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in Public Primary Schools: Evidence from 
Administrative Panel Data*

This study estimates teacher value-added (TVA) for language arts and mathematics test 

scores of students in public primary schools to investigate the empirical relationship 

between testscore TVA and observable traits and promotions of teachers. Our empirical 

strategy employs Chetty, Friedman, and Rockoff (2014a) with school-year fixed effects 

as an additional control for potential sorting of students across schools. Using unique 

administrative panel data of students in public primary schools of a large municipality 

of Japan, we find TVA distribution to have variance comparable to ones observed in the 

U.S. schools. Using TVA estimates, we examine their associations with gender, teaching 

experience, age, and promotions of teachers. We find that these observable characteristics 

of teachers are statistically significantly associated with TVA estimates. Additionally, we find 

that TVA estimates are positively associated with teacher promotions.
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1. Introduction 

Teachers are among the most important educational resources at any school level. It is widely 

accepted that teachers impact students’ academic achievements: they tutor students directly, 

teach academic contents such as language arts and mathematics, and manage schools and 

classroom environments that are extremely important for student learning. Hence, it is very 

important to keep highly qualified teachers and to recruit high quality teachers in order to 

improve students’ educational achievement. 

To find effective teachers, it is imperative to measure individual teaching quality. Typical 

observable measurements of teachers’ effectiveness include teaching experience; teaching 

certificate; teachers’ educational backgrounds, such as college major and degree; and teachers’ 

test scores. However, there are ample unobservable characteristics of teachers that impact 

students such as pedagogy, classroom management skill, teaching philosophy, communication 

skill, motivation, individual traits and preferences. As a matter of fact, many researchers report 

that these observable characteristics of teachers have limited power to predict teachers’ 

subsequent classroom performance to improve students’ academic ability, as measured by test 

scores (e.g., Hanushek 2001 and Hanushek and Rivkin 2006).  

An alternative approach to measure teacher quality is to estimate “total teacher effects” 

by estimating teacher value-added (TVA) on specific outcome variables such as language arts 

and mathematics test scores. TVA is defined as contribution of each teacher to growth of test 

scores of individual student in a given year. It is typically measured as average contribution to 

students taught by each teacher and used to compare to the teaching performance of other 

teachers. A variety of studies have pursued this approach, such as Hanushek (1971, 1992), 

Rockoff (2004), Rivkin, Hanushek and Kain (2005), Hanushek et al. (2005), Kane and Staiger 

(2008), and Chetty, Friedman, and Rockoff (2014a) with students' panel data in the United 

States.1 

Although estimated TVA is one of predictors of both short- and long-term student 

outcomes as shown in Chetty, Friedman, and Rockoff (2014b) in the U.S. context, outcome 

information is often unavailable due to lack of productive observation or measurement in 

majority of non-U.S. countries and even in the U.S. states. Most of studies cited above are for 

the schools in the U.S., and TVA estimates are relatively scarce in non-U.S. countries. The lack 

of information on teacher effectiveness could be a serious concern, particularly when schools 

 
1 For other examples of TVA estimation in the United States, see Nye, Konstantopoulos, and Hedges (2004) for Tennessee; 
Jacob and Lefgren (2008) for an undisclosed city; Kane, Rockoff and Staiger (2008) for New York City; Koedel and Betts 
(2011) for San Diego; Rothstein (2010) and Jackson (2018) for North Carolina; Anderson, Barrow, and Sander (2007) for 
Chicago; Harris and Sass (2011) for Florida; and Bacher-Hick, Kane, and Staiger (2014) for Los Angeles. 
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and board of education need to appoint new teachers. In the absence of accurate information 

about new teacher quality, schools and educational administrators must take risks to expose 

students to yet-unqualified new teachers for several years. In order to avoid taking these risks, 

they might seek any observable trait of teachers useful to predict their teaching quality.2 

The primary purpose of this study is to investigate the empirical relationship between test-

score TVA and observable traits and promotions of teachers to evaluate whether observable 

characteristics of teachers deliver useful information when educational administrators recruit 

and promote effective teachers. To achieve this goal, we focus on a large municipality in Tokyo 

metropolis of Japan where all schools are managed under a common local education policy set 

by the municipal board of education. We obtained seven-year's administrative data from the 

municipality and constructed unique panel data of all students from second to fifth grades in 

public primary schools of the municipality. The use of this unique dataset enables us to estimate 

TVA in schools under homogenous environment of local education policy. More importantly, 

thanks to teacher rotation system in Japan explained in detail in the next section, endogeneity 

of matching between teachers and students is less severe in Japanese schools than schools in 

other countries such as the United States. 

Estimating TVA applying the method proposed by Chetty, Friedman, and Rockoff 

(2014a) with school-year fixed effects as an additional control for the potential sorting of 

students across schools, as addressed by Chetty, Friedman, and Rockoff (2016), we find the 

following. First and most importantly, variation of TVA among teachers is substantial: 

improvement of TVA by one standard deviation raises student’s test score by 0.150-0.155 

standard deviation for language arts and by 0.174-0.179 standard deviation for mathematics. 

These estimates are comparable to those in Chetty, Friedman, and Rockoff (2004a) for public 

primary school students in districts in the United States. Second, we find that TVA is highly 

persistent over years: our estimates reveal that the first-order autocorrelation of TVA for 

language arts test scores is 0.490, and that for mathematics is 0.575. 

To validate our TVA estimates, we conduct additional analyses proposed by Chetty, 

Friedman, and Rockoff (2004a). First, we confirm that the estimated TVA is the best linear 

predictor of test score residuals by regressing residual test score on the estimated TVA. Second, 

we confirm that endogenous matching between students and teachers is not a serious concern 

for the estimation of TVA in our data. We regress test score residuals predicted from their past 

 
2 Some of school districts in the U.S. (e.g., Chicago public schools, New York City’s department of education and District of 
Columbia public schools) had adopted teacher value-added to decide on issues of teacher retention and the awarding of bonuses, 
but the number of such applications of TVA is limited in practice. 
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growth on the estimated TVA and find no statistically significant relationship, which would 

have correlated if matching between students and teachers were based on past growth of test 

scores. The results of these analyses support the validity of our estimates of TVA.  

Using the estimated TVA, we examine how it is associated to observable teacher 

characteristics such as gender, teaching experience, and age. Since both language arts and 

mathematics are taught by the same classroom teacher in public primary schools in Japan, we 

estimate the association between the estimated TVA and gender, teaching experience, and 

teacher age for each subject considering seemingly unrelated correlations of error terms 

between subjects. We find female teachers tended to have higher value-added for language arts 

than male teachers, but there is no systematic gender difference in math TVA. Teaching 

experience is positively associated to both language arts and mathematics TVA, conditional on 

teacher's age. Similarly, teachers’ ages are negatively associated with TVA, conditional on 

years of teaching experience.  

Furthermore, we explore the relationship between these observable characteristics and the 

TVA estimates by decile of TVA distribution. We conduct quantile regression to reveal the 

heterogenous relation between the estimated TVA and observable teacher characteristics by 

decile of TVA. We find that the relationship between these observables and TVA is roughly 

uniform across the distribution of TVA for language arts. However, we also find that for 

mathematics, teaching experience is positively associated with the estimated TVA only for 

teachers with relatively low value-added.  

The paper’s findings regarding the relationship between the TVA and observable 

characteristics of teachers indicate that gender, teaching experience, and teacher age can be 

used to detect high-performing teachers. However, although some observable characteristics 

account for the variation of TVA, we find high cross-subject correlation of TVA even after 

removing the effects of these observable characteristics common to both subjects. The raw 

correlation coefficient of the estimated value-added between language arts and mathematics is 

0.6603, and the correlation coefficient of the residual from seemingly unrelated regression 

remains 0.6556: only 0.7% of the cross-subject correlation of TVA is explained by gender, 

teaching experience, and age of teachers. These results indicate that it remains difficult to find 

a good teacher based solely on these limited numbers of observable teacher characteristics. 

Finally, we examine the relationship between the estimated TVA and the promotion 

probability of teachers. In the institutional setting from which our data derive, TVA has been 

neither calculated nor used for teacher evaluation. However, it may be possible for members 

of boards of education and school principals to have a sense of TVA (see Jacob and Lefgren, 
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2008) and to use this information to evaluate teachers' performance implicitly. In terms of 

teacher promotion, we find that the TVA for language arts is statistically significantly 

associated with the promotion probability to chief teacher (second rank from the teacher base), 

but no relationship is found for the probability of promotion to managing teacher (third rank 

from the teacher base). These results support the hypothesis that the board of education 

members and school principals have information related to TVA and that they use it for 

evaluation of teachers for promotion to chief teacher even without formal TVA measurement. 

Our paper contributes to a strand of existing literature on the estimation of teacher’s 

impact on student achievement by adding evidence showing the robustness of TVA estimates 

in a different context. For example, Hanushek and Rivkin (2010) reports the summary of 

several estimates of TVA in the United States. One standard deviation of estimated teacher 

effectiveness, measured by the standardized test score with zero mean and one standard 

deviation ranged from 0.08 to 0.26 for language arts (reading) test scores and from 0.11 to 0.36 

for mathematics.3 Our estimates of teacher effectiveness based on TVA, using new and unique 

panel data in Japan as another advanced country with high educational achievement shown in 

international evaluation such as PISA and TIMSS, are in range of teacher effectiveness 

estimates in the U.S., showing the robustness of our TVA estimates.  

Another contribution of our paper is the demonstration of the observable teacher 

characteristics that are useful to determine teacher effectiveness, allowing for heterogeneity. In 

an examination of the relationship between TVA and teacher's observables, Bau and Das 

(2020) estimated TVA and estimated correlation with observable characteristics of teachers 

using data from Pakistan. They found that the first two years of tenure and content knowledge 

correlated with TVA. In the current study, we find similar correlations between teaching 

experience and TVA, but we additionally find that these correlations are heterogenous 

according to subject and the quantile of TVA distribution. In particular, we find gender 

differences in language arts TVA in the institutional setting of Japan, where coeducation is 

typical in public primary schools, to be different from schools in Pakistan, where coeducational 

schools are rare. Regarding the correlation between labor market compensation to teachers and 

TVA, Bau and Das found that wages for teachers in the public sector do not correlate with 

TVA. In our analysis, we find a weak but statistically significant correlation between TVA and 

 
3 For non-U.S. countries, estimates of teacher effectiveness are relatively scarce. Among exceptions, Azam and Kingdon 
(2015) estimate TVA on high school students in India. Bau and Das (2020) estimate TVA for primary school students in 
Pakistan. Buhl-Wiggers, Kerwin, Smith, and Thornton (2019) estimate TVA for middle school students in Uganda. 
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rank, that is positively correlated with teacher salary even though all teachers in our analysis 

are public sector teachers.  

This paper contributes to the literature of education economics in its use of Japanese data. 

There have been several papers studying the effect of teacher characteristics and test scores 

using Japanese data. Hojo (2012) and Hojo and Oshio (2013) found a positive association of 

female teachers with math test scores of 8th grade students with TIMSS data from 2007. Tanaka 

and Ishizaki (2018) examined the effect of teaching practice of classroom teachers on test score 

of students in public primary schools. They found that teaching methods focusing on logical 

thinking had a positive impact on students' test score of both language arts and mathematics. 

However, these papers do not control for teacher fixed effects or estimate TVA. As far as we 

know, our paper is the first to estimate TVA using student-level panel data from public primary 

schools in Japan. 

The remainder of this paper is organized as follows. Section 2 briefly discusses the 

education system in Japan. Section 3 explains our empirical strategy of this study. Section 4 

presents the data and descriptive statistics. Section 5 reports the estimates of teacher 

effectiveness and the validity of the estimated TVA. In section 6, we investigate the 

relationship between the estimated TVA and observable characteristics of teachers including 

teacher's rank. Section 7 concludes the discussion. 

 

2. Public Primary School System in Japan 

The current compulsory education system in Japan is based on the Fundamental Law of 

Education Act passed in 1947. Compulsory education consists of six years of primary 

education and three years of secondary schooling. Children who are age 6 on April 1 begin the 

first grade in primary school on that day. Students are assigned to a public school in their 

residential district. Public schooling is provided free of charge during the compulsory 

education period. Although students are allowed to attend a private school by paying tuition 

and various related costs, the majority of students attend their assigned public schools.4 

In primary schools, each class has one classroom teacher who teaches all subjects to 

students in his/her class. Classroom teachers are in charge of both classroom management and 

subject teaching. The composition of students in a class and the assignment of a classroom 

teacher are subject to change when students advance to the next grade in April, but schools are 

allowed to maintain the same teacher/student across grades at the discretion of school principals.  

 
4 In 2019, 98.2% of students were enrolled in public primary schools (School Basic Survey by Ministry of Education, Culture, 
Sports, Science and Technology (MEXT), 2019). 
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The contents of teaching in Japanese schools are centralized at the national level, but their 

implementation is decentralized at the local municipality level. The National Central Education 

Council revises the School Curriculum Guideline for all subjects every ten years. However, 

since this guideline sets the minimum content to be taught in schools at each educational level, 

the local board of education has discretion in how its implementation and any additional 

content will be taught in schools.5 In our analysis, focusing on one local municipality, we can 

avoid heterogeneity of education policy at the municipality level. 

Although municipal board of education is in charge of implementation of schooling, all 

public primary school teachers are employed by prefectural board of education to avoid any 

disparity in the allocation of school resources, including teachers within a prefecture. The 

prefectural government decides on the allocation of teachers among municipalities based on 

the teacher allocation rules set by the Ministry of Education in the central government.6 In 

principle, the total numbers of students and classes almost automatically determines the 

number of teachers allocated to each school. Each municipality could determine the allocation 

of teachers among schools, but there is limited room for discretion in schools’ teacher 

allocation. 

One unique feature of the allocation of teachers among schools is the teacher rotation 

system.7 Japanese public schools rotate teachers and principals to different schools on a regular 

basis to guarantee equity of educational opportunities across school districts. As mentioned 

above, public school teachers are employed not by each school but by each prefecture. For this 

reason, the Board of Education for each prefecture holds the authority over personnel issues. 

While the timing of teacher transfer to another school within the same prefecture depends on 

the discretion of each prefecture, they are customarily transferred every 3–6 years in all 

prefectures.8 Under this policy, it is difficult for students and their parents to predict teacher 

composition in any specific local public school over long time periods. In the municipality 

studied in this paper, students are allowed to choose any school within municipality when they 

start the first grade. However, since students are not allowed to switch schools once they start 

 
5 Part of the current English version of the guideline can be obtained from the website of MEXT. 
http://www.mext.go.jp/en/about/pablication/__icsFiles/afieldfile/2017/02/15/1374478_001.pdf (Access Date: Jan 30, 2018). 
6  Japan has three levels of administrative districts: national, prefectural, and municipal. The nation is divided into 47 
prefectures. Each prefecture consists of numerous municipalities, with 1,718 in total (January 2018). 
7 The procedure of teacher reallocation is determined by "The Act on the Organization and Operation of Local Educational 
Administration." The procedure of implementation of teacher transfer is as follows. Firstly, school principals request it to the 
municipal board of education. Secondly, municipal board of education summarizes requests from school principals and reports 
it to prefectural board of education. Thirdly, prefectural board of education determines and approves teacher transfers after 
adjustments of the number of teachers allocated to municipalities. 
8 For more information on Teacher Rotation System in Japan, please visit the following website of National Institute for 
Educational Policy Research, Ministry of Education, Culture, Sports, Science and Technology. 
http://www.nier.go.jp/English/educationjapan/pdf/201703TTASJ.pdf. (Access Date: Jan 30, 2018) 
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the first grade without special reasons, such as bullying or parents’ residential move, it is 

difficult for students and parents to predict who will be the classroom teacher their primary 

education. 

Finally, students are not allowed to choose their classmates or teachers. From the student’s 

point of view, the assignment of classroom teachers and classmates are random and to some 

extent conditional on their school choice. Endogenous choice of students by teachers may be a 

concern and even a potential threat to identification of TVA. We will discuss this potential 

threat in Section 5 and argue that this type of sorting is not a serious concern in our data and 

estimation of TVA. 

 

3. Econometric Model 

To estimate TVA, we follow the method proposed by Chetty, Friedman and Rockoff (2014a). 

We describe the method briefly in this section. 

 

3.1 Regression Model 

Firstly, we estimate the following linear regression model 

𝑨𝒊𝒕∗ = 𝜷𝑿𝒊𝒕 + 𝝂𝒊𝒕   (1) 

where 𝑨𝒊𝒕∗  is student i’s educational outcome (test score) in year t. 𝑿𝒊𝒕  is student i’s time-

varying characteristics including student's lagged test scores. 𝝂𝒊𝒕 is unobservable "error" term. 

This term is decomposed into three components: 

𝝂𝒊𝒕 = 𝝁𝒋𝒕 + 𝜽𝒄 + 𝜺*𝒊𝒕 

where 𝝁𝒋𝒕 is teacher j's value-added in year t, 𝜽𝒄 is exogenous shock common to students in 

class c, and 𝜺*𝒊𝒕 is idiosyncratic student-level shock. Following Chetty, Friedman and Rockoff 

(2014a), we assume that TVA  𝝁𝒋𝒕 and the composite of the other two shocks 𝜺𝒊𝒕 = 𝜽𝒄 + 𝜺*𝒊𝒕 

are stationary. 

The assumption of stationarity requires that mean teacher quality does not vary across 

years and the correlation of TVA, class-level exogenous shocks, and student-level exogenous 

shocks across any pair of years depends only on the amount of time that elapses between those 

years. This assumption reduces the number of parameters to be estimated in the estimation of 

TVA distribution. In particular, the variance of TVA, 𝜎&' = 𝑉𝑎𝑟(𝝁𝒋𝒕) , is constant across 

periods under the assumption of stationarity. 

 

3.2 Estimation of Teacher Value-Added 



 8 

The procedure of TVA estimation follows several steps. In the first step, we estimate the 

regression equation (1) by regressing test scores 𝑨𝒊𝒕∗  on 𝑿𝒊𝒕 and teacher fixed effect (call it  𝜶𝒋). 

In the second step, we compute test score residual (call it 𝑨𝒊𝒕): 

𝑨𝒊𝒕 = 𝑨𝒊𝒕∗ − 𝜷3𝑿𝒊𝒕 

where 𝜷3 is the estimates of the coefficient vector in the regression equation (1) with teacher 

fixed effect. Note that this test score residual contains teacher fixed effect and thus equal to the 

estimate of 𝝁𝒋𝒕 + 𝜺𝒊𝒕. In the third step, we calculate average test score residual of students 

taught by teacher j in year t: 

𝑨4𝒋𝒕 =
𝟏
𝒏𝒋𝒕

7 𝑨𝒊𝒕
𝒊∈{𝒊:𝒋(𝒊,𝒕).𝒋}

 

where 𝒏𝒋𝒕 is the number of students taught by teacher j in year t. In the fourth step, we estimate 

a two-sided auto-regression model of the average test score residual by OLS: 

𝑨4𝒋𝒕 =7𝝍𝒔𝑨4𝒋,𝒕1𝒔

𝒕1𝟏

𝒔.𝟏

+7𝝍𝒔𝑨4𝒋,𝒕3𝒔

𝑻1𝒕

𝒔.𝟏

+ 𝝐𝒋𝒕	 

where T is the total years of observation and 𝝐𝒋𝒕 is white noise. In the final step, we calculate 

the best linear predictor of mean test score residual of students taught by teacher j in year t 

based on mean residual test score in prior and posterior years using the autoregression model 

estimated in the previous step: 

𝝁;𝒋𝒕 =7𝝍3 𝒔𝑨4𝒋,𝒕1𝒔

𝒕1𝟏

𝒔.𝟏

+7𝝍3 𝒔𝑨4𝒋,𝒕3𝒔

𝑻1𝒕

𝒔.𝟏

 

where 𝝍3 𝒔 and 𝝍3 𝒔 are the OLS estimates of the coefficients of the autoregression model in the 

previous step. This is our measure of teacher j's value-added in year t. As emphasized in Chetty, 

Friedman and Rockoff (2014a), the jackknife (i.e., leaving out year t) measures of TVA are 

important to avoid introducing the same estimation errors on the left-hand side (that is, test 

score) and the right-hand side (i.e., TVA) as a cause of biases in the estimation of teacher's 

causal impact. 

 

4. Data 

Our primary data source is a database of students in a large urban municipality in Japan with a 

population of approximately 600,000. This database covers panels of students in public primary 
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(1st to 6th grade) and middle (7th to 9th grade) schools.9 In this database, panel information of 

test scores of Japanese language arts and mathematics are available. These tests measure 

academic achievement in the previous grade of the understanding of basic material of Japanese 

Language arts and mathematics. We match this test score information with classroom teachers 

of the last year in the previous grade. 

In addition to the test scores, information on household characteristics is available. We 

use student status in terms of school financial assistance receipt as a covariate to for control 

socioeconomic status of household of students. School financial assistance is a means-tested 

subsidy provided to students from low-income households. Hence, receipt of school financial 

assistance serves as a good proxy for household income.  

Information regarding teacher characteristics such as gender, years of teaching experience 

within the prefecture, and rank (promotion status of teachers) are available.10 We match this 

information about teachers with a classroom, and thus with students in the class, to which they 

are assigned in a year at school.  

For the estimation, we restrict our sample to students from 2nd to 5th grades because we 

focus on the estimation of classroom teachers’ total effect on students in primary schools. We 

exclude the first grade because the information of first grade students is not available before 

2013, restricting sample size severely. We exclude sixth grade students from our analysis 

because test to measure educational achievement in 6th grade takes place in 7th grade in middle 

schools where test-taking environment is very different from ones in primary schools. As 

explained in Section 2, classroom teachers teach all subjects to students in their class for a year 

in primary schools. In contrast, in middle school in Japan, classroom teachers are assigned, but 

subject teachers teach each subject. Since we cannot identify subject teacher in middle schools 

in our dataset, we have restricted our sample only to the students in primary schools. We focus 

on the periods from 2010 to 2016 in our analysis due to data availability. 

 

[Table 1] 

 

Table 1-A summarizes the number of observations of the sample used for the TVA 

estimation. On average, in each year and grade, about 4000 students are observed. The total 

number of observations is 118,356. The bottom panel reports the number of teachers observed 

 
9 In the municipality that is the focus of our analysis, there are 69 public primary schools and 35 public middle schools in 2020. 
In this municipality, there is no private primary school, and there is one private middle school. In the estimation sample, we 
have 72 primary schools because 3 schools were merged with other schools after 2017. 
10 We will explain the rank system for teachers in Section 6. 
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in each year. We use about 600 teachers each year for the estimation. In total, 4197 teacher-

year observations were used. 

Descriptive statistics of the sample are reported in Table 1-B. The average and the 

standard deviation of test scores for language arts and mathematics in the estimation sample 

are close to 0 and 1, respectively, because these test scores are standardized by subject, grade, 

and year.11 As a control of time-varying student characteristics, we include a dummy variable 

indicating receipt of school financial assistance. School financial assistance is provided to 

students to purchase school supplies, school lunches, school trip expenses, and medical fees if 

the municipal board of education acknowledges that students need such assistance because of 

low household income.12 In our sample, 33.5% of students received school financial assistance 

from the municipality. As other controls at class level, we include female share and class size. 

Average female share is about 50%. Average class size is about 31 students per class. In our 

sample, we do not observe extremely small classes with less than 7 students in a class. The 

maximum class size is 40 students, which is the cap for all elementary schools in Japan. Year-

school-class average of female share is about half, and the share of school financial assistance 

recipients is about 34% at class level and school level, respectively.  

The bottom panel summarizes statistics of teacher characteristics. Teachers in our sample 

have 11 years of teaching experience on average. Regarding teacher promotion information, 

28.6% of teachers are ranked as year-head teachers, who are leaders of teachers in a grade (this 

paper will refer to them as "chief teacher"). Another 6.5% of teachers are ranked as senior 

teachers, who serve as head of all classroom teachers and rank above a head teacher and hold 

the third-highest rank, following principal and vice-principals (call them "managing teacher"). 

The remainder are ordinal teachers. 

 

5. Results of TVA Estimation 

5.1 Results of Regression Analysis 

The estimates of the coefficients of the regression equation explained in Section 3 are reported 

in Table 2.  

 

[Table 2] 

 

 
11 The mean and standard deviation of standardized test scores are not exactly zero and one, respectively, in the estimation 
sample because test scores are standardized among all test takers and because some observations are excluded from the 
estimation sample due to lack of data availability (missing information of school financial assistance status). 
12 With high probability, students from households on welfare are offered school assistance. 
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The first six columns report the estimation results for the equation, with mathematics test 

scores as the dependent variable. The first column includes only those teacher-fixed effects 

necessary for the following TVA estimation. Receipt of school financial assistance has a 

negative and statistically significant coefficient. The share of students receiving school 

financial assistance is negatively associated with math test scores as well. Female students' 

math scores are lower by 0.04 standard deviation than male students. However, the share of 

female students per class and per school for a given year is positively associated with math test 

scores. The coefficient on the class size is negative and statistically significantly different from 

zero. The estimated coefficient indicated that the reduction of class size by one student increase 

the math test score by 0.005 standard deviation. 

The second column reports the estimation results for the specification with school fixed 

effects. The coefficients on the individual level covariates are almost unchanged by inclusion 

of school fixed effects. The coefficients on school-year share of female students lost statistical 

precision by including school fixed effects because the school level share of female students 

has little variation over time. The third column is for the specification with year-school fixed 

effects. The results are similar to those in the second column. 

The fourth to sixth columns report the estimation results with student fixed effects. The 

coefficient on school financial assistance is negative but insignificant. This observation of the 

results without student fixed effects indicates that it is not the receipt of school financial 

assistance itself but the long-lasting and time-invariant factors such as long-term household 

income and home environment matter for learning outcomes of mathematics. Class size is 

negatively associated with math test score in all but the last specification. 

The seventh to twelfth columns report the estimation results for language arts test scores. 

Similar to the case for math test score, school financial assistance has a negative and 

statistically significant coefficient without controlling for student fixed effect. The share of 

students receiving school financial assistance is negatively associated with test scores. Contrary 

to the case for math test scores, female students' language arts score is higher than male students 

by 0.18 standard deviation. The share of female students in class and in school for a given year 

is also positively associated with language arts test scores. The coefficient on the class size is 

negative and statistically significantly different from zero. The estimated coefficient indicates 

that the reduction of class size by one student is associated with an increase of math test score 

by 0.003 standard deviation. 

The eighth column with school fixed effects and the ninth column with school-year fixed 

effects demonstrate very similar to the results in the seventh column. The coefficients on the 
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individual level covariates are almost unchanged by inclusion of school or school-year fixed 

effects. The tenth through twelfth columns report the estimation results with student fixed 

effects. Similar to the case for mathematics, the coefficient on school financial assistance is 

negative but insignificant. Class size is negatively associated with language arts test score in 

all specifications. 

In a nutshell, we found that female students were better in language arts and worse in 

mathematics than male students. We found that small class size was associated with higher test 

scores of both subjects. Finally, school financial assistance was negatively associated with test 

scores, but this association disappeared when student fixed effects were included. 

 

5.2 Teacher Value-Added 

Teacher value-added are estimated by the method explained in Section 3. We estimate the TVA 

using test score residuals with the specification-controlling school-year fixed effect without 

student fixed effects (the results reported in the third column for mathematics and the ninth 

column for language arts in Table 2). This is for the sake of comparison to the estimates of 

teacher effectiveness using value-added formulation without student fixed effects, reported in 

the literature such as Chetty, Friedman and Rockoff (2014a). 

 

[Table 3] 

 

Table 3 summarizes the TVA model parameters' estimates. Panel A reports 

autocovariance and autocorrelation vectors for language arts and mathematics test scores, 

respectively. All autocovariances are statistically significantly different from zero for both 

language arts and mathematics. More importantly, autocorrelations are high and declined 

slowly. For math test score, autocorrelations are larger than 0.5 up to the fourth lag and remain 

at above 0.4 for the rest. For language arts test scores, autocorrelations are slightly lower than 

those for math test scores, and they remain approximately 0.45 up to the fifth lag.  

Using these results, we estimate the standard deviation of TVA. We provide two estimates 

for this. The first estimate is based on the first-order autocovariance as the lower bound of 

within-year TVA variance. Panel B of Table 3 reports the estimates of teacher standard 

deviation based on the covariance between TVA and its first lag. The lower bound of the 

standard deviation of TVA is 0.150 for language arts and 0.174 for mathematics. Similar to the 

U.S. case reported in Chetty, Friedman, and Rockoff (2014a), we find a larger standard 

deviation for math test scores than for language arts test scores. 
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The second estimate uses a quadratic regression equation to predict the contemporaneous 

variance from autocovariances. Specifically, we regress the log of the first six autocovariances 

in Panel A on the time lag and time lag squared and extrapolating to zero from the estimate of 

the constant term to infer the within-year covariance.13 The estimates based on the second 

method provide very similar but slightly larger estimates of TVA standard deviation. The 

standard deviation of TVA is 0.155 for language arts and 0.179 for mathematics. Our estimates 

of the standard deviation of TVA are close to the ones reported in Chetty, Friedman, and 

Rockoff (2014a), but our estimates are 25% higher than those in the U.S. for language arts (i.e., 

English), and 10% higher for mathematics. These findings indicate that the variations of TVA 

in Japan have magnitudes comparable to or even larger than those in the U.S. 

 

5.3 Prediction Unbiasedness and Student-Teacher Matching 

As stressed in Chetty, Friedman, and Rockoff (2014a), the estimated TVA is the best linear 

predictor of the test score residuals on theoretical ground. To confirm this point empirically, 

we regress residual test score on the estimated TVA and see how well the estimated TVA 

predicted the observed test score residuals for students. 

 

[Table 4] 

 

The first and second columns report coefficients from OLS regression in which we regress 

residual test scores on the estimated TVA. We can observe that the coefficients on the estimated 

TVA are close to those we expected. From these results, we can confirm that the estimated 

TVA using the best linear predictor of the test score residuals serve as good predictors of annual 

gains of student test scores.  

 

[Figure 1] 

 

To confirm this point visually, Panel A of Figure 1 plots the relationship between the 

actual test score residual and TVA for language arts and mathematics, respectively. The slope 

of the estimated line is almost 45-degrees and thus we can again confirm that our estimates of 

TVA predicted average actual annual gain of teachers’ test scores. 

 
13 Another way to estimate the standard deviation is to estimate it using multiple observations of classes taught by the same 
teacher in one year, as applied to a middle school case in Chetty, Friedman, and Rockoff (2014a). We cannot apply this method 
with our sample because teachers in primary schools teach only one class per year. 
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One potential threat to TVA estimation is endogenous matching between students and 

teachers. If the sorting of students across teachers is due to time-invariant unobservable student 

characteristics or previous test scores (static sorting in Kane and Staiger, 2008), the value-

added formulation controls the effect of sorting in the estimation of TVA by removing student 

fixed effect or previous test scores. However, if the sorting is based on the growth of test scores 

(that is, dynamic sorting in Kane and Staiger 2008), it may cause biases in the estimation of 

TVA. If the dynamic sorting causes serious bias in the estimation of TVA, we should observe 

strong correlation between the growth of past residual test scores and future TVA. 

The third and fourth columns in Table 4 report the OLS coefficient of regression of the 

predicted test score residual using test scores from t-2 on the estimated TVA in year t for 

language arts and mathematics, respectively. The estimated coefficients are close to zero and 

insignificant at a conventional level of significance. These estimates indicate that past test score 

and past test score growth are not significantly correlated to the estimated TVA. Hence, we 

may conclude that potential bias caused by dynamic sorting is not serious in our data and thus 

in the estimates of TVA. Similar to the reason proposed by Chetty, Friedman, and Rockoff 

(2014a), inclusion of past test scores in a flexible way controls the potential determinants of 

sorting and thus the estimated value-added based on test score residuals are less affected by 

potential student-teacher sorting in our sample. 

 

6. Teacher Value-Added and Teachers' Observable Characteristics 

In this section, we examine which observable characteristics of teachers are associated to TVA 

by regressing estimated TVA on gender, years of experience, and age of teachers. Then we 

examine whether the estimated TVA is associated with the probability of teacher promotion to 

a higher rank. 

 

6.1 Gender, Teaching Experience, and Age 

In Section 5, we estimated TVA. As we allowed drift of TVA over a year, we obtained 2674 

observations of the TVA of 974 individual teachers. In the estimation of the correlations 

between TVA and gender, years of experience, and teacher age, it is important to consider the 

fact that TVA is highly correlated between subjects taught by the same teacher because both 

subjects are taught by the same classroom teacher in public primary schools in Japan. In fact, 

the raw within-teacher correlation coefficient of the 2674 estimated TVA between language 

arts and mathematics is 0.6578, and the correlation of the same-teacher average of TVA 

estimates between the subjects was 0.6735 for 974 individual teachers. To take into account 
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this high correlation of TVA between subjects, we estimate the determinants of TVA for both 

mathematics and language arts simultaneously by the seemingly unrelated regression. 

 

[Table 5] 

 

Table 5 reports the results of the regression analysis. The first two columns of Table 5 

report the estimates of the specification including only teacher's gender and years of teaching 

experience in the prefecture. We report two standard errors: standard errors without clustering 

are in parentheses, and those with clustering at school level are in brackets. The coefficient on 

the female dummy is positive and statistically significant at least at the 10% level for language 

arts. Contrary, the coefficient on the female dummy is negative but insignificant for 

mathematics. The coefficients on the years of teaching experience are positive and statistically 

significant for both language arts and mathematics without clustering at the school level. 

The second two columns report the estimates of the specification including only teachers’ 

gender and age. The coefficient on the female dummy is positive and statistically significant at 

least to the 5% level for language arts, and it is negative and insignificant for mathematics. The 

coefficients on teachers’ age are positive but insignificant for both language arts and 

mathematics. 

Finally, the third two columns report the estimates of the specification including both 

years of teaching experience and teacher age on top of teacher gender. Similar to the first two 

sets of results, the coefficient on the female dummy is positive and statistically significant for 

language arts, but it is insignificant for mathematics. More interestingly, the coefficients of the 

years of teaching experience are positive and statistically significant for both language arts and 

mathematics. The magnitude of the coefficients are more than four-times larger than those in 

the first result. In fact, the coefficients on teacher age are negative and statistically significant. 

Because years of teaching experience and age of teacher are highly correlated with each other, 

it is important for isolating the association between teaching experience and TVA to control 

for teacher age. Hence, these results imply that teaching experience is positively associated 

with TVA conditional on teacher's age. 

One interesting question concerns how the estimated TVA correlated between subjects. 

The correlation coefficients of the residuals are reported in Table 5 for each regression model. 

The smallest correlation coefficient is 0.6557, which is 0.3% smaller than raw correlation 

coefficient. This means that, although the observable teacher characteristics common to both 

subjects could account for the variation of TVA to some extent, it explains only small fraction 
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of the cross-subject correlation of TVA. This is not surprising with the value of adjusted R-

squared less than 2%. 

In summary, female teachers had higher value-added for language arts, but no difference 

in TVA for mathematics between male and female teachers was found. Conditional on teacher 

age, teaching experience was positively associated with TVA for both subjects. These results 

indicate that, although it remains difficult to find a good teacher based on observable teaching 

characteristics due to the low explanatory power of these observable characteristics, these 

observable characteristics nevertheless inform TVA. 

 

6.2 Heterogenous Relation by Decile of Teacher Value-Added 

The results reported in Table 5 summarize the statistical associations between the estimated 

TVA and observable characteristics of teachers on average. The relationship between teachers’ 

observable characteristics and their value-added measurements may be heterogenous along the 

distribution of the estimated TVA. To explore this heterogenous relationship, we estimate 

quantile regression models of TVA by decile for each subject. We use the specification of the 

regression models reported in the third column with both years of teaching experience and 

teacher's age in Table 5. We estimate these equations for each subject separately. Standard 

errors are clustered at school level.  

 

[Figure 2] 

 

Figure 2 summarizes the estimated coefficients, indicated with a real line and the 95% 

confidence interval with a dashed line (full estimation results are reported in Table A1). Panel 

A depicts the coefficients on the female dummy. For language arts, the coefficients are positive, 

almost uniformly distributed, and marginally significant for most of the ranges of estimated 

TVA. For mathematics, however, the coefficients are close to zero and insignificant for all 

deciles. These results indicate that female teachers are better in language arts for almost all 

ranges of the TVA distribution. 

Panel B describes the coefficients for the years of teaching experience conditional on 

teachers’ gender and age. For language arts, the coefficients are always positive, almost 

uniformly distributed, and significant for the most of ranges of estimated TVA. For 

mathematics, the coefficients are positive but statistically significant only for the lower side of 

TVA distribution. These results indicate that teaching experience is important for all ranges of 

TVA distribution for language arts, but it is important only for teachers with relatively low 
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value-added for mathematics. For teachers with relatively low TVA, accumulating teaching 

experience could be a solution to improve TVA, but the finding does not explain the high value-

added of teachers in mathematics. 

Panel C describes the coefficients on the age of teachers, conditional on teachers’ gender 

and experience. The results are almost mirror images of those for teaching experience: for 

language arts, the coefficients are negative, almost uniformly distributed, and significant for 

the most of ranges of estimated TVA. For mathematics, the coefficients are positive but 

statistically significant only for the lower side of TVA distribution.  

In summary, teaching experience and teacher age were associated with TVA for both 

language arts and mathematics, and female teachers tend to have higher value-added 

measurements in language arts than male teachers. For language arts, these observable 

characteristics are uniformly important for TVA. For mathematics, teaching experience and 

age matter for teachers with relatively low TVA values. 

 

6.3 Teacher Promotion 

A potential use of the estimated TVA is to evaluate teachers' performance based on these 

measures. For example, Staiger and Rockoff (2010), Chetty, Friedman, and Rockoff (2014b), 

and Bau and Das (2020) discuss extensively potential policies using the estimates of TVA to 

recruit and retain high performing teachers and to dismiss low-performing ones.  

In the institutional setting where we derived our data, TVA measures have not been 

calculated or used for teacher evaluation. However, it may be possible for members of the 

board of education and school principals to employ TVA or a proxy for it at least in evaluations 

for teacher promotion. Hence, it is interesting and relevant to explore whether teacher quality 

measured by TVA in mathematics and language arts test scores is associated with the 

promotion of teachers.  

In our sample, there are three ranks for teachers: regular teachers, chief teachers, and 

managing teachers. The role of managing teacher, one rank below vice principal, is to assist 

the principal and vice-principals, coordinate between the principals and senior teachers, and 

lead the senior teachers in maintaining the school environment. The main role of chief teachers, 

one rank below managing teachers, is to support managing teachers and teach and supervise 

regular teachers and younger school staff members. Because both managing teachers and chief 

teachers have their own class to teach, we can estimate TVA for these teachers with the same 

method used to estimate TVA of regular teachers.  
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To earn promotion from regular to chief teacher, a teacher’s age must be above 30 with 

more than 8 years of teaching experience. Hence, it is natural to expect that both teaching 

experience and age would be positively correlated to promotion probability to chief teacher. 

More importantly, to be a chief teacher, a teacher must pass the essay exam and have a good 

evaluation from the school principal. Hence, if school principals could identify teachers who 

produce significant standardized achievement gains, as found in Jacob and Lefgren (2008), and 

could then evaluate teachers based on teaching performance, we would expect to observe 

positive correlation between TVA and promotion to chief teacher.  

For promotion to and certification as managing teachers, there are two criteria: Criterion 

A is for teachers under 44 years old; Criterion B is for teachers between 46 and 53 years of age. 

In Criterion A, applicants need to pass the essay exam and produce a research paper on 

pedagogy, and they are interviewed by a committee of the prefectural board of education. In 

Criterion B, applicants need to pass the same exam as in Criterion A, excluding the writing of 

a research paper on pedagogy. Because of the presence of these two sets of criteria for 

promotion to managing teacher with different eligibility requirements in terms of age, the 

correlation between age and probability of promotion to managing teachers may be less 

obvious than in those cases for chief teachers. 

To examine the probability of promotion and its relation to TVA, we estimate a linear 

probability model with a dummy variable indicating promotions to chief teacher and managing 

teacher as dependent variables, respectively. In the equation for the promotion to chief teacher, 

we exclude samples of managing teachers because managing teachers would not be demoted 

to a lower rank. We control for grade fixed effects, survey year fixed effects, and school fixed 

effects. Standard errors are clustered by teacher level. 

 

[Table 6] 

 

Table 6 reports the results of the estimations of the probability for promotion to chief 

teacher (the first three columns) and to managing teachers (the last three columns). The 

specification in the first column includes only math TVA in addition to other controls. The 

coefficient is positive but insignificant. The second column shows the model with TVA for 

language arts. The coefficient is positive and statistically significant. The magnitude of the 

coefficient is sizable: improvement of TVA by one standard deviation (i.e., 0.15) is associated 

with an increase of the probability of promotion to a chief teacher by 6.7 percentage points. 

The third column shows the model with both language arts and math TVA. The findings show 
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that only the TVA for language arts is positively associated with the promotion to a chief 

teacher. This result indicates the possibility that the board of education members and school 

principals have some sense of and use for TVA in teacher evaluation for promotion to chief 

teacher even without formal measurement of TVA. 

It is noteworthy to mention the coefficients for the other control variables in the model for 

the promotion to chief teacher. The coefficients on female dummy variable are always positive 

but statistically insignificant. Teaching experience has positive and statistically significant 

coefficients. Similarly, the coefficients on age are positive and statistically significant. These 

results are consistent with the institutional setting that age and teaching experience are parts of 

requirements to be eligible to apply for the promotion to a chief teacher. 

The fourth to sixth columns report the estimation results of the probability to managing 

teachers. Unlike the results for chief teachers, none of the coefficients on TVA is statistically 

significant. This may be because several skills other than teaching, such as management and 

administrative knowledge, are required and evaluated more in the promotion process to 

managing teachers. Although these coefficients are insignificant, it is interesting to observe 

that the coefficient for math TVA tended to be larger than that for language arts, in contrast to 

the case for chief teachers.  

On the other controls, the coefficients on the female dummy variable are negative and 

statistically significant, implying gender imbalance exists in determining promotion to the level 

of managing teacher. Teaching experience has positive and statistically significant coefficients, 

reflecting the fact that one of the eligibility requirements to be a managing teacher is to have 

teaching experience as a chief teacher. Age is not statistically significantly associated with 

promotion to the managing teacher level. As we have discussed above, this may be because 

while criterion B sets minimum age, criterion A sets the maximum age for eligibility.  

 

7. Conclusion 

In this study, we estimated TVA using language arts and mathematics test scores of students 

in public primary schools in Japan. Applying the method proposed by Chetty, Friedman, and 

Rockoff (2014a) to administrative panel data from a large local municipality of Japan, with 

additional control of school-year fixed effects, we found that the distribution of TVA has a 

positive variance for both language arts and mathematics subjects, and that their size is 

comparable to those observed in the United States. Our estimates provide the first estimates of 

TVA in public primary schools in Japan, and they show the robustness of TVA estimates in an 

advanced country with a very different educational institutional setting.  
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Using the TVA estimates, we examined their associations with observable teacher 

characteristics such as gender, teaching experience, and age as well as to teacher promotion. 

We found that those observable characteristics of teachers are statistically significantly 

associated with the estimated TVA, and that the estimated TVA is positively associated with 

the promotion of teachers. These findings suggest that even in a country without explicit 

measurement of TVA, school principals identify teacher effectiveness when measured by 

standardized academic achievement student gains, and they use it implicitly to determine 

teacher promotion in their schools. Study of the effects of disclosure of TVA in strengthening 

accountability of schools and teachers on students’ short- and long-term performances would 

be a valuable topic for future research. 
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Figure 1: Effects of Teacher Value-Added on Actual and Predicted Scores 
 

Panel A: Actual Score 
 

                       Japanese Language Art                                                 Math 
 

 
 
 

Panel B: Predicted Score using year t-2 score 
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Figure 2: Teachers' Characteristics and Teacher Value-Added by Decile 
 
 

A. Female Teacher 
 

  
 
 

B. Teaching Experience 
 

  
 
 

C. Age 
 

 
  

-0.03	

-0.025	

-0.02	

-0.015	

-0.01	

-0.005	

0	

0.005	

0.01	

0.015	

0.02	

1	 2	 3	 4	 5	 6	 7	 8	 9	

Female	Teacher	and	Math	TVA	

math_coef	 math_lb	 math_ub	

-0.01	

-0.005	

0	

0.005	

0.01	

0.015	

0.02	

1	 2	 3	 4	 5	 6	 7	 8	 9	

Female	Teacher	and	JPN	TVA	

jpn_coef	 jpn_lb	 jpn_ub	

-0.0015	

-0.001	

-0.0005	

0	

0.0005	

0.001	

0.0015	

0.002	

0.0025	

0.003	

0.0035	

0.004	

1	 2	 3	 4	 5	 6	 7	 8	 9	

Teaching	Experience	and	Math	TVA	

math_coef	 math_lb	 math_ub	

-0.0005	

0	

0.0005	

0.001	

0.0015	

0.002	

0.0025	

1	 2	 3	 4	 5	 6	 7	 8	 9	

Teaching	Experience	and	JPN	TVA	

jpn_coef	 jpn_lb	 jpn_ub	

-0.0035	

-0.003	

-0.0025	

-0.002	

-0.0015	

-0.001	

-0.0005	

0	

0.0005	

0.001	

0.0015	

1	 2	 3	 4	 5	 6	 7	 8	 9	

Age	and	Math	TVA	

math_coef	 math_lb	 math_ub	

-0.0025	

-0.002	

-0.0015	

-0.001	

-0.0005	

0	

0.0005	

1	 2	 3	 4	 5	 6	 7	 8	 9	

Age	and	JPN	TVA	

jpn_coef	 jpn_lb	 jpn_ub	



 25 

 
 

 
  



 26 

 Ta
bl

e 
2:

 E
st

im
at

ed
 R

es
ul

ts
 o

f D
et

er
m

in
an

ts
 o

f T
es

t S
co

re
s

M
at

he
m

at
ic

s
La

ng
ua

ge
 A

rts
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
Sc

ho
ol

 fi
na

nc
ia

l a
ss

is
ta

nc
e

-0
.0

85
1*

**
-0

.0
85

0*
**

-0
.0

84
7*

**
-0

.0
02

6
-0

.0
02

8
-0

.0
02

0
-0

.0
77

5*
**

-0
.0

77
5*

**
-0

.0
77

3*
**

-0
.0

16
0

-0
.0

15
6

-0
.0

16
7

(0
.0

04
0)

(0
.0

04
0)

(0
.0

03
9)

(0
.0

10
2)

(0
.0

10
2)

(0
.0

10
1)

(0
.0

04
0)

(0
.0

04
0)

(0
.0

04
0)

(0
.0

10
6)

(0
.0

10
6)

(0
.0

10
5)

Fe
m

al
e

-0
.0

39
3*

**
-0

.0
39

4*
**

-0
.0

39
3*

**
0.

18
15

**
*

0.
18

15
**

*
0.

18
14

**
*

(0
.0

03
5)

(0
.0

03
5)

(0
.0

03
4)

(0
.0

03
5)

(0
.0

03
5)

(0
.0

03
5)

Cl
as

s 
si

ze
-0

.0
05

0*
**

-0
.0

05
1*

**
-0

.0
03

4*
**

-0
.0

04
9*

**
-0

.0
05

4*
**

-0
.0

02
5

-0
.0

02
8*

**
-0

.0
03

2*
**

-0
.0

02
0*

*
-0

.0
02

4*
-0

.0
03

0*
*

-0
.0

03
6*

*
(0

.0
00

7)
(0

.0
00

8)
(0

.0
00

9)
(0

.0
01

3)
(0

.0
01

3)
(0

.0
01

7)
(0

.0
00

7)
(0

.0
00

8)
(0

.0
00

9)
(0

.0
01

4)
(0

.0
01

4)
(0

.0
01

7)

Fe
m

al
e 

(c
la

ss
 a

ve
ra

ge
)

0.
07

93
*

0.
06

47
0.

01
32

-0
.1

45
3

-0
.1

91
6

-0
.2

72
2*

0.
08

89
**

0.
10

13
**

0.
11

05
**

0.
29

71
**

0.
22

15
*

0.
04

18
(0

.0
43

9)
(0

.0
44

9)
(0

.0
48

0)
(0

.1
25

4)
(0

.1
25

4)
(0

.1
46

1)
(0

.0
44

7)
(0

.0
45

5)
(0

.0
49

0)
(0

.1
30

6)
(0

.1
31

4)
(0

.1
52

3)
Sc

ho
ol

 fi
na

nc
ia

l a
ss

is
ta

nc
e 

(c
la

ss
 a

ve
ra

ge
)

-0
.0

53
3

-0
.0

28
7

-0
.0

12
2

-0
.0

38
4

-0
.0

51
3

0.
03

27
-0

.0
12

1
0.

01
55

0.
00

28
0.

01
45

0.
01

11
0.

01
20

(0
.0

33
1)

(0
.0

33
8)

(0
.0

36
2)

(0
.0

44
9)

(0
.0

45
1)

(0
.0

50
3)

(0
.0

33
6)

(0
.0

34
3)

(0
.0

37
0)

(0
.0

47
0)

(0
.0

47
1)

(0
.0

53
2)

Fe
m

al
e 

(s
ch

oo
l a

ve
ra

ge
)

0.
43

45
**

*
0.

21
51

0.
06

23
-0

.0
92

3
-0

.0
75

2
-3

.4
88

8
0.

64
15

**
*

0.
36

80
**

46
.8

34
9*

**
0.

43
60

**
0.

33
76

45
.2

24
0*

**
(0

.1
40

6)
(0

.1
56

8)
(1

2.
11

52
)

(0
.1

91
5)

(0
.1

94
7)

(1
1.

41
46

)
(0

.1
45

8)
(0

.1
61

4)
(1

1.
77

17
)

(0
.2

06
2)

(0
.2

08
6)

(1
2.

19
83

)
Sc

ho
ol

 fi
na

nc
ia

l a
ss

is
ta

nc
e 

(s
ch

oo
l a

ve
ra

ge
)

-0
.2

30
8*

**
-0

.4
26

7*
**

-0
.0

73
6

-0
.2

93
6*

*
-0

.5
31

4*
**

2.
25

04
-0

.5
52

4*
**

-0
.5

75
4*

**
-4

.9
74

8*
**

-0
.1

42
0

-0
.3

14
7*

-1
.8

09
3

(0
.0

76
1)

(0
.1

24
9)

(1
.2

53
2)

(0
.1

31
9)

(0
.1

49
2)

(1
.4

74
7)

(0
.0

78
4)

(0
.1

27
7)

(1
.2

47
9)

(0
.1

39
8)

(0
.1

61
1)

(1
.6

28
7)

Co
ns

ta
nt

0.
04

23
0.

11
94

0.
06

84
0.

40
11

*
0.

20
46

1.
25

30
0.

00
80

-0
.0

33
1

-2
2.

39
42

**
*

-0
.0

19
2

0.
06

24
-2

0.
96

55
**

*
(0

.1
86

4)
(0

.2
41

9)
(5

.8
60

1)
(0

.2
33

1)
(0

.3
12

5)
(5

.3
53

9)
(0

.1
34

8)
(0

.2
06

8)
(5

.6
91

9)
(0

.1
98

8)
(0

.2
78

1)
(5

.7
38

2)

St
ud

en
t f

ix
ed

 e
ffe

ct
s

no
no

no
ye

s
ye

s
ye

s
no

no
no

ye
s

ye
s

ye
s

Te
ac

he
r f

ix
ed

 e
ffe

ct
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

Sc
ho

ol
 fi

xe
d 

ef
fe

ct
s

no
ye

s
no

no
ye

s
no

no
ye

s
no

no
ye

s
no

Sc
ho

ol
-y

ea
r f

ix
ed

 e
ffe

ct
s

no
no

ye
s

no
no

ye
s

no
no

ye
s

no
no

ye
s

O
bs

er
va

tio
ns

11
83

56
11

83
56

11
83

56
11

83
56

11
83

56
11

83
56

11
83

56
11

83
56

11
83

56
11

83
56

11
83

56
11

83
56

r2
0.

61
71

0.
61

79
0.

62
65

0.
14

31
0.

14
46

0.
16

93
0.

60
13

0.
60

20
0.

60
89

0.
14

55
0.

14
77

0.
16

86
r2

_a
dj

us
te

d
0.

60
99

0.
61

05
0.

61
78

0.
12

80
0.

12
89

0.
15

12
0.

59
38

0.
59

42
0.

59
99

0.
13

03
0.

13
20

0.
15

04

St
an

da
rd

 e
rro

rs
 in

 p
ar

en
th

es
es

.  
* 

in
di

ca
te

s 
10

 p
er

ce
nt

, *
* 

fo
r 5

 p
er

ce
nt

, *
**

 1
 p

er
ce

nt
 le

ve
l o

f s
ig

ni
fic

an
ce

. 



 27 

  



 28 

 
  



 29 

  



 30 

 
  



 31 

 




