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Abstract

We analyze the effects of declining population growth on automation. Theoretical

considerations imply that countries with lower population growth introduce automa-

tion technologies faster. We test the theoretical implication on panel data for 60

countries over the time span 1993-2013. Regression estimates support the theoretical

implication, suggesting that a 1% increase in population growth is associated with

an approximately 2% reduction in the growth rate of robot density. Our results are

robust to the inclusion of standard control variables, different estimation methods,

dynamic specifications, and changes with respect to the measurement of the stock of

robots.
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1 Introduction

Industrialized countries have experienced substantial declines in fertility and in birth rates

over the last decades. For example, in the United States, the total fertility rate (TFR)

fell from 3.33 children per woman in the period 1950-1955 to 1.89 children per woman in

the period 2010-2015. Over the same time span, the crude birth rate (CBR) decreased

from 24.4 children per 1000 inhabitants to 12.6 children per 1000 inhabitants (see The

United Nations, 2015, and Table 1 displaying the numbers for the G7 countries). These

demographic changes have already slowed down the growth rate of the labor force in the

corresponding countries and will likely lead to a decline in the working-age population in

the coming decades.

Many economists are concerned regarding the long-run consequences of these described

demographic trends (for an overview, see Bloom et al., 2010). For example, social security

systems and retirement schemes might be underfunded when fewer and fewer workers

have to support ever more retirees (see Gruber and Wise, 1998; Bloom et al., 2007; The

Economist, 2011); investment rates might decline when the retiring cohorts run down

their assets (Mankiw and Weil, 1989; Schich, 2008); and the innovative capacity of aging

societies might decrease (see, for example, Canton et al., 2002; Borghans and ter Weel,

2002; Gehringer and Prettner, 2019).

Table 1: TFR and CBR in the G7 countries 1950-1955 and 2010-2015 (United Nations,
2015)

Country TFR TFR CBR CBR
1950-1955 2010-2015 1950-1955 2010-2015

Canada 3.65 1.61 27.4 10.9
France 2.75 2.00 19.1 12.4
Germany 2.13 1.39 15.6 8.3
Italy 2.36 1.43 18.2 8.6
Japan 3.00 1.40 23.8 8.3
U.K. 2.18 1.92 15.1 12.6
USA 3.33 1.89 24.4 12.6

Despite these concerns, behavioral reactions to declining fertility might mitigate some

of its negative economic effects. For example, if families have fewer children, they will

invest more in the education of each child, such that average human capital increases

(Strulik et al., 2013). Similarly, labor supply of parents will increase in case of falling

fertility because of the reduction in the time required for child care (see, for example,

Bloom et al., 2009; Lee and Mason, 2010; Ashraf et al., 2013).

Regarding the expected labor shortages due to population aging, there is another silver

lining on the horizon. In recent years, robots have started to take over many tasks that

were previously regarded as non-automatable. Economists expect that this trend will

continue in the future (see Frey and Osborne, 2017; Arntz et al., 2017; Acemoglu and

Restrepo, 2017b; The Economist, 2019). Very prominent examples that have received
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an extensive media coverage in recent years are autonomous cars and lorries that could

soon transport passengers and goods without the need for human drivers; 3D printers

producing customized products that required specialized human labor input in the not

so distant past; and software based on machine learning making strides in diagnosing

diseases, and writing newsflashes, reports, and even novels on their own.1

The effects of automation on employment, wages, and productivity have recently

started to catch the attention of economists. Acemoglu and Restrepo (2018), Hémous

and Olsen (2016), and Prettner and Strulik (2019) propose endogenous growth models in

which robots can easily perform the tasks of low-skilled workers and show the pathways by

which automation affects economic outcomes in the long run. Graetz and Michaels (2018),

and Acemoglu and Restrepo (2019) investigate the empirical effects of automation on pro-

ductivity, wages, and unemployment. In general, these studies find that automation has

the potential to increase productivity and thereby economic growth. However, there are

also potential inequality-enhancing effects. Since robots compete with labor more closely

than other types of machines and the income of robots flows to the capital owners that

invested in them, automation contributes to the declining labor income share as observed

since the 1980s (see Elsby et al., 2013; Karabarbounis and Neiman, 2014; Prettner, 2019).

In addition, automation can partly explain why the real wages of low-skilled workers have

been decreasing in the United States since the 1970s (Autor and Dorn, 2013; Lankisch

et al., 2019).

As far as the employment effects of automation and new technologies are concerned,

the evidence to date is mixed. While Acemoglu and Restrepo (2019) find negative em-

ployment effects of the use of industrial robots for the United States, Dauth et al. (2017)

focus on Germany and find a small negative effect of industrial robots on employment in

manufacturing. This effect is, however, fully compensated by employment gains in the

service sector. Gregory et al. (2016) find a positive overall employment effect of automa-

tion in Europe, which is in line with automation-augmented search-and-matching models

of the labor market (Cords and Prettner, 2019; Guimarães and Mazeda Gil, 2019).

In our analysis we aim to complement the analysis of the labor market impact of

automation by focusing on the incentives to automate in the first place. We therefore focus

on the reverse question whether countries in which the population growth rate is lower

and which are, thus, aging faster, invest more in automation. While all the contributions

mentioned above are related to our paper because they are dealing with some of the causes

and consequences of automation, only the independent and parallel works by Acemoglu

and Restrepo (2017a) and Acemoglu and Restrepo (2017b) investigate the relationship

between automation and aging. Acemoglu and Restrepo (2017b) document a positive

correlation between the change in the ratio of old workers to young workers between 1990

and 2015 and the change in the number of robots per million hours worked between 1993

1See, for example, The Economist (2014), Abeliansky et al. (2020), Lanchester (2015), Brynjolfsson
and McAfee (2016), and Prettner and Strulik (2019) on different aspects of automation and on new
developments.
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and 2014. Acemoglu and Restrepo (2017a) focus on the age composition of workers and its

relationship with automation in a more direct way, also considering the industry dimension.

They find that a larger share of older workers has a positive effect on the adoption of

automation. We provide a complementary analysis by i) showing how a simple general

equilibrium growth model that is augmented by automation predicts that demographic

changes affect the adoption of robots; and ii) empirically testing the implications of the

theoretical model on panel data of robot adoption and population growth for a broad

group of countries. We show that – from a theoretical point of view – countries with lower

population growth have lower incentives to invest in automation. Regression estimates

support the theoretical prediction, suggesting that a 1% increase in population growth

is associated with an approximately 2% reduction in the growth rate of the automation

density as measured by the number of robots per thousand inhabitants.

Our paper is structured as follows. In Section 2, we suggest a simple general equilibrium

framework to highlight the main effect of demographic change on automation. In Section

3, we test the theoretical prediction empirically and in Section 4, we discuss our results

and draw some policy conclusions.

2 Declining population growth and automation: theoretical

considerations

The purpose of this section is to outline a simple general equilibrium model of automation

that captures the basic channel by which demographic change affects automation and to

derive the corresponding hypothesis that we test in the empirical part. While there are,

of course, many possible avenues of making the model “more realistic”, we deliberately

abstract from them because of the scientific goal to use an exposition that is as simple as

possible for the task at hand. The main implication that we arrive at would not disappear

if we assumed an imperfect substitution between robots and workers as in Lankisch et al.

(2019) or an endogenous saving rate as in Steigum (2011) or Gasteiger and Prettner (2020).

2.1 Basic assumptions

Following Prettner (2019), we consider an economy with three production factors, human

labor, traditional capital (machines, assembly lines, etc.), and automation capital (robots,

3D printers, etc). Time t evolves discretely and the population grows at rate n between

time t and time t+ 1. Traditional capital and automation capital can be accumulated and

they fully depreciate over the course of one time period (one generation). Human labor

and traditional physical capital are imperfect substitutes, while automation capital is —

by its very definition — a perfect substitute for labor. From a qualitative perspective, the

main result would not change if the substitutability between human labor and automation

was less than perfect (Steigum, 2011; Lankisch et al., 2019). Note the role of automation

in this setting: on the one hand, it performs the tasks of human labor and therefore
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constitutes a substitute for this production factor; on the other hand, its accumulation

resembles the process of standard physical capital accumulation such that the income

stream that automation capital generates flows to the capital owners. We follow the

simplified exposition of Solow (1956) and assume that households save a constant fraction

s ∈ (0, 1) of their total income.

2.2 Households and population growth

The population size is given by Nt and its evolution is governed by the difference equation

Nt+1 = (1 + n)Nt,

where n is the population growth rate. Because of the demographic changes outlined in the

introduction, this rate is expected to fall in the future – in some countries even to negative

values. As is standard, the labor force at time t is given by Lt ≡ Nt. Consequently, a

reduction in the population growth rate translates into a reduction in the growth rate

of the workforce, which is realistic in the long run. Since we are primarily interested in

structural long-run effects, we abstract from modeling the delayed translation between the

decline of the population growth rate and the decline in the workforce.

Aggregate savings are given by St+1 = sNt and there are two saving vehicles, tradi-

tional physical capital and automation capital. A no-arbitrage condition holds ensuring

that rational investors would like to hold both types of capital in equilibrium. This con-

dition states that the rates of return on traditional physical capital and on automation

capital have to be equal.

2.3 Production and automation

As in Prettner (2019), the production function has a Cobb-Douglas structure with respect

to human labor and traditional physical capital. However, the additional non-standard

production factor “automation capital” is a perfect substitute for labor such that aggregate

output is given by

Yt = Kα
t (Lt + Pt)

1−α,

where Kt refers to traditional physical capital, Pt denotes automation capital, and α ∈
(0, 1) is the elasticity of output with respect to traditional physical capital. We abstract

from factor-augmenting technological progress that would only act as an additional source

of economic growth but it would not alter the crucial mechanisms in our framework.

Perfect competition on factor markets implies that the production factors are paid their

marginal value products. Normalizing the price of final output to 1, the wage rate and
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the rates of return on the two types of capital are given by

wt = (1− α)

(
Kt

Lt + Pt

)α
, (1)

Rautomt+1 = wt = (1− α)

(
Kt

Lt + Pt

)α
, (2)

Rtradt+1 = α

(
Lt + Pt
Kt

)1−α
, (3)

where Rautomt+1 is the gross interest rate paid on automation capital, which is equal to the

wage rate, and Rtradt+1 is the gross interest rate paid on traditional physical capital. While

the ceteris paribus effects of Kt and Lt on factor remuneration are straightforward, we

have non-standard ceteris paribus effects of the accumulation of automation capital: As

Pt increases, the wage rate decreases because workers compete with automation capital,

whereas the rate of return on traditional physical capital increases because automation

capital substitutes for workers and therefore raises the marginal product of traditional

physical capital. It is important to note at this point that, while automation reduces the

marginal product of labor and thereby the wage rate, labor productivity as measured by

output per worker increases with automation.

The no-arbitrage condition states that investments in both types of capital yield the

same rate of return, i.e., Rautomt+1 = Rtradt+1 holds in equilibrium. Setting Equations (2) and

(3) equal to each other and solving for Pt and Kt yields

Pt =
1− α
α

Kt − Lt ⇔ Kt =
α

1− α
(Pt + Lt). (4)

It would be tempting to conclude from the ceteris paribus effects above that the accu-

mulation of automation capital raises the interest rate. Such a claim, however, would

be based on an isolated interpretation of Equation (3) without taking the compensating

negative effect of automation on the interest rate, which is obvious from Equation (2), into

account. Due to the no-arbitrage relationship, the net effect of automation on the interest

rate is zero in equilibrium and, thus, negligible from an empirical point of view. As a

consequence, the argument that we observe low interest rates together with automation

cannot be used to refute the validity of the theoretical arguments sketched out above.

Plugging the expression for traditional physical capital from Equation (4) into the

aggregate production function provides

Yt =

(
α

1− α

)α
(Lt + Pt), (5)

where it is immediately clear that the standard convergence process to a stationary equi-

librium with no long-run growth that we know from the Solow (1956) model without

technological progress does not hold anymore. Instead, the production function has the

potential to lead to long-run growth if the saving rate is high enough so as to sustain
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a positive accumulation rate of automation capital (cf. Steigum, 2011; Prettner, 2019;

Lankisch et al., 2019). Note that Equation (5) resembles the properties of an AK type of

production structure. However, in contrast to standard AK type of growth models, this

is not due to an assumption that removes the diminishing marginal product of physical

capital but due to the structure of the production process in the presence of automation

capital.

From Equation (5) it follows that per capita GDP is given by

yt =

(
α

1− α

)α
(pt + 1), (6)

where pt denotes the automation density measured as automation capital per worker. We

immediately see that the prosperity of a country is positively linked to its automation

density. The intuitive explanation for this relation is clear. For a given population size,

automation overcomes the diminishing marginal product of traditional physical capital

that acts as a boundary for long-run economic growth in the standard Solow (1956) model

(see Prettner, 2019, for the analysis of the implications of automation for long-run eco-

nomic growth in such a setting). Once the tasks that could previously only be carried out

by human labor are automated, the stock of labor becomes, essentially, a reproducible pro-

duction factor. At the aggregate level, this implies constant returns to scale with respect

to all reproducible production factors. Consequently, automation creates the potential for

long-run growth without factor-augmenting technological progress.

2.4 The effect of demographic change on automation density

Since households save a constant fraction s ∈ (0, 1) of their total income Yt and the

economy is closed, aggregate investment is It = sYt such that

Kt+1 + Pt+1 = sYt.

Substituting for Kt+1 by the no-arbitrage relationship (4), for Yt by Equation (5), and

dividing by the population size Nt+1 provides the following expression

α(pt+1 + 1)

1− α
+ pt+1 = s

(
α

1− α

)α 1 + pt
1 + n

.

Solving this equation for the automation density in period t + 1 as a function of the

automation density in period t and the parameter values of the model yields the dynamic

evolution of the automation density

pt+1 = s(1− α)

(
α

1− α

)α 1 + pt
1 + n

− α. (7)

From this equation it follows immediately that a country with a lower population growth

rate will have a higher automation density. It is important to note that this result is
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not a partial equilibrium but a general equilibrium result in the sense that both investors

and firms behave optimally. We summarize the theoretical insight that we aim to test

empirically in the following proposition.

Proposition 1. Consider a country in which the production structure is described by an

aggregate production function of the form of Equation (5). Households save a constant

fraction s ∈ (0, 1) of their total income (labor income plus capital income in the form

of traditional physical capital and automation capital), and the no-arbitrage condition (4)

holds for both types of investments. Ceteris paribus, a country will experience faster growth

in automation density between periods t and t+ 1 if it exhibits a lower population growth

rate (n).

Proof. Dividing Taking the derivative of Equation (7) with respect to n we get

∂pt+1

∂n
= −s(1− α)

(
α

1− α

)α 1 + pt
(1 + n)2

< 0. (8)

This implies that, given pt, the automation density of the next period and therefore its

growth rate will be lover if n is higher. Note that the derivative is, in general, not equal

to -1 such that our result is not just due to the fact that automation density is defined as

the aggregate stock of automation capital divided by the population size.

The intuition for this finding is the following: A country in which the population —

and with it the workforce — grows fast, exhibits a comparatively high rate of return on

traditional physical capital and a low wage rate such that there is no incentive to invest

in automation capital. In fact, in such a country, the rate of return on investment in

automation capital tends to be rather low. Examples are African countries with a very

fast population growth rate such as Mali and Niger: investing in automation would not

be an attractive business strategy in these countries because of the abundance of labor

and the correspondingly low wages. By contrast, in a country in which the population —

and with it the labor force — stagnates or even decreases, the rate of return on invest-

ment in automation capital is comparatively high and the rate of return on investment

in traditional physical capital is rather low. Examples are aging European countries such

as Germany and Italy and aging East Asian countries such as Japan and South Korea in

which labor is scarce, wages are high, and the interest rate is low.

At this stage, two remarks are in order with a view on the empirical implementation

of the model. First, the closed economy assumption might not be fulfilled in reality.

However, the empirical results do not depend on whether or not the model refers to a

closed economy. The reason is that population growth, which is used as a proxy for n,

also includes migration, while the gross investment rate, which is used as a proxy for the

saving rate st, includes international capital flows. Second, the endogeneity of the saving

rate st to demographic change is not an issue because we control for it in the regressions.
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Table 2: Robots per 10,000 employees in manufacturing and population growth in the
top 9 countries in terms of robot usage (International Federation of Robotics, 2015;

United Nations, 2015)

Country robots per 10,000 employees average population growth
in manufacturing between 2010 and 2015

South Korea 347 0.48%
Japan 339 -0.12%
Germany 261 0.16%
Italy 159 0.07%
Sweden 157 0.83%
Denmark 145 0.42%
United States 135 0.75%
Spain 131 -0.21%
Finland 130 0.50%

Note: The population growth rate is calculated as the average population growth rate from 2010 to
2015. The data sources are (International Federation of Robotics, 2015; United Nations, 2015).

A first glimpse on whether the result implied by Proposition 1 is true is provided by

Table 2 that depicts the number of industrial robots per 10,000 employees as of 2015

together with the average population growth rate in the preceding 5-year interval from

2010 to 2015 for the nine countries with the highest robot usage. In general, we observe

that the population growth rate in these countries is rather low and in some of them it is

even negative. However, this could just be due to the fact that these countries are richer,

implying that they have a lower fertility rate and that they are, at the same time, able to

invest more in automation. In the next section we therefore test whether our theoretical

implication is borne out by the data in a more thorough way.

3 Declining population growth and automation: empirical

results

In this section we first introduce the data, then we test Proposition 1 empirically, and

finally we provide a number of robustness checks.

3.1 Data description

The only available dataset so far to study the adoption of robots is the one collected by

the International Federation of Robotics (IFR). The IFR reports the yearly delivery of

“multipurpose manipulating industrial robots” as defined by the International Organiza-

tion for Standardization for several countries, starting in 1993. We use the data until 2013

because the data for the year 2014 are unreliable: there are several zeroes that seem to

be reporting errors in comparison to previous values in the data series. In the baseline

specification we use 3 year averages of the data which provides us with 7 time periods for

estimation. The sample includes 60 countries for which the data are available (for the list
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of countries see Table A.3 in the Appendix). We had to combine the NAFTA countries

(Canada, the United States, and Mexico) into one country because they report the values

jointly until 2011.2

The IFR also reports the deliveries and the stock of robots at the industry level. They

consider that robots have a lifetime horizon of 12 years, after which they are deployed

(International Federation of Robotics, 2016). Following Graetz and Michaels (2018), we

use an alternative way to calculate the stock of robots (for all robots and for robots in the

manufacturing industry separately) that relies on the perpetual inventory method under

the assumption of a depreciation rate of 10%. In robustness checks we also use alternative

depreciation rates of 5% and 15%. Similar to Graetz and Michaels (2018), we prefer

this method over the one used by the IFR because it is more in line with the standard

economics literature. Since the IFR reports the stock of robots in 1993, this is our first

value for the constructed series. Although all countries report the total stock of robots,

not all of them report the stock nor the deliveries disaggregated at the industry level on a

yearly basis. Given that we are mainly interested in the robots used in the manufacturing

sector, we follow Graetz and Michaels (2018) and take the average share of deliveries of

manufacturing robots over the total deliveries of robots (when the data were available),

construct an average share, and impute the values for deliveries of manufacturing robots,

as well as for the initial stock of robots (when the corresponding data were not available).

In Table A.2 in the Appendix we show the first reported year of robots’ data disaggregated

by the industry level for the countries for which there were gaps in the reported data.

In the following figures we show how the robot density has evolved between the first

period of the sample (1993-1995) and the last period (2011-2013). We discriminate between

percentiles with Figure 1 (covering the period 1993-1995) reporting in the lightest shade

of blue the 75th percentile, proceeding with the 90th percentile, the 95th percentile, and

finally the last 5% of the distribution (there are many countries with zeroes in this period

which is why we use the 75th percentile as the first cutoff). For comparison, we show the

same data for the period 2011-2013 in Figure 2 and use the same cutoffs as in the previous

figure. We observe a strong increase in robot density, especially in Europe and East Asia.

Similar figures but only for robots used in the manufacturing sector are displayed in the

Appendix (Figures A.1 and A.2).

We also collected information from the International Monetary Fund (IMF) on the

investment share (over GDP). We constructed our investment variable summing the re-

ported values of private investment, public investment, and joint ventures between the

state and the private sector. Regarding the other control variables, we included GDP per

capita measured in constant US$ with a base year of 2010 from the World Development

Indicators, openness measured as exports and imports over GDP, the gross enrollment

ratio in secondary schools as in Busse and Spielmann (2006)3 and the contribution of the

2In total, we have a sample size of 300 observations that we can use for the empirical analysis (60
countries over 5 time periods). Since we are using a lag of one period and since we compute the (log)
growth rate, we lose two periods of observations.

3The natural choice of a proxy variable for education would have been the mean years of schooling as
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Figure 1: Average robot density for the period 1993-1995

[0,.00012]
(.00012,.0003]
(.0003,.0005]
(.0005,.003]
No data

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico
have the same values because of the joint reporting.

Figure 2: Average robot density in the period 2011-2013

[0,.00012]
(.00012,.0003]
(.0003,.0005]
(.0005,.003]
No data

Source and Note: See Figure 1.
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service sector to total GDP.

3.2 Empirical specification

Based on Proposition 1, we estimate the relationship between robots adoption and popu-

lation growth by means of the following equation:

ln(p̂i,t) = c+ α ln(ni,t−1) + β ln(si,t−1) + γ ln(xi,t−1) + dt + εi,t, (9)

where p̂i,t is the growth rate of the robot density (either manufacturing robots, or the

total amount of robots per 1000 inhabitants), ni,t−1 is the population growth rate between

period t − 1 and t − 2, si,t−1 is the investment rate in period t − 1, xi,t−1 is a vector of

further control variables that will be used in the robustness analysis (e.g., GDP per capita

and openness), and dt are time-specific effects to control for events and trends that affect

all countries in the same manner, for example, the global economic and financial crisis that

started in 2007. Since we have zeroes and negative values in the dependent variable and in

the population growth rate, we employed the zero-skewness log transformation (Box and

Cox, 1964).4 We apply the logarithmic transformation because this alleviates concerns

regarding heteroscedasticity and non-linearities in the non-transformed variables. We

relied on 3-year averages to alleviate problems regarding measurement errors and business-

cycle effects. While the economic growth literature usually relies on 5 year averages, we

would be left with only 2 consecutive time periods for estimation in this case.

We first estimate Equation (9) using pooled OLS (POLS) and then proceed with a

random-effects (RE) and a fixed-effects (FE) specification. Finally, we take the potential

dynamics into account by including the lagged dependent variable in the regressions and

by applying various corrected fixed effects estimators (CorrFE) following Bruno (2005a,b),

and the system GMM estimator [GMM (sys)] of Blundell and Bond (1998). Note that

both of these types of estimators are seen as remedies for the Nickell (1981) bias in a

dynamic panel data setting. We report the results for the total amount of robots and

then also separately for the subset of manufacturing robots. Moreover, we assess the

robustness of our results by adding proxies for education, GDP per capita, and openness.

In other robustness checks reported in the Appendix, we consider different depreciation

rates in the construction of the robot data series (5% and 15% instead of 10%), a different

transformation of robot adoption and population growth rates [a neglog transformation

as used by Whittaker et al. (2005)], and finally considering percentile changes as Graetz

and Michaels (2018).

Based on the theoretical considerations we expect to find a negative coefficient for the

population growth rate that is smaller than -1 and a positive sign for the gross investment

rate that is the standard proxy used for the gross saving rate s. Again, it is important

reported by Barro and Lee (2013). However, this variable is only available in 5 year intervals.
4We created a new variable in the following manner: z = ln(growth rate − k), choosing k such that

the skewness of z is zero. The correlation between the non-transformed variables and the variables in
logarithms (naturally omitting the zeroes and the negative values) is 0.89.
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to note that the population growth rate takes migration into account and that the gross

investment rate includes international capital flows. When we include the controls, we

expect a positive coefficient for GDP per capita because higher incomes imply a stronger

incentive to employ robots. Furthermore, a better educated population might be more

inclined to invest in (or adapt to) robots such that the coefficient of education should also

be positive. However, we have no a priori expectation regarding the sign of the coefficient

for openness – on the one hand, as countries become more open, they might need fewer

robots because domestic production could easier be substituted by imports; on the other

hand, open economies are also subject to stronger international competition such that

there is an incentive to automate the production in search of efficiency gains.

3.3 Empirical Estimates

Table 3 contains the regression outputs from a baseline specification of Equation (9).

As regressors we include the two crucial variables that are suggested by our theoretical

considerations, the population growth rate and the investment rate. We observe that

there is a negative relationship between population growth and the growth rate of the

robot density in all specifications and it is statistically significant in the majority of the

columns. Only in column (1), which reports the POLS regression, we find the coefficient

not to be statistically significant which is most likely due to the lack of accounting for

country-level heterogeneity. Our results are robust to the dynamic specifications using

the corrected fixed effects estimators, as well as the system GMM estimator which also

controls for endogeneity of the regressors using internal instruments. As far as the choice

between corrected fixed effects and system GMM is concerned, we prefer the corrected

fixed effects specifications because Judson and Owen (1999) report that this estimator

performs better when the amount of time periods is smaller than 10, which is the case in

our sample. Although the lagged dependent variable is statistically significant, the size of

the coefficient does not suggest strong evidence for the use of a dynamic specification. Our

preferred specification among the non-dynamic panel data estimators is the fixed effects

regression because the Hausman test indicates that the results from the random effects

specification are inconsistent. Thus, we need to control for unobserved heterogeneity. The

coefficient estimate for the population growth rate in case of the fixed-effects specification

suggests that when population growth increases by 1%, growth of the robot density will

decrease by 2%. As far as the main control variable (the investment share) is concerned,

we find the expected positive relationship, although it is not statistically significant.

Table 4 shows the results for the growth rate of the manufacturing robot density (in-

stead of all robots). We again find the negative association between population growth and

growth of the robot density as suggested by Proposition 1 with the size of the coefficients

being similar to the ones reported in Table 3. As in the previous case, we document an

insignificant positive correlation between the investment rate and the growth rate of the

manufacturing robots density. In this case, there is even less evidence for the need of a
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dynamic specification because the coefficients of the lagged dependent variable are smaller

in size and not even statistically significant in case of the system GMM estimator.

Table 3: The relation between total robots growth and population growth

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.316*** 0.259*** 0.245** 0.226**
(0.779) (0.090) (0.0987) (0.111)

nt−1 -0.539 -0.694* -2.030** -1.690*** -1.803*** -1.828*** -3.515***
(0.328) (0.354) (0.894) (0.597) (0.562) (0.557) (1.205)

st−1 0.063 0.090 0.419 0.304 0.324 0.335 0.115
(0.119) (0.129) (0.495) (0.357) (0.340) (0.341) (0.473)

Country FE no no yes yes yes yes -
Time FE yes yes yes yes yes yes yes
AR(2) test 0.922
Hansen test 0.623
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the
ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an
orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth
were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed effects
with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the
Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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Table 4: The relation between manufacturing robots growth and population growth

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.264*** 0.197** 0.180** 0.120
(0.077) (0.086) (0.0914) (0.120)

nt−1 -0.457 -0.632* -2.185** -1.950*** -2.055*** -2.078*** -3.908***
(0.336) (0.368) (0.973) (0.613) (0.570) (0.566) (1.237)

st−1 0.026 0.043 0.175 0.132 0.146 0.155 0.311
(0.095) (0.101) (0.490) (0.365) (0.343) (0.343) (0.401)

Country FE no no yes yes yes yes -
Time FE yes yes yes yes yes yes yes
AR(2) test 0.623
Hansen test 0.506
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the
ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an
orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth
were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed effects
with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the
Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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In Section A.4 in the Appendix we show the robustness of our empirical estimates. As

a first robustness check, we control for three potential omitted variables: GDP per capita,

openness of the economy, and secondary school enrollment (Tables A.4 and A.5). They

show again a negative correlation between robot density growth and population growth.

In Tables A.6 and A.7 we report the same specification as before but omitting the controls

that were not statistically significant (i.e., secondary school enrollment and openness).

The results do not change dramatically but the significance of the puzzling negative sign

of per capita GDP in case of the system GMM estimator vanishes. Additionally, we

report the results of adding the (log) of the size of the service sector as a percentage of

overall value added with the results remaining fairly unchanged (refer to Table A.8 for

total robots and Table A.9 for manufacturing robots). Later, as alternatives to the saving

rate we used two different proxies for investment – the capital stock (in 2005 US$) and

gross fixed capital formation as a fraction of GDP (Tables A.10 and A.12; and Tables A.11

plus A.13 show the results for the total robots and manufacturing robots, respectively).

The tables show that the stock of capital is not significantly correlated with the pace of

robot adoption. Moreover, the estimates of population growth remain close in value to

our previous estimates and statistically significant in the majority of the specifications.

Further, we used 2-year averages instead of averaging the data over 3 years (Tables A.14

and A.15), results remain unchanged. Moreover, we also constructed two alternative robot

stocks using 5% and 15% as alternative depreciation rates (results shown in Tables A.16

and A.18 (for the total stock of robots) and Tables A.17 and A.19 (for manufacturing

robots)). We find no substantial differences with our previous estimates. In another

sensitivity analysis, we exclude Germany, South Korea, the NAFTA countries, Japan, and

China because these are the countries with the highest (manufacturing) robot density and

also very low fertility rates. Results are very stable (see Tables A.20 and A.21). We

did a further change in the sample to include two extra available years (2014 and 2015).

Furthermore, we replaced population growth with labor force growth (see Tables A.22 and

A.23).

A concern could arise that our results are dependent on the zero-skewness log transfor-

mation. A further robustness check therefore relies on using the neglog transformation for

both the population growth rate and the robot density growth rate. Results are shown in

Tables A.26 and A.27 of the Appendix. Again, the results remain similar to the baseline

specification. In our last robustness check, we follow Graetz and Michaels (2018) and

convert the dependent variable into percentiles. Tables A.28 and A.29 show the results.

We observe that the qualitative relationships between the variables remains the same as

in case of our baseline regressions.5

5Section A.4 in the Appendix further elaborates on the robustness analysis.

16



4 Conclusions

To motivate our empirical analysis, we propose a simple theoretical framework of pro-

duction in the age of automation for countries that are subject to declining population

growth. In so doing, we introduce automation as a new production factor that resem-

bles the properties of labor in the production process, while it resembles the properties of

traditional physical capital in the accumulation process. We show that lower population

growth implies a stronger incentive to invest in the adoption of automation. Our empirical

estimates and several robustness checks support this theoretical prediction.

As far as policy implications are concerned, our theoretical and empirical findings sug-

gest that countries which are subject to larger demographic challenges will be the first to

adopt and/or invent new automation technologies. This in turn might help them to over-

come some of the negative effects that declining population growth and population aging

imply for long-run economic prosperity, issues that also the media is heavily concerned

with (see, for example, The Washington Post, 2016). Of course, the transition to au-

tomation technologies might not be all that smooth because automation capital competes

with labor and therefore could depress wages. If this concern is valid and widespread,

it might lead to resistance against automation from labor unions and the general public.

Altogether, it might therefore be in everybody’s interest if governments enact policies that

alleviate the burden of those who suffer because of automation. Potential policies along

these lines could include education subsidies and re-training programs, making unemploy-

ment insurance widely available, and to provide access to the health-care system for those

who become unemployed.

Furthermore, if automation capital substitutes for labor at a large scale, it becomes

necessary to rethink how social security systems are financed because the main contribution

is currently made by wage taxes. If labor income becomes an ever smaller share of total

income, alternatives need to be found. One remedy could be to make sure that everybody

owns some part of the automation capital in an economy (Pratt, 2015; The Economist,

2017). One potential way of doing so is to ensure that retirement assets are invested in

companies that produce with a high automation intensity or in the companies that are

the suppliers of robots. Another policy option is to shift some of the tax burden away

from the production factor labor and toward land or energy. Land is immobile and of

relatively fixed supply such that the distortions of taxing it are low and the tax base

cannot move abroad (which stands in sharp contrast to the physical capital stock and

the often suggested robot tax). In case of higher taxes on energy, it would be possible

to internalize some of the negative effects of pollution and thereby even increase overall

efficiency.

We admit that our framework stayed deliberately simple. In reality, there are different

skill groups in the population and the tasks that are performed by the different skill groups

might be more or less suited to automation (cf. Acemoglu and Restrepo, 2018; Lankisch

et al., 2019). However, including these complications would not invalidate our general
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conclusions on the effects of declining population growth on the incentives to invest in

automation.
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A Appendix

A.1 Summary Statistics

Table A.1: Summary statistics

Variable (in logs) Observations Mean Std. Dev. Minimum Maximum

p̂t−1 300 4.300 0.909 -2.126 8.249
nt−1 300 -2.057 0.239 -2.788 -1.179
si;t−1 300 2.879 0.609 -1.697 3.815
yt−1 300 9.351 1.262 6.539 11.408
et−1 267 4.368 0.540 1.616 5.065
opent−1 295 4.262 0.523 2.789 6.033

A.2 Countries included

Table A.2: Countries with adjusted values to create manufacturing stock

Country Year Country Year

Argentina 2004 South Korea 2001 (gap in 2002)
Australia 2006 Malaysia 2006
Austria 2003 Mexico 2011
Belgium 2004 Netherlands 2004
Brazil 2004 New Zealand 2006
Bulgaria 2006 Philippines 2006
Canada 2011 Poland 2004
Chile 2005 Portugal 2004
China 2006 Romania 2004
Denmark 1996 Russia 2004
Greece 2006 Singapore 2005
Hungary 2004 Slovakia 2004
Iceland 2006 Slovenia 2005
Malta 2006 South Africa 2005
Peru 2006 Switzerland 2004
India 2006 Thailand 2005
Indonesia 2006 Turkey 2005
Ireland 2006 USA 2004
Israel 2005 Vietnam 2005
Japan 1996
Note: The year indicates the first time that the country reported dis-
aggregated deliveries of robots at the industry level.
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Table A.3: Countries included in the sample

Argentina France Moldova Serbia
Australia Germany Morocco Singapore
Austria Greece NAFTA Slovakia
Belgium Hungary Netherlands South Africa
Brazil Iceland New Zealand Spain
Bulgaria India Norway Sweden
Chile Indonesia Oman Switzerland
China Ireland Pakistan Thailand
Colombia Israel Peru Tunisia
Croatia Italy Philippines Turkey
Czech Republic Japan Poland Ukraine
Denmark South Korea Portugal United Kingdom
Egypt Kuwait Romania Uzbekistan
Estonia Lithuania Russia Venezuela
Finland Malaysia Saudi Arabia Vietnam
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A.3 Distribution of the manufacturing stock of robots

Figure A.1: Average manufacturing robot density for the period 1993-1995

[0,.0001021]
(.0001021,.0002529]
(.0002529,.0004311]
(.0004311,.003]
No data

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico
have the same values because of the joint reporting.

Figure A.2: Average manufacturing robot density in the period 2011-2013

[0,.0001021]
(.0001021,.0002529]
(.0002529,.0004311]
(.0004311,.003]
No data

Source: IFR and World Development Indicators. Note: The USA, Canada and Mexico
have the same values because of the joint reporting.
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A.4 Robustness Analysis

As a first robustness check, we control for three potential omitted variables: GDP per

capita, openness of the economy, and secondary school enrollment. Omitting these vari-

ables could be a source of bias for the following reasons. As far as GDP per capita is

concerned, richer countries are more able to invest in new technologies and they are also

the ones that are disproportionally affected by declining fertility as outlined in Section 1.

As far as openness is concerned, an open economy might be under more pressure to stay

competitive, and, at the same time, smaller economies by means of the population size

tend to be more open. Finally, education has a negative effect on fertility and a positive

effect on GDP per capita, while, at the same time, a better educated population might be

more inclined to invest in (or adapt to) robots.

Table A.4, which includes the mentioned control variables, shows again a negative

correlation between robot density growth and population growth. The magnitude of the

coefficients in the different specifications are marginally smaller than in the previous tables.

However, except for the pooled OLS specification, they are statistically significant at the

5% or at the 10% level. One reason for the lower significance levels might be that we

have to accept a reduction in the sample size because of several missing observations

for the openness and the secondary enrollment variables. The coefficient estimate of

the investment rate is still not statistically significant across the specifications, as in the

previous case. In columns (1) and (2), GDP per capita has a negative sign, which is

surprising given that richer countries would be able to invest more in new technologies.

However, GDP per capita reverts its sign from column (3) onwards. Again, we believe

that the reason for this is the presence of unobserved heterogeneity correlated with the

regressors and therefore the estimation of a misspecified regression, as also suggested by the

Hausman test. Secondary enrollment has the predicted sign, although it is not statistically

significant. Openness has a negative sign in most of the specifications, although none of

the coefficients is statistically significant. Moreover, the coefficient size of the lagged

dependent variable shows that there is no pressing need to take the dynamics into account

in the regressions.
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Table A.4: Total robots growth including controls

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.210** 0.137 0.140 0.279
(0.082) (0.085) (0.088) (0.202)

nt−1 -0.565 -0.731* -1.554** -1.377* -1.494** -1.485** -3.247*
(0.379) (0.422) (0.689) (0.754) (0.704) (0.708) (1.879)

st−1 0.092 0.107 -0.416 -0.377 -0.337 -0.336 -0.316
(0.130) (0.134) (0.556) (0.486) (0.443) (0.445) (0.485)

yt−1 -0.172** -0.151** 2.535*** 2.316*** 2.280*** 2.283*** -0.080
(0.073) (0.073) (0.911) (0.883) (0.784) (0.787) (0.421)

et−1 0.148 0.133 0.112 0.106 0.111 0.111 0.334
(0.180) (0.176) (0.192) (0.185) (0.171) (0.171) (0.244)

opent−1 0.040 0.034 -0.088 -0.149 -0.136 -0.139 -0.144
(0.142) (0.155) (0.519) (0.552) (0.503) (0.506) (0.795)

Country FE no no yes yes yes yes -
Time FE yes yes yes yes yes yes yes
AR(2) test 0.979
Hansen test 0.156
Countries 57 57 57 57 57 57
Observations 262 262 262 262 262 262 262

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the
ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an
orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth
were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed effects
with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the
Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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Table A.5: Manufacturing robots growth including controls

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.148* 0.064 0.60 0.043
(0.078) (0.079) (0.081) (0.131)

nt−1 -0.472 -0.636 -1.726** -1.599** -1.700** -1.697** -1.833
(0.382) (0.422) (0.702) (0.771) (0.703) (0.706) (1.218)

st−1 0.061 0.067 -0.646 -0.586 -0.567 -0.570 -0.241
(0.109) (0.108) (0.558) (0.496) (0.441) (0.442) (0.349)

yt−1 -0.197*** -0.181*** 2.617*** 2.531*** 2.551*** 2.580*** -0.523***
(0.068) (0.067) (0.841) (0.899) (0.785) (0.787) (0.169)

et−1 0.187 0.182 0.174 0.171 0.174 0.173 0.352*
(0.175) (0.166) (0.174) (0.189) (0.171) (0.171) (0.180)

opent−1 0.024 0.021 0.000 -0.059 -0.033 -0.036 -0.392
(0.148) (0.158) (0.515) (0.566) (0.504) (0.507) (0.659)

Country FE no no yes yes yes yes -
Time FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.720
Hansen test - - - - - - 0.234
Countries 57 57 57 57 57 57 57
Observations 262 262 262 262 262 262 262

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the
ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an
orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth
were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed effects
with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the
Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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Turning to the results regarding manufacturing robots as displayed in Table A.5, we

observe a similar pattern as for the case of the total amount of robots. All specifications

show a negative correlation between manufacturing robot density growth and population

growth. In contrast to the previous results, we find no statistical significance in case of the

system GMM estimator reported in column (7). However, this could be related to the fact

that the system GMM estimator is very inefficient in case of a small time dimension. As

in the previous tables, we find no evidence of the importance of investment or secondary

schooling for robots adoption. Similar to the case of the total stock of robots, we find a

positive relationship between GDP per capita and the growth rate of the manufacturing

robots density. A puzzling result is the change in the sign of per capita GDP in case of

the system GMM estimator. However, the estimations performed with the corrected fixed

effects estimators still exhibit the significantly positive coefficient estimate.

In Tables A.6 and A.7 we report the same specification as before but omitting the

controls that were not statistically significant (i.e., secondary school enrollment and open-

ness). The results do not change dramatically but the significance of the puzzling negative

sign of per capita GDP in case of the system GMM estimator vanishes. Additionally, we

report the results of adding the (log) of the size of the service sector as a percentage of

overall value added with the results remaining fairly unchanged (see Table A.8 for total

robots and Table A.9 for manufacturing robots). As alternatives to the saving rate we

used two different proxies for investment – the capital stock (in 2005 US$) from the Penn

World Tables version 8.1 and gross fixed capital formation as a fraction of GDP from the

World Development Indicators. Tables A.10 and A.12 show the results for the total stock

of robots, while Tables A.11 and A.13 show the results for the manufacturing robots only.

The tables show that the stock of capital is not significantly correlated with the pace of

robot adoption. Moreover, the estimates of population growth remain close in value to

our previous estimates and statistically significant in the majority of the specifications.

Table A.6: Total robots growth including GDP per capita

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.250*** 0.197** 0.197** 0.119
(0.079) (0.092) (0.100) (0.163)

nt−1 -0.601* -0.732** -1.444* -1.283* -1.430** -1.421** 0.565
(0.320) (0.345) (0.758) (0.659) (0.611) (0.607) (8.093)

st−1 0.102 0.123 0.003 -0.006 0.053 0.052 0.003
(0.143) (0.148) (0.557) (0.400) (0.374) (0.374) (0.420)

yt−1 -0.137*** -0.131*** 2.195*** 1.944** 1.855** 1.872** -0.554
(0.049) (0.048) (0.817) (0.800) (0.737) (0.735) (1.130)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.438
Hansen test - - - - - - 0.591
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column
(7) uses collapsed instruments and an orthogonal transformation. All of the variables are in
logarithms, while population growth and robots growth were transformed with the zero-skewness
log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization
by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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Table A.7: Manufacturing robots growth including GDP per capita

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.186** 0.124 0.119 0.005
(0.078) (0.087) (0.091) (0.082)

nt−1 -0.525 -0.667* -1.554* -1.468** -1.587*** -1.577*** 0.466
(0.326) (0.355) (0.806) (0.674) (0.614) (0.612) (4.403)

st−1 0.069 0.080 -0.272 -0.229 -0.191 -0.197 0.020
(0.119) (0.120) (0.533) (0.409) (0.376) (0.376) (0.476)

yt−1 -0.152*** -0.145*** 2.365*** 2.221*** 2.174*** 2.215*** -0.626
(0.046) (0.046) (0.717) (0.815) (0.740) (0.739) (0.511)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.250
Hansen test - - - - - - 0.427
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column
(7) uses collapsed instruments and an orthogonal transformation. All of the variables are in
logarithms, while population growth and robots growth were transformed with the zero-skewness
log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization
by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table A.8: Total robots growth including the service sector

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.314*** 0.267*** 0.252*** 0.159
( .083) ( .089) (0.090) (0.146)

nt−1 -0.470 -0.594* -1.907* -1.617** -1.699** -1.726** -2.330
(0.320) (0.347) (1.137) (0.774) (0.719) (0.724) (1.727)

st−1 0.067 0.097 0.590 0.446 0.466 0.478 0.626
(0.132) (0.146) (0.443) (0.370) (0.355) (0.357) (0.763)

servt−1 -0.590 -0.533 1.155 0.931 0.972 1.004 -3.872**
(0.596) (0.675) (1.911) (1.006) (0.943) (0.943) (1.759)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.957
Hansen test - - - - - - 0.443
Countries 58 58 58 58 58 58 58
Observations 288 288 288 288 288 288 288

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column
(7) uses collapsed instruments and an orthogonal transformation. All of the variables are in
logarithms, while population growth and robots growth were transformed with the zero-skewness
log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization
by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator. serv stands for
the contribution of the service sector to overall GDP.
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Table A.9: Manufacturing robots growth including the service sector

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE CorrFE (bb) CorrFE (ab) CorrFE (ah) GMM (sys)

p̂t−1 0.342*** 0.328*** 0.306*** 0.047
(0.076) (.074) (0 .078) (0 .121)

nt−1 -0.405 -0.516 -2.286* -1.774** -1.790** -1.854** -4.526**
(0.300) (0.323) (1.257) (0.795) (0.769) (0.775) (2.291)

st−1 0.033 0.050 0.370 0.187 0.194 0.209 1.023
(0.103) (0.112) (0.423) (0.375) (0.366) (0.367) (1.010)

servt−1 -0.559 -0.535 1.010 0.830 0.839 0.874 -4.106**
(0.577) (0.636) (1.893) (1.022) (0.981) (0.977) (1.967)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.281
Hansen test - - - - - - 0.372
Countries 58 58 58 58 58 58 58
Observations 288 288 288 288 288 288 288

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column
(7) uses collapsed instruments and an orthogonal transformation. All of the variables are in
logarithms, while population growth and robots growth were transformed with the zero-skewness
log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization
by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator. serv stands for
the contribution of the service sector to overall GDP.

Table A.10: Total robots - capital stock as control

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.322*** 0.263*** 0.248*** 0.290*
(0.078) (0.092) (0.096) (0.172)

nt−1 -0.513 -0.665* -1.877** -1.565** -1.669*** -1.691*** -1.664
(0.338) (0.364) (0.814) (0.617) (0.592) (0.596) (1.319)

st−1 0.046 0.074 0.471 0.348 0.371 0.382 0.225
(0.113) (0.124) (0.429) (0.320) (0.299) (0.300) (0.521)

capital stockt−1 -0.022 -0.027 -0.518 -0.455 -0.450 -0.458 -0.189
(0.048) (0.044) (0.547) (0.366) (0.338) (0.337) (0.184)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.345
Hansen test - - - - - - 0.090
Number of Countries 59 59 59 59 59 59 59
Observations 295 295 295 295 295 295 295

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column
(7) uses collapsed instruments and an orthogonal transformation. All of the variables are in
logarithms, while population growth and robots growth were transformed with the zero-skewness
log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization
by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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Table A.11: Manufacturing robots - capital stock as control

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.361*** 0.340*** 0.316*** 0.047
(0.079) (0.086) (0.094) (0.108)

nt−1 -0.501 -0.640* -2.211** -1.669*** -1.715*** -1.772*** -5.383***
(0.338) (0.360) (0.931) (0.639) (0.631) (0.637) (1.255)

st−1 0.011 0.026 0.241 0.074 0.089 0.102 0.452
(0.084) (0.091) (0.415) (0.323) (0.310) (0.310) (0.590)

capital stockt−1 0.003 0.000 -0.416 -0.429 -0.401 -0.411 -0.404
(0.049) (0.047) (0.541) (0.371) (0.352) (0.352) (0.246)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.255
Hansen test - - - - - - 0.774
Number of Countries 59 59 59 59 59 59 59
Observations 295 295 295 295 295 295 295

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column
(7) uses collapsed instruments and an orthogonal transformation. All of the variables are in
logarithms, while population growth and robots growth were transformed with the zero-skewness
log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization
by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table A.12: Total robots - gross fixed capital formation (as a fraction of GDP) as control

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.312*** 0.262*** 0.247** 0.109
(0.072) (0.092) (0.097) (0.134)

nt−1 -0.430 -0.586 -2.006** -1.667** -1.761** -1.787** -2.743**
(0.342) (0.370) (0.884) (0.775) (0.752) (0.757) (1.249)

st−1 -0.006 0.013 0.247 0.077 0.115 0.132 -0.527
(0.088) (0.099) (0.849) (0.577) (0.532) (0.532) (0.918)

capital formationt−1 0.678** 0.579* 0.267 0.342 0.323 0.313 1.385
(0.311) (0.311) (0.726) (0.678) (0.640) (0.637) (1.322)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.311
Hansen test - - - - - - 0.973
Number of Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column
(7) uses collapsed instruments and an orthogonal transformation. All of the variables are in
logarithms, while population growth and robots growth were transformed with the zero-skewness
log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization
by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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Table A.13: Maufacturing robots - gross fixed capital formation (as a fraction of GDP)
as control

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.351*** 0.335*** 0.312*** 0.154
(0.068) (0.078) (0.084) (0.110)

nt−1 -0.410 -0.547 -2.301** -1.754** -1.782** -1.842** -2.907**
(0.329) (0.357) (0.977) (0.783) (0.773) (0.780) (1.356)

st−1 -0.036 -0.026 -0.113 -0.342 -0.306 -0.293 -0.338
(0.054) (0.060) (0.779) (0.580) (0.551) (0.548) (0.695)

capital formationt−1 0.682** 0.596** 0.495 0.576 0.553 0.553 1.460
(0.297) (0.292) (0.641) (0.687) (0.664) (0.659) (1.210)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.677
Hansen test - - - - - - 0.419
Number of Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Column
(7) uses collapsed instruments and an orthogonal transformation. All of the variables are in
logarithms, while population growth and robots growth were transformed with the zero-skewness
log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization
by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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As further robustness checks, we used 2-year averages instead of averaging the data

over 3 years. Tables A.14 and A.15 show the corresponding results. As before, we ob-

serve a statistically significant negative correlation of the population growth rate with the

growth of robot density (either of the total stock of robots or the ones employed in the

manufacturing sector). However, the magnitude of the correlation is smaller in absolute

value. The investment rate coefficient continues to be statistically insignificant in both

tables, having a positive sign in most of the cases. Only in column (7) of Table A.15

the coefficient of the investment rate is negative, although this estimate should be con-

sidered with caution because the AR(2) test cannot rule out remaining autocorrelation of

the residuals at the 10% significance level. Moreover, we also constructed two alternative

robot stocks using 5% and 15% as alternative depreciation rates. The estimates for the

baseline model are shown in Tables A.16 and A.18 (for the total stock of robots) and

Tables A.17 and A.19 (for manufacturing robots). We find no substantial differences with

our previous estimates.

Table A.14: Total robots - 2-year averages instead of 3-year averages

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.366*** 0.351*** 0.393*** 0.291***
(0.049) (0.050) (0.051) (0.071)

nt−1 -0.435 -0.606* -1.160* -0.717** -0.736** -0.706* -1.415*
(0.294) (0.344) (0.594) (0.359) (0.343) (0.370) (0.760)

st−1 0.093 0.135 0.380 0.230 0.247 0.257 0.091
(0.099) (0.108) (0.326) (0.214) (0.196) (0.208) (0.155)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.143
Hansen test - - - - - - 0.276
Countries 60 60 60 60 60 60 60
Observations 539 539 539 539 539 539 539

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Col-
umn (7) uses collapsed instruments and an orthogonal transformation. All of the variables
are in logarithms, while population growth and robots growth were transformed with the
zero-skewness log transformation. CorrFE refers to the corrected fixed effects with “bb”
indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by
the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao
(1982) estimator.
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Table A.15: Manufacturing robots - 2-year averages instead of 3-year averages

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.341*** 0.316*** 0.369*** 0.297***
(0.049) (0.050) (0.051) (0.083)

nt−1 -0.336 -0.519 -1.142* -0.775** -0.790** -0.754** -1.398*
(0.292) (0.347) (0.604) (0.364) (0.346) (0.376) (0.780)

st−1 0.058 0.088 0.247 0.132 0.148 0.169 -0.033
(0.074) (0.079) (0.316) (0.219) (0.199) (0.213) (0.195)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.055
Hansen test - - - - - - 0.155
Countries 60 60 60 60 60 60 60
Observations 539 539 539 539 539 539 539

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10
percent level, respectively. The standard errors of columns (1), (2), and (3) are clustered at
the country level, while the ones from (4) to (6) are bootstrapped with 50 iterations. Col-
umn (7) uses collapsed instruments and an orthogonal transformation. All of the variables
are in logarithms, while population growth and robots growth were transformed with the
zero-skewness log transformation. CorrFE refers to the corrected fixed effects with “bb”
indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by
the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao
(1982) estimator.

Table A.16: Total robots - 5% depreciation rate

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.339*** 0.294*** 0.280*** 0.299**
(0.077) (0.088) (0.099) (0.137)

nt−1 -0.591* -0.718** -2.151** -1.731*** -1.835*** -1.862*** -2.687**
(0.332) (0.353) (0.937) (0.645) (0.612) (0.608) (1.291)

st−1 0.077 0.103 0.545 0.385 0.405 0.419 -0.146
(0.125) (0.136) (0.519) (0.387) (0.371) (0.374) (0.622)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.783
Hansen test - - - - - - 0.177
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed
effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization
by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982)
estimator.
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Table A.17: Manufacturing robots 5% depreciation rate

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.300*** 0.246*** 0.227** 0.200
(0.076) (0.085) (0.093) (0.128)

nt−1 -0.526 -0.673* -2.332** -2.018*** -2.116*** -2.147*** -3.024***
(0.345) (0.370) (1.018) (0.662) (0.623) (0.618) (1.117)

st−1 0.051 0.070 0.318 0.229 0.244 0.258 0.094
(0.111) (0.117) (0.517) (0.395) (0.376) (0.376) (0.458)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.884
Hansen test - - - - - - 0.119
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed
effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization
by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982)
estimator.

Table A.18: Total robots - 15% depreciation rate

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.301*** 0.240*** 0.227** 0.174
(0.079) (0.092) (0.098) (0.106)

nt−1 -0.515 -0.683* -1.945** -1.658*** -1.763*** -1.782*** -4.050***
(0.323) (0.353) (0.858) (0.562) (0.528) (0.523) (1.377)

st−1 0.055 0.081 0.337 0.247 0.266 0.272 0.291
(0.118) (0.126) (0.477) (0.335) (0.319) (0.319) (0.542)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.790
Hansen test - - - - - - 0.891
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed
effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization
by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982)
estimator.
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Table A.19: Manufacturing robots 15% depreciation rate

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.233*** 0.162* 0.149* 0.071
(0.078) (0.085) (0.090) (0.123)

nt−1 -0.419 -0.605* -2.079** -1.901*** -1.998*** -2.012*** -4.411***
(0.328) (0.365) (0.938) (0.575) (0.534) (0.531) (1.430)

st−1 0.009 0.022 0.072 0.059 0.071 0.075 0.290
(0.086) (0.091) (0.469) (0.342) (0.321) (0.320) (0.491)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.481
Hansen test - - - - - - 0.813
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed
effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization
by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982)
estimator.
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In another sensitivity analysis, we exclude Germany, South Korea, the NAFTA coun-

tries, Japan, and China because these are the countries with the highest (manufacturing)

robot density and also very low fertility rates. Irrespective of this substantial reduction

in the sample, the results are very stable, as can be seen is Tables A.20 and A.21. We

did a further change in the sample to include two extra available years (2014 and 2015 –

although creating the last value as an average of two and not three years). Furthermore,

we replaced population growth with labor force growth. Tables A.22 and A.23 show the

results including the two extra years for the total stock of robots. The point estimates

are slightly smaller (in absolute value) but not statistically significantly different from

each other. Tables A.24 and A.25 show the baseline estimates using labor force growth

instead of population growth. As before, the results differ only slightly from the baseline

estimates.

Table A.20: Total robots - reduced sample

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 .306*** 0.250*** 0.237*** 0.184
(0.068) (0.083) (0.088) (0.123)

nt−1 -0.614* -0.766** -2.098** -1.756** -1.869*** -1.893*** -3.630***
(0.326) (0.353) (0.904) (0.692) (0.664) (0.671) (1.303)

st−1 0.074 0.098 0.373 0.291 0.304 0.313 0.498
(0.123) (0.132) (0.510) (0.369) (0.350) (0.348) (0.599)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.785
Hansen test - - - - - - 0.504
Countries 55 55 55 55 55 55 55
Observations 275 275 275 275 275 275 275

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed
effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization
by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982)
estimator.
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Table A.21: Manufacturing robots - reduced sample

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.247*** 0.179** 0.163* 0.076
(0.070) (0.081) (0.086) (0.104)

nt−1 -0.530 -0.704* -2.264** -2.038*** -2.147*** -2.170*** -4.138***
(0.336) (0.368) (0.983) (0.711) (0.674) (0.680) (1.164)

st−1 0.035 0.050 0.123 0.111 0.117 0.124 0.531
(0.098) (0.103) (0.502) (0.376) (0.352) (0.351) (0.569)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.429
Hansen test - - - - - - 0.565
Countries 55 55 55 55 55 55 55
Observations 275 275 275 275 275 275 275

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed
effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization
by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982)
estimator.

Table A.22: Total robots - sample with two extra years

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.2452*** 0.2207*** 0.2395*** 0.1326
(0.064) (0.073) (0.076) (0.094)

nt−1 -0.533* -0.629** -1.101** -0.897* -0.936** -0.908** -1.888***
(0.281) (0.294) (0.440) (0.459) (0.445) (0.456) (0.570)

st−1 0.073 0.093 0.268 0.191 0.210 0.213 -0.006
(0.120) (0.127) (0.400) (0.299) (0.281) (0.289) (0.530)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.685
Hansen test - - - - - - 0.138
Number of Countries 60 60 60 60 60 60 60
Observations 360 360 360 360 360 360 360

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respec-
tively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4)
to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transforma-
tion. All of the variables are in logarithms, while population growth and robots growth were transformed with the
zero-skewness log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by
the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah”
initialization by the Anderson and Hsiao (1982) estimator.
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Table A.23: Manufacturing robots - sample with two extra years

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.2932*** 0.2899*** 0.2917*** 0.1719
(0.060) (0.059) (0.061) (0.106)

nt−1 -0.520* -0.638** -1.342*** -0.814* -0.815* -0.813* -1.675***
(0.297) (0.306) (0.452) (0.460) (0.456) (0.461) (0.628)

st−1 0.038 0.048 0.097 -0.059 -0.040 -0.038 -0.303
(0.088) (0.093) (0.411) (0.306) (0.297) (0.298) (0.431)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.750
Hansen test - - - - - - 0.235
Number of Countries 60 60 60 60 60 60 60
Observations 360 360 360 360 360 360 360

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respec-
tively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4)
to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal transforma-
tion. All of the variables are in logarithms, while population growth and robots growth were transformed with the
zero-skewness log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating initialization by
the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991) estimator, and “ah”
initialization by the Anderson and Hsiao (1982) estimator.

Table A.24: Total robots - labor force growth

(1) (2) (3) (4) (5) (6) (7) (8)
POLS RE RE OLS OLS OLS OLS OLS

p̂t−1 0.321*** 0.262*** 0.248** 0.199**
( 0.072) (0.094) (0.097) (0.094)

nt−1 -0.805* -0.959** -1.541** -1.379*** -1.424*** -1.430*** -2.763***
(0.403) (0.454) (0.635) (0.465) (0.447) (0.449) (0.714)

st−1 0.062 0.090 0.493 0.385 0.393 0.402 -0.150
(0.103) (0.113) (0.451) (0.353) (0.330) (0.331) (0.532)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.387
Hansen test - - - - - - 0.123
Number of Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respec-
tively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from
(4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal trans-
formation. All of the variables are in logarithms, while population growth and robots growth were transformed
with the zero-skewness log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating
initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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Table A.25: Manufacturing robots - labor force growth

(1) (2) (3) (4) (5) (6) (7) (8)
POLS RE RE OLS OLS OLS OLS OLS

p̂t−1 0.372*** 0.363*** 0.3446*** 0.194**
(0.066) (0.069) (0.074) (0.097)

nt−1 -0.811* -0.971** -1.747** -1.506*** -1.518*** -1.531*** -2.924***
(0.448) (0.491) (0.673) (0.471) (0.468) (0.467) (0.692)

st−1 0.037 0.051 0.272 0.103 0.103 0.112 -0.087
(0.080) (0.084) (0.469) (0.352) (0.344) (0.343) (0.268)

Country FE no no yes yes yes yes -
Year Dummies yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.713
Hansen test - - - - - - 0.411
Number of Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respec-
tively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from
(4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an orthogonal trans-
formation. All of the variables are in logarithms, while population growth and robots growth were transformed
with the zero-skewness log transformation. CorrFE refers to the corrected fixed effects with “bb” indicating
initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano and Bond (1991)
estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.
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A concern could arise that our results are dependent on the zero-skewness log transfor-

mation. A further robustness check therefore relies on using the neglog transformation for

both the population growth rate and the robot density growth rate. The neglog transfor-

mation involves the following adjustments to a variable (which we call x for simplicity). If

x <= 0, then we use − ln(−x+ 1) instead of x and if x > 0, then we use ln(x+ 1) instead

of x. The results are shown in Tables A.26 and A.27. Again, the results remain similar

to the baseline specification in terms of the sign and the statistical significance, although

the size of the coefficients is much larger.

Table A.26: Total robots - neglog transformation

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.496*** 0.477*** 0.456*** 0.473***
(0.068) (0.081) (0.092) (0.105)

nt−1 -12.135* -15.798** -35.286* -20.726** -21.720** -22.657** -40.401***
(6.436) (6.399) (18.480) (10.299) (10.138) (9.892) (14.349)

st−1 0.321 0.499 2.409** 1.275 1.327 1.383 -0.575
(0.430) (0.475) (0.957) (0.909) (0.916) (0.921) (1.030)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.100
Hansen test - - - - - - 0.186
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while the
ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and an
orthogonal transformation. All of the variables are in logarithms, while population growth and robots growth
were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed effects with
“bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization by the Arellano
and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982) estimator.

Table A.27: Manufacturing robots - neglog transformation

(1) (2) (3) (4) (5) (6) (7)
POLS RE FE corrFE (bb) corrFE (ab) corrFE (ah) GMM (sys)

p̂t−1 0.257*** 0.192** 0.174* 0.186*
(0.077) (0.086) (0.918) (0.110)

nt−1 -4.084 -5.570* -16.691** -14.854*** -15.714*** -15.892*** -23.165***
(2.791) (3.069) (7.375) (4.150) (3.880) (3.846) (8.161)

st−1 0.030 0.049 0.266 0.219 0.237 0.247 0.152
(0.094) (0.100) (0.469) (0.369) (0.347) (0.347) (0.355)

Country FE no no yes yes yes yes -
Year FE yes yes yes yes yes yes yes
AR(2) test - - - - - - 0.798
Hansen test - - - - - - 0.219
Countries 60 60 60 60 60 60 60
Observations 300 300 300 300 300 300 300

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level,
respectively. The standard errors of columns (1), (2), and (3) are clustered at the country level, while
the ones from (4) to (6) are bootstrapped with 50 iterations. Column (7) uses collapsed instruments and
an orthogonal transformation. All of the variables are in logarithms, while population growth and robots
growth were transformed with the zero-skewness log transformation. CorrFE refers to the corrected fixed
effects with “bb” indicating initialization by the Blundell and Bond (1998) estimator, “ab” initialization
by the Arellano and Bond (1991) estimator, and “ah” initialization by the Anderson and Hsiao (1982)
estimator.
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In our last robustness check, we follow Graetz and Michaels (2018) and convert the

dependent variable into percentiles. Consequently, we include the population growth rate

without the logarithmic transformation as regressor. We estimate, as before, a pooled

OLS and a random effects specification. To the latter we also add continent dummies

to further control for differences related to the geographical location. Finally, we also

include several cross-sectional regressions for different time periods. Tables A.28 and A.29

show the results. Naturally, the coefficient estimates cannot anymore be interpreted as

elasticities. We observe that the qualitative relationships between the variables remains

the same as in case of our baseline regressions and that the coefficients are statistically

significant in most of the specifications (sometimes also the investment rate is significant

as can be seen in Table A.28). We refrain from using the fixed effects estimator given

the nature of the dependent variable. In this scenario the preferred specification is the

one obtained with the random effects estimator. Both tables show that a one percent

increase of the population growth rate is associated with a decrease of approximately two

percentiles in the growth of the robot density. The addition of the continent dummies does

not add much additional explanatory power and the magnitude of the coefficient of interest

barely changes. With regards to the cross-sections, we rank the robot density growth rates

because we cannot divide them into percentiles with only 60 observations. The coefficient

of interest is still significant in most specifications and has the predicted negative sign. In

columns (5) and (7) of both tables, however, the coefficient looses statistical significance.

This could be due to the dot-com crisis and the financial crisis because these columns

correspond to the periods including 2001 and 2008, respectively.

Table A.28: Total robots - percentiles as the dependent variable

(1) (2) (3) (4) (5) (6) (7) (8)
POLS RE RE OLS OLS OLS OLS OLS

nt−1 -1.862*** -2.053*** -2.144** -3.323*** -0.142 -1.027** -0.870 -1.671***
(0.653) (0.651) (0.996) (0.387) (0.355) (0.369) (1.061) (0.316)

st−1 0.649 0.721* 0.765* 0.741 0.392 0.687* 0.213 0.434
(0.415) (0.395) (0.404) (0.422) (0.301) (0.323) (0.290) (0.365)

Period All All All 1999-2001 2002-2004 2005-2007 2008-2010 2011-2013
FE Year Year Year + Continent - - - - -
Observations 300 300 300 60 60 60 60 60

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The
standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are clustered
at the continent level. The dependent variable of columns (1) to (3) is the percentile of the distribution of the robot density
growth, while the one of columns (3) to (6) is the country rank.
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Table A.29: Manufacturing robots - percentiles as the dependent variable

(1) (2) (3) (4) (5) (6) (7) (8)

nt−1 -1.689** -1.863** -2.080* -3.011*** 0.183 -0.820** -0.880 -1.537***
(0.748) (0.729) (1.064) (0.537) (0.360) (0.287) (0.758) (0.292)

st−1 0.594 0.612 0.647 0.670 0.345 0.817** 0.004 0.427
(0.415) (0.393) (0.403) (0.338) (0.284) (0.305) (0.347) (0.360)

Period All All All 1999-2001 2002-2004 2005-2007 2008-2010 2011-2013
FE Year Year Year + Continent - - - - -
Observations 300 300 300 60 60 60 60 60

Note: Standard errors in parenthesis. ***, **, and * indicate significance at the 1, 5, and 10 percent level, respectively. The
standard errors of columns (1), (2), and (3) are clustered at the country level, while the ones from (4) to (6) are clustered
at the continent level. The dependent variable of columns (1) to (3) is the percentile of the distribution of the robot density
growth, while the one of columns (3) to (6) is the country rank.
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