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exposed to labour-saving innovations. It exploits advanced natural language processing 

and probabilistic topic modelling techniques on the universe of patent applications at the 

USPTO between 2009 and 2018, matched with ORBIS (Bureau van Dijk) firm-level dataset. 

The results show that labour-saving patent holders comprise not only robots producers, but 

also adopters. Consequently, labour-saving robotic patents appear along the entire supply 

chain. The paper shows that labour-saving innovations challenge manual activities (e.g. in 

the logistics sector), activities entailing social intelligence (e.g. in the healthcare sector) and 
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1 Introduction

The increasing diffusion of artificial intelligence (hereafter, AI) and robotic technology in
the last decade has become a renewed object of analysis in both economics and innova-
tion studies, with contributions reporting a steep adoption of automated processes and
industrial robots (e.g. Acemoglu and Restrepo, 2019a; IFR, 2017). The impact of auto-
mation and robotics on employment has generated concerns and vibrant debates as well
(Autor, 2015; Brynjolfsson and McAfee, 2016; Frank et al., 2019; IFR, 2017). Indeed robots
(and intelligent robots more so) are technologies that, within the recent Industry 4.0 wave,
are particularly apt to substitute human labour.1 In fact, on top of standard robotics, AI
allows robots to perform an increasing variety of tasks and functions (e.g. Frey and Os-
borne, 2017; Webb, 2020). Intelligent robots are able to ‘sense’ and communicate with their
environment (e.g. machine-to-machine communication) and operate as mobile, interactive
information systems in a wider spectrum of fields, from manufacturing to service sectors
(e.g. hospitals, retail outlets).

Pressured by the threat of a new wave of technological unemployment, the extant lit-
erature has focussed on both the quantity of jobs potentially displaced by robots, mainly
by taking advantage of the International Federation of Robotics (IFR) dataset (e.g. Acemo-
glu and Restrepo, 2019a,b; Graetz and Michaels, 2018), and on the specific functions and
tasks that automation might directly substitute, mainly relying on the U.S. Occupational
Information Network (O*NET) (e.g. Autor and Dorn, 2013; Frey and Osborne, 2017). Both
streams of literature agree that the most vulnerable occupations and tasks are those per-
formed by low- and medium-skilled workers, mainly executing routinised tasks. More
recently, attention has been paid to the impact from AI, which instead appears to be more
pervasive for jobs and wage security of high-skilled professionals (Webb, 2020).

Notably, most economic analyses so far have investigated the employment impact of
industrial robots on the adopting sectors of the economy, chiefly focussing on manufactur-
ing industries (e.g. automotive, electronics, chemicals). Conversely, evidence lacks when
it comes to sectors of origin of robotic innovations. This constitutes a first gap in the ex-
tant literature which the present paper aims at filling. First, since robots are extremely
heterogeneous and complex artefacts, it is important to reconstruct their wider techno-
logical origin and composition. Second, scale and scope economies, and the position of
innovators in the vertical supply chain can influence the nature, rate, and trajectory of in-
novative activity. For instance, innovations in robot-related technologies can be produced
upstream in research intensive labs (e.g. Biomimetics Robotics Lab at MIT) or downstream
in large adopters (e.g. Amazon). Clearly, the position of the sector of origin along the ver-
tical supply chain might impact the very nature of a technological artefact. Ultimately, it is
important to understand whether innovation in robotics leads to a new product or service
(with a potential positive effect on labour demand) and/or to a new labour-saving process.

Indeed, a second major gap in the existing literature lies in the very scant evidence on
the origin of innovations which are explicitly meant to be labour-saving. On the one hand,

1For a field work analysis on the adoption of Industry 4.0 technological artefacts and their effect on skills and
task composition see Cirillo et al. (2018) and Moro et al. (2019).
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whether labour-friendly or labour-saving in their use is a question that invests specific
technological adopters; on the other hand, a different issue concerns the extent to which
technological inventors explicitly manifest labour-saving heuristics when conceiving novel
robotic technology. Identifying the existence of explicit labour-saving heuristics during the
invention process might allow for a fine-grained discovery of functions and tasks which
(intelligent) robots are intended to replace.

The present paper addresses these research questions by exploiting all 3,557,435 USPTO
patent applications (hereafter, patents) between 1st January 2009 and 31st December 2018,
and analysing their full-texts. First, it identifies and describes the wider spectrum of
robotics-related technology, it singles out labour-saving (hereafter, LS) innovations, and
retraces their origin in terms of specific technological content, geographical location, and
positioning of the innovators along the supply chain. Second, it explores the activities in
which LS robotic patents are concentrated, linking the technological content to the human
tasks intended to be replaced.

We bring novelty both in terms of research questions and methodology. In particular
our paper faces three methodological challenges.

(i) What is an innovation in robotics? Robots have many components and interact in a
complex way with their environment. It is therefore necessary to understand innovation
in robotics-related technologies by defining a broad set of robotic patents that goes beyond
the classification codes attributed by patent officers, in order to encompass innovations in
complement technologies and process implementations. We tackle this problem by means
of an original keyword search in patent texts.

(ii) How can we extract LS innovations and understand their origins? Differently from
the extant literature, largely focussing on the economic impact from adopting robots, we
look for explicit LS heuristics in the knowledge generation of robotic innovations. In so
doing, we rely on textual analysis of patent applications. We perform an in depth semantic
study in order to distinguish patents which explicitly claim a direct LS impact. In so doing,
we restrict the analysis to a semantic domain which is uncommon to inventors. In partic-
ular, we look for a restricted dictionary of words typical of the ‘economic slang’. Once LS
innovations are identified, we are also able to pinpoint the underlying firms and inventors,
their location, and the economic industry of origin.

(iii) We further ask whether LS patents are particularly concentrated in specific domains
of robotics-related activities. To answer this question, we estimate a probabilistic topic
model, a natural language processing method from the unsupervised machine learning
toolbox. In so doing, we are able to measure the frequency of occurrence of semantic top-
ics in LS and overall robotic patents. As a result, our paper generates a human-machine
taxonomy which characterises the topics more relevant to LS patents and helps in under-
standing which specific activities and functions are more exposed to LS innovation.

In a nutshell, our paper shows that the overall number of robotic patents has rapidly
increased (3-fold) over the past decade, while LS patents display no specific trend. This
supports the idea that the LS property of robotic patents is a rather established heuristics.
At the country level, U.S. and Japan appear to largely dominate other countries (although
this might be biased by the use of USPTO patents); however, China exhibits a catch-up
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process. LS robotic patents are largely concentrated in few dominant industries, showing
a typical long tail distribution, characterizing cumulative processes (Newman, 2005). Non-
etheless, they are quite pervasive in terms of penetration by spanning virtually the entire
2-digit NAICS spectrum. In terms of positioning along the supply chain, LS patent holders
are not just constituted by robots producers, but mainly robot adopters. Two archetypical
cases are Amazon and UPS. Therefore, LS robotic patents emerge along the entire supply
chain, signalling a considerable degree of diffusion.

Moreover, we show that LS patents do not distribute uniformly across all fields as ro-
botic patents. Instead, they cluster in largely human-intensive industries, such as logistics,
medical, and health activities. We emphasise in which specific (robotics-related) fields of
activity LS patents are relatively more concentrated and position our results within the
literature devoted to the analysis of tasks and occupations particularly exposed to auto-
mation (which includes, among others, Frey and Osborne, 2017; Webb, 2020).

The remainder of the paper is organised as follows. Section 2 discusses the relevant
literature and theoretical framework. Section 3 presents our data and the empirical meth-
odology. Section 4 discusses our results. Finally, Section 5 concludes.

2 Theoretical motivation: search heuristics and
labour-saving trajectories

The impact of automation on jobs has (again) become one of the ‘trending’ topics within
both the academic and policy debate. Indeed, fears of technological unemployment have
been always accompanying great innovative waves. However, in the history of humanity,
periods of intensive LS automation have also coincided with the emergence of new jobs,
tasks, activities, and industries.2 Nevertheless, this time may be different since nowadays
the World is on the edge of a new technological revolution (see Bartelsman et al., 2019),
dramatically accelerating in the direction of automation driven by pervasive diffusion of
robots and AI (see Brynjolfsson and McAfee, 2012, 2016; Frey and Osborne, 2017). Turning
the attention to the economic literature, a very recent strand (e.g. Acemoglu and Restrepo,
2018a,b, 2019b; Graetz and Michaels, 2018) accounts for the LS effect of robotisation by
looking at indirect measures of penetration (i.e. number of robots acquired within different
economic sectors, provided by IFR data). A drawback therein is the likely understatement
of the actual role of producers and adopters in assessing the labour impact of robots. Ad-
ditionally, the use of the number of robots per workers, available at the country/industry
level, does not allow to properly dissect the firm-level and local impact of robots. Finally,
there is lack of a coherent taxonomy of the knowledge base underlying robotic artefacts
and their production/diffusion in a given economy.

2In more detail, when a process innovation is introduced, potential market compensation mechanisms are also
triggered and these may counterbalance the initial LS impact of innovation (see Dosi and Mohnen, 2019;
Freeman and Soete, 1987; Piva and Vivarelli, 2018; Simonetti et al., 2000; Van Roy et al., 2018; Vivarelli, 1995).
The present paper focusses on the detection of possible LS heuristics linked to the production and diffusion of
robots, while the investigation of the price and income compensation mechanisms lies beyond the scope and
aims of the present study (for recent surveys centred on the compensation theory, see Calvino and Virgillito,
2017; Ugur et al., 2018; Vivarelli, 2014).
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In the tradition of the economics of innovation, technologies are studied by means of
identification of paradigms and trajectories (Dosi, 1982, 1997) underlying the introduction,
development, and diffusion of a given artefact. A notable question regards the extent to
which the discovery of a given artefact occurs by chance, or it is alternatively driven by
some specific search heuristics or, put in the words of Rosenberg (1976), focussing devices,
namely the ensemble of technological bottlenecks, market incentives, and ultimately the
cognitive loci and the behavioural patterns of who creates those technologies (Dosi and
Nelson, 2010, 2013).

Although it is generally hard to identify invariant and ex-ante search heuristics or in-
ducement effects, a specific search heuristic appears to be invariant throughout the history
of capitalist societies, namely search efforts aimed at the reduction of human inputs in
production.3 Karl Marx was clear on the point, highlighting how labour resistance, organ-
isation, and claims represent powerful drivers towards mechanisation:

“In England, strikes have regularly given rise to the invention and application
of new machines. Machines were, it may be said, the weapon employed by
the capitalists to equal the result of specialised labour. The self-acting mule, the
greatest invention of modern industry put out of action the spinners who were
in revolt. If combinations and strikes had no other effect than of making the
efforts of mechanical genius react against them, they would still exercise an
immense influence on the development of the industry.”

[Marx (1956, p. 161); also cited in Rosenberg (1976, p. 118)]

Granted the pervasiveness of LS heuristics in the space of technological search (Dosi, 1988;
Rosenberg, 1976; Tunzelmann, 1995), in the following we aim at understanding whether
the current wave of technological innovation is dominated by such heuristics. In our
framework, robotics, and indirectly AI, are seen as pervasive general purpose technologies,
with massive potential in terms of labour substitution across a wide range of skills, occu-
pations, and tasks (see Bresnahan and Trajtenberg, 1995; Cockburn et al., 2018; Trajtenberg,
2018). Patents, as a locus of explicit codified knowledge, represent an appropriate empir-
ical instrument to proxy the rate and direction of innovative activity (Pavitt, 1985). By
looking at the textual contents of robotic patents, we aim at isolating the ones explicitly
embedding a LS trait. In order to make the identification process as neat as possible, we
define a dictionary of words and resort to a semantic analysis. Two excerpts from LS pat-
ents follow:

“Automated systems, such as robotic systems, are used in a variety of indus-
tries to reduce labo[u]r costs and/or increase productivity. Additionally, the
use of human operators can involve increased cost relative to automated sys-
tems.” [US20170178485A1]

3In turns, these efforts are dynamically reinforced by the localised, path-dependent, and irreversible nature of
technological progress (see Atkinson and Stiglitz, 1969; Capone et al., 2019; David, 1985; Dosi, 1988).
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“The use of the technology [robots] results in improved management of inform-
ation, services, and data, increased efficiency, significant reduction of time, de-
creased manpower requirements, and substantial cost savings.”

[US20100223134A1]

As we shall reveal in the following, the type of analysis we conduct allows to extend the
analysis well beyond the use of the IFR dataset. In fact, leveraging patent data on robotic
artefacts, we are able to identify the knowledge generation patterns behind this techno-
logy. In so doing, we do not restrict to patents entailing robotic artefacts only as products,
but also as processes (i.e. methods). In this respect, our strategy opens up the possibility
of looking at patenting patterns of both robot producers and firms involved in any sort of
complementary innovation or developing processes which implement robotic technology.
Indeed, the most disruptive impact of robots is plausibly occurring among downstream,
non-robotic firms through embodied technological change within process innovation (see
Barbieri et al., 2018; Dosi et al., 2019; Pellegrino et al., 2019). Clearly, by focussing on pat-
enting firms we inevitably circumscribe our attention to most innovative robots adopters,
i.e. large-scale, multi-product firms who have in-house capabilities of integrating processes
aimed at cost-cutting and increasing efficiency. In this way, not only we capture those firms
who ‘know exclusively what they produce’, (i.e. robotic firms), but also firms who ‘know
more than what they produce’, namely non-robotic firms holding robotic patents (Dosi et
al., 2017; Patel and Pavitt, 1997).

The underlying hypothesis is that robot-as-a-product and robot-as-a-process innova-
tions embodying LS heuristics are patented by different types of firms and present different
degrees of pervasiveness in terms of technological diffusion. In fact, LS heuristics might be
more deeply rooted in firms located outside robots manufacturing, such as downstream,
large-scale adopters.

3 Data and methodology

Our analysis covers the entire set of 3,557,435 patent applications filed at the USPTO
between 1st January 2009 and 31st December 2018. Full-texts have been downloaded from
the USPTO Bulk Data Storage System4. Roughly 350k applications are filed on average
each year, showing no clear trend, as depicted in Fig. 1. We match our data to the ORBIS
(Bureau van Dijk) database through the relevant patent publication numbers.

Our methodology consists of three steps. First, we single out patents which either dir-
ectly or indirectly relate to robotics technology. Second, we implement a procedure to
detect the underlying LS heuristics and pinpoint the set of explicitly LS patents. Finally,
we estimate a probabilistic topic model in order to devise a human-machine taxonomy.

To the best of our knowledge, two extant contributions are methodologically compar-
able to ours. Dechezleprêtre et al. (2019) devise a multi-step strategy based on both patent
classification and multiple keyword search in order to identify automation patents. Mann

4Available here: https://bulkdata.uspto.gov/
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Figure 1: Number of patent applications to USPTO by year.

and Püttmann (2015) manually classify a sample of patents and then use a machine learn-
ing algorithm to elicit automation innovations from a larger population.

Our empirical strategy differs from these contributions in many respects. First, we
identify a structured dictionary of words entailing a semantic procedure (including a pre-
dicate, a direct object, and an object’s attribute), rather then a simple word search, which
targets LS robotic patents, rather than generic automation ones. In so doing, we over-
come the mere search for n-grams and word adjacency, we avoid arbitrary use of the sheer
occurrences of ‘automation + something’, and we control for type I errors. Second, our
procedure is general-to-specific, in that we do not restrict our attention to any ex-ante clas-
sification by patent examiners; instead, we uncover the entire population of robotic patents
identified by both patent classification codes and content of patents themselves. Indeed,
our search is conducted on the whole population of patents, independently of technolo-
gical and sectoral classification. Third, in order not to retain false positives, we perform
an ex-post validation of all patents flagged by the above procedure. Our approach turns
out to be more restrictive in terms of requirements, but more comprehensive in terms of
technology-industry spectrum. In fact, as we shall see, we are able to span virtually the
entire NAICS sectoral classification. In contrast, simply relying on patent officers’ clas-
sification generally induces a downward bias, since it would only capture those patents
mainly associated with robot manufacturers, while patents related to robotics comple-
mentary technologies and specific process implementations along assembly lines would
be inevitably lost. To overcome this limitation, we have enlarged our scope of analysis
beyond the official USPTO classification.

3.1 Robotics patents

In addressing our first methodological challenge, we set up two distinct criteria, one based
on the patent classification codes specified within applications, the other based on textual
keyword search. A patent is labelled as robotic if it obeys at least one of the criteria.

For the first criterion we make use of the official USPTO statistical mapping5 between
former U.S. Patent Classification (USPC) class 901, entirely dedicated to “Robots” and used
by a number of previous contributions to identify robotic patents6, and the Cooperative

5Available here: https://www.uspto.gov/web/patents/classification/cpc/html/us901tocpc.html
6Among others, Obama’s 2016 “Economic Report of the President”: https://www.nber.org/erp/ERP-2016.pdf
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Patent Classification (CPC) present in recently published USPTO applications. The con-
cordance table lists 5 distinct CPC codes for each of the 50 subclasses of USPC class 901,
hence a total of 250 target codes, 124 of which are unique when all digits are considered.
The CPC system also defines a ‘legacy’ meta-class Y10S which targets “Technical subjects
covered by former USPC cross-reference art [. . . ] and digests”; CPC group Y10S901 then
serves as a junction for former art classified as USPC class 901. There are 50 unique CPC
codes in the group, one for each of the original subclasses. Since we wish to embrace the
broadest possible definition of robotic technology, the sufficient condition for a patent to
be deemed robotic under the first criterion is that the patent exhibits at least one of the
174 mentioned (full-digit) CPC codes (124 from the statistical mapping plus the 50 legacy
codes in group Y10S901).

Our second criterion looks for the multiple occurrence of the morphological root ‘robot’
within either section of the full-text of a patent, i.e. including abstract, description, and
claims. Looking for this morphological root seems appropriate since it displays a very low
degree of ambiguity. Broadly speaking, words that contain the (sub)string ‘robot’ are re-
markably likely to refer to some sort of robotic technology. However, we initially found
that patents with a small number of occurrences therein may well be unrelated to robotics
as their core technology; a typical example is innovation in the design of golf balls which
makes use of a robotic embodiment merely for final testing, for instance in launching the
ball at a certain speed. This prompted a first manual inspection on our behalf. We draw
a random sample of a few hundreds patents containing at least one occurrence and order
them by the number of total occurrences in order to manually identify an appropriate cut-
off. We find that patents with 5 or more occurrences are already quite likely to describe
either a core robotic technology, its process implementation, or a close complement techno-
logy, with few outliers. We conservatively set the cut-off of our second sufficient condition
to 10.

3.2 Labour-saving patents

Our second methodological challenge lies in the discovery of the set of LS patents. From
the set of robotic patents identified in the previous section, we now want to single out those
which explicitly claim a LS effect of the underlying innovation. We do this by performing
a multiple word co-occurrence query at the sentence level.

To this purpose, we need to preprocess our textual corpus, along the following steps.
First, we subdivide, technically tokenise, the full-text of each robotic patent (a single string

concatenating the abstract, the description, and the claims sections) into a list of sentences
by means of a punctuation regexp. Second, we similarly tokenise each sentence into a list

of words. Third, we filter out a standard set of 182 stop-words, i.e. tokens that are overly
common in English (such as ‘a’, ‘the’, ‘if’, . . . ) and do not convey any useful informa-
tion to our analysis. Last, we reduce each word in each sentence to its morphological root,
by means of a stemming algorithm.7

7In particular, we use the Porter2 stemmer, an improved version of the original Porter (1980) algorithm, as
implemented in the nltk Python library.
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‘reduc’
‘replac’
‘elimin’
‘save’
‘lower’

‘substitut’
‘autom’


︸                ︷︷                ︸

verbal predicate

×


‘labor’
‘worker’
‘human’
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‘manpow’
‘job’


︸             ︷︷             ︸

direct object

×



‘cost’
‘expenditure’

‘expens’
‘hour’
‘intens’
‘task’
‘time’
‘skill’


︸                   ︷︷                   ︸

object a�ribute

Figure 2: Structure of the labour-saving textual query.

At this point we are able to look for the presence of specific words (actually morpho-
logical roots, after the aforementioned stemming step) within the whole corpus of robotic
patents. We aim at eliciting the heuristic, when present, that the technology described in a
patent may somehow reduce human labour requirements if implemented, either in terms
of labour cost, worked hours, or the complete substitution of the workers themselves, by
automating one or more skills/tasks they previously applied/performed. Accordingly, we
develop a methodology by which we scour all the identified sentences and look for the co-
occurrence of a certain verbal predicate, a direct object, and an attribute, which jointly convey
the desired message, within the same sentence. Fig. 2 shows the selected words we use in
our query. In practice, we look for the joint occurrence of a triplet of words (which differ
from trigrams, as we do not require word adjacency), one from each set, within the same
sentence, and flag the associated patent as potentially LS if at least one sentence contains at
least one of the (336, given the Cartesian product of the three sets) triplets.

3.3 Probabilistic topic model and human-machine taxonomy

The selection of LS patents can be used to describe the set of human activities which LS
innovations aim at substituting. Thus, our next step entails the technological character-
isation of the set of LS patents vis-à-vis the whole class of robotic patents. In principle,
this could be done by looking at the CPC codes that each filed application comes with.
However, when multiple classification codes are attributed to the same patent, there’s no
way to assess the actual relevance of each code, either cardinally or ordinally. To overcome
this limitation, we estimate the relevance of each CPC code to each patent by leveraging
the latent semantic structure of the whole collection of patents’ full-text, as identified by a
probabilistic topic model.

3.3.1 Probabilistic topic models

A probabilistic topic model (see Blei, 2012; Blei et al., 2003) is a powerful natural language
processing tool in the unsupervised machine learning realm which aims at eliciting and
quantifying the magnitude of the main subject matters underlying a collection of docu-
ments in a fully automated way. Latent Dirichlet Allocation (LDA) is the simplest such
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model and the one we will use in our analysis. Formally, LDA is a generative probabilistic
model of a collection of documents. The underlying assumption is that each document
is represented by a random mixture over latent topics and each topic is characterised by a
distribution over a fixed vocabulary of words. The intuition is that each document exhibits
multiple topics in different proportions; in the generative model, each word in each doc-
ument is drawn from one of the topics proportionally to their relevance. The generative
process for LDA can be represented by the following joint distribution

p(β,θ,z,w) =
K

∏
k=1

p(βk)
D

∏
d=1

p(θd)

(
N

∏
n=1

p(zd,n|θd)p(wd,n|β,zd,n)

)
(1)

where β is the unknown set of K underlying topics βk, k = 1, . . . , K; θ is the unknown set of
topic proportions θd,k for topic k in document d of the collection D; z is the unknown set of
topic assignments zd,n for the n-th word in document d; finally, w denotes the observable
set of documents, each represented by the underlying sequence of words wd,n. LDA is
essentially a Bayesian estimator for the posterior conditional distribution of the topic struc-
ture p(β,θ,z| w) given the observed documents w. Note that in w the multiplicity of each
word is relevant although the specific order in which the words arise is neglected, as per
the so-called bag-of-words assumption. Crucially, topic model algorithms do not require
any prior annotations or labelling of documents, as the topics emerge simply from the
analysis of the original texts.

Probabilistic topic models for the analysis of patent data have been occasionally adop-
ted in the past. Venugopalan and Rai (2015) map American solar photovoltaics patents to
probability distributions over real world categories and show that linguistic features from
topic models can be used to identify the main technology area that a patent’s invention
applies to in a more effective way compared to traditional classification systems. Lee et
al. (2015) attempt to predict the pattern of technology convergence and use a topic model
on triadic patents to discover emerging areas of the predicted technology convergence.
Chen et al. (2017) and Kim et al. (2015) employ a topic modelling approach for technolo-
gical trajectories forecasting. Kaplan and Vakili (2015) exploit topic modelling to study the
formation of new topics in patent data (e.g. regarding fullerenes and carbon nanotubes)
and locate the patents which introduce them.

3.3.2 Topic model estimation

Our analysis proceeds along the following methodological workflow. First, we estimate a
topic model on the whole population of robotic patents. This step associates a distribution
θd of membership over the K-dimensional set β of topics to each patent d.

Second, we associate to each topic βk a distribution of CPC codes, by weighting the
original attribution of codes to each patent by the topic proportions θd found in the pre-
vious step. This informs the labelling of each topic with a quantitative combination of
pre-defined technological classes.

Finally, we compare the relevance of each topic for the whole population of robotic pat-
ents with that of the subset of LS patents and we draw quantitative conclusions on which
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technologies are relatively more and less relevant in characterising the latter with respect
to the former.

When estimating a topic model, the only relevant parameter the modeller is asked to
provide is the number K of topics the model is supposed to identify. There is no general
theory in the literature on how to appropriately select the number of topics. There have
been a few attempts to address this issue (see e.g. Arun et al., 2010; Cao et al., 2009) but
most scholars agree that none is truly universal. The current good practice is to run mul-
tiple experiments with different values of K and select the most convincing one. This is less
relevant for us however, since we are more interested in characterising the macroscopic
technological differences of the two patent corpora, rather than in the specific technolo-
gical characterisation of each of the two classes. We opt for a relatively low K = 20, which
allows to maintain overall tractability of exposition.

The estimation of a topic model is an iterative process, as the model incrementally learns
the latent semantic structure of the textual corpus and refines the estimate of the underly-
ing topic distribution at every iteration. In our implementation, we feed the whole textual
collection to the learning step at each iteration.8 A typical fitness measure for topic mod-
els is the so-called perplexity, defined as the inverse of the geometric mean per-word log-
likelihood. Perplexity typically decreases at each learning iteration. Rather than imposing
ex-ante a fixed number of iterations to the algorithm, we opt for computing the perplexity
of the model at each step and terminating the learning process once the perplexity gain
runs below a certain threshold, which we conservatively set at 0.1. In our experiment the
threshold is reached after 52 iterations and final perplexity equals 667.9838.

The algorithm returns each topic βk as a list of relevant keywords and a membership
value θd,k of each patent d to topic k. These membership measures are distributions, in the
sense that

θd,k ≥ 0 ∀ k = 1, . . . , K; ∀ d = 1, . . . , D (2)

K

∑
k=1

θd,k = 1 ∀ d = 1, . . . , D (3)

Since we are interested in characterising the whole collection of robotic patents, and later
the subset of LS patents, we need to construct an aggregate measure of relevance Θk of
each topic k for an arbitrary collection of D documents. We define this measure as the
simple average membership of all documents to each topic, as follows:

Θk :=
1
D

D

∑
d=1

θd,k ∀ k = 1, . . . , K (4)

From the properties in eqs. (2) and (3), it is straightforward to prove that Θk is itself a

8Specifically, we use the LatentDirichletAllocation module implemented in the scikit-learn Python library
in batch learning mode.

11



distribution, i.e.

Θk ≥ 0 ∀ k = 1, . . . , K (5)

K

∑
k=1

Θk = 1 (6)

3.3.3 Topic labelling with CPC codes

Estimating a topic model returns, for each topic, a list of most important words therein,
ranked by their frequency within the collection. The interpretation of each topic is then
entirely left to the modeller. Rather than labelling the topics on the basis of obtained
keywords alone, we leverage the original attribution of ex-ante equally relevant CPC codes
to each patent, together with the membership of each patent to the set of topics. In particu-
lar, letting C denote the set of all CPC codes, we define a cardinal membership distribution
Φc,k of each CPC code c ∈ C to each topic k = 1, . . . , K as

Φc,k =
ϕc,k

K
∑

k=1
ϕc,k

∀ k = 1, . . . , K; ∀ c ∈ C (7)

where

ϕc,k = ∑
d ∈ D

1{c ∈ γ(d)} · θd,k ∀ k = 1, . . . , K; ∀ c ∈ C (8)

1{·} denotes the indicator function and γ(·) is a fictitious function which returns the rel-
evant CPC codes originally attributed to the argument patent d by the patent examiner.
ϕc,k ∈ [0,+∞] is a (unscaled) measure of membership of CPC code c to topic k, and
Φc,k ∈ [0,1] is the corresponding rescaled version to fit the unit interval.9 In other words,
all the CPC codes of a patent (1{c ∈ γ(d)}) are attributed to the applicable topics proportion-
ately to the relevance of each topic for the patent itself (θd,k). Together with the subjective
interpretation of the relevant keywords, the process of finding a suitable label for the top-
ics, carried out in the Section 4.3, can now be informed by (the description) of the most
relevant CPC codes therein, as objectively (albeit probabilistically) measured by Φc,k.

4 Results

In the present section we outline the results obtained from the three methodological steps
described in the previous section, namely, the definition of robotic and LS patents therein
(Section 4.1), their sectoral and geographical characterisation (Section 4.2), and the estima-
tion of the probabilistic topic model (Section 4.3). Finally, we recap our findings on human
activities which LS patents intend to replace and discuss their relevance with respect to the
literature on technological bottlenecks (Section 4.4).

9It is straightforward to prove that the same distribution properties in eqs. (5) and (6) which hold for Θk also
hold for Φc,k .
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Figure 3: Number of robotic patent applications by year.

4.1 Robotic and labour-saving patents

Our first result entails the identification of the set of robotic patents. The CPC-based fil-
ter returns 10,929 patents. We label the set of robotic patents according to this criterion
as CPC. The keyword-based filter returns 18,860 new patents, after those already found
by the first criterion are discarded. We label the set of new robotic patents according to
this criterion as K10. The two criteria single out a total of 29,789 unique robotic patents,
i.e. approximately 0.84% of the original (universe) population. Fig. 3 shows the yearly
evolution in the number of filed robotic patent applications for the two aforementioned
subsets. At a first glance, patents under both definitions have almost steadily grown in
number over time, with the CPC group accounting for most of the relative increase (ap-
proximately 6-fold within our reference period). Consistent with discussions in the extant
literature, both trends exhibit an acceleration during most recent years (see Brynjolfsson
and McAfee, 2012, 2016; Cockburn et al., 2018).

Our second result pertains to the identification of LS patents. The procedure returns
1,666 patents. Since we cannot fully trust the accuracy of the filter with respect to false
positives, we proceed with a manual inspection of all the potentially LS patents, in order
to ensure that the flagged sentence actually conveys the desired message. This conservat-
ive manual validation step delivers 1,276 truly LS patents (hereafter referred simply as LS
patents), i.e. approximately 4.3% of all robotic patents, suggesting our methodology ex-
hibits an accuracy of ≈ 77%. Of these, 461 (≈ 36.1%) come from the CPC group and 815
(≈ 63.9%) from the K10 group, indicating that our procedure does not substantially alter
the original composition of the whole population of robotic patents.10 Fig. 4 shows the
evolution in the number of LS patents over time, as a fraction of all robotic patents. It is
noteworthy that a substantial share of LS patents come from technological fields that do
not belong to the standard robot related CPC fields. No clear trend is detectable, suggest-
ing that the underlying LS heuristic has remained quite stable over our reference period.
This result is in line with our theoretical assumption that LS heuristics appear to be a ro-
bust and invariant driver of technological evolution (c.f. Section 2). Note that our evidence

10In order to exclude that our LS patents are the by-product of a specific writing style of
a small group of individuals, we exploit the Patent Examination Research Dataset (Public
PAIR, available at https://www.uspto.gov/learning-and-resources/electronic-data-products/
patent-examination-research-dataset-public-pair) and find that the number of distinct entities who have
been granted power of attorney for the whole set of LS patents exceeds 450, the largest of which administers
37.
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Figure 4: Number of LS patent applications by year, as percentage of robotic applications.

detects both an increasing innovative effort devoted to robotic technology, most of which
is not primarily classified as robotics (i.e. the K10 class, see Fig. 3), and a plateaued search
heuristic guided towards labour-displacement, equally distributed on average between
the CPC and K10 families (see Fig. 4).

4.2 Firm-level analysis and supply chain

In the present section we characterise LS patents in terms of identity, geographic location,
and industrial sector of their current assignee(s). To this purpose, we match our data to
the ORBIS (Bureau van Dijk) database through the relevant publication numbers. At the
time of writing, the ORBIS database contains information for patent applications published
until 31st July 2018; hence, the following analysis is intended over data truncated to that
date. 1,136 LS patents (≈ 89% of the original set) find a match, 903 of which (≈ 79%) are
assigned to at least one firm, while 233 find no corporate assignment. In total, there are
408 firms which hold at least a LS patent (hereafter, LS firms). Note that patents assigned
to more than one firm are deliberately double-counted, since we aim at grasping the actual
dispersion of the underlying LS heuristic.

The World map in Fig. 5 gives a glimpse at the geographic distribution of LS patents,
given the location of their assignees. The U.S. dominate the picture as the only country
with more than 500 LS patents; this is hardly surprising given that all our applications are
filed at the USPTO, a primary target for U.S. firms. Japan comes second, as the only other
country with more than 100 LS patents, and South Korea, Taiwan, China, and Germany
follow suit, holding between 20 and 100 LS patents each. This picture is quite in line with
traditional World-class innovation centres when it comes to robotic technology.11 How-
ever, looking at absolute LS patent figures only provides a partial understanding of the
associated international patenting activity. Focussing on a relative measure of propensity,
i.e. rescaling the number of LS patents by the total number of robotic patents assigned
to firms in a given country, allows to infer where LS search efforts are more intensive,
compared to the ex-ante capability of producing a robotic patent. This new measure is
represented in Fig. 6. While the latter exercise might be biased by the small size of the

11An analogous heatmap constructed on the absolute number of robotic patents by country looks strikingly
similar and is not included.
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Figure 6: Geographic location of LS patents as percentage of robotic patents.

underlying denominators, it is nonetheless quite informative.12 Brazil, Hong Kong, and
Denmark lead the picture with more than 10% of robotic patents also being LS. Next come,
respectively, India and Singapore with at least 7.5%, and Finland, Taiwan, Belgium, and
Canada, all beyond the 5% threshold. With the exception of Taiwan, all top robotic patents
holders lie below the 5% threshold. In a nutshell, it turns out that countries which hold
fewer robotic patents overall, actually hold more LS patents in relative terms.

We now proceed by revealing the identity of top LS patents holding firms and then as-
sessing their sectoral dispersion. Fig. 7 lists the top 15 holders by absolute number of LS
patents, while Fig. 8 lists the description of the top 15 primary sectors, identified as 4-digit
NAICS codes (2017 revision) assigned to the holders. Both pictures detail the underly-
ing CPC and K10 composition. Boeing, the aircraft manufacturer, is the largest holder of

12A strong form of such bias arises for Argentina (excluded from both Figs. 5 and 6) where a single robotic patent
has been filed in our focus period, which also happens to be a LS patent.

15



0 5 10 15 20 25

BOEING COMPANY (THE)
TECHNOLOGIES HOLDING CORP

AMAZON TECHNOLOGIES INC
INTELLIGRATED

SEIKO EPSON CORPORATION
SAMSUNG ELECTRONICS CO.,LTD.

LOCUS ROBOTICS
CANON INC.

HYUNDAI MOTOR CO.,LTD.
UNITED PARCEL SERVICES OF AMERICA INC

FANUC CORPORATION
YASKAWA ELECTRIC CORPORATION

GM GLOBAL TECHNOLOGY OPERATIONS LLC
ILLINOIS TOOL WORKS INC

WYNRIGHT CORP
CPC

K10

Figure 7: Top 15 firms holding LS patents.

LS patents, with a count of 45.13 Relatedly, ‘Aerospace Product and Parts Manufactur-
ing’ is the largest sector within which LS patents reside. Motor vehicles and their parts
manufacturing, industries traditionally at the forefront in industrial robots’ adoption, also
rank very high, as the presence of automotive firms, Hyundai and GM, in the top hold-
ers’ chart also suggest. Interestingly, retailers (Amazon) and shipping companies (UPS)
appear among the top holders, and a deeper inspection of their patents reveals that they
are all about fully automatic sorting and routing of packages and drone technology for
deliveries. High-tech and R&D intensive firms (e.g. Technologies holding, Intelligrated),
robot manufacturers (e.g. Locus, Fanuc), and electronics/software developers, which are
the backbones of the robotic value chain (e.g. Seiko-Epson, Samsung), complete the pic-
ture. Strikingly, ‘Colleges, Universities, and Professional Schools’, namely the organisa-
tions which are most likely to receive public funding for carrying out research, constitute
the 8th largest sector in terms of LS patents holding. Therefore, the industry composition
of LS patent holders highlights how robot manufacturers rank lower than robot adopters.
The logistics segment, which in our sample emerges from the presence of two international
giants, deserves particular scrutiny. The employed workforce in the shipping/delivery in-
dustry largely carries out human-intense activities such as conveying, storing, picking,
packaging. At this stage of the analysis we cannot conclusively pinpoint the specific hu-
man tasks which are more likely to be substituted by LS technology. However, our best
guess comprises those phases of the production processes which mainly rely on manpower
as their primary input. In the following, we shall attempt to shed some light on the issue.
Note that, although we refrain from producing any type of predictive clause, the very fact
that LS patents appear to concentrate within large labour-intensive industries is quite in-
teresting.

The frequency distribution of NAICS codes assigned to LS patent holders, pictured in
Fig. 9, is also worth noting. In particular, it reveals that, while most of the (408) LS firms are
concentrated in a few industries (already shown in Fig. 8), LS patents are overall present in

13It is worth noting that these patents relate to the proper aircraft manufacturing process and not to drones or
other unmanned aerial vehicles technology.
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Figure 8: Top 15 industry descriptions of LS patents’ holders.
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Figure 9: Rank-frequency distribution of NAICS codes across LS firms.

as many as 91 distinct sectors, covering all 2-digit NAICS specifications except ‘Agriculture,
Forestry, Fishing and Hunting’ (code 11). In other words, the distribution exhibits a ‘long
tail’ across a wide support of NAICS codes. This ultimately suggests that the LS heuristics
embedded in robotic technology is quite widespread across the value chain.

4.3 Topic modelling and human-machine taxonomy

At the current stage, we still ignore the human activities LS patents aim at substituting. As
already mentioned (in Section 3.3), a simple analysis of CPC codes is not viable because
multiple CPC codes are typically attributed to each patent. Fig. 10 shows a histogram with
the count of distinct CPC codes at the 3-digit level for robotic (a) and LS patents (b), which
reaches up to 9 per patent. While single attributions constitute the modal case for robotic
patents, tightly followed by double attributions, the picture is reversed for LS patents, and
for these latter triple attributions are almost as widespread as single ones. This suggests
that, on average, LS patents are relatively more technologically ‘complex’ than their robotic
superset. To overcome the aforementioned limitation, we estimate the relevance of each
CPC code to each patent by leveraging the latent semantic structure of the whole collection
of patents’ full-text, as identified by a probabilistic topic model.

We now have all the ingredients to assess the technological differences between robotic
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Figure 10: Count of 3-digit CPC codes assigned to robotic (a) and LS patents (b).
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Figure 11: Topic relevance distributions R(k)rob and R(k)LS for robotic patents (blue graph)
and their LS subset (orange graph).

and LS patents in an informed way, using the CPC-topic matching developed in Sec-
tion 3.3.3. In particular, we wish to order the identified topics by their relevance to LS
patents relative to robotic patents in general. We compute the aggregate relevance dis-
tributions Θrob

k and ΘLS
k defined in Section 3.3.2 for each of the robotic and LS patents

populations, respectively. These distributions are pictured in Fig. 11, in which the topics
are sorted by decreasing relevance to the robotic patents collection (blue graph). The figure
shows sizeable discrepancies between the former and the relevance measure for LS patents
(orange graph) for some of the topics. For instance, topic #6 is more than twice as relevant
to LS patents than to robotic patents overall. Note however that since the (blue) graph
for robotic patents is ranked in decreasing order of relevance, by construction the (orange)
graph of LS patents also decreases on average, since the latter are a subset of the former.
This implies that the mere difference between Θrob

k and ΘLS
k (i.e. the vertical distance in

Fig. 11) is not fully informative, and an appropriate comparison requires a truly relative
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measure of relevance for LS patents, which we define as

Θ̃LS
k :=

ΘLS
k

Θrob
k

∀ k = 1, . . . , K (9)

Table 1, which we report in Appendix A for convenience, contains all the relevant in-
formation for building the human-machine taxonomy. The first column refers to the topic
number, as it appears on the horizontal axis in Fig. 11; the second column, according to
which the table is sorted in decreasing order, reports the relative relevance Θ̃LS

k of LS pat-
ents to robotic patents, expressed in percentage points; the third column lists the top 10
keywords of the underlying topic; the remaining three columns list the top 5 CPC codes
denominations associated to the topic,14 their weight, and their official description. 3-digit
CPC codes are used, except for codes in the Y10 meta-class reported in full to highlight the
original USPC class they point to.

In terms of robotics patents, the five most relevant topics include biochemistry (#1),
transmission of digital information (#2), optics (#3), traditional machine tools (#4) and
shaping or joining of plastics; additive manufacturing (#5). The latter evidence is com-
forting in terms of external validity of our topic model. In fact, according to WIPO (2019,
p. 17), “among the top 20 technology fields, food chemistry (+13.4%), other special ma-
chines (+10.1%), machine tools (+9.2%) and basic materials chemistry (+9.2%) witnessed
the fastest average annual growth between 2007 and 2017”.

Our relative distance definition allows to single out those topics in which the two pop-
ulations of patents show strong differences in terms of word occurrence (positive percent-
age) or similarities (negative percentage). Indeed, LS patents are concentrated in some
specific topics. Topic #6 (transport, storage and packaging) displays the highest relative
relevance to LS patents (+132.2%), as its relevance more than doubles that of robotic pat-
ents overall. This topic can be related to warehouse management and shipping: its most
significant CPC code (B65) refers to “[c]onveying; packing; storing; [. . . ]” and the top
keywords are ‘carrier’, ‘conveyor’, ‘item’, ‘gripper’, ‘tape’. A quick check exposes
shipping companies (or companies that have a considerable shipping division) such as
Amazon and UPS, as their prime holders (see again Fig. 7). Secondary CPC codes are
typically complementary technologies for the robotic embodiment of the underlying arte-
fact; in the present case they mainly relate to “[b]asic electric elements” and “[i]nformation
storage”.

Other topics with relative relevance above +40% include diagnosis and therapy (#20),
transmission of digital information (#10), optics (#3), chemical or physical laboratory ap-
paratus (measuring and testing in chemistry) (#8), and moving parts (either related to
prosthetic devices such as exoskeletons or parts of land vehicles) (#16). On the bottom
side of Table 1, earth drilling and mining (#9), traditional machine tools (#4), surgery (#14),
transmitting and transmission networks (electronic communications) (#15), and shaping

14A number of CPC codes widely attributed to robotic patents and whose definition is less informative to the
labelling process are discarded. These are: B25 (“hand tools; portable power-driven tools; manipulators”), G01
(“measuring; testing”), G05 (“controlling; regulating”), G06 (“computing; calculating; counting”), and Y10S901,
which points to the “Robots” former USPC Class.
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or joining of plastics, additive manufacturing (#5), are all topics in which LS patents are
less relevant relative to general robotic patents, by at least -40% in our measurement.

4.4 Replaceable human activities and technological bo�lenecks

In the final step, we tentatively infer the type of human activities the technology laid out in
LS patents is intended to replace. We capture both the formal technological content of in-
ventions using CPC codes definitions and the substantial purpose of single robotic innov-
ations using the vector of words which characterises each topic in the previous analysis.
Thanks to this twofold approach, we can describe the fields and activities more exposed to
LS innovations.

Notably, topics displaying a larger relative relevance of LS innovations compared to the
rest of robotic patents refer to labour-intensive environment, such as the logistics sector,
in which workers currently involved in packaging, sorting, and routing items, are partic-
ularly threatened. Healthcare constitutes another ground for LS technology, both in the
production of medical equipment and in nursing patients or taking care of the elderly. In
fact, the second topic in terms of LS relevance relates to medical industry, in line with the
development of practices, instruments, and tools possibly able to streamline and reduce
the labour intensity required in carrying out medical and healthcare operations and clinical
data storage. Notably, medicine appears twice in the table, with both positive and negative
relative relevance: while topic #20 (diagnosis and therapy) just discussed displays explicit
LS contents, topic #14 mainly relates to collaborative robots for remote surgical activity
with a very low relative LS impact. However, it is worth noticing that not all collaborative
robots have a labour-friendly impact. Both prostheses and exoskeletons are collaborative
in nature and therefore, labour-complementary; yet some features therein (e.g. superhu-
man force, velocity, speed, reliability) may well save additional human manpower in tasks
previously carried out by a team of workers (#16).

Words related to AI emerge in the third most relevant topic (#10, transmission of digital
information). ‘learn’, ‘predict’, ‘train’, and ‘evaluate’ all show an high frequency
of occurrence. This topic somewhat validates the threat for massive use of ‘intelligent
automation’ which might substitute human activities primarily involving qualified pro-
fessional services (c.f. Section 2). However, manual activities, a common concern for poli-
cymakers as they characterise lower-skill jobs, are also frequently mentioned in LS patents
(#16, moving parts). High frequency words such as ‘workpiece’, ‘torque’, ‘finger’ sug-
gest a particular interest in manual and finger dexterity. Remarkably, this topic spans from
medical and veterinary applications to land vehicles CPCs.

Our estimation of the probabilistic topic model allows to pinpoint the technological bot-
tlenecks underlying the search efforts inspiring robotics inventors. Indeed, LS heuristics
are concentrated in human activities already identified by other contributions in the liter-
ature. Arntz et al. (2016), Frey and Osborne (2017) and Nedelkoska and Quintini (2018)
all rely on experts’ judgement (so-called Delphi method) in constructing an automation
probability measure of O*NET occupations. For instance, Frey and Osborne (2017) ask
technologists to reply to the following question for 70 selected occupations: “Can the tasks
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of this job be sufficiently specified, conditional on the availability of big data, to be per-
formed by state of the art computer-controlled equipment?” (see Frey and Osborne, 2017,
Table 1). They claim that the probability of an occupation being automated is inversely
related to: social intelligence, such as the ability to negotiate complex social relationships,
including caring for others or evaluate differences; cognitive intelligence, such as the abil-
ity of solving complex problems; and finger dexterity and manipulation, such as the ability
to carry out precise physical tasks in an unstructured work environment and in awkward
positions.

Our work adds evidence in this perspective. The tasks identified by the aforementioned
contributions actually map to the semantic domains covered by our LS patents and emer-
ging out of the probabilistic topic model: for example, topics #6 and #16 involve multiple
tasks related to perception and manipulation, topic #10 contains tasks related to cognitive
intelligence (e.g. “Systems and methods for consumer-generated media reputation management”,
[US20170286541A1]), and topic #20 involves tasks where social intelligence is important,
in particular for assisting and caring for others. Therefore, according to our results, these
technological bottlenecks are currently under the spot of cutting-edge research efforts by
innovative firms in their knowledge space. This result also aligns with the recent find-
ings of Webb (2020), who shows that the most recent AI driven automation wave targets
high-skilled tasks.

5 Concluding remarks

The fast development of robotic(-related) technology, artificial intelligence, and automa-
tion has raised concerns about the future of work. Recent literature has focussed, on the
one hand, on the analysis of tasks and occupations at risk of automation (e.g. Frey and
Osborne, 2017; Webb, 2020). On the other hand, on the labour market impact of industrial
robots among adopters (e.g. Acemoglu and Restrepo, 2019b). In this paper, we contrib-
ute with an in-depth analysis of the nature of innovations in robotics-related technologies,
focussing on their sectors of origin. We study robotic patents explicitly encompassing LS
heuristics and trace their distribution in terms of firms, sectors, and geographical location,
and we determine whether they differ in terms of technological content with respect to the
totality of robotic patents, by emphasising the underlying technological heterogeneity and
the vertical supply chain behind. To address these questions we employ advanced textual
analysis and machine learning techniques on the universe of USPTO patent applications
filed between 2009 and 2018, and we exploit a direct match with ORBIS (Bureau van Dijk)
firm-level database.

Our results can be summarised as follows. First, the time evolution of LS patents do not
show an explicit trend over time, hinting at a stable and established pattern of LS heur-
istics. Second, in terms of geographical location, U.S. and Japan still appear to largely
dominate other countries. Third, the sectoral distribution of LS robotic patents present a
long-tail, signalling a widespread nature of the underlying applications across 4-digit in-
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dustries. Fourth, patenting firms are not only constituted by robots producers, but mainly
adopters, some archetypical cases being Boeing, Hyundai, Amazon, and UPS.

Finally, by means of a probabilistic topic model and a topic-level match with patent clas-
sification codes, we construct a human-machine taxonomy highlighting human activities
which appear more likely to be displaced. We find that LS patents are particularly con-
centrated in the following fields: (i) transport, storage and packaging, (ii) diagnosis and
therapy, (iii) transmission of digital information, (iv) optical elements, (v) chemical and
physical laboratory apparatus (measuring and testing in chemistry), and (vi) moving parts.
From our taxonomy it emerges that the typical tasks where LS research effort is focussed
include (i) dexterity and manipulations, as in packing, storing, conveying, and handling
packages in the logistics industry; (ii) activities entailing social intelligence, such as care-
taking patients and the elders; (iii), activities requiring cognitive intelligence and complex
reasoning, e.g. the competence in predicting, learning, classifying and evaluating, typical
of high-level professional segments. Previous literature has identified the above activit-
ies as technological bottlenecks, in the sense of being particularly hard to automate. Our
work suggests that search efforts exerted by leading international companies are precisely
aimed at defeating these bottlenecks.

The main limitation of our work lies on its excessively conservative measure of LS pat-
ents. Indeed, while our procedure completely avoids type I errors (i.e. false positives),
the true magnitude of LS innovation is likely to be largely underestimated (type II error).
Conceivable extensions of our framework include the analysis of a wider range of patents
beyond robotic technology and the potential matching with both firm-level economic in-
dicators (such as sales, wages, and productivity) and dictionaries of occupations and tasks
(such as O*NET and PIAAC).
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Appendix A

Table 1

Topic # Θ̃LS
k Words CPC Weight Description

6 +132.2% carrier

conveyor

item

gripper

tape

articl

convey

tray

packag

door

B65 24.4% Conveying; packing; storing; handling thin or
filamentary material

H01 6.8% Basic electric elements
G11 6.0% Information storage
Y02 4.6% Technologies or applications for mitigation or

adaptation against climate change
B23 4.3% Machine tools; metal-working not otherwise

provided for
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Table 1 – continued from the previous page

Topic # Θ̃LS
k Words CPC Weight Description

20 +72.2% weld

patient

medic

cathet

treatment

tissu

lumen

electrod

needl

transduc

A61 47.8% Medical or veterinary science; hygiene
B23 17.7% Machine tools; metal-working not otherwise

provided for
G16 4.1% Information and communication technology [ict]

specially adapted for specific application fields
H04 3.1% Electric communication technique
G09 2.0% Education; cryptography; display; advertising;

seals

10 +60.3% node

learn

predict

train

evalu

estim

score

neural

behavior

sampl

H04 16.3% Electric communication technique
A61 14.4% Medical or veterinary science; hygiene
Y02 7.8% Technologies or applications for mitigation or

adaptation against climate change
G08 4.2% Signalling
H01 3.6% Basic electric elements

3 +49.2% beam

ray

eye

scan

len

pixel

fiber

detector

radiat

fluoresc

H04 17.7% Electric communication technique
A61 17.6% Medical or veterinary science; hygiene
G02 12.1% Optics
H01 6.4% Basic electric elements
G09 6.3% Education; cryptography; display; advertising;

seals

8 +48.4% sampl

assay

pipett

reagent

vessel

dispens

reaction

specimen

cartridg

analyt

B01 23.5% Physical or chemical processes or apparatus in
general

C12 13.5% Biochemistry; beer; spirits; wine; vinegar; micro-
biology; enzymology; mutation or genetic engin-
eering

Y10T436 13.5% Chemistry: analytical and immunological test-
ing

A61 6.7% Medical or veterinary science; hygiene
B65 5.4% Conveying; packing; storing; handling thin or

filamentary material

Continues on the next page
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Table 1 – continued from the previous page

Topic # Θ̃LS
k Words CPC Weight Description

16 +46.7% workpiec

torqu

leg

finger

trajectori

pose

ball

foot

veloc

walk

A61 23.2% Medical or veterinary science; hygiene
B62 12.2% Land vehicles for travelling otherwise than on

rails
A63 7.9% Sports; games; amusements
Y10T74 6.3% Machine element or mechanism
B23 6.1% Machine tools; metal-working not otherwise

provided for

7 +35.3% substrat

chamber

wafer

gas

film

semiconductor

deposit

polish

chuck

holder

H01 45.0% Basic electric elements
C23 9.1% Coating metallic material; coating material with

metallic material; chemical surface treatment;
diffusion treatment of metallic material; coating
by vacuum evaporation, by sputtering, by ion
implantation or by chemical vapour deposition,
in general; inhibiting corrosion of metallic ma-
terial or incrustation in general

G03 4.0% Photography; cinematography; analogous tech-
niques using waves other than optical waves;
electrography; holography

B08 3.2% Cleaning
B24 3.0% Grinding; polishing

13 +27.2% surgic

patient

implant

surgeon

marker

bone

surgeri

endoscop

master

tissu

A61 71.3% Medical or veterinary science; hygiene
Y10T74 4.8% Machine element or mechanism
G16 3.0% Information and communication technology [ict]

specially adapted for specific application fields
H04 2.0% Electric communication technique
G09 1.9% Education; cryptography; display; advertising;

seals

17 –16.5% suction

cleaner

nozzl

milk

teat

valv

cup

discharg

dairi

pool

A01 15.6% Agriculture; forestry; animal husbandry; hunt-
ing; trapping; fishing

A47 15.5% Furniture; domestic articles or appliances; coffee
mills; spice mills; suction cleaners in general

H04 5.7% Electric communication technique
H01 4.8% Basic electric elements
E04 4.1% Building

Continues on the next page
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Table 1 – continued from the previous page

Topic # Θ̃LS
k Words CPC Weight Description

2 –19.6% server

request

video

messag

databas

audio

voic

search

game

client

H04 26.1% Electric communication technique
A61 8.1% Medical or veterinary science; hygiene
A63 7.0% Sports; games; amusements
G10 6.8% Musical instruments; acoustics
G08 5.3% Signalling

1 –21.3% cell

acid

probe

protein

nucleic

polypeptid

hybrid

dna

molecul

plant

C12 23.1% Biochemistry; beer; spirits; wine; vinegar; micro-
biology; enzymology; mutation or genetic engin-
eering

B01 11.0% Physical or chemical processes or apparatus in
general

A61 7.1% Medical or veterinary science; hygiene
Y10T436 6.1% Chemistry: analytical and immunological test-

ing
C07 5.0% Organic chemistry

11 –33.1% vehicl

autonom

obstacl

navig

charg

uav

rout

batteri

self

dock

B60 14.3% Vehicles in general
B62 7.5% Land vehicles for travelling otherwise than on

rails
H04 7.2% Electric communication technique
Y02 7.0% Technologies or applications for mitigation or

adaptation against climate change
A47 6.7% Furniture; domestic articles or appliances; coffee

mills; spice mills; suction cleaners in general

19 –35.9% clamp

roller

seal

ring

rod

connector

fasten

axial

cylind

bend

A61 12.2% Medical or veterinary science; hygiene
B23 7.4% Machine tools; metal-working not otherwise

provided for
Y10T74 6.8% Machine element or mechanism
F16 6.4% Engineering elements and units; general meas-

ures for producing and maintaining effective
functioning of machines or installations; thermal
insulation in general

H01 6.3% Basic electric elements

Continues on the next page
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Table 1 – continued from the previous page

Topic # Θ̃LS
k Words CPC Weight Description

18 –36.0% gear

smart

pulley

home

rotari

occup

detector

hazard

mesh

nut

A61 15.9% Medical or veterinary science; hygiene
Y10T74 12.5% Machine element or mechanism
F16 10.7% Engineering elements and units; general meas-

ures for producing and maintaining effective
functioning of machines or installations; thermal
insulation in general

H04 7.2% Electric communication technique
G08 5.8% Signalling

12 –39.2% reson

voltag

charg

batteri

conductor

induct

coil

imped

circuitri

trace

H02 16.9% Generation; conversion or distribution of electric
power

H01 11.8% Basic electric elements
B60 11.6% Vehicles in general
Y02 9.3% Technologies or applications for mitigation or

adaptation against climate change
H03 9.1% Basic electronic circuitry

5 –44.2% electrod

coat

print

mold

build

panel

fabric

adhes

sheet

paint

B29 9.2% Working of plastics; working of substances in a
plastic state in general

H01 8.9% Basic electric elements
B05 6.2% Spraying or atomising in general; applying li-

quids or other fluent materials to surfaces, in
general

B23 4.9% Machine tools; metal-working not otherwise
provided for

Y02 4.8% Technologies or applications for mitigation or
adaptation against climate change

15 –52.0% transmitt

inspect

sound

lumin

recept

exposur

bright

ultrason

antenna

server

H04 28.7% Electric communication technique
A61 7.2% Medical or veterinary science; hygiene
H01 6.0% Basic electric elements
G08 6.0% Signalling
A47 4.3% Furniture; domestic articles or appliances; coffee

mills; spice mills; suction cleaners in general

Continues on the next page
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Table 1 – continued from the previous page

Topic # Θ̃LS
k Words CPC Weight Description

14 –63.7% effector

surgic

stapl

articul

closur

cartridg

elong

jaw

anvil

fire

A61 55.6% Medical or veterinary science; hygiene
Y10T29 4.9% Metal working
H01 4.8% Basic electric elements
Y10T74 4.2% Machine element or mechanism
B23 3.5% Machine tools; metal-working not otherwise

provided for

4 –66.9% teach

vibrat

calibr

postur

veloc

board

mark

piezoelectr

angular

acceler

A61 10.7% Medical or veterinary science; hygiene
H01 9.3% Basic electric elements
B23 8.5% Machine tools; metal-working not otherwise

provided for
H04 7.8% Electric communication technique
Y02 6.0% Technologies or applications for mitigation or

adaptation against climate change

9 –75.2% heater

hydrocarbon

conductor

conduit

pipe

treatment

drill

gas

cool

insul

H01 8.6% Basic electric elements
E21 6.6% Earth drilling; mining
B23 5.5% Machine tools; metal-working not otherwise

provided for
Y10T29 4.4% Metal working
Y02 4.4% Technologies or applications for mitigation or

adaptation against climate change
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