4 units of χ̂ j
i , which corresponds to about half of

the treatment difference between Selected and Control. In Selected replication, the me-

dian and average neglect are χ̂ j
i = 0.50 each, while in Nudge the median is χ̂ j

i = 0.10

and the average χ̂ j
i = 0.30.

4.5 Discussion

In summary, the evidence from the treatments aimed at identifying mechanisms sug-

gests that at least a large part of the reason why participants neglect selection in my

experiments is that the unobserved signals are not top of mind in the first place, so that

participants operate with an incorrect mental model and directly use the sample mean

ure 12 in Appendix C presents histograms of subjects’ responses to these two questions. A large majority
(almost 80%) of subjects guess the correct conditional expectations.

24



Table 7: Treatments Selected replication and Nudge

Dependent variable:
Neglect χ̂ j

i

Median OLS OLS
regression winsorized trimmed

(1) (2) (3) (4) (5) (6)

0 if Selected repl., 1 if Nudge -0.40∗∗∗ -0.20∗∗ -0.20∗∗ -0.21∗∗ -0.22∗∗∗ -0.24∗∗∗

(0.11) (0.08) (0.09) (0.09) (0.08) (0.08)

Session FE Yes Yes Yes Yes Yes Yes

Task FE × prior No Yes No Yes No Yes

Controls No Yes No Yes No Yes

Observations 1174 1174 1174 1174 1154 1154
R2 0.02 0.10 0.03 0.11 0.03 0.10

Notes. Regression estimates with robust standard errors (clustered at subject level) in parentheses. The
sample includes treatments Selected replication and Nudge. Columns (1)–(2) report median regressions,
and all other columns OLS regressions. In columns (3)–(4), |χ̂ j

i | is winsorized at 3. In columns (5)–(6),
the sample is trimmed at |χ̂ j

i |= 3. Controls include gender, high school grades, and log monthly disposable
income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

to estimate the population mean.

At the same time, these results do not imply that the conceptual or computational

difficulty of accounting for selection is unimportant. First, in treatment Nudge, neglect

did not disappear despite the fairly strong hint, which suggests that some participants

also struggle with the conceptual logic of selection. Second, this experiment was delib-

erately designed to make overcoming selection both conceptually and computationally

reasonably simple, yet doing so is likely much more difficult in real-world applications.

5 Replication

The experiments reported above replace a set of similar experiments, on which an ear-

lier working paper version of this paper was based. The earlier experiments followed

a very similar logic to the ones described above. Subjects estimated an abstract true

state and received computer-generated signals that induced a selection problem of the

same kind as above. While there are a few differences between the earlier experiments

and the ones discussed in the main text, the perhaps most important difference is that,

in the earlier experiments, the true state was based on 15, rather than six, random

draws. Thus, in the earlier experiments, subjects also needed to account for the base

rate in processing selected signals. The new design eliminates this additional difficulty.

Because the earlier experiments are very similar to the ones reported above, they can
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be viewed as a replication or robustness exercise. In particular, the earlier experiments

also contained versions of treatments Selected, Control, Nudge, Complex, and Simple. Ap-

pendix G summarizes these earlier experiments and the corresponding results. These

experiments also show that (i) subjects neglect selection on average; (ii) the type dis-

tribution exhibits a bimodal structure; (iii) an experimental nudge to consider the off-

screen signals has a significant effect on beliefs; and (iv) increasing the computational

complexity of the decision problem – while holding the difficulty of accounting for se-

lection constant – increases the frequency of neglect.¹⁵

6 Discussion and Related Literature

This paper has shown that people have a strong average propensity to neglect selec-

tion problems when forming beliefs, even when the information-generating process is

known and transparent. A detailed analysis of the mechanisms that give rise to biased

belief updating has highlighted the important role of what comes to mind and the re-

sulting mental models. As reflected by the type distribution of neglect, these mental

models appear to be binary in nature: subjects either employ a simplistic (and likely

automatic) default model of the environment that ignores unobserved data, or they de-

velop an objectively correct representation. An important result of the analysis is that

this neglect should not be thought of as an exogenously given neglect parameter that

is constant across individuals or even contexts. Rather, the extent to which subjects

neglect selection is partly determined by the computational complexity of the decision

problem, and the extent to which the decision maker’s attention is drawn to the pres-

ence of selection.

As discussed in the Introduction, the paper’s approach and results speak to the in-

formal metaphor of a “naïve intuitive statistician” in cognitive psychology (see Fiedler

and Juslin (2006); Juslin et al. (2007) for overviews and Brenner et al. (1996); Koehler

and Mercer (2009) for applications to selection problems).¹⁶ This metaphor and a sim-

ple averaging heuristic also characterize much recent experimental economics work on

¹⁵Apart from providing a replication, the earlier experiments also allow for one extension: a study of
the responsiveness of subjects’ wrong beliefs to observing others holding different beliefs, even though
everybody received the same selected information. To investigate this, I implemented experiments that
were similar to treatment Selected, except that after subjects had provided their continuous point belief
about the true state, they were shown the beliefs of two randomly selected participants from the same
experimental session who completed exactly the same task. Then, subjects were provided with an oppor-
tunity to revise their beliefs. However, in the data, subjects appear to be very confident in their own way
of looking at the problem and largely abstain from revising their beliefs. See Appendix G.6 for details.

¹⁶Work on the availability heuristic (Tversky and Kahneman, 1973) is also related in its focus on
salient information. However, experimental evidence for the availability heuristic usually involve showing
that irrelevant information influences judgment such as in free-form cued recall problems, while in my
experiments, relevant information is neglected.
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information-processing (Eyster et al., 2015; Enke and Zimmermann, 2019; Grimm and

Mengel, 2014; Graeber, 2018), including contemporaneous work on endogenous sam-

ple selection problems (Esponda and Vespa, 2018; Jin et al., 2018; Araujo et al., 2018;

Charness et al., 2018). Indeed, a long line of work on network experiments has doc-

umented that a deGroot-style averaging heuristic often describes behavior in complex

situations well. What sets this paper apart from these contributions is (i) the focus on

selection problems under a known data-generating process; (ii) a detailed study of the

role of incorrect mental models for neglect; including (iii) an exploration of the effect

of computational complexity on how people form mental models. Thus, the paper is

close to other work that focuses on why people make mistakes in contingent reason-

ing. Other such work has highlighted the importance of inferring from simultaneous

vs. sequential data (Esponda and Vespa, 2016; Ngangoue and Weizsäcker, 2015) and

of uncertainty (Martínez-Marquina et al., 2017).

The paper’s results also contribute to an active theory literature that highlights the

importance of incorrect mental models. Frequently, researchers motivate incorrect men-

tal models by appealing to constraints on what is top of mind, and this paper has pro-

vided encouraging evidence in this regard. Going forward, a relevant issue for both the

theory and the experimental literature will be to identify and describe (i) which incor-

rect mental models people form and (ii) how these depend on contextual features that

are irrelevant under traditional theories, such as complexity, salience, and environmen-

tal cues that active different memory traces.
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A Robustness Checks

This Appendix reports two further sets of robustness checks to show that the results are

neither driven by outliers nor by sample exclusion criteria. Table 8 replicates all treat-

ment comparisons reported in the main text, except that the regressions are estimated

using OLS and the sample includes all observations, including extreme outliers.

Second, Table 9 provides an additional set of robustness checks. Here, in all specifi-

cations, the sample is restricted to beliefs in tasks where the respective subjects stated

the “correct prior,” i.e., in which the subject’s first binary guess followed the private

signal. Again, the results are very similar.

Table 8: Robustness: OLS regressions on full sample

Dependent variable:
Neglect χ̂ j

i

OLS regressions: Full sample

(1) (2) (3) (4) (5) (6)

0 if Control, 1 if Selected 0.56∗∗∗ 0.66∗∗∗

(0.10) (0.11)

0 if Complex or Few, 1 if Simple -0.32∗∗∗ -0.32∗∗∗

(0.10) (0.10)

0 if Complex or Simple, 1 if Few -0.28∗∗ -0.46∗∗∗

(0.12) (0.13)

0 if Selected repl., 1 if Nudge -0.18∗ -0.19∗∗

(0.10) (0.09)

Session FE Yes No Yes Yes Yes Yes

Task FE × prior No Yes No Yes No Yes

Controls No Yes No Yes No Yes

Observations 894 894 1177 1177 1174 1174
R2 0.08 0.11 0.02 0.13 0.02 0.12

Notes. OLS estimates, robust standard errors (clustered at subject level) in parentheses. The dependent vari-
able is the neglect χ̂ j

i that is implied in a given belief. In columns (1)–(2), the sample includes all observations
from treatments Control and Selected. In columns (3)–(4), the sample includes all observations from treat-
ments Complex, Simple, and Few. In columns (5)–(6), the sample includes all observations from treatments
Nudge and Selected replication, and in columns (7)–(8) all observations from treatments Selected replication
and Endogenous. Controls include gender, high school grades, and log monthly disposable income. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B Additional Tables

Table 10: Treatments Selected and Control: Using bN ,2 as neglect benchmark

Dependent variable:
Neglect χ̂ j

i

Median regression OLS winsorized OLS trimmed

(1) (2) (3) (4) (5) (6)

0 if Control, 1 if Selected 0.67∗∗∗ 0.74∗∗∗ 0.57∗∗∗ 0.62∗∗∗ 0.67∗∗∗ 0.73∗∗∗

(0.11) (0.10) (0.10) (0.10) (0.11) (0.11)

Session FE Yes Yes Yes Yes Yes Yes

Task FE × prior No Yes No Yes No Yes

Controls No Yes No Yes No Yes

Observations 894 894 894 894 845 845
R2 0.08 0.11 0.09 0.11 0.10 0.14

Notes.Regression estimates, with robust standard errors (clustered at subject level) in parentheses. The
dependent variable is the neglect χ̂ j

i that is implied in a given belief, where this benchmark is computed
using bN ,2 rather than bN ,1, see the discussion in Section 2.2. The sample includes each of subjects’ eight
beliefs in the Selected and Control conditions. Columns (1)–(2) report median regressions, and columns
(3)–(6) are OLS regressions. In columns (3)–(4), the dependent variable is winsorized at |χ̂ j

i | = 3. In
columns (5)–(6), the sample is trimmed at |χ̂ j

i |= 3. Controls include gender, high school grades, and
log monthly disposable income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 11: Correlates of neglect in treatments Selected, Sequential, and Feedback

Dependent variable:
Neglect χ̂ j

i

Median regression OLS wins. OLS trimmed

(1) (2) (3) (4) (5) (6)

High school grades [z-score] -0.13∗∗∗ -0.10∗∗∗ -0.085∗∗ -0.071∗∗ -0.060∗∗

(0.04) (0.04) (0.03) (0.03) (0.03)

Response time [min.] -0.25∗∗∗ -0.22∗∗∗ -0.24∗∗∗ -0.22∗∗∗ -0.18∗∗∗

(0.04) (0.04) (0.06) (0.04) (0.04)

Treatment FE Yes Yes Yes Yes Yes Yes

Session FE Yes Yes Yes Yes Yes Yes

Task FE × prior No No No Yes Yes Yes

Controls No No No Yes Yes Yes

Observations 2236 2230 2230 2230 2230 2148
R2 0.02 0.03 0.03 0.16 0.12 0.07

Notes. Regression estimates with robust standard errors (clustered at subject level) in parentheses. The sample includes
treatments Selected, Sequential, and Feedback. Columns (1)–(2) and (5)–(6) report median regressions, and all other
columns OLS regressions. In column (5), |χ̂ j

i | is winsorized at 3. In column (6), the sample is trimmed at |χ̂ j
i | = 3.

Controls include gender and log monthly disposable income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 12: Overview of the experimental tasks in treatments Complex and Simple

True First Observed Observed Observed Observed Unobs. Unobs. Bayesian Neglect
State signal Signal A Signal B Signal C Signal D Signal E Signal F Belief Belief

103.67 136 128 148 70 – 70 70 103.67 120.50

109.33 150 104 148 114 – 70 70 109.33 129.00

99.33 70 70 70 136 – 114 136 101.00 86.50

90.67 114 150 70 70 – 70 70 90.67 101.00

98.33 148 104 128 70 – 70 70 98.33 112.50

109.67 70 70 70 148 – 150 150 103.00 89.50

122.00 114 150 136 148 114 70 – 122.00 132.40

90.67 128 136 70 70 – 70 50 90.67 101.00

Notes. Overview of the belief formation tasks in treatment Complex in order of appearance. The signals in
treatment Simple are obtained by replacing each signal that is larger than 100 by 130. The categorization
into observed and unobserved signals applies to the case in which subjects follow their first signal, i.e., guess
≥ 100 if their signal was larger than 100, and ≤ 100 otherwise. Subjects in the Complex and Simple treat-
ments observed only their own signal as well as the “observed” signals. See Section 2.2 for a derivation of
the Bayesian and neglect benchmarks.
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Table 13: Overview of the experimental tasks in treatment Few

True First Observed Unobs. Bayesian Neglect
State signal Signal A Signal B Belief Belief

132.00 136 128 132.00 132.00

110.00 150 70 110.00 150.00

100.00 70.00 136 100.00 70.00

92.00 114 70 92.00 114.00

109.00 148 70 109.00 148.00

70.00 70 70 70.00 70.00

132.00 114 150 132.00 132.00

99.00 128 70 99.00 128.00

Notes. Overview of the belief formation tasks in treatment Few
in order of appearance. The categorization into observed and
unobserved signals applies to the case in which subjects follow
their first signal, i.e., guess ≥ 100 if their signal was larger
than 100, and ≤ 100 otherwise. Subjects in the Complex and
Simple treatments observed only their own signal as well as
the “observed” signals. See Section 2.2 for a derivation of the
Bayesian and neglect benchmarks.

Table 14: Manipulation checks for treatments Complex, Simple, and Few

Dependent variable:
Response time [min.] Decision noise |ε̂ j

i|

OLS Median regression OLS wins. OLS trimmed

(1) (2) (3) (4) (5) (6)

0 if Complex or Few, 1 if Simple -0.38∗∗∗ -0.38∗∗∗ -0.28∗∗∗ -0.20∗∗∗ -0.071 -0.077
(0.09) (0.08) (0.06) (0.05) (0.07) (0.06)

0 if Complex or Simple, 1 if Few -0.51∗∗∗ -0.49∗∗∗ -0.28∗∗∗ -0.20∗∗∗ -0.23∗∗∗ -0.26∗∗∗

(0.08) (0.08) (0.06) (0.05) (0.07) (0.06)

Session FE Yes Yes Yes Yes Yes Yes

Task FE × prior No Yes No Yes Yes Yes

Controls No Yes No Yes Yes Yes

Observations 1177 1177 1177 1177 1177 1138
R2 0.15 0.21 0.00 0.15 0.19 0.09

Notes. Regresion estimates with robust standard errors (clustered at subject level) in parentheses. The sample includes treatments
Complex, Simple, and Few. By the design of the experiment, the sample is restricted to those tasks in which following the first
signal implies a first guess above 100. In treatment Few, experimental tasks in which subjects observe both signals are necessarily
excluded because there is no scope for neglecting selection. Columns (3)–(4) report median regressions, and all other columns
OLS regressions. In column (5), ε̂ j

i is computed after |χ̂ j
i | is winsorized at 3. In column (6), the sample excludes observations with

|χ̂ j
i |> 3. Controls include gender, high school grades, and log monthly disposable income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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C Additional Figures
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Figure 5: Distribution of number of type-consistent beliefs across subjects in treatments Selected, Sequen-
tial and Feedback. A belief j is type-consistent if |χ̂i − χ̂

j
i | ≤ 0.05.
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Figure 6: Distribution of neglect types χ̂i in treatments Selected, Sequential and Feedback. A subject’s type
is computed as median of χ̂ j

i across tasks j.
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Figure 7: Distribution of neglect types χ̂i in treatments Selected, Sequential and Feedback. A subject’s type
is computed as mean of χ̂ j

i across tasks j, where the distribution of χ̂ j
i is trimmed at |χ̂ j

i |=3.

0
.0

2
.0

4
.0

6
.0

8
.1

Fr
ac

tio
n

0 .5 1 1.5 2
SD of across-task neglect parameters

SD of neglect parameters

Figure 8: Subject-level standard deviation of implied neglect parameters χ̂ j
i across tasks in treatments Se-

lected, Sequential and Feedback. Before computing standard deviations, the distribution of χ̂ j
i is trimmed

at |χ̂ j
i |=3.
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Figure 9: Distribution of implied χ̂ j
i in treatment Selected in separate tasks. The figure plots the raw

beliefs data across all subjects and tasks, normalized into units of χ according to eq. (7). That is, the
data are not aggregated or rounded in any way. To ease readability, the plot excludes (i) beliefs from
tasks in which a subject’s first guess contradicted their private signal and (ii) beliefs with |χ̂ j

i |> 2.
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Figure 10: Distribution of neglect types χ̂i in treatments Selected, Sequential, and Feedback. A sub-
ject’s type is determined based on the following procedure: for each subject i and candidate type
t ∈ {−1,−0.9, . . . , 2}, I count how many χ̂ j

i satisfy |t − χ̂ j
i | ≤ 0.05. Then, I classify each subject as

that candidate type that rationalizes the largest number of beliefs. Here, the neglect benchmark is given
by bN ,2, see the discussion in Section 2.2.
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Figure 11: Distribution of neglect types χ̂i in treatment Control. A subject’s type is determined based
on the following procedure: for each subject i and candidate type t ∈ {−1,−0.9, . . . , 2}, I count how
many of the implied χ̂ j

i satisfy |t − χ̂ j
i |< 1/20. Then, I classify each subject as that candidate type that

rationalizes the largest number of beliefs. Each χ̂i is computed using the same procedure as for treatment
Selected, i.e., using equation (7).
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Figure 12: Guesses in conditional expectation tasks. The left panel presents the distribution of responses
to a follow-up question in which subjects were asked to estimate the average of ten random draws, all
of which are smaller than 100. The right panel follows an analogous logic, except that all ten random
draws are above 100.
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D Treatment Sequential

In treatment Sequential, 75 subjects went through the same procedures as those in Se-

lected, except that each of the eight tasks was presented in a separate round / on a

separate decision screen. This treatment was randomized along with treatments Se-

lected and Control within the same experimental sessions.

Table 15 presents the results on the treatment comparison between Sequential and

Control. Regardless of the regression specification, the treatment dummy is quantita-

tively large and statistically highly significant. In fact, the point estimates are similar

to those in the treatment comparison between Selected and Control, compare Table 5

in the main text.
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E Treatment Feedback

In treatment Feedback, 75 new subjects went through a procedure that was very similar

to that in Selected, except for two differences:

1. Before subjects completed the same eight tasks as those in Selected, they were

asked to solve additional six tasks. Thus, in total, subjects worked on 14 tasks,

spread over seven rounds. The six “new” tasks were of the same type as the other

ones, they just had different signal realizations. These additional six tasks were

meant to provide subjects with the possibility to receive feedback before they

entered the tasks on which we compare behavior to treatment Selected.

2. After each round, subjects received feedback about their performance. This feed-

back included: (i) subjects were reminded of their continuous belief statement;

(ii) they were informed of the corresponding true state; and (iii) they received

information on the profits that would result from the respective task in case it

would be randomly selected for payment.

Table 16 summarizes the results of this treatment by comparing belief patterns with

those in treatment Selected. Throughout, to keep the comparison meaningful, the anal-

ysis focuses on those eight tasks that were identical across Selected and Feedback. Note

that subjects in Feedback had already gathered feedback on six tasks before working on

these eight tasks.

The table shows that the coefficient on the treatment dummy is statistically insignif-

icant and very small in magnitude across all specifications. This provides evidence that,

in terms of levels of beliefs across all tasks, there are no discernible differences between

Selected and Feedback.

Second, the table also investigates changes in belief patterns over the course of the

eight tasks (four rounds). In particular, it is conceivable that subjects in Feedback de-

velop more rational beliefs over time, relative to those in Selected. To investigate this,

the regressions in columns (3), (6), and (9) include an interaction term between the

period (round) of the experimental task and the treatment condition. If feedback in-

duced subjects to learn over the course of the experiment, then this coefficient should

be negative. However, as the results show, the coefficient estimate is always very close

to zero and statistically insignificant. Very similar results hold when I investigate learn-

ing over time by interacting the treatment dummy with a dummy for the last period,

compare columns (4), (7), and (10). Thus, overall, there is no evidence that subjects

learn over the course of the experiment.

Table 17 compares beliefs in Feedback with those in Control. Again, the analysis

focuses on those tasks that both treatments share in common. Througout, the treatment
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Table 17: Comparing treatments Feedback and Control

Dependent variable:
Neglect χ̂ j

i

Median regression OLS winsorized OLS trimmed

(1) (2) (3) (4) (5) (6)

0 if Control, 1 if Feedback 0.40∗∗∗ 0.40∗∗∗ 0.57∗∗∗ 0.62∗∗∗ 0.53∗∗∗ 0.56∗∗∗

(0.09) (0.12) (0.10) (0.10) (0.09) (0.09)

Task FE × prior No Yes No Yes No Yes

Controls No Yes No Yes No Yes

Observations 904 904 904 904 883 883
R2 0.08 0.07 0.09 0.14 0.09 0.12

Notes. Regression estimates, robust standard errors (clustered at subject level) in parentheses. The
dependent variable is the neglect χ̂ j

i that is implied in a given belief. The sample includes each of subjects’
eight beliefs in the Sequential and Control conditions, i.e., eight beliefs per subject. Columns (1)–(2)
report median regressions, and columns (3)–(6) OLS regressions. In columns (3)–(4), the dependent
variable is winsorized at |χ̂ j

i | = 3. In columns (5)–(6), the sample excludes |χ̂ j
i | > 3. Controls include

gender, high school grades, and log monthly disposable income. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

dummy is statistically significant and comparable to the results in the baseline analysis

in the main paper.

F Treatment Random

Table 16 summarizes the results of this treatment by comparing stated beliefs with a

Bayesian and full neglect benchmark, which is computed as described in the main text.

The table shows that median and average beliefs are always distorted away from the

Bayesian benchmark in the direction of full neglect.

Treatments Random and Selected are not directly comparable because the true state

was generated as average of six random draws in Selected but of eight draws in Random.

Still, both of these treatments allow to compute the same task-level implied neglect pa-

rameters χ j
i that reflect the location of a belief on the spectrum between full rationality

and averaging the visible data. In a tentative analysis, Table 19 shows that implied ne-

glect parameters in Selected and Random are statistically indistinguishable from each

other.

In summary, all patterns reported here show that treatment Random produces ne-

glect patterns that are comparable to those in Selected. This suggests that the reason

for why subjects follow a “what you see is all there is” averaging heuristic is not the

conceptual difficulty of selection but rather a more general tendency to estimate the

population mean through the mean of the visible sample.
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Table 19: Treatments Selected and Random

Dependent variable:
Neglect χ̂ j

i

Median OLS OLS
regression winsorized trimmed

(1) (2) (3) (4) (5) (6)

0 if Selected, 1 if Random -0.067 -0.069 -0.12 -0.13 -0.11 -0.12
(0.18) (0.09) (0.09) (0.09) (0.08) (0.08)

Task FE × prior No Yes No Yes No Yes

Controls No Yes No Yes No Yes

Observations 1115 1115 1115 1115 1083 1083
R2 0.00 0.05 0.00 0.07 0.00 0.06

Notes. Regression estimates, with robust standard errors (clustered at subject level) in parenthe-
ses. The dependent variable is the neglect χ̂ j

i that is implied in a given belief. The sample includes
each of subjects’ eight beliefs in the Selected and Random conditions. Columns (1)–(2) report me-
dian regressions, and columns (3)–(6) are OLS regressions. In columns (3)–(4), the dependent
variable is winsorized at |χ̂ j

i |= 3. In columns (5)–(6), the sample is trimmed at |χ̂ j
i |= 3. Controls

include gender, high school grades, and log monthly disposable income. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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G Earlier Experiments: Replication

G.1 Overview

All treatments reported in the main text were implemented in June – September 2018.

These treatments replace a set of similar experiments that I ran in 2015 and 2016, on

which an earlier working paper version of this paper was based. Because the earlier

experiments are very similar to the ones reported in the main text, they can be viewed

as replication and robustness exercise. In particular, the earlier experiments also con-

tained versions of treatments Selected, Control, Nudge (called Salience in the earlier

experiments), Complex (called Intermediate), and Simple.

The earlier experiments followed a very similar logic to the ones described in the

main text. Subjects estimated an abstract true state, and received computer-generated

signals that induced a selection problem of the same kind as above. The most impor-

tant difference between treatment Selected and these earlier experiments is that, in the

earlier experiments, the true state was based on 15, rather than six, random draws, so

that subjects also needed to account for the base rate in processing selected signals.

The new design eliminated this additional difficulty.

This Appendix summarizes the design and results of the earlier experiments. First,

I describe the basic experimental design and the results on selection neglect by com-

paring the previous versions of treatments Selected and Control. Then, I study the role

of nudges and computational complexity. Finally, I describe the results of treatment

Disagreement (briefly mentioned in the main text), in which subjects were given an

opportunity to revise their beliefs after they had observed the beliefs of two peers who

faced exactly the same decision problem and information signals. For completeness,

the exposition of these earlier experiments largely follows the exposition in the previ-

ous version of the paper. The previous version of the paper, including all previous ex-

perimental instructions, can also be accessed at https://sites.google.com/site/
benjaminenke.

G.2 Experimental Design

Subjects were asked to estimate an ex ante unknown state of the world µ and were

paid for accuracy. First, the computer generated µ; to this end, the computer drew 15

times with replacement from the set X = {50,70, 90,110, 130,150}. The average of

these 15 draws then constituted the true state µ. Second, the computer generated six

signals about the state. Let Y denote the set of 15 numbers that determine the state.

The computer generated six signals s1, . . . , s6 by randomly drawing from Y , without
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replacement. Thus, ex ante, each signal is independently and uniformly distributed

over the set X .

In the course of the experiment, a subject “interacted” with five computer players

(called players I–V). The experimental task consisted of multiple stages. First, after the

computer randomly generated the true state and the signals, a subject as well as each

of the five computer players privately observed one of the six signals. In the second

stage, the subject and the computer players each selected into a group based on the

respective signal, which introduces an information-based selection problem. In the third

stage, subjects observed the signals of some of the computer players, and finally stated

a belief over µ in the fourth stage.

Specifically, in the first stage, subjects received a private signal. In the second stage,

they had to decide upon their group membership (blue or red group) based on their

signal. The payoff structure was such that subjects earned higher profits as member of

the blue group if µ < 100 and of the red group provided that µ > 100, i.e., profits

were €12 if the subject opted for the red (blue) group when µ > 100 (µ < 100),

and €2 otherwise. Given this payoff structure, it was rather obvious for subjects which

group to enter, and I show below that subjects indeed almost always entered the red

group if their private signal was larger than 100 and the blue group otherwise. The

five computer players similarly decided on their group membership using a decision

rule that was known to subjects, i.e., these players opted for the blue (red) group if

their private signal was smaller (higher) than 100. After this first stage, the two groups

exhibit strong assortative matching on information, with all high signals being in the

red group, and all low signals being in the blue group.

In the third stage, subjects observed the signals of some of the computer players to

gather additional information about the state, i.e., subjects obtained the private signals

of these computer players. The only difference between the Selected and the Control

treatment consisted of the information subjects received from the computer players. In

the Selected treatment, subjects talked to all computer players in their own group, but

at least with three computers. Thus, for instance, if a subject’s group contained only one

computer player, they obtained the signal of that player and of two randomly chosen

players from the other group. If a subject’s group contained four players, a subject

observed (only) these four. It was made clear to subjects that whenever they did not

talk to a particular player, it would have to be that this player entered the opposite

group. Thus, subjects could easily infer the number of players in each group. Note that

given the simplified discretized uniform distribution over the signal space, it was rather

straightforward for subjects to infer which types of signals they were missing. This

provides a crucial input into the design, because it ensures that subjects can in principle
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understand the statistical properties of the signals they do not see. In particular, being

sophisticated about selection requires subjects to understand that when they are in the

red group, a missing signal was 70, in expectation, while it was 130 when they were

in the blue group. Finally, subjects stated a belief over µ.

In the Control condition, participants received the same signals as subjects in the

Selected treatment, but additionally obtained a coarse version of the signals of the com-

puter players that subjects in the Selected condition did not observe. Specifically, if the

signal of these additional computer players was in {50, 70,90}, the respective player

communicated 70 to the subject, while if the signal was in {110, 130,150}, the com-

puter communicated 130. Given that these coarse messages equal the expected signal

conditional on group membership, the informational content of the Selected and the

Control treatments is identical.

Subjects completed seven independent tasks without receiving feedback in between.

For instance, in the first task, subjects’ private signal was 130, so that the optimal choice

in the first decision was to opt for the red group. Here, subjects in the Selected condition

would meet three computer players that obtained signals 110, 90, and 70, i.e., subjects

observed the signal of one player from their own red group and two from the blue group.

The remaining two computer players received private signals of 50 and 90, respectively.

While subjects in the Selected condition did not observe the signals of these players,

those in the Control condition observed coarse versions of these signals, i.e., 70 and 70.

A comprehensive set of control questions ensured that subjects understood the pro-

cess generating their data. Most importantly, subjects were asked what they knew about

a computer player’s private signal if they were in the red group, but did not observe

the signal of that computer player, i.e., that this computer player must have obtained a

private signal of less than 100 and hence opted for the blue group. Only once subjects

had correctly solved all questionnaire items could they proceed to the main tasks.¹⁷ In

the belief formation stage, all beliefs were restricted to be in [0,200] by the computer

program.

¹⁷The control questions followed a multiple choice format, with 3–4 questions per screen. Thus, trial-
and-error was very cumbersome. Moreover, the BonnEconLab has a control room in which the experi-
menter can monitor the decision screens of all experimental subjects. Thus, whenever a subject appeared
to have problems in answering the control questions, an experimenter approached the subject, clarified
open questions (if any) and excluded the subject from the experiment if they did not appear to under-
stand the instructions. Also notice that it turns out that one of the control questions was phrased subop-
timally. This question asked subjects which signal a computer player must have gotten “on average” if
that signal induced the computer player to enter the red group (i.e., 130). Here, roughly 25% of subjects
indicated to the experimenter that they did not understand the concept of an “average signal” given that
the question asked for the signal of one particular computer player; nevertheless, all of these subjects
showed a clear understanding that the signal of that computer player must have been larger than 100.
Given that an incentivized follow-up question explicitly investigated subjects’ ability to compute condi-
tional expectations, subjects were allowed to continue to the experiment after the experimenter privately
explained how to interpret the phrase “average signal”.
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The experiments were conducted at the BonnEconLab of the University of Bonn

and computerized using z-Tree (Fischbacher, 2007). Participants were recruited and

invited using hroot (Bock et al., 2014). 78 student subjects participated in these two

treatments (48 in Selected and 30 in Control) and earned an average of €11.60 includ-

ing a€4 show-up fee.¹⁸ After the written instructions were distributed, subjects had 15

minutes to familiarize themselves with the task. Upon completion of the control ques-

tions, subjects entered the first task. Each task consisted of two computer screens. On

the first screen, subjects were informed of their private signal and decided which group

to enter. On the second screen, participants received the computer players’ signals and

stated a point belief. Both decisions were incentivized, in expectation: in total, subjects

took 14 decisions (seven on which group to enter and seven belief statements), one of

which was selected for payment, which constitutes an incentive-compatible mechanism

in such a setup (Azrieli et al., 2018). The probability that a belief was randomly selected

for payment was 80%, while a group membership was chosen with probability 20%. Be-

liefs were incentivized using a quadratic scoring rule with maximum variable earnings

of€18, i.e., variable earnings in a given task j equalledπ j =max{0;18−0.2×(b j−t j)2},
where b denotes the belief and t the state. Across tasks, the average financial incentives

to hold sophisticated (relative to fully naïve) beliefs were roughly €12. Payments for

the group entrance decision were €12 if the subject opted for the red (blue) group

when µ > 100 (µ < 100), and €2 otherwise.

G.3 Baseline Hypothesis

Given true state µ=
∑15

k=1 mk/15, for mk ∈ {50, 70,90, 110,130, 150} with probability

1/6 each, the signals si = mk for some k and i ∈ {1, . . . , 6} are unbiased. Let N denote

the number of signals a subject actually sees, i.e., the number of “communication” part-

ners. Denote by ga the group membership of computer player a, i.e., ga ∈ {red ,blue}.
In the present setup, E(si | ga = red) = 130 and E(si | ga = blue) = 70. Given some

signals, a Bayesian would compute the mean posterior belief bB as

bB = E[µ] =

∑N
v=1 sv +

∑6
l=N+1 E[sl | gl] + E[m]× 9

15

where sv denotes an observed signal and sl an unobserved one. The second term

in the numerator denotes the expectation of a signal conditional on the signal recip-

ient entering a certain group. The third term in the numerator reflects the base rate

E[m] = 100. However, starting with Grether (1980), a long stream of research has

¹⁸The unbalanced treatment allocation was determined ex ante, which reflects the fact that the Con-
trol condition merely serves as a “straw man” with very little expected noise.
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shown that people tend to neglect the base rate. I thus define an alternative “sophisti-

cated” benchmark (in the sense of absence of selection neglect) bR as

bR =

∑N
v=1 sv +

∑6
l=N+1 E[sl | gl]

6
. (10)

That is, the “sophisticated” benchmark ignores the base rate, but takes into account

selection. This normalization only serves to illustrate the distribution of individual-level

neglect: without assuming base rate neglect, any estimator for the naïveté parameter

would be severely biased if people actually neglect the base rate. The assumption of full

base rate neglect will be corroborated below using data from the Control treatment:

here, people overwhelmingly state beliefs that reflect full base rate neglect, but are

sophisticated otherwise. Still, the assumption of full base rate neglect is only used to

identify naïveté parameters, while all treatment comparisons are conducted on the raw

data. Below, I report upon a robustness treatment in which base rate neglect does not

bias the estimates of selection neglect.

Now imagine that people neglect selection, so that they merely base their beliefs

on “what they see”. Let χ ∈ [0,1] parameterize the degree of naïveté such that χ = 1

implies full neglect. Define a neglect posterior bSN as a weighted average of bR and a

fully naïve belief bN , which consists of averaging the visible signals:

bSN = (1−χ)bR +χ bN = (1−χ)bR +χ

∑N
i=1 sv

N

= bR +χ
6− N

6
(s̄v − s̄l) , (11)

where s̄v ≡ 1/N
∑N

v=1 sv is the average visible signal and s̄l ≡ 1/(6−N−1)
∑6

i=N+1 E(sl |gl)
the average expected “non-visible” signal. That is, the neglect belief bSN consists of the

sophisticated belief plus an intuitive distortion term that depends on χ.

G.4 Results on Selection Neglect

I will frequently work with a measure of subjects’ beliefs that is independent of the

specific updating task. To this end, I use the analog of equation 11 to compute the

naïveté implied in each belief of subject i in belief formation task j:

χ̂
j
i =

6(b j
i − b j

R)
(6− N) (s̄v − s̄l)

. (4)

Using this procedure, beliefs can be directly interpreted as reflecting sophisticated

(χ = 0), fully naïve (χ = 1), or intermediate values. The OLS regressions reported
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Figure 13: Distribution of naïveté in the Selected treatment. To ease readability, the figure excludes ob-
servations outside χ ∈ [−1, 2] (30 out of 336 obs.).

in columns (1) and (2) of Table 20 formally confirm that the full set of seven beliefs

per subjects, expressed in units of χ, differs across treatments (the standard errors are

clustered at the subject level). The large bias implies significantly lower earnings of sub-

jects in the Selected condition. The expected profit from all seven belief formation tasks

(i.e., the average hypothetical profit from each belief) is €5.00 in Selected and €10.50

in Control (p < 0.0001, Wilcoxon ranksum test).¹⁹ For comparison, the expected profit

from being fully sophisticated in all tasks is €12.70.

To develop a deeper understanding of subjects’ precise belief patterns, I examine

the distribution of estimated naïveté parameters χ. Figure 13 depicts the distribution

of the implied naïveté in all separate beliefs, i.e., seven beliefs per subject. That is, the

right panel plots the raw data, translated into units of naïveté, without any aggregation,

rounding, or other reasons to expect beliefs to reflect one of the extreme predictions

of χ = 0 or χ = 1. Nevertheless, the data exhibit two large spikes at exactly zero and

one, i.e., the fully sophisticated and fully naïve benchmark. For example, more than

50% of the beliefs of all subjects with median χi > 0.5 lie within a very small interval

around the fully naïve belief, 0.95 ≤ χ j
i ≤ 1.05. In addition, it is conceivable that this

number would be even higher if we took into account that many of the beliefs close to

one might reflect the same cognitive strategy plus decision noise.

Next, I examine basic correlates of biased updatingwithin treatment Selected. Columns

(3)–(4) of Table 20 show that participants with better high school grades (a common

proxy for cognitive ability) are significantly less likely to commit neglect (Benjamin et

¹⁹Actual profits, which are partly based on group membership and include the show-up fee, are also
significantly different from each other (€13.70 vs. €10.10, p = 0.0628).
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al., 2013). Columns (5) and (6) show that neglecting selection is significantly corre-

lated with correlation neglect, measured as in Enke and Zimmermann (2019). When

both high school grades and correlation neglect are inserted into the regression, the

coefficient on subjects’ high school grades drops in size and ceases to be significant.

Finally, I study the relationship between neglect and response times, which are of-

ten advocated for as proxy for cognitive effort in experiments (Rubinstein, 2007, 2016).

In the data, the average response time across tasks and subjects in treatment Selected is

56 seconds. Columns (7)–(8) of Table 20 investigate the relationship between subjects’

naïveté χ (as implied in each belief, see eq. 11) and the corresponding response time

(in minutes). The results show that higher response times are significantly associated

with less neglect. At the same time, the quantitative magnitude of this relationship is

remarkably small: interpreted causally, the point estimate implies that response times

would have to increase by four minutes per task to move a full neglect subject to fully so-

phisticated beliefs, which corresponds to roughly six standard deviations in the sample.

Thus, it appears as if the relationship between response times and neglect is quantita-

tively much too small to be able to explain neglect purely as the result of low response

times (cognitive effort).

G.5 Nudges and Computational Complexity

Design. I introduce treatments Intermediate and Simple. These experimental condi-

tions follow the same procedures as those in Selected, except for one variation. Recall

that in Selected, the true state (as well as the signals) were determined by random

draws from the set {50, 70,90, 110,130, 150}. In Intermediate, this set is replaced by

{70,70, 70,110, 130,150}, and in Simple by {70, 70,70, 130,130, 130}.²⁰ Notice that

whenever subjects’ private signal is above 100, so that they enter the red group, the

problem of backing out the missing observations from the blue group is both utterly

simple and identical across the Intermediate and Simple treatments: subjects only need

to remember that a computer player being in the blue group deterministically implies

a signal of 70. That is, in both treatments, people’s potential problems in computing

conditional expectations cannot drive any results.

At the same time, treatment Intermediate is computationally more complex than

Simple because the process of computing a (naïve) posterior from the visible signals

involves averaging various different values, as opposed to mostly 130’s. That is, just

as required by the research hypothesis, these two treatments leave the difficulty of ac-

²⁰To implement these changes, the signal draws from Selectedwere simply replaced by the appropriate
values, e.g., 50 became 70. Thus, subjects in Intermediate and Simple essentially solved the same tasks
as those in Selected.
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counting for selection constant, but vary the extent to which the environment in general

consumes mental resources, in particular the extent to which people may be distracted by

an aspect of the problem that is unrelated to accounting for selection.²¹ In total, 89 subjects

participated in Intermediate and Simple, which were randomized within session.

Results. In analyzing the data, I start by restricting attention to those experimental

tasks in which subjects’ private signal satisfies s > 100 so that the difficulty of backing

out the missing signals is indeed identical across Intermediate and Simple. Columns

(1) and (2) of Table 21 present the results of OLS estimations in which I regress the

naïveté implied in subjects’ beliefs (only in those tasks in which s > 100) on a treatment

dummy, with the standard errors again clustered at the subject level. The coefficient

on the dummy is large and statistically highly significant in both unconditional and

conditional regressions.

Recall that the treatment comparison between Intermediate and Simple rests on

the idea that the difficulty of backing out missing observations is identical as long as

s > 100. A similar argument can be constructed for the case of s < 100. Here, sub-

jects in both Intermediate and Selected had to back out missing signals from the set

{110,130, 150}, yet the difficulty of computing a fully naïve belief varies across these

two conditions because subjects in Intermediate mostly had to process 70’s as opposed

to {50, 70,90}. Accordingly, the research hypothesis would prescribe that subjects in

Selected are more biased. Columns (3) and (4) of Table 21 report corresponding OLS

regressions. As hypothesized, the point estimates are positive; at the same time, the co-

efficients are either only marginally significant or marginally not significant. A potential

reason for the slight discrepancy between the results for the comparison Intermediate–

Selected relative to Intermediate–Simple is that the mathematical steps of accounting for

selection are harder in the first case, so that the data are potentially noisier.

In any case, columns (5) and (6) present a pooled analysis, in which I combine the

observations from columns (1)–(4). Here, people exhibit significantly less neglect in

the less complex tasks compared to the more complex ones, where again complexity is

solely defined through the “distraction” of more cumbersome computations.²²

²¹Note that while the informational content of these two treatments is not identical, the differences
are very small: a visible signal of 110 or 150 in Intermediate would turn into a 130 in Simple. In any case,
backing out the absent observations is literally identical across conditions. Thus, by expressing all beliefs
in terms of units of naïveté, we can evaluate the hypothesis that subjects in Simple will attend more to
the absent observations and hence commit less neglect.

²²More precisely, in line with the specifications in columns (1)–(4), the complexity dummy assumes
a value equal to zero if an observation is (i) from treatment Simple and s > 100, or (ii) from Intermediate
and s < 100. It equals 1 if an observation is (i) from Intermediate and s > 100, or (ii) from Selected and
s < 100.
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G.6 Disagreement

Hypothesis. While treatment Salience documented that shifting subjects’ attention

can have large effects on their beliefs, such direct attention manipulations are rare in

practice. Instead, more natural contexts are likely to provide indirect hints that might

induce people to reconsider their updating rule. A prime example is the presence of

disagreement. After all, people are often exposed to the beliefs of others, and this may

induce people to question their original strategy, and notice the selection problem.

Design. In treatment Disagreement, a new set of subjects solved the seven belief for-

mation tasks from the Selected treatment reported above. The new treatment consisted

of two parts, as illustrated by Table 22. In part one, subjects solved the first three be-

lief formation tasks (without feedback). This allows me to compute an out-of-sample

measure of subjects’ type χ.

In part two, subjects solved the remaining four tasks. Here, similarly to treatment

Selected, subjects received a private signal and were allocated to the red or blue group

depending on whether their signal was above or below 100.²³ Then, subjects stated a

belief. Afterwards, they were shown the beliefs of two other randomly drawn subjects

(“neighbors”) from the same session.²⁴ Importantly, all subjects not only solved the

same tasks, they also received the same private signal and observed the signals of the

same computer players. The written instructions placed heavy emphasis on the presence

of identical information and a verbal summary was read out aloud to induce common

knowledge. After subjects observed the beliefs of their neighbors, they were asked to

state a second belief.²⁵ Subjects did not receive feedback between the different tasks,

except for observing the beliefs of their neighbors. Subjects’ decisions were financially

incentivized such that either part one or part two of the experiment was drawn for

payout with probability 50% each; conditional on either part being drawn, one of the

respective decisions was implemented, just like in the baseline treatments.

Results. For the purposes of the empirical analysis, I again normalize the data across

tasks by computing the naïveté χ that is implied by each belief and then pool the data

across tasks and subjects. First note that the structure of the belief distribution in this

²³In these four tasks, subjects did not decide on their group membership. Rather, the computer allo-
cated them into the red (blue) group when their private signal was higher (lower) than 100. This was
done to ensure that subjects indeed had identical information.

²⁴This random matching was not constant across tasks.
²⁵The experimental procedures paid special attention to preserving anonymity between subjects to

eliminate confounding effects of image concerns as arising from people feeling uncomfortable with stat-
ing and revising their beliefs in public.
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Table 22: Basic timeline of treatment Disagreement

Part 1 Part 2

Stage 0 – 4 Stage 0 – 3 Stage 4 Stage 5 Stage 6

As in Selected
treatment

As in Selected, except that sub-
jects do not choose their group
membership, but rather get al-
located depending on whether
s > 100

Belief
elicita-
tion

Observe be-
liefs of two
neighbors

Belief
elicita-
tion

Notes. Timeline of the treatments involving disagreement. In the first part, subjects completed three
tasks from the Selected treatment. In the second part, they completed four additional tasks. Here,
subjects again observed a private signal and were then allocated into the red and blue group accord-
ing to their signal. Then, they observed the signals of a subset of the computer players as in Selected.
After subjects stated a belief, they were shown the beliefs of two other subjects and then again stated
a belief. Subjects did not receive any feedback between the different experimental tasks, except for
observing the beliefs of their neighbors.

treatment is again bimodal with subjects being either fully naïve or sophisticated about

the selection problem.

I investigate how subjects revised their beliefs as a function of their updating type.

After all, sophisticated and neglect types may differ in how they respond to disagree-

ment. To construct a measure of how much subjects revise their beliefs, I compute the

difference between the beliefs subjects stated before and after observing the beliefs of

their neighbors, expressed as percentage of the pre-communication disagreement (mea-

sured as simple difference between the subject’s pre-communication belief and the two

neighbors’ average pre-communication belief):

Belief revision of subject i=
χ2

i −χ
1
i

χ̄1
−i −χ

1
i

× 100,

where χ̄1
−i denotes the average belief (naïveté) of i’s two neighbors in their first belief

statements. Thus, the belief revision measure quantifies by how much subjects altered

their belief, relative to how much they could have changed their beliefs given the neigh-

bors’ reports and their own first belief. Note that this belief revision measure takes into

account that subjects might be confronted with zero, one, or two beliefs that substan-

tially differ from their own assessment of the evidence.

Figure 14 presents histograms of subjects’ belief revisions as a consequence of the

neighbors’ reports. To make matters interesting, I restrict attention to cases in which a

subject’s first belief does not equal the average belief of the two neighbors. To visualize

the results, I partition subjects into sophisticates and naïfs according to whether their

out-of-sample median naïveté parameter from the first part of the experiment satisfies

χ ≤ 0.5. The figure reveals that participants largely abstain from adjusting their beliefs

59



Figure 14: Magnitude of belief revisions. Each histogram depicts the belief revision between the first
and second belief (expressed as percent of the difference between the first belief and the average belief
of the two neighbors) conditional on the type of the subject (left / right panel). A subject is classified
as sophisticated if the out-of-sample median naïveté parameter from the first part of the experiment
satisfies χ ≤ 0.5 and conversely for naïfs. The figure includes all observations for which the first belief
of a subject does not equal the average belief of the two neighbors. Adjustments > 100% and < 0% are
excluded to ease readability (18 out of 374 obs.).

in response to the neighbors’ assessments. While the patterns are slightly weaker for the

neglect types, in both groups of subjects a large majority does not adjust their belief at

all, i.e., subjects state exactly the same belief in the second question as in the first one.

In addition, even those subjects that do adjust do so in a quantitatively small fashion.
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H Experimental Instructions

H.1 Treatment Selected

Welcome. You will receive a fixed payment of 6 euros for participating in this experi-

ment. This amount will be paid out to you in cash at the end of the experiment. How

much money you earn on top of that depends on your decisions. In this experiment,

you can earn points, where 100 points correspond to 10 euros. Your points will be con-

verted into euros and paid out at the end of the experiment.

Your task

In this experiment, your task is to estimate two so-called “variables.” In what follows,

we will refer to these variables as variable A and B. You will receive information about

these variables from an information source. Based on this information, you will need to

provide your estimates. In what follows, we will explain how these variables are gener-

ated and which type of information you will receive.

How variables A and B get determined

Every variable is determined through random draws from an urn. Figure 1 depicts these

urns. Each urn contains exactly six balls with numbers 50, 70, 90, 110, 130, and 150.

The letters are meant to help you in distinguishing between the urns.

The computer randomly determines variables A and B by drawing balls from the

respective urn. From each urn, the computer draws six balls, i.e., six balls from urn A

and six balls from urn B. Please note that, at each draw, each ball is equally likely to

get drawn.

When a ball gets drawn, it gets replaced by another ball with the same number. That

is, if the computer draws, say, a 130, then a new ball with number 130 is put into the

urn before the next ball gets drawn. Thus, any given number can get drawn multiple

times from the same urn.

Thus, the computer draws six balls from each urn. The average of the six balls then

equals the respective variable:

• The average of the six balls from urn A equals variable A.

• The average of the six balls from urn B equals variable B.

In this experiment, you need to estimate the value of variables A and B. As you can

see, these variables are fully independent from each other, so that you cannot learn

anything from one variable about the other one. Thus, you should always distinguish
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Urn A Urn B
A-50 B-50
A-70 B-70
A-90 B-90
A-110 B-110
A-130 B-130
A-150 B-150
Figure 1: The urns, from which the computer
draws six balls each. Please note that balls that
get drawn get replaced by another ball with
the same number, so that every number can get
drawn multiple times. Only the numbers in this
table can get drawn.

between these variables in the course of the experiment.

Your information

You receive your information from an information source. This information source

does not draw balls from the urn itself. Rather, it observes all 12 balls that got drawn

from urns A and B, i.e., all balls that determine the value of variables A and B. The

experiment proceeds in multiple steps:

1. The information source observes the balls that got drawn from urns A and B.

2. For each variable, the information source shows you one of these randomly se-

lected balls. Each ball is equally likely to be shown to you. You then have one

piece of information about each variable, A and B.

3. Subsequently, you need to provide your first estimate about each variable. In this

first step, you only need to estimate whether a variable is greater or smaller than

100. You can base this decision on the first ball that was shown to you by the

information source. As will explained to you in greater detail below, you will

earn the highest amount of money on average if:

• You estimate that the variable is greater than 100 if the first ball had a num-

ber greater than 100.

• You estimate that the variable is smaller than 100 if the first ball had a

number smaller than 100.

4. Subsequently, you receive further information from the information source. It

shows you some balls for variable A and some balls for variable B. In doing so,

the information source depends on your first estimates:
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• If you estimated that a variable is greater than 100, the information source

definitely shows you all balls with numbers greater than 100. In case that

there are less than three of such balls, the information source shows you ad-

ditional randomly drawn balls with numbers smaller than 100, all of which

previously got drawn from the urn. The information source continues with

this process until you have seen three balls per variable.

• If you estimated that a variable is smaller than 100, the information source

definitely shows you all balls with numbers smaller than 100. In case that

there are less than three of such balls, the information source shows you ad-

ditional randomly drawn balls with numbers greater than 100, all of which

previously got drawn from the urn. The information source continues with

this process until you have seen three balls per variable.

5. This means that for each variable you will see at least three additional balls on

your decision screen. In addition, as a reminder, you will also see the first ball

that you had already seen in the first step.

6. Then, you need to provide an estimate for each variable. These estimates can take

on any value between 50 and 150. You have a total of up to six minutes to do

so. As will be explained to you in greater detail below, you will maximize your

earnings with your second estimate if your estimate is as close as possible to the

value of the respective variable.

We will implement this entire procedure four times. These four “rounds” are entirely

independent from each other: each time, the variables A and B get drawn anew and

you receive new information about these variables. This means that variables A and B

are determined in each round separately, so that you cannot learn anything from one

round about another one.

Your payment

In addition to your fixed payment, you will be paid based on your estimates.

In each round, you can earn up to 180 points with your first estimate if you correctly

estimate whether the respective variable is greater or smaller than 100. You receive 0

points if your estimate is not correct.

In each round, you can also earn up to 180 points with your second estimate. The

further away your response from the truth, the less you earn. This is determined by the

following equation (in points):

Earnings = 180− 2 ∗ ( Difference between estimate and truth)2
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This means that the difference between your estimate and the truth gets squared and

multiplied by 2. This values then gets subtracted from the potential maximum earn-

ings of 180. While this formula may look complicated, the underlying principle is very

simple: the smaller the difference between your estimate and the true value, the

higher your earnings. However, your earnings can never be less than zero, i.e., you

cannot incur losses. You can also see that your earnings only depend on the absolute

difference. For example, it is hence immaterial for your earnings whether you over- or

underestimate the true value by 5.

In total, you will provide 16 estimates in the course of this experiment (two for each

of the two variables, in each of four rounds). The computer will randomly determine

one of these estimates, and your payment will then depend on this estimate. In every

round, one of your first estimates gets randomly selected with probability 10% and one

of your second estimates with probability 90%. Thus, you should work on each estimate

as well as you can because each estimate may be relevant for your payment.

IMPORTANT: Please note that in this experiment you maximize your earnings on av-

erage if you always truthfully report your estimates! Because only one of your decisions

gets selected for payment, there is no point for you in, say, strategizing by sometimes

providing a high and sometimes a low estimate. You should simply try to make the best

decision possible to maximize your earnings.

Example

Suppose that the computer has drawn six balls from each urn and has thereby de-

termined the values of variables A and B. The information source now shows you a first

randomly selected ball. As depicted in Figure 2, you then need to estimate, for each

variable, whether it is greater or smaller than 100.

Figure 1: Example screenshot for the first estimates
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Subsequently, the information source shows you additional balls. Figure 3 presents

an example, As you can see, you also get reminded of the first ball that you have already

seen on the previous screen.

Then, you need to provide an estimate about each variable.

Figure 2: Example screenshot for the second estimates

Space for personal notes (you are welcome to write on or highlight on these

instructions if you wish)

H.2 Treatment Control

Welcome. You will receive a fixed payment of 6 euros for participating in this experi-

ment. This amount will be paid out to you in cash at the end of the experiment. How

much money you earn on top of that depends on your decisions. In this experiment,

you can earn points, where 100 points correspond to 10 euros. Your points will be con-

verted into euros and paid out at the end of the experiment.

Your task

In this experiment, your task is to estimate two so-called “variables.” In what follows,

we will refer to these variables as variable A and B. You will receive information about

these variables from an information source. Based on this information, you will need to
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provide your estimates. In what follows, we will explain how these variables are gener-

ated and which type of information you will receive.

How variables A and B get determined

Every variable is determined through random draws from an urn. Figure 1 depicts these

urns. Each urn contains exactly six balls with numbers 50, 70, 90, 110, 130, and 150.

The letters are meant to help you in distinguishing between the urns.

The computer randomly determines variables A and B by drawing balls from the

respective urn. From each urn, the computer draws six balls, i.e., six balls from urn A

and six balls from urn B. Please note that, at each draw, each ball is equally likely to

get drawn.

When a ball gets drawn, it gets replaced by another ball with the same number. That

is, if the computer draws, say, a 130, then a new ball with number 130 is put into the

urn before the next ball gets drawn. Thus, any given number can get drawn multiple

times from the same urn.

Urn A Urn B
A-50 B-50
A-70 B-70
A-90 B-90
A-110 B-110
A-130 B-130
A-150 B-150
Figure 1: The urns, from which the computer
draws six balls each. Please note that balls that
get drawn get replaced by another ball with
the same number, so that every number can get
drawn multiple times. Only the numbers in this
table can get drawn.

Thus, the computer draws six balls from each urn. The average of the six balls then

equals the respective variable:

• The average of the six balls from urn A equals variable A.

• The average of the six balls from urn B equals variable B.

In this experiment, you need to estimate the value of variables A and B. As you can

see, these variables are fully independent from each other, so that you cannot learn

anything from one variable about the other one. Thus, you should always distinguish

between these variables in the course of the experiment.

Your information
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You receive your information from an information source. This information source

does not draw balls from the urn itself. Rather, it observes all 12 balls that got drawn

from urns A and B, i.e., all balls that determine the value of variables A and B. The

experiment proceeds in multiple steps:

1. The information source observes the balls that got drawn from urns A and B.

2. For each variable, the information source shows you one of these randomly se-

lected balls. Each ball is equally likely to be shown to you. You then have one

piece of information about each variable, A and B.

3. Subsequently, you need to provide your first estimate about each variable. In this

first step, you only need to estimate whether a variable is greater or smaller than

100. You can base this decision on the first ball that was shown to you by the

information source. As will explained to you in greater detail below, you will

earn the highest amount of money on average if:

• You estimate that the variable is greater than 100 if the first ball had a num-

ber greater than 100.

• You estimate that the variable is smaller than 100 if the first ball had a

number smaller than 100.

4. Subsequently, you receive further information from the information source. More

specifically, the information source in someway shows you all balls that determine

variables A and B:

• Case A: If your first estimated was greater than 100:

– Then, the information source definitely shows you all balls with num-

bers greater than 100. In case that there are less than three of such balls,

the information source shows you additional randomly drawn balls with

numbers smaller than 100 until you have seen three balls per variable.

– In addition, the information source shows you a “70” for all remaining

balls with numbers smaller than 100, which corresponds exactly to the

midpoint of this interval.

• Case B: If your first estimated was smaller than 100:

– Then, the information source definitely shows you all balls with num-

bers smaller than 100. In case that there are less than three of such balls,

the information source shows you additional randomly drawn balls with

numbers greater than 100 until you have seen three balls per variable.

67



– In addition, the information source shows you a “130” for all remaining

balls with numbers greater than 100, which corresponds exactly to the

midpoint of this interval.

• Thus, in some way, you will see all variables that determine variables A and

B. It is not important for you why you observe these balls in different ways.

5. This means that for each variable youwill see five additional balls on your decision

screen. In addition, as a reminder, you will also see the first ball that you had

already seen in the first step.

6. Then, you need to provide an estimate for each variable. These estimates can take

on any value between 50 and 150. You have a total of up to six minutes to do

so. As will be explained to you in greater detail below, you will maximize your

earnings with your second estimate if your estimate is as close as possible to the

value of the respective variable.

We will implement this entire procedure four times. These four “rounds” are entirely

independent from each other: each time, the variables A and B get drawn anew and

you receive new information about these variables. This means that variables A and B

are determined in each round separately, so that you cannot learn anything from one

round about another one.

Your payment

In addition to your fixed payment, you will be paid based on your estimates.

In each round, you can earn up to 180 points with your first estimate if you correctly

estimate whether the respective variable is greater or smaller than 100. You receive 0

points if your estimate is not correct.

In each round, you can also earn up to 180 points with your second estimate. The

further away your response from the truth, the less you earn. This is determined by the

following equation (in points):

Earnings = 180− 2 ∗ ( Difference between estimate and truth)2

This means that the difference between your estimate and the truth gets squared and

multiplied by 2. This values then gets subtracted from the potential maximum earn-

ings of 180. While this formula may look complicated, the underlying principle is very

simple: the smaller the difference between your estimate and the true value, the

higher your earnings. However, your earnings can never be less than zero, i.e., you

cannot incur losses. You can also see that your earnings only depend on the absolute
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difference. For example, it is hence immaterial for your earnings whether you over- or

underestimate the true value by 5.

In total, you will provide 16 estimates in the course of this experiment (two for each

of the two variables, in each of four rounds). The computer will randomly determine

one of these estimates, and your payment will then depend on this estimate. In every

round, one of your first estimates gets randomly selected with probability 10% and one

of your second estimates with probability 90%. Thus, you should work on each estimate

as well as you can because each estimate may be relevant for your payment.

IMPORTANT: Please note that in this experiment you maximize your earnings on av-

erage if you always truthfully report your estimates! Because only one of your decisions

gets selected for payment, there is no point for you in, say, strategizing by sometimes

providing a high and sometimes a low estimate. You should simply try to make the best

decision possible to maximize your earnings.

Example

Suppose that the computer has drawn six balls from each urn and has thereby de-

termined the values of variables A and B. The information source now shows you a first

randomly selected ball. As depicted in Figure 2, you then need to estimate, for each

variable, whether it is greater or smaller than 100.

Figure 1: Example screenshot for the first estimates

Subsequently, the information source shows you additional balls. Figure 3 presents

an example, As you can see, you also get reminded of the first ball that you have already

seen on the previous screen.

Then, you need to provide an estimate about each variable.

Space for personal notes (you are welcome to write on or highlight on these
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Figure 2: Example screenshot for the second estimates

instructions if you wish)

H.3 Treatment Sequential

The instructions were almost identical to those in Selected, except that the instructions

mentioned only one variable to be estimated in a given round. Overall, subjects com-

pleted eight rounds.

H.4 Treatment Feedback

The instructions were identical to those in Selected, except that subjects completed 14

rather than 8 tasks.

H.5 Treatments Complex, Simple, and Few

The instructions in Complex and Simple were identical to those in Selected, except for

the signal space.

The instructions in Few were identical to those in Complex, except that only two

random draws determined the true state.

H.6 Treatment Nudge

The instructions were identical to those in Selected, except that there was a hint both

at the end of the instructions and on subjects’ decision screens:
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HINT: Also pay attention to those randomly drawn balls that are not shown

to you by the information source.

H.7 Treatment Endogenous

Welcome. You will receive a fixed payment of 6 euros for participating in this experi-

ment. This amount will be paid out to you in cash at the end of the experiment. How

much money you earn on top of that depends on your decisions. In this experiment,

you can earn points, where 100 points correspond to 10 euros. Your points will be con-

verted into euros and paid out at the end of the experiment.

Your task

In this experiment, your task is to estimate two so-called “variables.” In what follows,

we will refer to these variables as variable A and B. You will receive information about

these variables from an information source. Based on this information, you will need to

provide your estimates. In what follows, we will explain how these variables are gener-

ated and which type of information you will receive.

How variables A and B get determined

Every variable is determined through random draws from an urn. Figure 1 depicts these

urns. Each urn contains exactly six balls with numbers 50, 70, 90, 110, 130, and 150.

The letters are meant to help you in distinguishing between the urns.

The computer randomly determines variables A and B by drawing balls from the

respective urn. From each urn, the computer draws six balls, i.e., six balls from urn A

and six balls from urn B. Please note that, at each draw, each ball is equally likely to

get drawn.

When a ball gets drawn, it gets replaced by another ball with the same number. That

is, if the computer draws, say, a 130, then a new ball with number 130 is put into the

urn before the next ball gets drawn. Thus, any given number can get drawn multiple

times from the same urn.

Thus, the computer draws six balls from each urn. The average of the six balls then

equals the respective variable:

• The average of the six balls from urn A equals variable A.

• The average of the six balls from urn B equals variable B.

In this experiment, you need to estimate the value of variables A and B. As you can

see, these variables are fully independent from each other, so that you cannot learn
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Urn A Urn B
A-50 B-50
A-70 B-70
A-90 B-90
A-110 B-110
A-130 B-130
A-150 B-150
Figure 1: The urns, from which the computer
draws six balls each. Please note that balls that
get drawn get replaced by another ball with
the same number, so that every number can get
drawn multiple times. Only the numbers in this
table can get drawn.

anything from one variable about the other one. Thus, you should always distinguish

between these variables in the course of the experiment.

Your information

You receive your information potentially from different information sources, infor-

mation source I and information source II. These information sources do not draw balls

from the urn themselves. Rather, they observe all 12 balls that got drawn from urns

A and B, i.e., all balls that determine the value of variables A and B. The experiment

proceeds in multiple steps:

1. The information sources observe the balls that got drawn from urns A and B.

2. For each variable, you will be shown one of these randomly selected balls. Each

ball is equally likely to be shown to you. You then have one piece of information

about each variable, A and B.

3. Subsequently, you need to decide whether you would like to purchase additional

information about one or both of the variables. This information is helpful for

making high-quality estimates. However, information is also costly.

• For each variable, there are two potential information sources, information

source I and information source II. These information sources send poten-

tially different types of information, as explained in detail below. The in-

formation of an information source costs 5 points (0.50 euros) per variable.

Thus, the price of information source I and II is identical.

• Thus, you have three options for each variable: purchase no information,

purchase information from information source I, or purchase information

from information source II.
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• You can also make different decisions for the two variables: for example, you

could purchase the information from information source I for one variable,

and for the other variable the information from information source II (or no

information at all).

4. In case you decide to purchase information, the information sources will send you

potentially different types of information:

• Information source I definitely shows you all drawn balls with numbers

greater than 100. In case that there are less than three of such balls, the

information source shows you additional randomly drawn balls with num-

bers smaller than 100, all of which previously got drawn from the urn. The

information source continues with this process until you have seen three

balls per variable.

• Information source I definitely shows you all drawn balls with numbers

smaller than 100. In case that there are less than three of such balls, the

information source shows you additional randomly drawn balls with num-

bers greater than 100, all of which previously got drawn from the urn. The

information source continues with this process until you have seen three

balls per variable.

5. This means that in case you decide to purchase one of the information sources,

you will see at least three additional balls on your decision screen for this variable.

In addition, as a reminder, you will also see the first ball that you had already seen

in the first step.

6. This means that:

• In case you do not purchase an information source, you ultimately only re-

ceive one piece of information (the one that you receive in the beginning).

• In case you do purchase an information source, you ultimately receive at

least for pieces of information for this variable.

7. Then, you need to provide an estimate for each variable. These estimates can take

on any value between 50 and 150. You have a total of up to six minutes to do

so. As will be explained to you in greater detail below, you will maximize your

earnings with your second estimate if your estimate is as close as possible to the

value of the respective variable.

We will implement this entire procedure four times. These four “rounds” are entirely

independent from each other: each time, the variables A and B get drawn anew and
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you receive new information about these variables. This means that variables A and B

are determined in each round separately, so that you cannot learn anything from one

round about another one.

Your payment

In addition to your fixed payment, you will be paid based on your estimates.

In each round, you can earn up to 180 points with your first estimate if you correctly

estimate whether the respective variable is greater or smaller than 100. You receive 0

points if your estimate is not correct.

In each round, you can also earn up to 180 points with your second estimate. The

further away your response from the truth, the less you earn. This is determined by the

following equation (in points):

Earnings = 180−2∗( Difference between estimate and truth)2− Cost for information

This means that the difference between your estimate and the truth gets squared and

multiplied by 2. This values then gets subtracted from the potential maximum earn-

ings of 180. While this formula may look complicated, the underlying principle is very

simple: the smaller the difference between your estimate and the true value, the

higher your earnings. However, your earnings can never be less than zero, i.e., you

cannot incur losses. You can also see that your earnings only depend on the absolute

difference. For example, it is hence immaterial for your earnings whether you over- or

underestimate the true value by 5.

In case you decide to purchase an information source, you only need to pay the

price in case your corresponding estimate is selected for payment. This means that in

this experiment you will have to pay the price for the information source at most once.

In total, you will provide 16 estimates in the course of this experiment (two for each

of the two variables, in each of four rounds). The computer will randomly determine

one of these estimates, and your payment will then depend on this estimate. In every

round, one of your first estimates gets randomly selected with probability 10% and one

of your second estimates with probability 90%. Thus, you should work on each estimate

as well as you can because each estimate may be relevant for your payment.

IMPORTANT: Please note that in this experiment you maximize your earnings on av-

erage if you always truthfully report your estimates! Because only one of your decisions

gets selected for payment, there is no point for you in, say, strategizing by sometimes

providing a high and sometimes a low estimate. You should simply try to make the best

decision possible to maximize your earnings.
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Example

Suppose that the computer has drawn six balls from each urn and has thereby de-

termined the values of variables A and B. The information source now shows you a first

randomly selected ball. As depicted in Figure 2, you then need to decide whether and

which infoirmation source you would like to purchase.

Figure 2: Example screenshot for the first estimates

Subsequently, the information source shows you additional balls. Figure 3 presents

an example for a case in which you purchased an information source for both variables.

As you can see, you also get reminded of the first ball that you have already seen on

the previous screen.

Then, you need to provide an estimate about each variable.

Space for personal notes (you are welcome to write on or highlight on these

instructions if you wish)
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Figure 3: Example screenshot for the second estimates
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