
Blume, Lawrence E.; Durlauf, Steven N.; Lukina, Aleksandra

Working Paper

Poverty traps in Markov models of theevolution of
wealth

WZB Discussion Paper, No. SP II 2020-303

Provided in Cooperation with:
WZB Berlin Social Science Center

Suggested Citation: Blume, Lawrence E.; Durlauf, Steven N.; Lukina, Aleksandra (2020) :
Poverty traps in Markov models of theevolution of wealth, WZB Discussion Paper, No. SP II
2020-303, Wissenschaftszentrum Berlin für Sozialforschung (WZB), Berlin

This Version is available at:
https://hdl.handle.net/10419/215416

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/215416
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


  

 
Research Area 
Markets and Choice 
Research Unit 
Economics of Change 

 

  
  

 

 

 

   
    

 
Lawrence Blume 
Steven Durlauf 
Aleksandra Lukina  
 
 
Poverty traps in Markov models of the 
evolution of wealth  
 

Discussion Paper 

SP II 2020–303 

February 2020 
 



Wissenschaftszentrum Berlin für Sozialforschung gGmbH 
Reichpietschufer 50 
10785 Berlin 
Germany 
www.wzb.eu 
  

 

 

Affiliation of the authors: 
 
Lawrence Blume, Cornell University and IHS Vienna 
 
Steven Durlauf, Harris School of Public Policy, University of Chicago 
 
Aleksandra Lukina, University of Chicago 
 

Discussion papers of the WZB serve to disseminate the research results of work 
in progress prior to publication to encourage the exchange of ideas and aca-
demic debate. Inclusion of a paper in the discussion paper series does not con-
stitute publication and should not limit publication in any other venue. The 
discussion papers published by the WZB represent the views of the respective 
author(s) and not of the institute as a whole. 

Copyright remains with the authors. 



 

 

Abstract 

Poverty traps in Markov models of the evolution of wealth* 
 
 
Poverty trap models are dynamical systems with more than one attractor. Similar 
dynamical systems arise in optimal growth and macroeconomic models. These 
systems are often studied empirically by ad hoc methods relying on intuition 
from deterministic systems, such as looking for multiple peaks in the stationary 
distribution of states. We develop Markov wealth processes in which parents’ in-
vestments in children stochastically determine children’s wealth, and conse-
quently their own investment choices. We show that, relative to a zero-shock pro-
cess, some of the multiple attractors are less fragile than are others, and that 
their presence dominates the stationary behavior of the wealth distribution. Typi-
cally, mass accumulates around attractors. An only slightly stochastically per-
turbed deterministic system will have an invariant distribution which puts close 
to probability 1 on a single steady state rather than having significant mass dis-
tributed among several attractors. We also examine how policy effects the shape 
of the invariant distribution. 
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1 Introduction

A poverty trap is a “self-reinforcing mechanism which causes poverty to persist.”1

The persistence of poverty in aggregate data does not require the existence of traps
that capture generations of families; poverty in aggregate data can be consistent
with family mobility up and down the socioeconomic ladder. The degree of immo-
bility is important, however, because intergenerational persistence requires different
melioration strategies than does transitory poverty.

Our concern is with poverty-trap models in which not just the magnitude but
the direction of motion depends upon initial conditions. Were dynamics deterministic,
such models would exhibit multiple steady states. That more than one steady-state
can be an attractor is the intuition behind the idea of a poverty trap.2 Our concern
in this paper is to examine how poverty traps appear in models with random shocks.
Deterministic dynamics in poverty trap models are not ergodic; they have multiple
attractors. Markov models of the evolution of the wealth distribution will typically
be ergodic. The literature loosely associates poverty traps with multimodal invariant
distributions of wealth. Often, these modes are near the attractors of a deterministic
mean or zero-shock dynamic. We will show that this intuition is not always correct;
typically there is a principal attractor around which most of the mass settles, with
smaller blips in the vicinity of other attractors.

In deterministic poverty-trap models, policy can work in two ways: First, it can
ameliorate low-level steady states, thereby creating a wealth distribution with poor
and rich, but in which the poor are better off. Sometimes the shift in the dynamical
system can be so great that the system passes through a bifurcation, and an attractor
disappears. Second, it can shrink the basin of attraction of the low-level attractor. In
deterministic models, almost regardless of starting point, any family ends up at one
attractor or another. Where a family ends up depends upon which basin of attraction
they start in. Policy can ameliorate low-level outcomes in stochastic models too.
But unlike in deterministic models, in stochastic models there is continual motion;
family fortune fluctuates from rich to poor and back again. Where in the distribution
of wealth a family spends most of its time is described by the invariant distribution.

1Azariadis and Stachurski (2005).
2See surveys by Azariadis and Stachurski (2005) and Ghatak (2015) for descriptions of a variety

of mechanisms that can lead to multiple steady-states.
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In stochastic models, policy can also work by changing the shape of the invariant
distribution, shifting mass from one attractor to another.

In the next section we introduce the model of family decisionmaking. Section 3
describes the resulting Markov wealth process. In section 4 we discuss the stationary
distribution of wealth, the invariant distribution. In particular, we relate the shape
of the distribution when noise is small to the behavior of the deterministic limit. In
section 5 we apply the results of section 4 to describe the effects of some simple
policy experiments on the shape of the invariant distribution. Section 6 concludes.
Proofs are found in Appendix A. Appendix B. contains a technical discussion of the
consequences of the non-convexities which arise naturally in our model.

2 The Model

The model contains overlapping generations of parents and children, one each per
generation. We track the wealth of a single dynasty — an infinite sequence of one-
parent, one-child families. Each adult produces one child. A parent allocates her
wealth between a single consumption good and investment in her child. Following the
benchmark Becker and Tomes (1979) model, we assume that a parent cares about
the child’s wealth, but not the child’s utility.3

We will study the stationary distributions of Markov poverty trap models by
considering not one model but a class of models parametrized by their large de-
viation rate functions. The behavior of these models in the low noise regime will
be informative both about the shapes of invariant distributions in general and what
can be learned from their deterministic counterparts. Our model is decribed by a
structure 〈U, F, C, {µε}〉 for ε ≥ 0. Parents’ consumption sets are R+ ×W, where
W = [0, w ∗] is a bounded interval.4 An element (ct , wt+1) describes parent consump-
tion today and the wealth of her adult child tomorrow. The parental utility function
is U : R+ ×W → R. The relationship between parent’s investment today and child’s
wealth tomorrow is described by the function F : K×R→ R+; F (kt , st+1) gives the
wealth of the adult at time t + 1 as a function of the amount kt invested in her as

3The alternative is Loury’s (1981) recursive utility model, which is not materially different for our
purposes.

4The assumption of unboundedness of resources is technically difficult and economically unrealistic.
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a child and a stochastic shock st+1. It maps parental investment and a shock into
child’s adult wealth. The set K contains the feasible investments. Since wealth is
bounded, there is no loss of generality in bounding the set of feasible investments
as well: K = [0, k∗]. The cost of an investment k in a child is C(k). The function
C : K → R+ may be non-linear, and even non-convex, and will be subject to policy
manipulations in Section 5. Finally, {µε} is a family of shock distributions on R. An
instance of the model fixes a particular ε, and the shock process {st}t≥1 is iid with
respect to this distribution. These distributions vary continuously in the weak topol-
ogy in the parameter ε, which controls the variance of the noise. The distribution
µ0 is point-mass at 0, and is our reference deterministic case. The four components
U, F , C, and µε define a Markov chain with stationary transition probabilities, which
arises from chaining together solutions to one-period decision problems, the utility
maximization problem for each period’s parent.

The decision problem of a date-t parent is to allocate wealth wt between
consumption ct and investment kt in her child so as to maximize her expected utility
subject to a budget constraint. Let V (c, k) denote parent expected utility from
consuming c and investing k in the child. The optimization problem is:

max
c,k

V (c, k) ≡ EµεU
(
c, F (k, s)

)
s.t. c + C(k) ≤ w, c ≥ 0, k ∈ K.

(1)

From the solution to this problem, only the optimal investment policy is needed to
describe the wealth dynamics:

π(w) = {k ∈ K : for some c ≥ 0, (c, k) solves (1)}.

We assume the following about utility U and the production function F .

A.1. U : R+ ×W → R is continuous, strictly increasing in c , and strictly concave in
c for each w ∈ W.5

A.2. U
(
c, F (k, s)

)
is Lebesgue integrable with respect to the distributions µε for any

c and k .

A.3. C(k) is continuous and strictly increasing in k .
5Or, for computing examples, that it is Leontief.



5

A. 4. F (k, s) is non-negative, non-decreasing and continuous in k ; and strictly in-
creasing in s.

A.5. U(c, w) has increasing differences in c ;w .

A.6. The map ε→ µε is continuous in the weak topology.

Assumption 5 states that child’s wealth and current consumption are complements.

Our assumptions guarantee the non-emptyness and upper hemi-continuity of
the optimal policy correspondence π.

Theorem 1. Suppose A.1–4 are satisfied. Then for all w ≥ 0, π(w) 6= ∅. Further-
more, π is everywhere upper-hemicontinuous in parental wealth and ε. If, in addition,
A.5 holds, then π is increasing in the following sense: If w ′ > w ′′ and if k ′ is optimal
for w ′, k ′′ is optimal for w ′′, then k ′ ≥ k ′′.

The last part of the theorem demonstrates a strong form of normality for
investment in children. This comparative statics result implies that π is usually
singleton-valued.

Corollary 1. If A.5 holds, the set {w ∈ R : #π(w) > 1} is countable.

We avoid strong convexity assumptions that would make π everywhere-continuous
because some policies for poverty alleviation naturally introduce non-convexities. Nonethe-
less our exposition is greatly simplified by assuming throughout the body of the paper
that π is a continuous function. In Appendix B we will extend our analysis to the
non-convex case, assuming that the set of multivalued wealths is finite. Suffice it to
say that our results will more or less continue to hold.

3 Markov Wealth Processes

3.1 The evolution of states

Figure 1 graphically depicts the stochastic process describing the evolution of wealth.
The stochastic process {wt}t≥0 is Markov. A date-t parent with wealth wt chooses kt .



6

wt kt
πε

st+1

wt+1f · · ·

· · ·

µε

Figure 1: The stochastic evolution of wealth.

A random shock st+1 is drawn from µε. The investment technology produces wt+1

from these two variables.

We begin by describing the transition probability. We want to study how
the magnitude of exogenous randomness effects the long-run behavior of the wealth
process, so we introduce a family {µε} of probability distributions that includes, at
one extreme, a deterministic model. The following two assumptions describe the
shock distribution.

B.1. µε has a density with respect to Lebesgue measure:

φε(s) = Z(ε) exp

{
−h(s)

ε

}
where Z(ε) is the normalizing constant such that φε(s) integrates to 1 over s.

B.2. h(s) is non-negative; has a global minimum at 0 and h(0) = 0; is differentiable
from the right and from the left at s = 0. For s ′ > 0, as s ↓ s ′, h(s) − h(s ′) ∼
β1(s − s ′)α1 . For s ′ < 0, as s ↑ s ′, h(s)− h(s ′) ∼ β2(s − s ′)α2 .

One example of such a family is the class of Normal distributions with fixed
mean µ and variance ε; take h(s) = (s − µ)2/2. Here Z(ε) = 1/

√
2πε. In the next

section we shall undertake computations with h(s) = |s| and Z(ε) = 1/2ε, the family
of Laplace distributions.

Finally, we assume that shocks are additive.

B.3. F (k, s) = max{0,min{G(k)+s, w ∗}} where G is non-negative, non-decreasing,
and continuous.
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This specializes assumption A.5 to an additive shock and a truncation. It takes a
standard output function, adds an error term, and truncates if necessary at 0 and w ∗.
Thus the two endpoints of W will be atoms in the transition probability whose mass
goes to 0 with ε. Note that assumption B.1 is significantly stronger then axiom A.6
because it implies variation-norm continuity for ε > 0.

The Markov wealth process {W ε
t } with initial condition W ε

0 is described by its
transition probability

P ε(w,A) = µε(F (πε(w), s) ∈ A). (2)

For an interval A = [0, w ′] and ε > 0,

P ε(w,A) =


∫ w ′−G(πε(w))

−∞
φε(s)ds if w ′ < w ∗,

1 if w ′ = w ∗.

For any w ∈ W the transition probability has an atom at 0, an atom at w ∗, and a
density describing the process in between.

The Markov processes for ε > 0 are strongly ergodic. This can be seen as a
consequence of the assumed continuity of the πε. In fact, our construction guarantees
that the transition probabilities satisfy Doeblin’s condition for any selection from the
optimal policy correspondence, and so this result will continue to hold when the
continuity assumption is relaxed in Appendix B.

Theorem 2. For all ε > 0 the Markov wealth process is strongly ergodic. The map
from ε > 0 to its invariant distribution is continuous in the variation norm.

3.2 Deterministic wealth dynamics

In the noiseless case of pointmass at 0 (ε = 0), wealth evolution is deterministic. It is
governed by a difference equation whose right-hand side is the parental Engel curve:

wt+1 = G(π0(wt)) ≡ e0(wt). (3)

A continuous Engel curve will have fixed points. Even if the parental Engel curve is
not continuous, it will have fixed points because it is increasing. Some of the fixed
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points are attractors for the dynamical system of iterates (cobweb dynamics), wt =

e0(e0(· · · (e0(w0) · · · ) = e0t(w0). In the remainder of this section we describe the
long-run behavior of the deterministic system. In section 4 we contrast this behavior
with the behavior of a Markov chain driven by this system with small stochastic shocks.

Definition 1. A fixed point w ′ is an attractor if there is an open interval U 3 w ′ such
that ∩t≥0e

0t(U) = {w ′} and for all open V ⊃ U, e0(U) ⊂ V .

A discontinuous dynamical sytem may have no singleton attractors, but B.4 guaran-
tees that e has at least one.

B.4. e0(w) has only a finite number of fixed points.

We sum this up in the following theorem:

Theorem 3. There is a w ′ ∈ W such that w ′ = e0(w ′). If in addition e0 satisfies
B.4, then e0 has at least one attractor.

When e(w) has more than one attractor, the smallest attractor is a poverty
trap. Equally, it could be said that the highest attractor is an affluence trap.

4 Attractors and Invariant Distributions

Theorem 2 shows that for all ε ≥ 0, an invariant distribution will exist. A sharp
picture of the invariant distributions emerges when we study stochastic processes
with low shock variance. We can think of these processes as stochastic perturbations
of the deterministic system, parametrized by ε. All non-trivially random processes
considered here have unique invariant distributions, unlike the deterministic system
for which point mass at any attractor is invariant. Nonetheless, the multiple attractors
play a special role in determining the shape of the invariant distribution which can be
seen when ε is small.

As ε becomes small, the step-by-step transitions of the process {W ε} look
increasingly like the deterministic evolution of e0 . This suggests that the invariant
distribution for small ε will be concentrated at attractors. But beyond this, some
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attractors are favored over others. Typically there will be a unique attractor around
which the invariant distribution will concentrate. This fact suggests that in cross-
section or in short panels it will be hard to find poverty traps by looking for multiple
modes. Our analysis is for small ε, but while a larger ε might make the selection
effect less strong, it also makes the overall picture more noisy, so it is not obvious
that searching for multiple modes will pay off.

The key idea of the analysis is that there is a most likely path to take in travers-
ing from one state to another, and as ε becomes small, the most-likely paths become
infinitely more likely than other paths. So the problem simplifies to comparing the
relative likelihood of traversing these paths. Describing this requires some apparatus.
Define AT :

∏T−1
t=0 W, such that for path w̄ ∈

∏T−1
t=0 W,

AT (w̄) =

T−2∑
t=0

h(wt+1 − e0(wt)),

for w ′, w ′′ ∈ W define

B(w ′, w ′′) = inf{AT (w̄) : T ≥ 1, w0 = w ′, wT−1 = w ′′},

and for any two attractors wi , wj of e0(w), define

Bi j = B(wi , wj).

For intuition, AT can be thought of as the cost of following path w̄ from w0 to wT−1.
A zero-cost path follows an orbit of e0(w), while deviations from an orbit are charged
a positive cost — the less likely the deviations, the higher the cost. Then B(w ′, w ′′)

is the cheapest cost (over all paths) of traversing from w ′ to w ′′. Finally, Bi j is the
cost of travelling from fixed-point i to fixed-point j .

The next construction is closely related to a means of constructing an invariant
distribution for a finite-state Markov chain. Let Γn denote the set of all directed trees,
each of whose vertices corresponds to a distinct attractor, and whose root vertex
corresponds to attractor n. Edges are directed so that each leaf has a path to the
root. For each graph g ∈ Γn define B(g) =

∑
j→k∈g Bjk , and for each attractor wn

define B(n) = ming∈Γn B(g). Finally, let B = {n : B(n) = minj B(j)}. These can be
thought of as the minimum-cost attractors. We have the following characterization
theorem:
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Theorem 4. Let K ⊂ W be a closed set disjoint from {wn : n ∈ B}. Then for any
sequence of invariant measures {νε} of the transition probabilities P ε with ε→ 0,

lim
ε→0

νε(K) = 0.

If ν∗ is a weak-topology accumulation point of a sequence of the νε as ε → 0, then
supp ν∗ ⊂ {wn : n ∈ B}.

Because of this theorem we will call the elements of B the stochastically stable
attractors.

Since the set of probability measures onW is weakly compact, every sequence
of measures with ε → 0 will have a convergent subsequence, and all such limit
measures have support on set of minimal-cost attractors. Typically there will be only
one such attractor, say ŵ , and so all limit points are point-mass on that attractor.
In this case, every sequence of invariant measures converges to the point-mass δŵ .

This theorem paints a picture of small-ε Markov processes. As ε becomes
small, mass concentrates in neighborhoods of the set of attractors. The mass of the
complementary areas, including fixed-points that are not attractors, converges to 0.
This suggests the typical poverty-trap picture, of individuals being trapped near one or
another of the various attractors. But more is true. Only the lowest-cost attractors
matters, and typically there is only one of these in the systems we consider here. So,
as ε becomes small, mass accumulates around only one attractor. This is not the
multi-peak picture that we associate with poverty traps.

One might wonder about the effects of this on convergence times: How long
does it take for a family dynasty to have a “typical experience”. How long does
it take for the effects of the initial distribution of wealth to fade away. This is a
difficult subject for models with state spaces that are not countable. In finite Markov
chains it is known that convergence is always geometric beyond some point in time.
Because our processes satisfy Doeblin’s condition, they too will exhibit ultimately
geometric convergence. But the interesting question is, how long until the geometric
regime kicks in? Doeblin’s condition gives an upper bound on the variation-norm
distance from the time-t distribution to the invariant distribution of the form kρt with
ρ < 1. The larger is k , the longer until the bound is informative. It is certainly clear
that decreasing ε slows down convergence. Unfortunately the bound derived from
Doeblin’s condition is often not very good, and so we will not pursue this further.
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5 Policy Experiments

5.1 The Deterministic Model

When ε = 0, the case of no shocks, comparative long-run dynamics are easily under-
stood by examining the shape of the parental Engel curve. Attractors occur when the
curve crosses the diagonal from above to below. For these fixed-points, policies that
shift the curve up will increase the wealth of the attractor. At unstable fixed-points,
the curve crosses the diagonal from below to above. Shifting up the parental Engel
curve decreases the values of these fixed points.6

If preferences are homothetic and budget lines are linear, then Engel curves
will be linear from 0 to w ∗, and flat thereafter. There will be a single attractor, either
at 0 or w ∗ depending on the slope of e0(w). Multiple attractors — poverty traps —
can arise either from non-homotheticity or from non-linearity in the budget line. We
will explore examples of both.

Imagine that at low wealth levels, parents’ material needs are so great that
they can afford investing only a small share of wealth in their children’s capital accu-
mulation. For wealthier parents this constraint lessens, but at high levels of capital
investment the return to child wealth becomes small. Preferences are not homoth-
etic.7 Here we may expect to see multiple wealth attractors in deterministic dynamics.
Figure 2 shows a highly stylized example: Preferences for ε = 0 are as shown, and
G(k) = k . Figure 2a displays the expansion path and figure 2b the Engel curve.
There are three fixed points, a stable poverty trap, a stable affluence trap, with an
unstable fixed-point dividing their basins of attraction. The wealths of dynasties who
begin to the left of the unstable fixed point converge to 0 while the wealths of those
beginning to the right converge to w ∗.

The long-run effects of policy are concerned with the levels of the two attrac-
6Non-generic behavior occurs when the curve has a fixed point where the curve touches but does

not cross the diagonal. If the curve lies on and above the diagonal at this point, shifting up the curve
eliminates the fixed point. If it lies on and below the diagonal, shifting it up bifurcates the fix-ed point
into a lower unstable fixed point and a higher attractor.

7For a discussion of the role of non-homothetic preferences in generating poverty traps, see Ghatak
(2015).
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ct

wt+1

(a) An indifference map

w a

w b

w c

wt

wt+1

(b) The Engel curve

Figure 2: Example preferences and Engel curve.

tors and the location of the fixed-point that separates them. Suppose, for instance,
that every child is provided with a guaranteed wealth wmin. If the lower floor on child’s
wealth is wmin, the rectangle R+× [0, wmin] is excised from the consumption set, and
the results are as in figure 3. If the floor is below w a, it has no long-run effect, raising
it above w a but below w b increases the wealth of those in the poverty trap but has no
effect on who is trapped and who is not. Finally, raising the floor above w b eliminates
the trap.

wmin

wt+1

ct

(a) An indifference map

wt+1

w a

w b

w c

wt

(b) The Engel curve

Figure 3: A basic guaranteed wealth.
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w a

w b

w c

w b ′

w c ′

wt

wt+1

Figure 4: An investment subsidy.

Consider now a straightforward fixed-rate child-investment subsidy. The price
of a unit of child wealth falls, and if child wealth is a normal good, the Engel curve
e0(w) will shift up as shown in figure 4. Pinning 0 investment at 0 wealth, w b shifts
down and w c shifts up. The poverty trap does not disappear, and the long-run wealth
of those families in the trap does not change, but now fewer families will be trapped.
As w b slides down, the set of initial conditions leading to the trap shrinks.

If the subsidy cuts off beyond a certain investment level, the budget set will
be convex with a piecewise-linear budget line. The effect is to raise the lower part of
the parental Engel curve, introduce a flat where the subsidy tails off, and then to join
the pre-policy Engel curve for the highest wealths. Again the effect is to pull down
the separating point if the subsidy is extensive enough; otherwise it has no long-run
effect.

The role of 0 in these examples should not be overemphasized. We might
imagine that children are born with a certain innate wealth w > 0. The Engel curve
will start above 0 and therefore first cross the diagonal from above to below, creating
an attractor. The picture is no different from Figure 3. In this case, the subsidy will
shift up the steady-state wealth in of the low attractor and, as before, pull downward
the dividers between basins of attraction.

The effect of these policies on inequality is ambiguous. Imagine an Engel curve
with a single attractor at w. A subsidy could, by shifting up the Engel curve, create
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an afluence trap, so that even though the post-policy w is higher, there is a still higher
w̄ which attracts some families. By any measure, wealth inequality has increased.

5.2 The Stochastic Model

We saw in the previous subsection that policy effects result in an upward shift of the
parental Engel curve, whose effects can be easily calculated. When ε > 0, policies
again work through shifting up the Engel curve, but the consequences can no longer
be calculated by observing the shifting of the fixed points. Nonetheless, we can see
in general that the effect of such policies is to shift up the distribution of wealth.

Theorem 5. Suppose that F is strictly increasing in k . Let eε(w) and e ′ε(w) be two
parental Engel curves, with invariant distributions µε and µ′ε, respectively. If parental
Engel curve eε(w) is everywhere at least as big as parental Engel curve e ′ε(w), and if
on some open set of wealths eε(w) > e ′ε(w), then µε dominates µ′ε in the first-order
stochastic dominance relation.

The motion of a Markov process provides an additional channel for policy to
work that is not apparent in deterministic models. Consider again an upward shift in
a parental Engel curve with two attractors separated by an unstable fixed point w ′,
and suppose that B = {w}. The effect of the shift is to decrease w ′, increasing
the size of the basin of attraction of the large attractor w̄ and shrinking that of the
small attractor w. The locations of the two attractors may also increase, further
magnifying the changes in size. The effect of this under any shock distribution h is to
decrease the cost B(w, w̄) of moving from w to w̄ , and to increase the cost B(w̄ ,w)

of moving from w̄ to w. A large enough policy will switch the ranking of these costs.
When moving up becomes cheaper than moving down, B = {w̄}, and the invariant
distribution shifts from most mass near w to most mass near w̄ . When ε is large —
variance is high — this transition is gradual. When ε is small, the transition will be
quite sharp. These policy effects look like phase transitions.
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6 Conclusion

We have worked out a rather stripped-down Becker-Tomes style Markov model of the
evolution of wealth in order to examine its stationary distribution. We have shown that
poverty traps can arise naturally in these models as they do in deterministic models,
but their consequence is more subtle than simply a multi-peaked wealth distribution.
We have also worked out the effects of some commonly discussed policies for both
deterministic and stochastic models.

The poverty trap concept is closely related to — in fact, a piece of — the
concept of resilience as it appears in the study of ecological dynamics and systems
engineering. There are two aspects of resilience that recur repeatedly in these litera-
tures: recovery time, how long it takes an out-of-equilibrium system to return to an
equilibrium state; and what we can call domain resilience, how much of a shock can
a system sustain before flipping towards another equilibrium.8 In deterministic sys-
tems where steady states occur as wells and the system flows downhill, recovery time
corresponds to the depth of a well and domain resilience corresponds to the width
of wells. These two concepts combine to determine the cost of an attractor, and so
they shape the distribution of wealth. There is a tradeoff, however, between the two
ideas. If, for instance, the h is the absolute value function, giving rise to the family
of Laplace distributions, only width matters. The optimal path from attractor wi to
attractor wj is always to move in one step to the edge of any basin of attraction
in which the direction of motion is away from wj (and ride for free through those
parts where the direction of motion is in the right direction). On the other hand, if
h is a high-degree even polynomial, depth is important for determining cost. Those
attractors that are less resilient in the ecological dynamics sense have low mass in the
stationary wealth distribution; they are easier to escape from, and harder to return
to, than more resilient states. This suggests a connection between inequality and
immobility that we will explore in a subsequent paper.

The empirical relevance of poverty traps is contested in the literature. Kraay
and McKenzie (2014) argues against the importance of poverty traps. Ravallion
(2015, pp. 1226-7) provides a more nuanced view. We have seen that the absence

8Gunderson (2000) refers to these two concepts as engineering and ecological stability. He errs,
however, in assuming that engineering resilience, recovery time, is applicable only to systems with a
single, globally stable state, and more generally in assuming that resilience is applicable only to systems
in which attractors are single states.
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of clear multiple peaks in cross-section does not indicate the absence of a trap.
A first step towards the econometric investigation of poverty traps is a model of
the dynamics that generate them. Further study of properties of Markov processes
related to stationary measures, such as first-passage times and exit times suggests
that current measures of immobility can be improved upon. We will explore this issue
in a subsequent paper.
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Appendix A. Proofs

Proof of Theorem 1. Our assumptions 1, 3 and 4 imply that V (c, k) is usc and strictly
concave in c for each k . With assumption A.6, the budget correspondence will be
continuous. That π is non-empty valued and uhc follows from the maximum theorem.

Assumptions A.4 and A.5 imply that V is supermodular. Let w ′ > w ′′, k ′ ∈
π(w ′), and k ′′ ∈ π(w ′′). Suppose that the statement of the theorem is false, that
is, k ′ < k ′′. Since k ′′ ∈ π(w ′′), w ′′ − C(k ′′) ≥ 0, and consequently, w ′ − C(k ′′) > 0

which means that the investment level k ′′ is feasible for w ′. Since k ′ is optimal for w ′,
V (w ′− k ′, k ′) ≥ V (w ′− k ′′, k ′′). On the other hand, C(k ′) < C(k ′′), so k ′ is feasible
for w ′′. Since k ′′ is optimal for w ′′, V (w ′′ − k ′′, k ′′) ≥ V (w ′′ − k ′, k ′). Combining
these two inequalities, we get

V (w ′ − k ′, k ′)− V (w ′′ − k ′, k ′) ≥ V (w ′ − k ′′, k ′′)− V (w ′′ − k ′′, k ′′).

Next, w ′ − k ′′ > w ′′ − k ′′ and k ′′ > k ′, so supermodularity of V implies that

V (w ′ − k ′′, k ′′)− V (w ′′ − k ′′, k ′′) ≥ V (w ′ − k ′′, k ′)− V (w ′′ − k ′′, k ′).

Putting these two equations together,

V (w ′ − k ′, k ′)− V (w ′′ − k ′, k ′) ≥ V (w ′ − k ′′, k ′)− V (w ′′ − k ′′, k ′).

Equivalently,

V (w ′ − k ′, k ′)− V (w ′ − k ′′, k ′) ≥ V (w ′′ − k ′, k ′)− V (w ′′ − k ′′, k ′).

This contradicts the strict concavity of V in c .

Also note that assumption A.6 implies that µε is weakly continuous in ε ≥ 0.
Consequently, the Maximum Theorem implies as well that π is uhc in ε.

Proof of Corollary 1. If πε(w ′) is multivalued, then min{k : k ∈ π(w ′)} and max{k :

k ∈ π(w ′)} span an open interval. Similarly if πε(w ′′) is multivalued for some w ′′ 6=
w ′. The monotonicity property of Theorem 1 implies that these two open intervals
are disjoint. The proof is completed by recalling that R+ contains only a countable
number of disjoint open intervals.
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Proof of Theorem 2. For all w ∈ W the transition probability P ε(w, · ) is absolutely
continuous with respect to the measure ψ that puts point mass on 0 and on w ∗,
and is Lebesgue measure on (0, w ∗). Thus for each w ∈ W, P ε(w, · ) has a density
with respect to ψ. Each density can be described by a triple (a, b, f εw) where a and
b are non-negative weights on 0 and w ∗, and f εw is a density on (0, w ∗). It follows
from assumption B.1 that a ≥

∫ −w∗
−∞ φε(s)ds ≡ aψ, b ≥

∫∞
w∗ φ

ε(s)ds ≡ bψ, and
f εw(z) ≥ min{z∈W}{φε(z), φε(z −w ∗)} ≥ min{{φε(w ∗), φε(−w ∗)} ≡ cψ, and all these
bounds are strictly positive. It follows that if ψ(A) > γ > 0, then

P ε(w,A) ≥ aψψ(A ∩ {0}) + bψψ(A ∩ {w ∗}) + γcψ,

which immediately gives Doeblin’s condition. (See Meyn and Tweedie (1993).) The
chain is clearly irreducible and aperiodic by virtue of the positivity of the densities, so
it is uniformly ergodic.

To show variation-norm continuity, note that the correspondence is weakly
uhc. Choose a sequence {εn} with limit ε∗ > 0. Notice that the map z →
(aε(z), bε(z), f εw(z)) is jointly continuous in z and ε on W × R++. Consequently,
each µε has a density ξε(z) with respect to ψ, and ξεn(z) converges pointwise to
ξεn(z). The conclusion now follows from Scheffé’s Theorem.

Proof of Theorem 3. The existence of fixed points is guaranteed by Tarski’s Fixed-
Point Theorem since W is a compact lattice and e0 is increasing.

Let w ′ denote the largest fixed point of e0, whose existence is guaranteed by
assumption B.4. Suppose that no fixed point w ′′ < w ′ is an attractor, and that w ′

is not an attractor. Then e0(w) > w for all w > w ′. Choose w ′′ strictly between
w ′ and w ∗. e0 maps the interval [w ′′, w ∗] into itself, and so it has a fixed point,
contradicting the hypothesis that w ′ is the largest fixed point.

Proof of Theorem 4. The first part of the Theorem is an application of Kifer’s (1990)
Theorem 3.1.9 The next lemma states that his assumption 1.1 is satisfied.

Lemma 1. For any open set U ∈ W,

lim
ε→0

ε logP ε(w,U) = − inf
v∈U

h(v − e0(w))

uniformly in w .
9See in particular the discussion on page 1678 and the paragraph following Kifer’s equation 1.6.
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Proof of Lemma 1. This follows from Laplace’s method of integration. It suffices to
show the result on an open interval U = (a, b) ⊂ W.

P ε(w,U) = Z(ε)

∫ b

a

exp−
h(s − eε(w))

ε
ds

= Z(ε)

∫ b−eε(w)

a−eε(w)

exp−
h(z)

ε
dz,

and the second integral is in the form required by Laplace. Choose an ε0 > 0. Since
eε(w) is jointly continuous on [ε0, 0] ×W, the functions eε(w) converge uniformly
to e0(w) on W for any sequence ε→ 0. Therefore, for any δ > 0 there is an ε′ > 0

such that for all ε < ε′, |eε(w)− e0(w)| < δ. For such ε,

Z(ε)

∫ b−e0(w)−δ

a−e0(w)+δ

exp−
h(z)

ε
dz < P ε(w,U) < Z(ε)

∫ b−e0(w)+δ

a−e0(w)−δ
exp−

h(z)

ε
dz.

If a > e0(w), then for small enough δ > 0, Laplace’s method shows that as ε
goes to 0, the lower and upper bounds are asymptotically approximated by

Z(ε)

α1

Γ

(
1

α1

)(
ε

β1

)1/α1

exp−
h(a − e0(w) + δ)

ε

and

Z(ε)

α1

Γ

(
1

α1

)(
ε

β1

)1/α1

exp−
h(a − e0(w)− δ)

ε

respectively. Laplace’s method gives us that limε→0 ε logZ(ε) = 0, and so

−h(a − e0 − δ) < lim
ε→0

ε logP ε(w,U) < −h(a − e0 + δ).

Since δ is arbitrary and h is continuous, limε→0 ε logP ε(w,U) = infs∈U h(s − e0(w)).

If b < e0(w), the same argument works with b replacing a and α2 and β2

replacing, respectively, α1 and β1. If a < e0(w) < b, the same method shows that
P ε(w,U) ∼ 1, and so ε logP ε(w,U)→ 0 = h(0) = − infs∈U h(s − e0(w)).
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For the second part of the Theorem, choose an open set O whose closure
does not contain B, and a sequence εn → 0 such that the corresponding νn converge
weakly to ν0. From the Portmanteau Theorem, 0 = lim inf νn(O) ≥ ν0(O) ≥ 0, so
Oc has ν0-measure 1. The closed set B is the intersection of a countable number of
such closed sets Oc ) B, and so ν0(B) = 1.

Proof of Theorem 5. Let e ′(w) and e ′′(w) denote two parental Engel curves derived
from utility maximization problems with the same ε > 0. (ε superscripts will be
henceforth omitted.) Suppose that on some set A of positive measure with respect
to ψ, e ′(w) > e ′′(w). Let (S,S, ψ̃) denote the measure space of sequences of shocks
st with the Borel σ-field, and ψ̃ the product measure of iid draws from density ψ.

Define the Markov process onW×W by starting from the same initial wealth
w0, the first component evolving acording to e ′ and the second according to e ′′, both
with the same shock sequence s̄ ∈ S. The transition probability has the property
that the projection onto the first component is the wealth process derived from e ′,
the projection onto the second component is the wealth process derived from e ′′, and
the set ∆ = {w ′, w ′′ : w ′ ≥ w ′′} is reached from any (w ′0, w

′′
0 ) with probability 1.

The Markov process on pairs has an invariant distribution µ̃ whose projection onto
each component is the invariant distribution of the corresponding wealth process, and
whose support is all of ∆. Let f be any increasing function. Then∫
W
f (w ′)dµ′−

∫
W
f (w ′′)dµ′′ =

∫
W×W

(
f (w ′)−f (w ′′)

)
dµ̃ =

∫
∆

(
f (w ′)−f (w ′′)

)
dµ̃ ≥ 0.

Consequently, µ′ is at least as big as µ′′ in the first-order stochastically dominance
relation.

For the last part of the theorem, let A denote the open set of wealths on which
e ′(w) > e ′′(w), and let f denote a function which is increasing on A and constant
on Ac . Without loss of generality we can assume A is contained in the interior of
W. Extend f from W to R by letting f (w) = f (w ∗) for w > w ∗ and f (w) = 0 for
w < 0. By doing so we can avoid specially notating the point masses at 0 and w ∗.
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Then∫
W
f (w ′)dµ′ −

∫
W
f (w ′′)dµ′′ =

∫
∆

(
f (w ′)− f (w ′′)

)
dµ̃ =

∫
∆

(
f (w ′)− f (w ′′)

)
dµ̃

=

∫
∆

(∫
W
f (z ′)P ′(w ′, dz ′)−

∫
W
f (z ′′)P ′′(w ′′, dz ′′)

)
dµ̃

=

∫
∆

∫
R

(
f
(
g(e ′(w ′)) + s

)
− f
(
g(e ′′(w ′′) + s

))
φ(s)ds dµ̃

The integral on the last line is at least 0 for all (w ′, w ′′) ∈ ∆ and s. Furthermore for
each w ′′ there is a set of positive φ-measure such that g(e ′′(w ′′) + s) ∈ A. Then

f
(
g(e ′(w ′)) + s

)
− f
(
g(e ′′(w ′′)) + s

)
≥ f

(
g(e ′(w ′′)) + s

)
− f
(
g(e ′(w ′′)) + s

)
> 0

on some cube inside of W × A, and non-negative elsewhere. Since this cube has
positive measure,

∫
W f (w ′)dµ′ −

∫
W f (w ′′)dµ′′ > 0, and so µ′ strictly stochastically

dominates µ′′.

Appendix B. Discontinuous Parental Engel Curves

Some policies that support investment in children can lead to discontinuous Engel
curves. A flat-rate subsidy for low levels of child investment that cuts out beyond
some level introduces a kink in the budget line but leaves the cost function C(k),
and therefore the budget set, convex. (Its effect will be to introduce a flat in the
Engel curve.) But a flat-rate subsidy that kicks in beyond a certain level, such as
a subsidy for college education, introduces a non-convexity into the cost function, a
kinked budget line that kinks the “wrong way”, and consequently a non-convex budget
set. A few moments at a blackboard will convince the reader that a discontinuity in
the Engel curve will occur at that wealth level at which optima occur on both sides of
the kink. The conclusions of Theorem 1 still hold, and a consequence of upper hemi-
continuity is that at a discontinuity, the optimal policy function must be multivalued.
The argument in the proof of Corollary 1 applies here as well, and so the number of
discontinuities must be countable. We will assume

B.5. The number of wealths at which the optimal policy correspondence is multivalued
is finite, and includes neither 0 nor w ∗.



23

Theorem 4 is the only result that relies on continuity. Our technique for dealing
with discontinuities is to “smooth” the optimal policy correspondence; to replace
selections from it with a continuous function which is uhc and differs from the original
only in arbitrarily small neighborhoods of discontinuities. We show in Theorem 6 that
choosing a good continuous approximation to the optimal policy correspondence gives
a Markov process whose invariant distribution is close to that belonging to a process
derived from any selection from the optimal policy correspondence.

The first step is to choose a selection from the optimal policy correspondence.
Let D denote the set of discontinuities {w1, . . . , wd}. We construct Markov processes
by choosing a selection from this correspondence and proceeding as in Section 3. Two
selections can disagree only on D, in the interior of W, so the invariant distribution
will not depend upon the choice of selection. We suppress notation of ε > 0 for this
appendix, and let π̃(w) denote the selection from the optimal policy correspondence
which takes on the largest optimal investment at each w ∈ D. Choose δ > 0 to be
less than w1 and mini=2,...,d wi − wi−1.

π(w) =



1

w − (wi − δ)

∫ w

wi−δ
π̃(v)dv if wi − δ < w < wi , wi ∈ D,

1

wi + δ − w

∫ w

2w−wi−δ
π̃(v)dv if wi ≤ w < wi + δ, wi ∈ D,

π̃(w) otherwise.

This operation smooths π̃ at w by averaging over nearby values. The δ-smoothed
Engel curve will be continuous and increasing. It equals the optimal investment
except in each interval wi ± δ around the discontinuity wi . This averaging uses a
backwards-looking window to ensure budget feasibility at low wealths; otherwise a
parent with wealth 0 could choose a positive investment level for the child. Other
choices are, of course, possible. This operation introduces at most one fixed point
for each discontinuity, and at these fixed points π̃ crosses the diagonal from below to
above, so no new attractors are added. Let P δ denote the transition probability for
the Markov process with the δ-smoothed Engel curve, and νδ its invariant measure.
Our justification for smoothing is the following theorem:

Theorem 6. The invariant measures νδ converge weakly to ν0 in variation norm.

To reiterate, a smoothed approximation to a selection π̃ with a small window-
diameter δ gives a good approximation to the invariant distribution of the unsmoothed
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Markov process. Consequently, the shape result of Theorem 4 is informative about
the shape of the unsmoothed process as well.

Proof. The invariant measures νδ for the P δ have densities with respect to ψ. To
prove 2 we must show that for any sequence δ → 0 the densities converge to the
density for ν0 ψ-almost surely. Choose a sequence of invariant distributions {νδ} with
weak limit ν. First we show that ν is absolutely continuous with respect to ψ. Each
density can be written (aδ, bδ, fδ(w)). For weak convergence to hold, the two number
sequences {aδ} and {bδ} must converge to limits a and b. Now consider the sequence
{fδ}, and choose a set N with ψ(N) = 0. Choose a decreasing sequence of open
sets Nn with limit N, such that 0 < ψ(Nn) < 1/n. Let qn(w) denote a continuous
function bounded by 0 and 1, that is 1 on N and 0 on Ncn . Then for all δ ≥ 0,

0 ≤ µδ(N) ≤
∫
qn(w)dµδ (4)

and for δ > 0,∫
qn(w)dµδ =

∫
qn(w)fδ(w)dψ ≤

∫
qn(w)dψ < 1/n. (5)

The first three inequalities hold for all δ including 0. It follows from (5) and weak
convergence of the νδ that

∫
qn(w)dµ0 ≤ 1/n, and then from (4) that µ0(N) ≤ 1/n.

Since n is arbitrary, µ0(N) = 0. Thus µ0 has a density f0 with respect to ψ. If fδ
does not converge to f0 pointwise ψ-almost surely, there is a continuous function q
for which

∫
qfδdψ 6→

∫
qf0dψ, which contradicts weak convergence.

Finally, we need to show that µ0 (with density f0) is invariant for P 0. The
transition probability densities pδ(x, y) are bounded, and pδ converges pointwise to
pε0 ψ-almost surely. (B.1 puts the finite set of discontinuities, where pointwise con-
vergence fails, in the interior of W.) Then

f0(y) = lim
δ
fδ(y) = lim

δ

∫
pδ(x, y)fδ(x)dψ =

∫
p0(x, y)f0(x)dζ,

the last equality by the dominated convergence theorem.
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