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ABSTRACT
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Infections, Accidents and Nursing Overtime 
in a Neonatal Intensive Care Unit: 
A Bayesian Semiparametric Panel Data 
Logit Model

The paper investigates the effects of nursing overtime on nosocomial infections and medical 

accidents in a neonatal intensive care unit (NICU). The literature lacks clear evidence on this 

issue and we conjecture that this may be due to empirical and methodological factors. 

We thus focus on a single NICU, thereby removing much variation in specialty mixes 

such neonatologists, fellows, residents, nurse practitioners that are observed across units. 

We model the occurrences of both outcomes using a sample of 3,979 neonates which 

represents over 84,846 observations (infant/days). We use a semiparametric panel data 

Logit model with random coefficients. The non-parametric components of the model allow 

to unearth potentially highly non-linear relationships between the outcomes and various 

policy-relevant covariates. We use the mean field variational Bayes approximation method 

to estimate the models. Our results show unequivocally that both health outcomes are 

affected by nursing overtime. Furthermore, they are both highly sensitive to infant and 

NICU-related characteristics.
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1. Introduction

A large literature documents the effects of neonatal health on a wide range of adult

outcomes such as wages, cognitive skills and human capital accumulation (Black

et al., 2007; Oreopoulos et al., 2008; Currie et al., 2010; Figlio et al., 2014; Bharadwaj

et al., 2018). Neonatal health is commonly proxied by birth weight or gestational

age, as both are highly (and spatially) correlated (Neelon et al., 2014). Indeed, both

preterm (<37 weeks gestation) and low birthweight infants (< 2500 grams) are more

likely to develop neurologic, pulmonary, and gross motor impairments than full-term

infants (Behrman and Butler, 2007), and are at higher risk of mortality within one

year and up to age 17 (Paneth, 1995; Behrman and Butler, 2007).

Most preterm and low birth weight infants are admitted to a neonatal intensive

care unit (NICU) upon birth. Frail newborns are at higher risk of contracting a

nosocomial infection (Freeman et al., 1990; Vain et al., 2012) which results in in-

creased morbidity and mortality, prolonged lengths of stay, and increased medical

costs (Polin et al., 2012).1 And because they require more care, are more vulner-

able to medical incidents such as erroneous medication administration or feeding

and equipment malfunctioning (Beltempo et al., 2017). The onset of nosocomial

infections and the occurrence of medical incidents may have adverse health effects

that can potentially exacerbate health and socioeconomic problems into adulthood.

Understanding the mechanisms that lead to these adverse events may help reduce

1Neonates are at high risk of acquiring health care-associated infections because of impaired host-
defense mechanisms, limited amounts of protective endogenous flora on skin and mucosal surfaces
at time of birth, reduced barrier function of their skin, use of invasive procedures and devices, and
frequent exposure to broad-spectrum antibiotic agents.
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the private and societal costs of poor neonatal health as well as contribute to cost

containment (Evans and Kim, 2006; Russell et al., 2007; Mistry et al., 2009).

Neonatal intensive care units must contend with ever changing caseloads, patient

mix and unplanned admissions (Tucker et al. (1999)). Workforce management is

thus challenging and nursing overtime is often used to meet required nurse-to-patient

ratios (Berney and Needleman (2005); Beltempo et al. (2016)). The increasing use of

overtime hours as a labor management strategy has become an important issue across

NICUs in Canada (Canadian Association of Paediatric Health Care Centers, 2013;

Fallah et al., 2011) and elsewhere (Griffiths et al. (2014)). This is because nursing

overtime has been found to be deleterious to adult patients’ health (Bae (2013);

Haizhen (2014); Cimiotti et al. (2012); Dorrian et al. (2006); Trinkoff et al. (2011)).

Yet, the literature linking nursing overtime and neonatal outcomes, in addition to

being relatively scant, is inconclusive (see, e.g., Bae and Favry, 2013; Sherenian

et al., 2013). While nurse understaffing per se is associated with higher infections

rates (Rogowski et al., 2013) and mortality (Watson et al., 2016), mandatory staffing

(nurse/patient) has been found to have no impact on health outcomes (Evans and

Kim, 2006; Sochalski et al., 2008; Cook et al., 2012).

Understaffing must be viewed in relation to capacity and case-mix. Indeed, it is

widely acknowledged that NICUs usually operate at or near capacity, if not beyond.

Yet, economists have long questioned whether the availability of supply itself may

directly lead to additional utilization (Freedman, 2016). In the words of Roemer

(1961), “A built bed is a filled bed”, or to paraphrase Carroll (2015), “If you build

them, they will come”. There is ample evidence that newborns at all birth weights

2



are increasingly likely to be admitted to a NICU, which raises the possibility of

overuse of neonatal intensive care in some not-at-risk or low-risk newborns (Grum-

bach, 2002; Goodman et al., 2002; Harrison and Goodman, 2015). Likewise, there

is excessive regional variation in the proportion of newborns admitted to a NICU

that can not be explained by variations in birth weight or gestational age alone.2 It

has been suggested that in some cases C-section delivery could be the sole reason

for admitting newborns to NICU/ICU, including for observation with low risk-births

(Fallah et al., 2011). Admitting low-risk/low-need infants will artificially decrease

the nurse/patient ratio while not necessarily jeopardizing the health status of those

more in need of intensive care (Freedman, 2016).

Yet, the lack of clear evidence linking nursing overtime, utilization and patient

health may also be due to methodological factors (Bae and Favry, 2013; Weinstein

et al., 2008). Indeed, most studies use cross-sectional data and contrast health out-

comes stemming from heterogeneous units and/or hospitals.3 Such analyses are likely

to omit important unobserved patient characteristics and unit-specific work arrange-

ments. As for NICUs, given that the mix of neonatologists, fellows, residents, nurse

practitioners, etc. varies greatly across hospitals, singling out the contributions of

nursing overtime and utilization on health outcomes is clearly a difficult task. This

difficulty is compounded by the fact that the association between the former and the

2For instance, in Canada the proportion of newborns admitted to a NICU/ICU between 2006–
2009 ranged from 5.3% in the Province of Québec to 24.5% in the Province of New-Brunswick. In
addition, the proportion of stays that lasted less than 24 hours varied from 9.8% in the Province
of Prince-Edward Island to as much as 39.7% in the Province of Alberta (Fallah et al., 2011).

3Yet, see Mújica-Mota et al. (2020) for a recent analysis which accounts for heterogeneous causal
effects of neonatal care on mortality.
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latter is perhaps not a linear cause-effect relationship (Hugonnet et al., 2006).

In this paper, we focus on the CHU de Québec NICU, a tertiary/quaternary re-

ferral center with a 51-bed capacity that tends to a population of 1.7 million over

a territory of 452,600 km2 surrounding Québec City, Canada. Focusing on a single

unit removes some of the aforementioned variations in specialty mix across NICUs.

We study the daily occurrence of health care associated infections and medical inci-

dents/accidents (henceforth HCAI and MA, respectively) among all neonates admit-

ted to the NICU between April 2008 and March 2013. Daily exposure to overtime

and regular hours of work, as well as numerous individual and NICU-specific covari-

ates are used to model the onset of the latter two outcomes. We also exploit an

important change in workforce arrangement that was implemented in June 2012 and

which aimed at reducing overtime hours. Management thus hired 15 full-time reg-

istered nurses and converted 10% of existing positions from 8-hour to 12-hour shifts

which were exempted of additional overtime hours (Beltempo et al., 2016). We use

a flexible semiparametric logit model with random coefficients to quantify the links

between the main variables of interest and the two outcomes. The non-parametric

components of the model allow to unearth potentially highly non-linear relationships

in overtime, regular hours of work and birth weight, and is well-suited to measure

the sensitivity of the outcomes to the new workforce arrangement. Given the size

and the length of our (unbalanced) sample, we use the recent streamlined mean field

variational Bayes estimator proposed by Lee and Wand (2016) which allows fast and

efficient estimation of the model parameters.

Section 2 presents the data. Section 3 gives some insights about the mean field
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variational Bayes estimation method of the semiparametric Logit model with random

coefficients. Section 4 gives the results while section 5 concludes.

2. Data and Institutional Arrangement

2.1. The NICU

The CHU de Quebec NICU is a Level-III referral center with a 51 bed capacity.

Nurse staffing is determined before each shift according to patient acuity, planned

admissions, and elective procedures/tests. When nurses are deemed in shortage,

management initially turns to available off-duty nurses. Next, a pool of floating

nurses is relied upon. Finally, it resorts to voluntary and mandatory overtime if

necessary. Overtime is defined as all hours worked beyond the regular work schedule.4

Daily administrative data on overtime and regular hours of work, daily pa-

tient census and number of admissions were collected using the local administrative

database Logibec. This latter is used to manage work shifts and pay schedules. The

information on regular hours and overtime is thus quite precise. Information on

HCAI was drawn from the infectious disease database TDR while information on

MA was retrieved from the Gesrisk database.5

Figure 1 below exhibits the smoothed daily variations in occupancy rates and

overtime hours over our entire sample period (April 2008–March 2013). Occupancy

rates are expressed in percentage relative to capacity (51 beds). They vary between

72% (35 filled beds) and 113% (58 filled beds). The NICU operates above capacity

4Overtime occurs whenever a nurse either starts her shift earlier than planned or finishes later
than scheduled. Working beyond 16 consecutive hours per day is forbidden.

5Reporting the information on the timing as well as the type of MA is mandatory.
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41% of the time. Yet this occurs more frequently after the change in the overtime

regime implemented by management in June 2012 (vertical dashed line). Indeed,

prior to the implementation of the new policy, the NICU operated above capacity

35% of the time. The proportion increased to 71% in the aftermath. This is clearly

depicted in the figure.

Overtime hours follow the opposite path. Prior to the implementation of the

new regime, average daily overtime hours amounted to 23.6. In the months that

followed, it decreased to 18.6. The implementation of the policy occurred at a time

when occupancy was relative high and overtime hours relatively low. Recall from

Figure 1: Smoothed Daily Occupation Rates and Overtime hours
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our discussion above that some have noted that infants at all birth weights are

increasingly likely to be admitted to a NICU (Harrison and Goodman, 2015). If this

it the case, then the health status at admission should be inversely related to the

occupancy rates. Indeed, as available beds become fewer, management will naturally

prioritize high-risk infants. Figure 2 below investigates this issue. The figure reports

the (smoothed) average weight and weight/gestational age at admission by occupancy
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rate. It also distinguishes between pre and post reform periods.6 According to

Figure 2: Weight and Weight/Gestational Age at Admission, by Occupancy Rate
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the figure, prior to the reform both the weight and weight/gestational age were

relatively independent of the occupancy rate up until a rate of 102%-103%. Above

this rate, infants admitted to the NICU had slightly poorer health. Indeed, the

average weight is roughly 100 grams lower and the weight/age ratio less by two

units between occupancy rates of 102% and 110%.7 On the other hand, infants

admitted in the post-reform period have both a greater average birth weight and

Weight/Age ratio. The mean weight difference is 132 grams and the Weight/Age

more than 3 units. Both differences are highly statistically different. As in the pre-

reform period, the health status exhibits an inverse relation with the occupancy rate.

Above 102%, the birth weight and the Weight/Age ratio decrease at the same rate as

those admitted prior to the reform. The negative relation between health status and

occupancy lends credence to the claim that NICUs may have an incentive to operate

6The figures depict local polynomial regressions for occupancy rates above 94%. The NICU
operates at or above this rate 80% of the time. There are too few observations at lower rates to
make valid statistical inference.

73,322 infants were admitted prior to the reform, and only 657 in the aftermath.

7



at capacity and thus admit low-risk/low-need infants to that end (Freedman, 2016).

In the particular case of the Quebec NICU, this may be related to the fact that it

operated on average at or below capacity in the pre-reform period and somewhat

above capacity in the post-reform period as shown in Figure 1.8

2.2. Patient Characteristics and Health Outcomes

Patient characteristics are drawn from the hospital clinical database. The latter

includes information on gestational age, birth weight, sex, Apgar score, multiple

pregnancies, type of delivery, etc. All newborns admitted during the study period

were included conditional on having spent at least four days in the NICU. If an infant

had more than one episode of bacteremia, these were considered separate events if

they occurred more than 14 days apart. The date of the infection was determined

as that at which the blood culture was obtained.

The total number of infants admitted in the NICU over our sample period is

7,383. Of those, 3,404 were omitted since their stay was shorter than four days.

The motivation for excluding short spells is twofold. First, HCAIs occur whenever a

pathogenic organism can be isolated in blood or a cerebrospinal fluid culture. Such

cultures usually require at least two to three days to be conclusive. Second, the exact

timeline of events that leads to HCAIs is still not well defined in the literature (Polin

et al., 2012). Studies focusing on adult and pediatric units suggest that low nurse-

to-patient ratios and extensive overtime over a 3-day period may trigger the onset

8The unit operated above capacity 35.5% of days in the pre-reform period (Capacity = 98.4
) and more than 75.3% in the post-reform period (Capacity = 103.4.) The difference is highly
statistically significant.
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of HCAIs (Cimiotti et al., 2006; Beltempo et al., 2017). In line with this literature,

overtime hours on any given day was thus defined as a moving average computed

over the preceding 3-day period when the analysis focuses on HCAIs. Such a moving

average can only be computed for spells lasting at least 4 days. When analyzing

medical accidents, on the other hand, we use daily exposure to overtime hours.

The final sample consists of 3,979 neonates which represents over 84,846 infan-

t/days over the sample period. Table 1 provides descriptive statistics of the main

variables used in the model. The first column focuses on infants who did not contract

a HCAI or suffered an MA. The next two columns focus on the subsample of infants

who suffered an MA and contracted a HCAI, respectively. Not surprisingly, the table

highlights the link between poor health and adverse health events. Indeed, infants

who suffered a medical accident or contracted an infection had both a have lower

gestational age and birth weight than otherwise. They also had a lower Apgar score

and were more likely to have been delivered by C-Section. The next two lines fo-

cus on the Diagnostic-Related Group (DRG). DRGs categorize patients with respect

to the main diagnosis at admission. It takes one of four potential values: 1=mild,

2=moderate, 3=severe, 4=extreme. The next line reports the proportion of infants

who were admitted to the NICU following surgery. As previously, infants with an

MA or a HCAI were more frail at entry, were much more likely to have undergone

surgery and somewhat more likely to be a first delivery. Poor health translates into

lengthy hospitalization spells, and much more so for those with an MA or a HCAI.

The last line reports the proportion of infants whose spell occurred during of after

the implementation of the overtime reform.
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The next panel of the table focuses on the average daily characteristics of the

NICU by outcome subsamples. The only two noteworthy features concerns the hours

of work. Indeed, infants who contracted a HCAI or suffered an MA were exposed to

slightly more overtime and regular hours of work than otherwise. This is true despite

the fact that there were on average no more admissions into the unit, nor was the

occupancy rate greater than usual.

The last panel of the table provides a detailed account of the two outcome vari-

ables. Overall, 3,513 infants in our sample had an MA or HCAI-free stay in the unit.

On the other hand, 300 infants (7.54%) suffered 389 MA events, and 240 of them

(6.03%) contracted 272 HCAIs. From the NICU’s point of view, the probability of

observing an MA or a HCAI in any given day was 21.35% and 14.92%, respectively.

This translates into 0.458% and 0.321% when computed daily and per neonate. The

above discussion highlights the fact that the link between nursing overtime, case-mix,

and capacity is a complex one. The tables and figures provide at best weak prima

facie evidence to the effect that the adverse health events may be loosely related to

hours of work. Yet the influence of other variables needs to be netted out in order to

determine the precise link between work schedules and health outcomes, if any. It is

highly unlikely that standard econometric methods are capable of unearthing what

we suspect are heterogeneous and non-linear conditional means responses. In what

follows, we briefly sketch the recent flexible semiparametric logit model with random

coefficients proposed by Lee and Wand (2016). The non-parametric components of

the model are particularly well-suited to investigate potentially highly non-linear

relationships between our two outcomes and overtime and regular hours of work.
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3. The semiparametric Logit model with random coefficients

In what follows, we briefly sketch the semiparametric random effects logit model.9

Consider the probability that the binary outcome (MA or HCAI), yit, for infant i

occurs during its t-th day in the NICU. The unbalanced sample is composed of N

infants (i = 1, ..., N) each observed during Ti days (t = 1, ..., Ti). Let y be the

(NT × 1) vector of the yit probabilities with T =
∑N

i=1 Ti. Consider the following

mixed effects logistic model:

y | β, u ∼ Bernoulli
(
logit−1

(
XRβR + ZRuR + f

(
XG
)))

, (1)

where y ∼ Bernoulli (p) is shorthand for the elements of y having independent

Bernoulli distributions with parameters corresponding to those in p(·), and logit−1 (x)

is shorthand for the logistic distribution, i.e. ex/(1 + ex). We borrow the approach

and notation of Zao et al. (2006) and Lee and Wand (2016). Let XR be a (NT × qR)

matrix of covariates and ZR a (NT ×NqR) block-diagonal matrix of the XR
i subma-

trices. X and Z are called the fixed and random effects design matrices associated

with β and u.10 XR
it,1 is the intercept and XR

it,j, 2 ≤ j ≤ qR are the other control

covariates. The random intercept is defined by the sum (βR1 +uRi,1), the random slope

for variable Xi,2 is the sum (βR2 + uRi,2), etc.

9The Mean Field Variational Bayes estimator is detailed in a companion web appendix.
10This terminology is different from that of the classical panel data literature which refers to

“fixed” and “random” effects.
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The semiparametric additive function is given by

f
(
XG
)

= XGβG + ZGuG =
L∑
l=1

XG
l β

G
l +

L∑
l=1

ZG
l u

G
l . (2)

The matrices XG and ZG are associated with the fixed effects vectors βG and uG.

The (NT × L) matrix XG contains L covariates that are not already included in

XR. In our specific case, the three variables in XG are regular and overtime hours

of work, and birth weight.11 The (NT × qL) matrix ZG matrix, with qL =
∑L

l q
G
l ,

contains spline basis functions of the three covariates using qGl knots, and uG are

the corresponding spline coefficient vectors. Following Lee and Wand (2016), we use

transformed cubic O’Sullivan splines (see also Wand and Ormerod (2008)). There-

fore,

XR = vec
(
XR

1 , ..., X
R
N

)
, ZR = blockdiag

(
XR
i

)
(1≤i≤N)

, β =
(
βR
′
, βG

′
)′

(3)

u =
(
uR
′
, uG

′
)′

, X =
(
XR, XG

)
and Z =

(
ZR, ZG

)
Cov

(
uR
)

= IN ⊗ ΣR, Cov
(
uG
)

= blockdiag
(
σ2
ul
IqGl

)
(1≤l≤L)

and Ψ =

 Cov
(
uR
)

0

0 Cov
(
uG
)
 =

 IN ⊗ ΣR 0

0 blockdiag
(
σ2
ul
IqGl

)
(1≤l≤L)

 .

ΣR is an unstructured
(
qR × qR

)
covariance matrix, ⊗ denotes the Kronecker product

11This specification is based on the results of a generalized mixed effects regression tree model
(GMERT) using the same database as in Beltampo et al. (2019).
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and IN is an (N ×N) identity matrix. σ2
ul

is the penalized parameter for the spline

coefficients
{
uGl , 1 ≤ l ≤ L

}
and Ψ is the random effects covariance matrix associated

with the vectors uR and uG.

This semiparametric panel data model with random coefficients is a complex spec-

ification and the methods for estimating such a specification are few. Although the

nonlinear panel data literature provides examples of either Logit models with random

coefficients (for instance Moon et al. (2017)) or semi- (non-) parametric Logit models

(see Lewbel (2000), Honoré and Lewbel (2002) or Ruppert et al. (2003)), examples

of models that encompass both features are scarce. Yet, including semiparametric

components into a panel data Logit model with random coefficients yields a very rich

model that should prove useful in many circumstances in economics. Unfortunately,

standard MCMC Bayesian techniques such as Gibbs sampling are inadequate with

such models since they are typically computationally prohibitive, may suffer from

poor mixing and may not scale well when applied to models that require the inver-

sion of large sparse covariance matrices (as in our case). Fortunately, Lee (2016) and

Lee and Wand (2016) have proposed to use a variational Bayesian method known as

“mean field variational Bayes approximation” (henceforth MFVB) to estimate such

models. MFVB consists in a set of tools which provide a good approximation of the

posterior distributions of the parameters. Because the posterior distribution is ap-

proximated, MFVB is much faster than traditional Bayesian methods and can afford

to tackle large models such as ours.12

12See Appendix A for the technical details.
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4. Estimation Results

Our estimation strategy consists in specifying first the most general version of

the model and then testing whether a more parsimonious version performs just as

well. We thus begin with the semiparametric Logit model with random coefficients

(ZG = blockdiag
(
XR
i

)
with 1 ≤ i ≤ N). The model has NqR(= 3, 979×qR) random

coefficients (βRj + uRi,j) with j = 1, ..., qR and i = 1, ..., N , which is huge and time

consuming. Using a Wald test, we next test the null hypothesis of constant slopes

and random intercept, i.e. H0 : uRi,j = 0 for j = 2, ..., qR.13 The Wald test follows

a χ2
N(qR−1) and the null hypothesis could not be rejected in either HCAI and MA

models. Our analysis thus focuses on the restricted semi-parametric Logit model

with a random (intercept) effects, (βR1 + uRi,1), and constant slopes (βRj ) for the XR

covariates.

4.1. Medical Accidents

The parameter estimates of the probability that a medical accident occurs are

reported in Table 2. The table is divided into three sections. The first reports the

parameters βR, the second one focuses on βG, and the third reports the panel-level

variance component, σ2
uR , and the implicit proportion the total variance due to the

panel-level variance component, ρσ2
uR
. The table also reports the associated odds

ratios as well as their 95% confidence intervals.14

13As shown in the online supplement, the Wald test in the context of the MFVB estimation of
such semiparametric models has optimal empirical size.

14Details on the estimation of the parameter estimates, their standard deviations, and the algo-
rithms used are presented in the Appendix A. Note that the MFVB approximates the posterior
distribution by the product of the so-called optimal q-densities which minimize the Kullback-Leibler
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According to the table, most parameter estimates are different from zero at the

5% level and most bear very small standard deviations. In addition, the signs of

most coefficients are consistent with the previous literature. We first focus on the

characteristics of the infant and the delivery. Infants who contracted a nosocomial

infection during their spell in the NICU (Prior Infection) are much less likely to

be victim of a medical accident in the aftermath. This is perhaps because they have

become more vulnerable and thus require more attentive care. Gestational Age

is positively related to the occurrence of a MA, which is perhaps surprising. Yet,

since we are controlling for birth weight, a longer gestational age may in fact be

associated with a poorer health status. In other words, lower weight-for-age ratio

infants may require more care or handling which may result in an increased likelihood

of MA. Whether the infant was admitted in the NICU at birth or transferred from

another unit or hospital (Birth vs Transfert) has no impact on the occurrence

of a MA. The same applies to the Sex of the infant. Infants who were delivered

through C-Section, Twins and those with a high Apgar Score are also less likely

to experience a MA. Finally, those who were admitted to the NICU following a

Surgical intervention and those whose status was deemed highly severe conditional

on their DRG code, are much more likely to be victim of a MA.

The previous parameter estimates relate to factors that are infant-specific. The

divergence. This minimization of the Kullback-Leibler divergence is thus equivalent to maximizing
the “Evidence Lower Bound (ELBO)”. Convexity properties of the MFVB algorithm guarantees
quick convergence to at least a local optimum. In our case, convergence was easily reached within
500 cycles. Computation required 5791.23 seconds of computing time, which is orders of magnitude
faster than MCMC. The estimations were conducted using R version 3.3.2 on a 24-worker machine
in the department of economics at Université Laval. Some elements of the R code are available in
the supplementary material of Lee and Wand (2016).
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next set of estimates focus on two factors that are unit-specific. These measure

the impact of daily variations in Unit Occupancy and Daily Admissions on the

probability of observing a MA for a particular infant. It is implicitly assumed that

all infants are equally exposed to the same “dose” of the latter two. According to the

parameter estimates, only Occupancy has a statistically significant, albeit very small

and negative, effect. This result is consistent with those of Beltempo et al. (2017)

using similar data but a different estimation strategy, and for which unit occupancy

was found to have no impact on health outcomes.

Columns 3–6 of the table report the odds-ratios of the XR variables, their stan-

dard deviation as well as their 95% credible intervals. These are computed as fol-

lows. Assume the XR
j covariate varies by an amount δ, while the others remain

constant. Then, the odds ratio and its standard deviation are given by OR
(
XR
j

)
δ

=

exp
(
δβ̂j

)
, and σOR(XR

j )
δ

= σ̂βj exp
(
δβ̂j

)
. For dummy variables, we consider δ =

b−a with a = 0 and b = 1. The odds ratio is given by the ratio of the odds of an event

occurring with the risk factor (XR
j = b) to the odds of it occurring with the risk factor

(XR
j = a). When the event yit = 1 is rare as in our case, then OR

(
XR
j

)
is approx-

imately equivalent to the relative risk RR
(
XR
j

)
.15 According to Table 2, and using

δ = 1, the lowest odds ratios concern DRG severity (OR ∈ [0.33–0.68]), Prior

Infection (OR = 0.59) and Apgar Score (OR = .76), while the highest odds ra-

tios relate to Gestational Age (OR = 1.06), Overtime Reform (OR = 1.29) and

Surgical vs Medical (OR = 1.41). Thus the probability that a MA occurs on

15The relative risk is the ratio of the probability of the outcome with the risk factor (XR
j = b) to

the probability of the outcome with the risk factor (XR
j = a).
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any given day and for any given infant varies greatly with the conditioning variables

at both the infant and the NICU levels. For instance, infants who contracted a Prior

Infection in the NICU are 41% less likely to experience a MA. On the other hand,

infants admitted after the Overtime Reform are 29% more likely to do so.

Recall that the Overtime Reform that was implemented in June 2012 consisted

in hiring 15 full-time registered nurses and in converting 10% of existing positions

from 8-hour to 12-hour shifts that were exempted from overtime hours. As outlined

above, this has resulted in additional medical accidents, ceteris paribus. While the

reform has resulted in fewer daily overtime hours (from 24.8 to 21.01, see Figure 1), it

has also resulted in more average daily regular hours of work (from 514 to as many as

554 in the post-reform period). The new mix of overtime and regular hours of work

may have have resulted in fewer MAs overall. What the parameter estimate shows

is that, ceteris paribus, the Overtime Reform in itself has had a positive impact on

the probability of observing a MA.

We further investigate the links between hours of work and MA in the next

panel of the table which reports the fixed parameters βG of the semiparametric

additive function. According to these, Daily Overtime and Daily Regular hours

of work have a positive and statistically significant effect on MA. In addition, as

expected, a greater Birth Weight translates into a lower probability of a MA. The

main benefit of using a semi-parametric model is its ability to compute varying

and potentially non-linear odds-ratios for each variable in XG. Unfortunately, their

computation as well as that of their standard deviations are quite involved and so

17



must be bootstrapped (see Appendix B).16 Figure 3 draws two-dimensional contour

plots for different combination of XG variables, conditional on a given value of a third

variable. Thus, Figure 3a shows the sensitivity of the odds-ratio of the probability

of a MA as Daily Regular Hours and Daily Overtime Hours vary, conditional on

the 25th decile of Birth Weight (1080 grams). For such low weight infants, the odds

ratios increase very rapidly from 1 to 4.5. The odds ratios are very sensitive to the

Daily Overtime Hours for values above 60. Figure 3b plots the odds ratios of the

probability of MA as Birth Weight and Daily Overtime Hours vary, conditional

on the 75th of Daily Regular Hours (558 hours). The contour surfaces are non-

linear and the odds-ratios peak at values of Birth Weight below 1,000 grams. The

probability of observing a MA for infants of mean weight values is much less sensitive

to Daily Overtime Hours. Finally, Figure 3c reports the odds-ratios between Daily

Regular Hours and Birth Weight, conditional on the 75th value of Daily Overtime

Hours (34 hours). Once again, the odds-ratios are non-linear. The probability of

observing a MA increases rapidly with regular hours of work but this is mostly true

for low birth weight infants.

The parameter estimates show that the occurrence of a MA is sensitive to many

individual and NICU-specific factors. The semi-parametric function underlines the

fact that an infant is more likely to experience a MA the lower his birth weight, and

whenever daily regular or overtime hours are well above average.

16Figures A1–A12 of the online supplement reports the conditional contours plots of the odds
ratios of the probability of MA conditional of the couple (Daily Regular Hours, Daily Overtime
Hours) for 3 deciles of Birth Weight (10, 50, 90), of the couple (Daily Regular Hours, Birth
Weight) for 3 deciles of Daily Overtime Hours (10, 50, 90), and of the couple (Daily Overtime
Hours, Birth Weight) for 3 deciles of Daily Regular Hours (10, 50, 90).
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4.2. Health Care Associated Infections

Estimation results for HCAI are reported in Table 3 whose setup is identical to

the previous one.17 HCAIs have been much more investigated in the literature than

MA presumably because nosocomial infections are likely to have long term health

and socio-economic consequences (Bharadwaj et al., 2018). As stated earlier, netting

out the impact of overtimes hours on HCAIs is a difficult task. This is perhaps why

the literature is inconclusive on this issue (Bae and Favry, 2013; Weinstein et al.,

2008).

According to the table, a number of infant and birth-specific factors have a sta-

tistically significant effect on the probability of observing a HCAI. Thus, having

experienced a MA earlier in the spell (Prior MA) decreases the probability consid-

erably. This may be linked to the fact that greater caution is exercised when caring

for these infants. The associated odds-ratio is equal to 0.63, so that infants who

experienced a MA during their stay in the NICU are 37% less likely to contract a

nosocomial infection in the aftermath. Likewise, being admitted to the NICU at

birth rather than being transferred from the nursery (Birth vs Transfer) may be

a proxy for frailty as the probability of contracting a nosocomial infection is much

greater in the former case. This result is consistent with the fact that some not-at-

risk or low-risk newborns may be transferred to the NICU when occupancy is below

capacity (Grumbach, 2002; Harrison and Goodman, 2015). Indeed, according to the

odds-ratio infants who are admitted in the NICU at birth are 32% more likely to

17As with MA, convergence easily obtains within 500 cycles, or 5953.49 seconds of computing
time.
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contract a nosocomial infection than those who are transferred from another hos-

pital unit. C-Section births are also associated with a much lower probability of

infection. Recall that many have suggested that C-Section delivery could be the

sole reason for admitting otherwise healthy infants to the NICU (Fallah et al., 2011).

Our result is consistent with this conjecture, and with an odds-ratio of 0.82, the

effect is sizeable. The reason for admission (Surgical vs Medical, OR=1.36) and

the DRG-Severity at admission (OR ∈ [0.09, 0.84]), not surprisingly, are very strong

predictors of HCAIs. Indeed, infants who are admitted for surgical reasons are on

average 36% more likely to contract a nosocomial infection that those admitted for

medical reasons. Likewise, conditional on the DRG code, infants whose severity is

deemed low are 91% less likely to do so than those whose severity is considered very

high. Medium and high severity DRG codes also lead to much lower probabilities of

contracting a nosocomial infection than DRG codes classified as very high.

The only NICU-specific factor which impacts the probability of observing a HCAI

is Daily Admissions (OR=1.04), although the effect is relatively small. This is in

line with the findings of Beltempo et al. (2017) using other data and a simple logistic

regression and which found Daily Admissions to have little or no impact on the

occurrence of a HCAI. Interestingly, the Overtime Reform has had no impact on the

probability of observing a HCAI, unlike what was found above for MAs. This is not

to say that overtime hours have no impact on HCAIs, quite to the contrary. Indeed,

the next panel of the table reports the fixed parameters βG of the semi-parametric

additive function. Interestingly, Daily Overtime Hours has a significant and sizable

positive impact on the occurrence of HCAIs, whereas Daily Overtime Hours does
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not. Birth Weight, as expected, has the opposite effect.

We next investigate the sensitivity of the probability of observing a HCAI with

respect to the three components of the semi-parametric function.18 Figure 4 draws

conditional two-dimensional contour plots for the same combinations of XG variables

as in Figure 3. Once again, the figure underlines the benefits of using a flexible semi-

parametric specification. Indeed, Figure 4a plots the contours of the odds-ratios

between Daily Regular Hours and Daily Overtime Hours, conditonal on the 25th

decile of Birth Weight. As with MA, the patterns are relative linear and increase

steadily as Daily Overtime Hours increase. Note that the odds-ratios are little

sensitive to the Daily Regular Hours, consistent with the fact its fixed parameter

estimate, βGRH , is not statistically significant. On the other hand, the odds-ratios are

very sensitive the increases in Daily Overtime Hours, and mostly so above 60 hours.

Indeed, increasing the number of Daily Overtime Hours from 60 to 120 translates

into a threefold increase in the odds-ratios. Figure 4b plots the contour of the odds-

ratios between Birth Weight and Daily Overtime Hours, conditional on the 75th

of Daily Regular Hours (558 hours). The contour surfaces are non-linear and the

odds-ratios peak at values of Birth Weight below 1,000 grams. The odds-ratios

for infants of weight above the mean sample of 2,400 grams are much less sensitive

to overtime hours. Indeed, increasing the Daily Overtime Hours from 60 to 120,

increases their odd-ratios from 1 to 1.5. Finally, Figure 4c reports the odds-ratios

18Figures A13–A26 of the online supplement provides conditional contour plots of the odds ratios
of the probability of HCAI for the couple (Daily Regular Hours, Daily Overtime Hours) for 3
deciles of Birth Weight (10, 50, 90), for the couple (Daily Regular Hours, Birth Weight) for 3
deciles of Daily Overtime Hours (10, 50, 90) and for the couple (Daily Overtime Hours, Birth
Weight) for 3 deciles of Daily Regular Hours (10, 50, 90).
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between Daily Regular Hours and Birth Weight, conditional on the 75th value of

Daily Overtime Hours (34 hours). Because the parameter estimate associated with

Regular Hours, βGRH , is not statistically significant, the contour surfaces of the odds

ratios increases linearly by strata. For infants at or below average weight (≤ 2,400

grams), the risk of HCAI increases considerably as birth weight decreases, regardless

of regular workload.

5. Conclusion

Most preterm and low birth weight infants are admitted to a neonatal intensive

care unit (NICU) upon birth. Frail newborns are at higher risk of contracting a

nosocomial infection (Freeman et al., 1990; Vain et al., 2012) which may result in

increased morbidity and mortality, prolonged lengths of stay, and increased medical

costs (Polin et al., 2012). And because they require more care, are more vulnerable

to medical incidents such as erroneous medication administration or feeding and

equipment malfunctioning (Beltempo et al., 2017).

NICUs are complex entities that are challenging from a managerial point of view.

Unplanned admissions, random patient mixes, ever changing caseloads, etc. require

a particularly flexible workforce. In order to meet to meet required nurse-to-patient

ratios (Berney and Needleman, 2005; Beltempo et al., 2016), management often

turns to nursing overtime (Canadian Association of Paediatric Health Care Centers,

2013; Fallah et al., 2011; Griffiths et al., 2014). Reliance on nursing overtime has

become an important policy debate because it has been found to be deleterious to

adult patients’ health (Bae (2013); Haizhen (2014); Cimiotti et al. (2012); Dorrian
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et al. (2006); Trinkoff et al. (2011)). Yet, the literature linking nursing overtime and

neonatal outcomes, in addition to being relatively scant, is inconclusive (see, e.g.,

Bae and Favry, 2013; Sherenian et al., 2013).

We conjecture that the lack of clear evidence linking nursing overtime, utilization

and patient health may also be due to methodological factors. Indeed, most studies

use cross-sectional data and contrast health outcomes stemming from heterogeneous

units and/or hospitals. Such analyses are likely to omit important unobserved patient

characteristics and unit-specific work arrangements. As for NICUs, given that the

mix of neonatologists, fellows, residents, nurse practitioners, etc. varies greatly across

hospitals, singling out the contributions of nursing overtime on health outcomes is

clearly an empirically difficult task. This difficulty is compounded by the fact that

the association between the latter two is perhaps not a linear cause-effect relationship

(Hugonnet et al., 2006).

In this paper, we focus on a single tertiary NICU with a 51-bed capacity. Focusing

on a single unit removes some of the aforementioned variations in specialty mix

across NICUs. We study the daily occurrence of health care associated infections

and medical incidents/accidents among all neonates admitted to the NICU between

April 2008 and March 2013. Daily exposure to overtime and regular hours of work,

as well as numerous individual and NICU-specific covariates are used to model the

onset of the latter two outcomes.

We use a flexible semiparametric logit model with random coefficients to quantify

the links between the main variables of interest and the two outcomes. The non-

parametric components allow to compute highly flexible odds-ratios between them.
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Furthermore, given the size and the length of our (unbalanced) sample, we use the

recent streamlined mean field variational Bayes estimator proposed by Lee and Wand

(2016) which allows for fast and efficient estimation of the model parameters. Our

results provide clear evidence that the onset of nosocomial infections and the occur-

rence of medical accidents are intimately related to infant-specific and NICU-specific

characteristics. In particular, both outcomes are shown to be highly sensitive to

nursing overtime. Importantly, the sensitivity of the two outcomes is shown to vary

greatly with the mix of regular and overtime hours, as well as with the infant’s birth

weight. Thus infants at, or above, average birth weight and who are exposed to little

overtime are at low risk of contracting a nosocomial infection. On the other hand, low

birth infants who are exposed to numerous overtime hours are considerably more at

risk. It is thus conceivable that the inconclusiveness of the literature may partly due

to the fact that standard regression models focus on mean point estimates. Allowing

more flexibility in the model is perhaps better suited to unearth subtle non-linear

relationships between outcomes and important policy variables.
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Table 1: Sample Means and Standard Deviations

Variable Accident Accident Infection
Infection/

No Yes Yes
Neonates at Admission

Sex (Female=1)(%) 44.37 47.33 43.75
(0.49) (0.50) (0.50)

Gestational Age 35.27 32.00 29.72
(3.49) (5.02) (4.25)

Weight (Grams) 2511.57 1885.13 1433.58
(848.43) (1048.06) (845.84)

Apgar > 7 at 5 Min. (%) 88.50 70.00 64.17
(31.90) (45.90) (48.05)

C-Section (%) 40.68 55.67 64.17
(49.13) (49.76) (48.05)

Diagnostic-Related Group (Severity) 2.19 3.24 3.43
(0.88) (0.88) (0.72)

Diagnostic-Related Group (% Surgical) 6.97 34.67 33.75
(25.47) (47.67) (47.38)

First Birth (%) 74.21 79.33 86.67
(43.75) (40.55) (34.06)

Length of stay (Days) 18.98 64.99 75.30
(19.32) (50.61) (48.91)

Overtime Reform 16.73 22.08 16.00
(37.20) (40.71) (35.48)

Nicu (1,822 days)
Daily Admissions 4.37 4.33 4.55

(2.29) (2.30) (2.36)
Bed Occupancy 50.37 50.72 50.71

(3.33) (3.48) (3.07)
Daily Regular Hours 519.82 535.15 522.35

(49.92) (45.46) (50.50)
Daily Overtime Hours 22.70 26.77 26.53

(20.74) (21.62) (21.84)
Outcomes

Number of Events (Infants) 3,513 389 [300]† 272 [240]†

Infant Frequency (%) 7.54 6.03
Daily Frequency (%) 21.35 14.92
Daily/Infant Frequency (%) 0.458 0.321
† The number between brackets represents the number of neonates involved in
the events.
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Figure 3: Contour Plots of Odds-Ratios for Medical Accidents.
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Figure 4: Contour Plots of Odds-Ratios for Health Care Associated Infections.
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Appendix A. The mean field variational Bayes approximation

Lee and Wand (2016) derived the full Bayesian model (with priors on parameters
and hyperparameters). Let

y | β, u ∼ Bernoulli
(
logit−1

(
XRβR + ZRuR +XGβG + ZGuG

))
(A.1)

with

β ∼ N
(
0, σ2

βIP
)

y | ΣR, σ2
ul

∼ N

0,

 IN ⊗ ΣR 0

0 blockdiag
(
σ2
ul
IqGl

)
(1≤l≤L)


ΣR | aR1 , .., aRqR ∼ IW

(
ν + qR − 1, 2νdiag

(
1/aR1 , .., 1/a

R
qR

))
aRr ∼ IG

(
1
2
, A−2

Rr

)
, 1 ≤ r ≤ R

σ2
ul
| aul ∼ IG

(
1
2
, 1/aul

)
, 1 ≤ l ≤ L

aul ∼ IG
(

1
2
, A−2

ul

)
,

where IW (.) and IG (.) are inverse-Wishart and inverse-Gamma distributions.19

The likelihood combined with the prior yields a joint posterior distribution which
does not have a known tractable distribution and the parameters have to be sampled
using MCMC techniques such as Gibbs sampling. Inference based on MCMC can be
very slow for such models and may suffer from poor mixing. In this case, variational
Bayesian inference which is a deterministic optimization approach to approximate
the posterior distribution is preferred. The MFVB approximation is analogous to
Gibbs sampling for conjugate models (see Bishop (2006), Ormerod and Wand (2010),
Pham et al. (2013) and Lee and Wand (2016) to mention a few).

In what follows, we provide a brief overview of the MFVB method and its ap-
plication to the semiparametric Logit model with random coefficients. Consider a
generic Bayesian model with observed vector y and parameter vector θ. The Bayes
theorem allows one to define the posterior distribution as:

p (θ | y) =
p (θ, y)

p (y)
=
p (y | θ) p (θ)

p (y)
with p (y) =

∫
p (θ, y) dθ. (A.2)

Let {θ1, ..., θM} be a partition of the parameter vector θ. The MFVB approximates

19The initial values of the hyperparameters of the priors are: σ2
β = 105, Au = 105, AR = 105 and

ν = 2 leading to diffuse priors. We use transformed cubic O’Sullivan splines with 25 interior knots.
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the posterior distribution p (θ | y) by the product of the q-densities20:

q (θ) =
M∏
j=1

q (θj) . (A.3)

Then, the logarithm of the marginal likelihood satisfies:

ln p (y) =

∫
q (θ) ln

{
p (θ, y)

q (θ)

}
dθ +

∫
q (θ) ln

{
q (θ)

p (θ | y)

}
dθ

= ln p (y, q) +KL(q, p), (A.4)

where
KL(q, p) =

∫
q (θ) ln

{
q (θ)

p (θ | y)

}
dθ (A.5)

is the Kullback-Leibler divergence between q (θ) and p (θ | y). Furthermore, ln p (y, q)
is a lower bound on the marginal log-likelihood.

The optimal q-densities which minimize the Kullback-Leibler divergence are given
by:

q (θj) ∝ exp
[
Eq(−θj) {p (θj | rest)}

]
, j = 1, ...,M, (A.6)

where Eq(−θj) denotes expectation with respect to
∏

k 6=j q (θk). rest = {y, θ1, · · · θj−1, θj+1 · · · θM}
is the set containing the rest of the random vectors in the model, except θj and
the distributions (θj | rest) are the full conditionals in the MCMC literature. The
Kullback-Leibler divergence becomes

KL(q, p) = Eq(θ) [ln q (θ)]− Eq(θ) [ln p (θ | y)]

= Eq(θ) [ln q (θ)]− Eq(θ) [ln p (θ, y)] + ln p (y) , (A.7)

where the last term, ln p (y), is a constant. The minimization of the Kullback-Leibler
divergence is thus equivalent to maximizing the scalar quantity,

ln p (y, q) = Eq(θ)

[
ln

(
p (θ, y)

q (θ)

)]
(A.8)

which is usually referred as the evidence lower bound (ELBO)21. Compared to the

20This is known as the mean field restriction. The term mean field originated from physics.
21The lower bound is also known as the negative variational free energy and the entropy of the

variational distribution is given by Eq(θ) log [q (θ)].
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minimization of the KL divergence, the maximization of the ELBO is often a more
convenient objective of the optimization over the free distributional parameters.

Lee and Wand (2016) apply this principle and derive the MFVB approximation of
the logistic-mixed model-based penalized spline specification (A.1) on the following
factorization:

p (θ | y) = p (θ1, ..., θM | y) = p
(
β, u,ΣR, au, a

R, σ2
u | y

)
(A.9)

= p
(
βR, βG, uR, uG,ΣR, au, a

R, σ2
u | y

)
≈ q

(
β, u,ΣR, au, a

R, σ2
u

)
= q

(
β, u, au, a

R
)
q
(
ΣR, σ2

u

)
= q (β, u) q

(
ΣR
) qR∏
r=1

q
(
aRr
) L∏
l=1

q (aul)
L∏
l=1

q
(
σ2
ul

)
.

They approximate the optimal q-density for (β, u) by a multivariate normal distri-
bution

q (β, u) ∼ N
(
µq(β,u,ξ),Σq(β,u,ξ)

)
(A.10)

with Σq(β,u,ξ) =
[
2C ′diag (λ (ξ))C + blockdiag

(
σ−1
β IP , G

−1
)]−1

µq(β,u,ξ) = Σq(β,u,ξ)C
′
(
y − 1

2
1
)
,

where C = [X,Z], λ (ξ) = tanh (ξ/2) / (4ξ), 1 is a (NT × 1) vector of ones and ξ is
an (T × 1) vector of positive variational parameters.22

Lee and Wand (2016) first derive the conditional posterior densities p (θj | rest)
for j = 1, ...,M from the full Bayesian model (A.1), i.e., the Gibbs sampling al-
gorithm. Then, the optimal q-densities are chosen to minimize Kullback-Leibler
divergence between the right-hand side of (A.9) and the full joint posterior density
function from the Gibbs sampling algorithm. These optimal q-densities admit the

22The optimal variational parameter vector is obtained via the update

ξ ←
√

diagonal
[
C
(

Σq(β,u,ξ) + µq(β,u,ξ)µ
′
q(β,u,ξ)

)
C ′
]

where diagonal(x) is the vector containing the diagonal entries of x.
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following forms 

q (β, u) ∼ N
(
µq(β,u,ξ),Σq(β,u,ξ)

)
q
(
ΣR
)
∼ IW

(
ν +N + qR − 1, Bq(ΣR)

)
q
(
σ2
ul

)
∼ IG

(
1
2

(
qGl + 1

)
, Bq(σ2

ul
)

)
q (aul) ∼ IG

(
1, Bq(aul )

)
q
(
aRr
)
∼ IG

(
1
2

(
ν + qR

)
, Bq(aRr )

)
. (A.11)

After tedious derivations, the optimal values of the q-density parameters are obtained
via coordinate ascent in the following Algorithm 1. The stopping criterion is based
on the variational lower bound on the marginal likelihood denoted by p (y, q) and its
logarithm is obtained by

ln p (y, q) = Eq(θ)

[
ln

(
p (θ, y)

q (θ)

)]
(A.12)

= Eq(θ)
[
ln p

(
y, β, u,ΣR, au, a

R, σ2
u

)
− ln q

(
β, u,ΣR, au, a

R, σ2
u

)]
and is presented below.

The computing time gains afforded by the MFVB algorithm, as compared to
Gibbs sampling, are huge23 but more importantly, this approximation avoids the
pitfalls of poor mixing of MCMC methods on models with large sparse covariance
matrices. Moreover, the accuracy scores of the MFVB approximation (as compared
to MCMC) generally exceed 95 − 97% and rarely drop below 90% in most of the
papers on MFVB (see for instance Bishop (2006), Ormerod and Wand (2010), Faes
et al. (2011), Pham et al. (2013), Lee and Wand (2016) and Blei et al. (2017)).

Thus, the MFVB approach has great advantages as compared to the MCMC
technique such as Gibbs sampling. The algorithm proposed by Lee and Wand (2016)
has a promising future with a remarkable ability to perform high quality Bayesian
inference for large panel data models faster than ever before.

23The MFVB can be 3, 500 (or more) times faster than the MCMC. For instance, Lee and Wand
(2016) used a data set with N = 3, 978 mothers as groups at the first level and 8, 604 births as units
at level 2 for an application on the link between birthweight of children and infant’s gestational age
(in weeks). It took 4 days with MCMC and few minutes with MFVB on a Mac OS X laptop with a
2.G GHz Intel Core i5 and 8 GB RAM. They also used a data set with N = 148 schools as groups
at the first level and 2, 069 students as units at level 2 for an application to student assessment
which took 57 min with MCMC and 1.2 min with MFVB.
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Algorithm 1. Mean field variational Bayes algorithm (see Lee and Wand (2016),
pp. 884-885).

1. Initialize µq(1/σ2
ul

) > 0, µq(1/aul)
> 0, 1 ≤ l ≤ L, µq(1/aRr ) > 0, 1 ≤ r ≤

qR,Mq((ΣR)−1) positive definite, ξ (T × 1) vector of positive entries.
2. Cycle through updates:

(a) S ← 0, s← 0, for i = 1, ..., N :
Gi ← 2

(
CG
i

)′
diag (λ (ξi))X

R
i with CG

i =
[
XG
i , Z

G
i

]
Hi ←

[
2
(
XR
i

)′
diag (λ (ξi))X

R
i +Mq((ΣR)−1)

]−1

S ← S +GiHi (Gi)
′ ; s← s+GiHi

(
XR
i

)′ (
yi − 1

2
1
)

(b) Σq(β,uG,ξ) ←

2
(
CG
)′
diag (λ (ξ))CG +

 σ−2
β IP 0

0 blockdiag
(
µq(1/σ2

ul
)IqGl

)
(1≤l≤L)

− S

−1

(c) µq(β,uG,ξ) ← Σq(β,uG,ξ)

[(
CG
)′ (

yi − 1
2
1
)
− s
]
with CG =

[
XG, ZG

]
(d) for i = 1, ..., N :

Σq(uRi ,ξ)
← Hi +HiG

′
iΣq(β,uG,ξ)GiHi

µq(uRi ,ξ)
← Hi

[(
XR
i

)′ (
yi − 1

2
1
)
−G′iµq(β,uG,ξ)

]
(e) ξ2 ← diagonal

[
CG
(

Σq(β,uG,ξ) + µq(β,uG,ξ)µ
′
q(β,uG,ξ)

) (
CG
)′]

(f) for i = 1, ..., N :

ξ2 ← ξ2 + 2 diagonal
[
CG
(
−Σq(β,uG,ξ)GiHi + µq(β,uG,ξ)µ

′
q(β,uG,ξ)

) (
XR
i

)′]
ξ2 ← ξ2 + 2 diagonal

[
XR
i

(
Σq(uRi ,ξ)

+ µq(uRi ,ξ)
µ′
q(uRi ,ξ)

)(
XR
i

)′]
(g) for r = 1, ..., qR :

Bq(aRr ) ← ν
(
Mq((ΣR)−1)

)
rr

+ A−2
Rr
; µq(1/aRr ) ← 1

2

(
ν + qR

)
/Bq(aRr )

(h) Bq(ΣR) ←
∑N

i=1

(
µq(uRi ,ξ)

µ′
q(uRi ,ξ)

+ Σq(uRi )

)
+2νdiag

(
µq(1/aR1 ), ..., µq

(
1/aR

qR

))
(i) Mq((ΣR)−1) ←

(
ν +N + qR − 1

)
B−1
q(ΣR)

(j) for l = 1, ..., L :

µq(1/aul)
← 1/

[
µq(1/σ2

ul
) + A−2

ul

]
µq(1/σ2

ul
) ←

qG+1

2µ
q(1/aul)

+‖µ
q(uGl ,ξ)

‖2+tr

[
Σ
q(uGl ,ξ)

]
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until the increase in the ELBO ln p (y, q) is negligible.
3. for i = 1, ...,M :

Λq(β,uG,uRi ,ξ)
≡ Eq

[([
β
uG

]
− µq(β,uG,ξ)

)(
uRi − µq(uRi ,ξ)

)′]
← −Σq(β,uG,ξ)GiHi

Convergence of such an algorithm to at least a local optimum is guaranteed based
on convexity properties. The ELBO is judged to cease increasing when the tolerance
criterion is less than 10−7. This algorithm is part of the family of coordinate ascent
variational inference (CAVI). It iteratively optimizes each factor of the mean field
variational density, while holding the others fixed (see Bishop (2006) and Blei et al.
(2017)).

The variational lower bound on the marginal log-likelihood has the following
expression (see Lee and Wand (2016), pp. 893-894):

ln p (y, q) =
1

2
qR
(
ν + qR − 1

)
ln 2ν −

(
1

2
qR + L

)
ln 2π − λ′ (ξ) ξ2 + 1′ζ (ξ)

+

(
y − 1

2
1
)CGµq(β,uG,ξ) +


XR

1 µq(uR1 ,ξ)
...

XR
Nµq(uRN ,ξ)


+

−P
2

lnσ2
β −

σ−2
β

2

[
‖ µq(β,ξ) ‖2 +tr

[
Σq(β,ξ)

]]
+

1

2

(∑L
l=1 q

G
l + P +N

)
−1

2

∑N
i=1 ln

∣∣∣(XR
i

)′
XR
i +Mq((ΣR)−1)

∣∣∣− 1

2
ln
∣∣∣Σ−1

q(β,uG,ξ)

∣∣∣
− ln

(
QqR,ν+qR−1

)
+ ln

(
QqR,ν+N+qR−1

)
− 1

2

(
ν +N + qR − 1

)
ln
∣∣Bq(ΣR)

∣∣
+
∑L

l=1 ln Γ

(
qGl + 1

2

)
− 1

2

∑L
l=1

(
qGl + 1

)
lnBq(σ2

ul
) −

∑qR

r=1 lnARr

+qR ln Γ

(
qR + ν

2

)
+
∑qR

r=1 νMq((ΣR)−1)µq(1/aRr ) −
1

2

(
qR + ν

)∑qR

r=1 lnBq(aRr )

−
∑L

l=1

[
lnAul + lnBq(aul)

− µq(1/aul)
µq(1/σ2

ul
)

]
where Qa,b = 2ab/2πa(a−1)/4

∏a
j=1 Γ

(
b+1−j

2

)
, Γ (.) is the gamma function and ζ (x) =

x/2− ln (1 + ex) + x tanh (x/2) /4.
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Appendix B. Odds ratios and the 95% confidence intervals

Estimated means and variances of coefficients βR and βG in Tables 2 and 3 come
from the optimal q-density q (β, u) ∼ N

(
µq(β,u,ξ),Σq(β,u,ξ)

)
in (A.10) estimated by

2.(c) and 2.(b) in Algorithm 1. For the XR
j covariates, its estimated coefficient β̂j is

the j-th element of µq(β,u,ξ) and its variance σ̂2
βj

is the j-th element of the diagonal of
Σq(β,u,ξ). Let us consider the odds ratio when the XR

j covariate changes by an amount
δ, while the rest of the explanatory variables remain the same. Then, the odds
ratio and its standard deviation are given by OR

(
XR
j

)
δ

= exp
(
δβ̂j

)
, σOR(XR

j )
δ

=

σ̂βj exp
(
δβ̂j

)
. For dummy variables, generally δ = b− a with a = 0 and b = 1 while

a and b could be specific values as deciles for a continuous variable.
For the XG covariates (overtime hours, regular hours and birth weight)

entering the semiparametric additive function

f
(
XG
)

= XGβG + ZGuG =
L=3∑
l=1

XG
l β

G
l +

L=3∑
l=1

ZG
l u

G
l

the odds ratio of the XG
l covariate is given by

OR
(
XG
l

)
= exp

(
f
(
XG
l

)
− f

(
XG
l,ref

))
(B.1)

with

f
(
XG
l

)
= XG

l β
G
l + ZG

l u
G
l +

L=3∑
m(6=l)=1

[
XG
m,refβ

G
m + ZG

m,refu
G
m

]
, (B.2)

f
(
XG
l,ref

)
= XG

l,refβ
G
l + ZG

l,refu
G
l +

L=3∑
m( 6=l)=1

[
XG
m,refβ

G
m + ZG

m,refu
G
m

]
,

where Xl,ref is a specific value of the exposure Xl, taken as the reference and Zl,ref is
the associated spline basis function (see also Figueiras and Cadarso-Suárez (2012)).
In our case, we choose several percentiles 10, 25, 50 and 90.

As βG and uG come from the optimal q-density q (β, u) ∼ N
(
µq(β,u,ξ),Σq(β,u,ξ)

)
in

(A.10), we can use this distribution to draw estimates β̂GBoot and ûGBoot for bootstraps
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and compute24

OR
(
XG
l

)
Boot

= exp

(
f
(
XG
l

)
Boot
− f

(
XG
l,ref

)
Boot

)
, Boot = 1, ....NBoot(= 1000)(B.3)

with f
(
XG
l

)
Boot

= XG
l β̂

G
l,Boot + ZG

l û
G
l,Boot +

L=3∑
m(6=l)=1

[
XG
m,ref β̂

G
m,Boot + ZG

m,ref û
G
m,Boot

]
,

and f
(
XG
l,ref

)
Boot

= XG
l,ref β̂

G
l,Boot + ZG

l,ref û
G
l,Boot +

L=3∑
m( 6=l)=1

[
XG
m,ref β̂

G
m,Boot + ZG

m,ref û
G
m,Boot

]
.

The average odds ratio and its standard error allow to define a (1− α)% confidence
interval

OR
(
XG
l

)
± zα/2SE

(
OR

(
XG
l

))
(B.4)

with

OR
(
XG
l

)
=

1

NBoot

NBoot∑
Boot=1

OR
(
XG
l

)
Boot

(B.5)

SE

(
OR

(
XG
l

))
=

√√√√ 1

NBoot − 1

NBoot∑
Boot=1

(
OR (XG

l )Boot −OR (XG
l )

)2

For the 3D odds ratios surface, we compute

OR
(
XG
l , X

G
m

)
= exp

({
f
(
XG
l

)
− f

(
XG
l,ref

) }
+
{
f
(
XG
m

)
− f

(
XG
m,ref

) })
(B.6)

= exp

[ (
XG
l −XG

l,ref

)
βGl +

(
XG
m −XG

m,ref

)
βGm

+
(
ZG
l − ZG

l,ref

)
uGl +

(
ZG
m − ZG

m,ref

)
uGm

]
with m(6= l) = 1 or 2 or 3.

24We do not use resampling with (or without) replacement bootstrap techniques because it is
prohibitively time consuming.
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1. Wald tests on a MFVB semiparametric random intercept and slope model: a Monte

Carlo simulation study

In this section, we conduct a small Monte Carlo simulation study to assess the performance of a Wald

test on the random part of the random slope coefficients using the MFVB algorithm. The following sim-

ulation setting corresponds to the case of the estimation of a Bayesian semiparametric random intercept

and slope model (RCM):

y | β, u ∼ Bernoulli
(
logit−1

(
XRβR + ZRuR + f

(
XG
)))

(1)

where the notation y ∼ Bernoulli (p) is shorthand for the entries of y having independent Bernoulli

distributions with parameters corresponding to the entries of p and logit−1 (x) is shorthand for the logistic

distribution ex/(1 + ex). XR is an (NT × qR) matrix of covariates — with qR = 2 in this simulation

study —, ZR is an (NT × NqR) block-diagonal matrix of the XR
i submatrices. X and Z are the fixed

and random effects design matrices associated with β and u, the fixed effects and random effects vectors.

In this small Monte Carlo simulation study, XR
it,1 = 1, ∀i, t is the intercept and XR

it,2 is the other control

covariate. The random intercept is defined by the sum (βR1 + uRi,1), the random slope for variable Xi,2 is

the sum (βR2 + uRi,2). Then, the random intercept and slope model (RCM) and the random intercept and

constant slope model (OWEC) are defined as

RCM: yit | βR1 , βR2 , uRi1, uRi2 ∼ Bernoulli
(
logit−1

((
βR1 + uRi,1

)
+
(
βR2 + uRi,2

)
Xit,2 + f

(
XG
it

)))
(2)

OWEC: yit | βR1 , βR2 , uRi1 ∼ Bernoulli
(
logit−1

((
βR1 + uRi,1

)
+ βR2 Xit,2 + f

(
XG
it

)))
(3)

where1

f
(
XG
it

)
= 1−

(
2.3XG

it − 0.07
(
XG
it

)2)− 2.6Φ
(
XG
it ; 0.15, 1

)
+ 0.5φ

(
XG
it ; 0.8, 0.07

)
,

with XR
it,2 ∼ U(0, 1), XG

it ∼ U(0, 1), , i = 1, ..., N , t = 1, ..., Ti, NT =

N∑
i

, Ti.

The true parameter values are:

βR1 = 0.58, βR2 = 1.89.

A OWEC specification is generated for N = [25, 50, 100] individuals with the within group sample sizes

Ti (i = 1, ..., N) ranged between 10 and 20 with the previous design and equation (3). In that case,

uRi1 ∼ N
(

0, σ2
uR
i1

)
where σ2

uR
i1

= 2.58. The MFVB fits of RCM (equation (2)) are obtained using Algo-

rithm 1 with the cycles stopped when the relative increase in the variational lower bound on the marginal

log-likelihood (ELBO) log p (y, q) fall below 10−5. The initial values of the hyperparameters of the priors

1φ (x;µ, σ) (resp. Φ (x;µ, σ)) is the pdf (resp. the cdf) of the normal distribution with mean µ and standard deviation

σ.
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are: σ2
β = 105, Au = 105, AR = 105 and ν = 2 leading to diffuse priors. We use transformed cubic

O’Sullivan splines with 25 interior knots.

As shown in Appendix 1, the optimal q-densities for β and u admit the following form

q (β, u) ∼ N
(
µq(β,u,ξ),Σq(β,u,ξ)

)
(4)

So, we can define a Wald test to test the null hypothesis H0 : uRi,j = 0, j = 2, ..., qR. If we suppose that

the true model is the random intercept and constant slope model (OWEC) and if we estimate a random

intercept and slope model (RCM), we can use a Wald test to check the null hypothesis H0 : uRi,2 = 0 as

qR = 2 in this small Monte Carlo study. The statistic is defined as2

W =

(
ûR2

)′
Σ−1
ûR
2

(
ûR2

)
(5)

where ûR2 =
(
ûR1,2, ..., û

R
N,2

)′ coming from µq(β,u,ξ) and ΣûR
2
is a (N × N) diagonal matrix with element

σ̂2
uR
i2

coming from Σq(β,u,ξ). Under the null, this statistic follows a χ2
N . If W ≤ χ2

N (resp. W > χ2
N ),

we do not reject the null and the OWEC estimation is prefered (resp. we reject the null and the RCM

estimation is prefered).

With this OWEC specification and the MFVB estimation of the RCM, we compute the Wald test over

S = 200 trials and then compute the means over the S = 200 trials.

With the same DGP of a random intercept and constant slope model (OWEC), we could also estimate

a random intercept and constant slope model (OWEC) to compare the ELBO coming from the estimated

RCM and the one coming from the OWEC. Therefore, it is possible a priori to use the variational lower

bound as a model selection criterion just like the BIC criterion (see Beal and Ghahramani (2003), Nott

et al. (2012) or Li and Sillanpää (2013) to mention a few).3 Estimating the marginal likelihood, which

is important for many applications, is argued to embody an Occam’s razor. But, as shown by Dieng

et al. (2017), model selection based solely on the ELBO is inappropriate because of the possible variation

in the tightness of this bound. As shown by Yao et al. (2018), purely relying on the ELBO does not

2In the general case where qR > 2, the Wald test to check the null hypothesis H0 : uRi,j = 0, j = 2, ..., qR is

W =

(
ûR
)′

Σ−1
ûR

(
ûR
)

where ûR =
(
ûR1,2, ..., û

R
1,qR

, ûR2,2, ..., û
R
2,qR

, · · · , ûRN,2, ..., û
R
N,qR

)′
is a (N(qR − 1) × 1) vector and ΣûR is a (N(qR − 1) ×

N(qR − 1)) diagonal matrix with ((qR − 1) × (qR − 1)) sub-matrices elements ΣûR
i
, i = 1, ..., N :

ΣûR =


ΣûR

1
0 · · · 0

0 ΣûR
2

· · · 0

· · · · · · · · · · · ·

0 0 · · · ΣûR
N


Under the null, this statistic follows a χ2

N(qR−1)
.

3As the model with the lowest BIC is preferred, the model with the highest ELBO could be preferred a priori.
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solve the problem. An unknown multiplicative constant exists in p(θ, y) ∝ p(θ | y) that changes with

reparametrization, making it meaningless to compare ELBO across two approximations. Moreover, the

ELBO is a quantity on an uninterpretable scale, that is it’s not clear at what value of the ELBO we can

begin to trust the variational posterior (see also Chérief-Abdellatif and Alquier (2018)).

For different sample sizes of (N,Ti), Table 1 gives means over 200 trials of the Wald statistics, of the

p-value (or the power of the test) and the 5% empirical size4 of the Wald test when, first, the true model

is the OWEC model. Whatever the sample size N = 25, 50 or 100, the 200 Wald statistics of all the 200

trials are always lower than the critical values of the χ2 distribution with p-values larger than 5%. On

Table 1, the means of the 200 trials of the Wald statistics (resp. of their p-values) are small (resp. large).

The 5% empirical size, corresponding to the percentage of rejections at the 5 per cent in 100 trials using

Wald tests, is always lower than 0.05 whatever the number of individuals. However, we can note that this

5% empirical size is small but converge to the 5% nominal size as N increases. When the true model is a

random intercept and constant slope model (OWEC), the Wald test always accepts the null hypothesis

H0 : uRi,2 = 0 when estimating a random intercept and slope model (RCM).

In addition, Table 1 shows that the performance of the test also differs when the null hypothesis is false

(i.e., when the true model is a random intercept and slope model (RCM)). For that, a RCM specification

has been generated for N = [25, 50, 100] individuals with the within group sample sizes Ti (i = 1, ..., N)

ranged between 10 and 20 and with the previous design and equation (2) in which
[
uRi1, u

R
i2

]′ ∼ N (0,ΣR)
with

ΣP =

 σ2
uR
i1

σ2
uR
i2
/2

σ2
uR
i2
/2 σ2

uR
i2

 with σ2
uR
i1

= 2.58.

We use several values for σ2
uR
i2

= [0.1, 0.2, 0.5]. With this RCM specification and the MFVB estimation

of the RCM model, we compute the Wald test over S = 200 trials and then compute the means over the

S = 200 trials.

If the 5% empirical size column still expresses the probability of rejecting the null (i.e., reject the OWEC

specification), it is not strictly speaking a real “5% empirical size” but rather a power of the test (see

Gregory and Veall (1985)). Of course, the percentages are almost larger than 5%.

To conclude, when estimating an RCM model using the MFVB approximation, the Wald test clearly

accepts the null hypothesis H0 : uRi,2 = 0 when the true model is a OWEC model and clearly rejects the

null when the true model is a RCM.

4The size of the test is the probability of falsely rejecting the null hypothesis. Empirical size refers to the possibility that

the nominal size that the user of the test chooses (say, 5%) may not coincide with the actual rejection frequency of the test.
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Table 1: Wald tests over 200 trials.

True model N Wald test χ2
N,5% p-value empirical size

OWEC

25 8.5598 37.6525 0.9304 0.015

50 20.5472 67.5048 0.9120 0.015

100 45.6993 124.3421 0.9288 0.035

True model N σ2
uR
i2

Wald test χ2
N,5% p-value empirical size

RCM

25 0.1 13.4286 37.6525 0.8325 0.07

25 0.2 16.5235 37.6525 0.7575 0.08

25 0.5 25.9785 37.6525 0.5660 0.20

50 0.1 28.1165 67.5048 0.8586 0.06

50 0.2 35.9218 67.5048 0.7715 0.10

50 0.5 60.5129 67.5048 0.4447 0.335

100 0.1 58.0777 124.3421 0.8325 0.06

100 0.2 74.3205 124.3421 0.7553 0.125

100 0.5 124.3421

Table 1 gives the means over 200 trials of the Wald statistics, of the p-value and the 5% empirical size of the Wald test.

The column χ2
N,5%

gives the critical values of the χ2 distribution at the 5% level.

2. Estimation and tests on MFVB semiparametric random intercept and slope models for

the application on neonates

In this section, we estimate Bayesian semiparametric random intercept and slope models (RCM) for

infections and for accidents and we check if we accept the null hypothesis of Bayesian semiparametric

random intercept and constant slope models (OWEC) for infections and for accidents. For the probability

of MA, Table 2 gives the estimated coefficients5, the standard deviations, the t-stats, the p-values and the

95% confidence intervals for βR and βG. Results are close to those of the semiparametric random intercept

and slope model (RCM) for the probability of MA in the main text. The Wald test of the null hypothesis

of an OWEC specification is W = 6.1211. As the degrees of freedom are N(qR− 1) = 3979× 11 = 43769,

then under the null, this statistic follows a χ2
N(qR−1),5% = 44256.7943 and the p-value is 0.00. We strongly

accept the null hypothesis of a semiparametric random intercept and constant slope model for the occur-

rence of medical incidents/accidents (MA).

5To save space, we don’t give any information on the estimated values of the N(q−1) coeffcients uR of the random part.
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Table 2: Random intercept and slope model (RCM) for the probability of MA.

Coef. Sd. t P>|t| min95%CI max95%CI

intercept -10.0033 0.3059 -32.7020 0.0000 -10.6028 -9.4037

prior infection -0.5647 0.0385 -14.6740 0.0000 -0.6401 -0.4892

gestation age 0.0570 0.0071 8.0444 0.0000 0.0431 0.0709

newborn -0.0727 0.0387 -1.8763 0.0606 -0.1486 0.0032

girl 0.0579 0.0249 2.3296 0.0198 0.0092 0.1066

cesarean -0.0532 0.0313 -1.6997 0.0892 -0.1145 0.0081

twins -0.0811 0.0321 -2.5244 0.0116 -0.1441 -0.0181

gravity 0.4833 0.0162 29.7712 0.0000 0.4514 0.5151

apgar -0.2375 0.0317 -7.5010 0.0000 -0.2996 -0.1755

diagnostic related group class 0.3764 0.0324 11.6078 0.0000 0.3128 0.4399

occupation -0.0224 0.0041 -5.4203 0.0000 -0.0305 -0.0143

admissions -0.0084 0.0053 -1.5712 0.1161 -0.0188 0.0021

overtime hours 0.0060 0.0006 10.4510 0.0000 0.0049 0.0071

regular hours 0.0050 0.0003 19.0606 0.0000 0.0045 0.0055

weight -0.0001 0.0000 -2.4126 0.0158 -0.0002 -0.0000

σ2
uR × 103 0.0050

ρσ2
uR
× 103 2.2427

Table 2 gives the estimated coefficients, the standard deviations, the t-stats, the p-values and the 95% confidence intervals

for βR and βG. ρσ2
uR

is the proportion of the total variance contributed by the panel-level variance component (σ2
uR ):

ρσ2
uR

= σ2
uR/

(
σ2
uR + σ2

ε

)
where σ2

ε = π2/3 is the variance of the logistic distribution.

For the probability of HCAI, Table 3 gives the estimated coefficients, the standard deviations, the

t-stats, the p-values and the 95% confidence intervals for βR and βG. Results are also close to those of the

semiparametric random intercept and slope model (RCM) for the probability of HCAI in the main text

except for weight and gestation whose coefficients are statistically not significantly different from zero.

The Wald test of the null hypothesis of an OWEC specification isW = 6.0227. As the degrees of freedom

are N(qR−1) = 3979×11 = 43769, then under the null, this statistic follows a χ2
N(qR−1),5% = 44256.7943

and the p-value is 0.00. We also strongly accept the null hypothesis of a semiparametric random intercept

and constant slope model for the occurrence of health care associated infections (HCAI).
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Table 3: Random intercept and slope model (RCM) for the probability of HCAI.

Coef. Sd. t P>|t| min95%CI max95%CI

intercept -7.3795 0.3342 -22.0786 0.0000 -8.0346 -6.7244

prior accident -0.6357 0.0369 -17.2155 0.0000 -0.7081 -0.5634

gestation -0.0209 223.6112 -0.0001 0.9999 -438.2907 438.2489

newborn 0.3254 0.0426 7.6473 0.0000 0.2420 0.4088

girl -0.0180 0.0267 -0.6742 0.5002 -0.0704 0.0344

cesarean -0.1925 0.0334 -5.7626 0.0000 -0.2579 -0.1270

twins 0.0542 0.0341 1.5891 0.1120 -0.0127 0.1211

occupation 0.0096 0.0041 2.3486 0.0188 0.0016 0.0176

admissions 0.0387 0.0056 6.9181 0.0000 0.0277 0.0496

apgar -0.0165 0.0339 -0.4880 0.6256 -0.0830 0.0499

gravity 0.5860 0.0179 32.7750 0.0000 0.5510 0.6211

diagnostic related group class 0.3228 0.0359 8.9795 0.0000 0.2523 0.3932

overtime hours 0.0029 0.0006 4.8791 0.0000 0.0017 0.0041

regular hours -0.0003 0.0003 -1.1227 0.2616 -0.0008 0.0002

weight -0.0204 223.6112 -0.0001 0.9999 -438.2902 438.2494

σ2
uR × 103 0.0082

ρσ2
uR
× 103 2.8599

Table 3 gives the estimated coefficients, the standard deviations, the t-stats, the p-values and the 95% confidence intervals

for βR and βG. ρσ2
uR

is the proportion of the total variance contributed by the panel-level variance component (σ2
uR ):

ρσ2
uR

= σ2
uR/

(
σ2
uR + σ2

ε

)
where σ2

ε = π2/3 is the variance of the logistic distribution.
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3. Figures

1. Odds ratios for MA according to daily overtime hours and regular hours.

2. Odds ratios for MA according to daily overtime hours and birth weight.

3. Odds ratios for MA according to daily regular hours and birth weight.

4. Contours of odds ratios for MA according to regular and overtime hours (birth weight: decile 10).

5. Contours of odds ratios for MA according to regular and overtime hours (birth weight: decile 50).

6. Contours of odds ratios for MA according to regular and overtime hours (birth weight: decile 90).

7. Contours of odds ratios for MA according to overtime hours and birth weight (regular hours : decile

10).

8. Contours of odds ratios for MA according to overtime hours and birth weight (regular hours : decile

50).

9. Contours of odds ratios for MA according to overtime hours and birth weight (regular hours : decile

90).

10. Contours of odds ratios for MA according to regular hours and birth weight (overtime hours : decile

10).

11. Contours of odds ratios for MA according to regular hours and birth weight (overtime hours : decile

50).

12. Contours of odds ratios for MA according to regular hours and birth weight (overtime hours : decile

90).

13. Odds ratios for HCAI according to daily overtime hours and regular hours.

14. Odds ratios for HCAI according to daily overtime hours and birth weight.

15. Odds ratios for HCAI according to daily regular hours and birth weight.

16. Contours of odds ratios for HCAI according to regular and overtime hours (birth weight: decile 10).

17. Contours of odds ratios for HCAI according to regular and overtime hours (birth weight: decile 50).

18. Contours of odds ratios for HCAI according to regular and overtime hours (birth weight: decile 90).

19. Contours of odds ratios for HCAI according to overtime hours and birth weight (regular hours :

decile 10).

20. Contours of odds ratios for HCAI according to overtime hours and birth weight (regular hours :

decile 50).

21. Contours of odds ratios for HCAI according to overtime hours and birth weight (regular hours :

decile 90).

22. Contours of odds ratios for HCAI according to regular hours and birth weight (overtime hours :

decile 10).

23. Contours of odds ratios for HCAI according to regular hours and birth weight (overtime hours :

decile 50).

24. Contours of odds ratios for HCAI according to regular hours and birth weight (overtime hours :

decile 90).
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