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We survey the recent, fast-growing literature on peer effects in networks. An important 

recurring theme is that the causal identification of peer effects depends on the structure of 

the network itself. In the absence of correlated effects, the reflection problem is generally 

solved by network interactions even in non-linear, heterogeneous models. By contrast, 

microfoundations are generally not identified. We discuss and assess the various approaches 

developed by economists to account for correlated effects and network endogeneity in 

particular. We classify these approaches in four broad categories: random peers, random 

shocks, structural endogeneity and panel data. We review an emerging literature relaxing 

the assumption that the network is perfectly known. Throughout, we provide a critical 

reading of the existing literature and identify important gaps and directions for future 

research. 
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1 Introduction

Human beings are by nature social animals. We are affected by others on many dimensions and in
many contexts. As parents, we bear witness to our influence and to the influence of teachers, friends
and classmates on our children’s language, beliefs and behaviors. As academic researchers, we in-
teract frequently and these interactions affect our research, collaborations and technology adoption.
Most empirical studies of peer effects indeed document strong positive correlations between indi-
vidual and peers’ outcomes. Personal experience and correlation are, of course, not causation and
researchers who wish to credibly assess the causal effect of peers face some formidable econometric
challenges. Correlation in outcomes among peers may be caused by correlated unobserved charac-
teristics due, for instance, to endogenous choice of peers or to common shocks. This is the central
problem of correlated effects. Even when this problem has been addressed, however, distinguishing
between the impact of peers’ outcomes (endogenous peer effect) and of peers’ characteristics (con-
textual peer effects) may be impossible because of simultaneity in the behavior of interacting agents.
This is the reflection problem, clarified by Manski (1993). Overall, the combination of widespread
indirect evidence and methodological challenges has given rise to an immense and still expanding
literature, which spans all the different realms of applied analysis in economics and in other social
sciences.1

The analysis of peer effects has recently expanded in a new direction, stimulated by a fast-
growing interest in networks. Historically, and because of data availability, many studies of peer ef-
fects considered peer groups which partition the population, such as classrooms or villages. Agents
generally have distinct sets of peers, however, leading to a network of interactions. How do net-
work interactions affect the analysis of peer effects and the treatment of correlated effects and of
the reflection problem? About 15 years ago, four studies independently understood that the reflec-
tion problem is naturally solved by network interactions (Bramoullé, Djebbari, and Fortin, 2009;
De Giorgi, Pellizzari, and Redaelli, 2010; Lin, 2010; Laschever, 2011). In Bramoullé, Djebbari, and
Fortin (2009), we characterize the identification conditions of the benchmark linear-in-means model
of peer effects when agents interact through a network. We show that once the problem of correlated
effects has been addressed, endogenous and contextual peer effects are identified under intransitivity,
when peers of peers are not peers. Their characteristics then have an impact on individual outcome
only through their effect on peers’ outcome, providing valid instruments. An important insight is
that identification depends on the structure of the network itself and exploits holes in the structure.

1In economics, see Manski (2000), Epple and Romano (2011) and Sacerdote (2011) on education, Graham (2018)
on neighborhood effects, and Angrist (2014) for a critical review. In sociology and social psychology, see for instance
Alexander et al. (2001) on smoking, Salmivalli (2010) on bullying, and Kreager, Rulison, and Moody (2011) on delin-
quency.
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Since then, the literature on peer effects in networks has grown quickly and in many directions.
In this survey, our objectives are to provide a structured discussion of this evolving literature, to
critically assess its achievements and to identify important gaps and natural directions for future
research. Doing so, we develop a number of novel formal and informal arguments. The survey, of
course, does not pretend to be exhaustive. Given space constraints, we decided to focus on intuition
and main identification issues in the empirical analysis of peer effects.2

We do not cover, in particular, a large theoretical literature on social interactions where re-
searchers explicitly model how agents’ choices depend on their peers. Studies of games played on
networks are notably surveyed in Jackson and Zenou (2015) and Bramoullé and Kranton (2016).
There are, of course, interesting connections between theoretical and empirical analyses of peer ef-
fects. In some contexts, econometric models of peer effects can be obtained as best responses of
games played on networks. Well-designed theoretical models of social interactions can be struc-
turally estimated, see Banerjee et al. (2013). We discuss the microfoundations of the empirical
models of peer effects in Section 2.

The survey is organized in three parts. In Section 2, we start from the linear-in-means framework
of Bramoullé, Djebbari, and Fortin (2009). Assume that the problem of correlated effects is fully
solved: the network of interactions and observed characteristics are exogenous. Are endogenous
and contextual peer effects identified despite simultaneity? We briefly restate the main results and
insights of our original analysis. We show that the network-based identification strategy holds much
more generally. We consider group interactions and relate the surprising identification results for
groups to the broader study of group size. We discuss how identification can also be obtained by
restrictions on the error terms. We then discuss the influential overview of Angrist (2014). We show
that the counterexample proposed in Section 6 of Angrist (2014) simply illustrates a well-known
case of non-generic identification failure. We finally clarify often misunderstood issues on mecha-
nisms and microfoundations. Building on Blume et al. (2015), we show that the microfoundations
underlying peer effect regressions are generally not identified, even under strong restrictions. An
important implication is that contrary to widespread belief, the endogenous peer effect may not give
rise to a social multiplier (Boucher and Fortin, 2016).

In Section 3, we focus on the central problem of correlated effects. Assume now that the net-
work may be endogenous and that, more generally, correlated unobserved characteristics may affect
outcomes. How can researchers account for correlated effects and causally identify peer effects
when agents interact through networks? Researchers have employed diverse strategies to address
this problem. We classify them in four broad categories: random peers, random shocks, structural

2Our survey complements other recent surveys on networks such as Fafchamps (2015), Boucher and Fortin (2016),
de Paula (2017), and Advani and Malde (2018).
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endogeneity and panel data. We clarify, first, the identification possibilities opened up by random
assignment of peers. We show that endogenous peer effects are identified under network interactions
through a variant of the peers of peers’ idea. By contrast, we emphasize that with random peers the
impact of peers’ characteristics may not be identified because of a classical problem of omitted vari-
ables. Second, we consider a randomized treatment affecting outcome. We show that contextual and
endogenous peer effects are identified with a randomized treatment in a linear-in-means framework
even when the network is endogenous, if the network is not affected by the treatment. We discuss an
emerging literature on randomized treatments and spillovers which relaxes parametric assumptions.
Third, we review an active literature proposing structural frameworks to address correlated effects.
A main idea here is to account for network endogeneity by explicitly modelling network formation
and its connection to the peer effect regression. This literature has strong ties with the fast-growing
econometric literature on network formation. Fourth, we discuss how panel data can help account
for correlated effects. We observe that the analysis of peer effects in networks in a panel context is
underdeveloped, both empirically and methodologically.

In Section 4, we review an emerging literature relaxing the assumption that the network of in-
teractions is perfectly known. Imperfect knowledge of the network may arise because of sampling,
measurement error and general uncertainty on the relevant peers. This literature is small but fast-
growing and the first results are encouraging. Peer effects can, in principle, be identified even with
very limited knowledge on the network. Much more research is needed, however, to better under-
stand the implications of such imperfect knowledge. Section 5 briefly concludes.

2 Identification of peer effects through networks

Bramoullé, Djebbari and Fortin, 2009. A researcher has data on n agents, their characteristics x,
their outcomes y and a binary directed network connecting the agents. Let Ni denote the set of agents
who affect i, of size di = |Ni|. Denote by G the following interaction matrix: gi j = 1/di if j ∈ Ni

and 0 otherwise. We assume that characteristics, outcomes and the network (x, y, G) have been
generated by a stochastic process.3 In a linear-in-means model of peer effects, an agent’s outcome
depends on her own characteristics, her peers’ characteristics and her peers’ outcomes as follows.

3In a number of papers (e.g. Lee, Liu, and Lin, 2010), G is fixed (non-stochastic). One limitation of this assumption
is that links between individuals are not allowed to be affected by a (policy) shock in x, such as in Comola and Prina
(2019).
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Consider a unique characteristic and assume that no individual is isolated: ∀i, di > 0.

yi = α+ γxi + δ
1
di

∑
j∈Ni

x j + β
1
di

∑
j∈Ni

y j + εi (1)

under the assumption E(εi|x, G) = 0. With 1 characteristic, there are 4 parameters to estimate:
the intercept α, individual effect γ, contextual peer effect δ and endogenous peer effect β. With k

characteristics, there are 2k + 2 parameters to estimate.
The strict exogeneity assumption E(εi|x, G) = 0 means that characteristics x and the network G

are both exogenous relative to outcome y. In other words, the problem of correlated effects has been
solved. We discuss below the various strategies used in the literature to address this central problem.
We will show that this assumption can be relaxed. In particular, exogeneity of either some charac-
teristic (random shocks) or of the network (random peers) can be sufficient to identify endogenous
peer effects.

In some contexts, agents are partitioned in communities, such as classrooms or villages, with
no connection between agents in different communities. The overall network is then partitioned in
disconnected subnetworks and agents’ outcomes may be affected by community fixed effects:

yi = αC + γxi + δ
1
di

∑
j∈Ni

x j + β
1
di

∑
j∈Ni

y j + εi (2)

for agent i in community C, under the assumption that E(εi|α, x, G) = 0, where α is the vector of
community fixed effects αC .

Model (1) can be written in matrix notations:

y = α1 + γx + δGx + βGy + ε

When the matrix I− βG is invertible and no individual is isolated, this system of simultaneous linear
equations is equivalent to the reduced-form equation expressing outcomes as function of structural
parameters, the interaction matrix, and characteristics:

y =
α

1 − β
1 + (I − βG)−1(γI + δG)x + (I − βG)−1ε

In particular, E(y|x, G) is an affine function of x. Model (1) is identified conditional on network G
if the function (α, β, γ, δ) → ( α

1−β1,(I − βG)−1(γI + δG)) is injective. In that case, the structural
parameters (α, β, γ, δ) can be uniquely recovered from the reduced-form relation between E(y|x, G)
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and x. We characterized the relevant identification conditions in our previous work.

Theorem 1 (Bramoullé, Djebbari, and Fortin, 2009). Consider network G without isolated indi-

viduals and suppose that δ+ γβ , 0. Model (1) is identified if and only if I, G and G2 are linearly

independent. Model (2) is identified if I, G, G2 and G3 are linearly independent.

To see where these conditions come from, consider |β| small enough and develop the matrix
inverse as an infinite series: (I − βG)−1 = I + βG+β2G2+.... In model (1) when no individual is
isolated, we can express expected peers’ outcomes as follows:

E(Gy|x) =
α

1 − β
1 + γGx + (δ+ γβ)(G2 + βG3 + ...)x

When δ+ γβ , 0, peers’ outcomes are affected by their characteristics γGx, their peers’ character-
istics (δ+ γβ)G2x, their peers’ peers characteristics (δ+ γβ)βG3x, and so on. Identification holds
under intransitivity, when some peers of peers of an agent are not her peers. The variable G2x can
then be used as an instrument for Gy in the estimation of Model (1). Other valid instruments can be
built, some of which may be more robust to misspecification. These include the average character-
istics of peers’ peers who are not peers, other moments of these characteristics such as the sum or
the variance, and the average characteristics of agents at distance 3 or higher in the network. Models
(1) and (2) can also be estimated by maximum likelihood, under additional assumptions on the error
terms, e.g. Lee, Liu, and Lin (2010).

Broader validity of the identification strategy. The main insight behind Theorem 1 is that, con-
ditional on having addressed the problem of correlated effects, the characteristics of peers of peers
who are not peers affect an individual’s outcome only through their effect on peers’ outcomes. This
insight applies quite generally in network contexts. Let xNi = (x j) j∈Ni denote the vector of peers’
characteristics, and similarly for yNi . This identification strategy operates in any model of the form

yi = ϕ(yNi , xi, xNi ,β) + ψ(xi, xNi ,γ) + εi (3)

where an agent’s outcome is affected by her peers’ outcomes in a way which could be non-linear,
involve other moments than the average, and depend on her own and her peers’ characteristics.4

4Under non-linearity, equations (3) define a fixed-point system in outcomes y which may have multiple or no solu-
tions, yielding an incomplete econometric model. The researcher must first address this issue, for instance by specifying
a selection mechanism, before analyzing identification and estimating the model (see de Paula, 2013)
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The critical assumption is that an agent’s outcome can only be affected a priori by the outcomes
and characteristics of her peers. Since the characteristics of agents located at distance 2 or more in
the network do not appear on the right-hand side of equation (3), they can be used to build valid
instruments for peers’ outcomes.

In the literature, researchers have considered many extensions of model (1) and (2) and have
generalized the identification results of Bramoullé, Djebbari, and Fortin (2009), maintaining the
assumption that the problem of correlated effects has been solved. In particular, the interaction
matrix may not be row-normalized, peer effects could be heterogeneous, outcomes could be discrete,
and there could be multiple outcomes. First, the matrix of interactions may not be row-normalized.

This notably happens in the presence of isolated individuals and in a linear-in-sums formulation
where individual outcome is affected by the sum of her peers’ characteristics and outcomes.5 An
implication of relaxing row-normalization is that intercepts in the reduced-form equations now vary
across individuals depending on their positions in the network. The vector of intercepts is equal
to α(I − βG)−11 = α(1 + βb), where b is the vector of Katz-Bonacich centralities (see Bonacich,
1987; Calvó-Armengol, Patacchini, and Zenou, 2009). These variations can then be exploited for
identification and estimation (see Liu and Lee, 2010).6

For instance, in a linear-in-means model with undirected links and isolated individuals, the inter-
cept is α for isolated individuals and α/(1 − β) for non-isolated individuals. The endogenous peer
effect can then, in principle, be identified by contrasting intercepts in the reduced-form regressions
of isolated and non-isolated agents. This identification strategy may raise concerns in practice, how-
ever. Apparently isolated individuals may, in fact, be socially connected if the network is measured
with error (see Section 4). And truly isolated individuals may differ in systematic ways, generating
another source of intercept differences. The treatment of apparently isolated individuals in empirical
studies generally requires empirical care, given their quantitative importance in many datasets. For
instance, apparently isolated individuals represent 23% of the Add Health data set used in Dieye and
Fortin (2017).

Second, peer effects may be heterogeneous. For instance, Beugnot et al. (2019) consider a vari-
ant of model (1) where men and women are subject to different peer effects. Individuals could also
be subject to different effects from male peers and from female peers, potentially leading to four
kinds of endogenous peer effects (see Arduini, Patacchini, and Rainone, 2019a,b; Bramoullé, 2013).
Masten (2018) incorporates heterogeneity in peer effect analysis by assuming that endogenous peer

5Individual i is isolated if gi j = 0 for any j. In a linear-in-sums formulation, the interaction matrix G is the adjacency
matrix of the network: gi j = 1 if j ∈ Ni and 0 otherwise.

6Individual outcome could also depend on both the mean and the sum of peers’ outcomes, see Liu, Patacchini, and
Zenou (2014).
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effect coefficients are random in a linear-in-means model. He notably shows that the marginal distri-
butions of these random endogenous peer effects can be point-identified if there is no contextual peer
effect with respect to an exogenous characteristic. Can the network-based identification strategy be
adapted to a random coefficient framework? Whether Masten (2018)’s results extend to a network
model with both endogenous and contextual peer effects is, at this stage, an open question.

Third, outcome could be discrete. Smoking, for instance, is often analyzed as a binary outcome.
Discreteness deeply affects the econometric analysis (see Kline and Tamer, 2019). Models of en-
dogenous peer effects with discrete outcomes generally display non-linearities and multiple equilibra
under group interactions (see Brock and Durlauf, 2001). While non-linearities help identification,
multiplicity complicates the analysis. Lee, Li, and Lin (2014) extend Brock and Durlauf (2001)’s
framework and analysis to networks.7 They consider a network game of incomplete information
and show that the model has a unique equilibrium if the endogenous peer effects parameter is small
enough in magnitude. They apply their framework to analyze peer effects in smoking on Add Health
data. They find evidence that both contextual and endogenous peer effects matter. Identification in
their analysis exploits both non-linearities and the network structure.

Fourth, multiple outcomes may be affected by peer effects. For instance, friends of a high school
student may influence both his alcohol and tobacco consumption. Moreover, alcohol and tobacco
may be complements in the student’s preferences (Tauchmann et al., 2013) and peer effects may
also involve cross effects. An individual could be more likely to smoke when her friends con-
sume more alcohol. Cohen-Cole, Liu, and Zenou (2018) develop a linear-in-means model of peer
effects with two outcomes. One outcome depends on community fixed effects, on the other out-
come ("self-simultaneity"), on the average of this outcome among peers ("within-activity endoge-
nous peer effect"), on the average of the other outcome among peers ("cross-activity endogenous
peer effect") and on individual and contextual peer effects. Authors extend the identification analy-
sis of Bramoullé, Djebbari, and Fortin (2009) to their setting. They show that the model is generally
not identified because of self-simultaneity. Identification holds, however, with classical exclusion
restrictions and if the matrices I, G, G2, G3 and G4 are linearly independent.

Groups and size effects. Suppose that agents interact in groups and that mean peer characteristics
and outcomes are computed over every agent in the group. This formulation is equivalent to the
linear-in-expectations model considered in Manski (1993), when analyzing identification without
further assumptions on the error terms. Under such inclusive averaging, G2 = G and model (1) is
not identified. The researcher can recover the reduced-form impact of average peer characteristics
on individual outcome, but cannot disentangle endogenous and contextual peer effects. This is the

7See Li and Zhao (2016) for an alternative approach based on partial identification.
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essence of the reflection problem discussed in Manski (1993). And this reduced-form impact is, of
course, not identified in the presence of group fixed effects, undistinguishable from common shifters.

Surprisingly, however, identification under group interactions critically relies on the way the
average is computed. Assume instead, as usually done in empirical studies, that mean peer charac-
teristics are computed over everyone else in the group. Under exclusive averaging, models (1) and
(2) are identified if there is sufficient variation in group sizes. This result was first discovered by
Lee (2007) and the corresponding model was first estimated on data by Boucher et al. (2014), see
also Davezies, d’Haultfoeuille, and Fougère (2009). This result appears, at first sight, to be quite
extraordinary. How could peer effects be identified at all, let alone in their contextual and endoge-
nous components, when agents interact with everyone in their group and outcomes can be affected
by common correlated shocks? Unlike with a network structure, identification is not immediately
transparent here and this might explain a relative lack of exploration of this identification strategy in
recent studies.

As it turns out, identification in that case exploits effects of group size induced by the linear-in-
means formulation. Under exclusive averaging, higher ability agents have lower ability peers and
vice versa. This mechanical negative correlation tends to reduce the dispersion in outcomes under
positive peer effects, and this reduction is larger in smaller groups.8 Formally if agent i belongs to
group C of size nC , model (2) reduces to:

yi − ȳC =
γ − δ

nC−1

1 + β
nC−1

(xi − x̄C) + νi

where ȳC = 1
nC

∑
j∈C y j and similarly for x̄C . A critical identifying assumption is then that the

structural parameters β, γ and δ do not depend on group size.9 Empirical applications of this model
then fall, in fact, within the broader study of size effects (e.g. Angrist and Lavy, 1999; Hoxby, 2000;
Krueger, 2003).10 Note that model (2) is a particular case of the following model:

yi = αC + γ(nC)xi + νi

where αC is a group fixed effect and the impact of characteristic x on outcome y, γ(nC), can depend
in an arbitrary way on group size nC . The function γ(·) can be estimated non-parametrically if the

8A similar mechanical correlation underlies the exclusion bias analyzed by Caeyers and Fafchamps (2019).
9Identification of course tends to be weak when groups have large sizes although group size variation helps (see Lee,

2007; Boucher et al., 2014).
10In Graham (2008)’s conditional variance restrictions model (see our discussion below), an important identifying

assumption is also that the structural parameters are not affected by group size.
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researcher has enough observations of groups of every size. Linear-in-means peer effects provide
a key candidate explanation for the presence of size effects in characteristics’ impacts, and induce
testable restrictions on the function γ(·). If they are the only source of size effects, γ(·) is monotone
in nC and its shape depends on contextual and endogenous peer effects. When β = 0, γ(·) is linear in
1/(nC − 1) with slope −δ. By contrast, γ(·) is strictly concave or strictly convex in 1/(nC − 1) when
β , 0 and its curvature is more pronounced when endogenous peer effects are larger in magnitude.

Identification based on assumptions on the error terms. The benchmark model (1) does not
impose any restriction on conditional covariances between the error terms, and more generally, on
their distributions. Introducing such restrictions of course helps identification.11 In particular since
ν = (I − βG)−1ε, the endogenous peer effect β can potentially be identified from features of ν
induced by assumptions on ε. For instance when agents interact in pairs, Moffitt (2001) shows
that model (1) is identified if the error terms are uncorrelated, E(εiε j|x, G) = 0,∀i , j. Liu
(2017) extends this idea. He assumes that agents interact in groups of the same size and that errors
are uncorrelated. He shows that model (1) is identified and can be consistently estimated using a
root estimator (see Ord, 1975). The assumption of uncorrelated errors is strong and is more likely
to be satisfied in experimental contexts, when individuals are randomly assigned to groups by the
experimentalist, e.g. Fortin, Lacroix, and Villeval (2007). As pointed out by Moffitt (2001), however,
the error terms are likely to be correlated in most applications, due for instance to endogenous group
formation.

Graham (2008) shows that peer effects can be identified from conditional covariance restrictions,
even in the absence of exogenous variations in observed characteristics among agents. He considers
a linear-in-means model of peer effects in a group context including contextual peer effects relative
to the error term, but no endogenous peer effect, and random effects at the group level, under a
number of assumptions. His setup notably applies to education contexts under double randomization
of students and teachers to classrooms. He shows that the magnitude of the peer effect can be
identified by contrasting outcome variance between and within groups across groups of different
sizes. Rose (2017) extends Graham (2008)’s ideas to network interactions. He considers a model
with contextual and endogenous peer effects and unrestricted group fixed effects, but no impact of
observables. Extending the arguments in Bramoullé, Djebbari, and Fortin (2009), he shows how
the structure of the network can be used to identify contextual and endogenous peer effects. A key
argument is that outcome covariance between peers of peers who are not directly connected only
depends on the endogenous peer effect, once unobserved group heterogeneity is accounted for.

11There exists an important literature on identification in simultaneous equation models with covariance restrictions
(e.g. Hausman, Newey, and Taylor, 1987).
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Knife-edge identification failure. In an influential overview of the literature, Angrist (2014) presents
sharp criticisms of various econometric approaches and empirical studies of peer effects. In Section
6, in particular, he criticizes the approach developed in Bramoullé, Djebbari, and Fortin (2009).
He builds a specific case of model (1) where apparent peer effects “reflect tautological relation-
ships and quotidian correlation in unobservables, in a world otherwise characterized by social in-
difference”(Angrist, 2014, p. 10). We show next that his example simply illustrates a well-known
situation of identification failure.

To see why, reproduce equation (30) in Angrist (2014) using our notations:

yi = α+ βyi−1 + γxi − γβxi−1 + εi

This is, indeed, a particular case of model (1). Note, however, that Angrist imposes δ+ γβ = 0,
which violates the identification condition spelled out in Proposition 1 in Bramoullé, Djebbari, and
Fortin (2009). More generally when δ+ γβ = 0, model (1) is equivalent to:

yi =
α

1 − β
+ γxi + νi

In this knife-edge situation, contextual and endogenous peer effects exactly cancel out and models
with or without peer effects are observationally equivalent for any network without isolated agents.
In other words, Angrist (2014)’s example simply confirms that the condition δ+ γβ , 0 is necessary
for identification. This identification failure is non-generic and disappears under sign restrictions,
in the presence of isolated individuals or under restrictions on the error terms. It cannot happen, for
instance, when γ and δ have the same sign, β > 0 and γ , 0. In our view, the arguments developed
by Angrist (2014) thus do not invalidate the use of the network structure to help identify peer effects.

By contrast, Angrist (2014) highlights some important issues in other Sections. He emphasizes,
in particular, that measurement error on observed characteristics can artificially inflate peer effect
estimates (see his Table 3 and Moffitt (2001) p.23-24 for an early discussion). To see why, note
that averaging in general reduces noise. Average peer characteristics are then better measured than
individual characteristics. When true characteristics are correlated across peers, average peer char-
acteristics can act as a proxy for the true individual characteristic. Apparent estimates of peer effects
may then simply be picking up part of the individual effect. This expansion bias operates in an op-
posite way to the standard attenuation bias and may well be a first-order empirical problem in many
contexts. The literature is still missing a comprehensive analysis of measurement error on observed
characteristics and outcomes in regressions of peer effects in networks based on models (1) and (2).

Mechanisms and microfoundations. A well-identified estimation of peer effects only constitutes
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a first step in the analysis of social interactions. Peer effects can have different causes including
complementarities, conformism, social status, social learning and informal risk sharing. Any of
these motives could, potentially, generate the kind of peer effects considered in models (1) and (2).
The distinction between contextual and endogenous peer effects, while informative, is generally
too coarse to identify precise causes. Different mechanisms have different welfare implications and
could further interact in complex ways. Making progress on this issue is an important next step for
researchers. Identifying the precise causes behind peer effects will require econometric, experimen-
tal and empirical creativity.

Relatedly, researchers have proposed various microfoundations of linear models of peer effects.
A natural idea here, at least when outcomes represent actual choices, is to interpret the econo-
metric equation describing individual outcome yi as a function of others’ outcomes y−i as the best
response of a non-cooperative game. This connects the estimation of peer effects to the econometrics
of games. A fundamental problem with this approach, however, is that different preferences are gen-
erally compatible with a given best response. This is a main reason why the literature on revealed
preferences in strategic contexts is much less developed than in the usual consumer framework.

The problem of preference non-identification holds even when making strong restrictions, for
instance when focusing on quadratic utility functions, see Blume et al. (2015). To illustrate, denote
by x̄i = 1

di

∑
j∈Ni x j, and similarly for ȳi, and by αi = α + γxi + δx̄i + εi the part of the right-

hand side of model (1) which does not depend on peers’ outcomes. Then model (1) describes the
best response of a game with quadratic utilities if and only if there exists real numbers Ai > 0 and
quadratic functions vi : Rn−1 → R such that

ui(yi, y−i) = Ai(αiyi −
1
2

y2
i + βȳiyi) + vi(y−i) (4)

An empirical researcher exploiting data on best responses cannot recover the functions vi(·). While
these functions have no effect on individual actions, they critically affect the externality patterns and
the welfare properties of these games.

Underlying preferences also affect counterfactual reasoning. This concerns, in particular, the
existence of a social multiplier. Applied researchers estimating variants of models (1) and (2) often
claim that endogenous peer effects give rise to a social multiplier. This widespread belief turns
out to be incorrect, as shown by Boucher and Fortin (2016). Standard reasoning runs as follows.
Suppose that, before peer effects operate, individuals are subject to a shock which changes outcomes
by amount ∆. This initial shock is then transformed through endogenous peer effects, yielding an
outcome change of ∆/(1 − β) for any network without isolated agents. This reasoning is indeed
valid, for instance, for utilities with complementarities ui(yi, y−i) = αiyi −

1
2y2

i + βȳiyi.
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This reasoning may not apply, however, for other utility functions compatible with the same
econometric model. The problem lies in the implicit assumption that the initial shock directly affects
the intercept of the econometric equation. To see why, consider utilities for conformity ui(yi, y−i) =

α′iyi −
1
2y2

i −
1
2λ(yi − ȳi)2 where α′i depends on individual and peers’ characteristics and λ captures

preference for conformity. The corresponding econometric equation is now:

yi =
α′i

1 + λ
+

λ

1 + λ
ȳi

which is a version of model (1) with αi = α′i/(1 + λ) and β = λ/(1 + λ).12 The initial shock
increases α′i by amount ∆, leading to an increase in the intercept of model (1) by amount ∆/(1+ λ).
Once endogenous peer effects operate, this becomes ∆ again. Thus, common shocks on individuals
are passed on outcomes and generate no multiplier. This is due to the conformity motive: if all
actions change by a common amount, |yi − ȳi| is unaffected. Since agents care about the absolute
value of the difference between their action and their peers’ average action, common shocks do not
generate indirect effects. Under conformity preferences, endogenous peers effects do not give rise
to a social multiplier.

This example teaches us some important lessons. Applied researchers should generally refrain
from making counterfactual predictions based on specifications like models (1) and (2). Counterfac-
tual predictions require a precise, structural understanding of the causes behind peer effects. This
concerns many issues ranging from social multiplier computations to optimal classroom composi-
tion. Indeed, this is likely a main reason behind the failure of the social engineering experiment
implemented in Carrell, Sacerdote, and West (2013).

3 Correlated effects and networks

Researchers who wish to provide credible causal estimates of peer effects and to exploit the identifi-
cation possibilities generated by interaction networks must address, somehow, the problem of corre-
lated effects. Individual unobserved characteristics may be correlated with peers’ characteristics and
the interaction matrix, because of common shocks or network endogeneity (e.g. an individual and
her peers tend to have similar preferences). In the literature, researchers have developed at least four
broad strategies to address this critical issue: random peers, random shocks, structural endogeneity
and panel data. We discuss each of these identification strategies in turn and how they can be com-

12The utility for conformity is thus a case of quadratic utility (4) leading to the same best responses, with Ai = 1 + λ
and vi(y−i) = −

1
2λȳ2

i .

12



bined with the identification of contextual and endogenous peer effects via the network structure.
We review relevant applied and econometric studies.

3.1 Random peers

Natural and artificial experiments. To estimate causal impacts of peers, researchers have been
studying contexts where peers are randomly allocated, through natural or artificial experiments.
Many studies consider random peers with a group structure. Sacerdote (2001) looks at roommates
in pairs, triples or quads and dormmates among students entering Dartmouth College. Carrell, Sac-
erdote, and West (2013) consider squadrons of freshmen at the Air Force academy. Falk and Ichino
(2006) randomly match workers in pairs in the lab. Note that researchers have generally not tried to
identify contextual and endogenous peer effects from data on random groups of peers. Instead, they
focus on one or the other effect.

More recently, researchers have analyzed network data where peers are formed at random.
De Giorgi, Pellizzari, and Redaelli (2010) look at the choice of major among Bocconi undergradu-
ates. Students initially attend lectures in randomly assigned classes, for nine compulsory courses.
This allows researchers to build interaction matrices from common class assignments. In their pre-
ferred specification, they assume that two students are peers if they attended at least four of the seven
common compulsory courses in the same classes. In this context, the network of interactions itself
is random. In other contexts, the network is predetermined and individuals are randomly positioned
in it, see Beugnot et al. (2019) in the lab and Mas and Moretti (2009) in the field.

Random peers and omitted variables. With random peers, what can be causally identified, pre-
cisely? We believe that the literature has been, overall, quite unclear on this central question. Start
with a simple case: assume that individuals interact in random pairs. A researcher has data on past
smoking behavior and is interested in assessing the impact of peer smoking on grades. Contrasting
grades of individuals paired, by chance, with a smoker to grades of individuals paired with a non-
smoker allows the researcher to identify the causal impact of being paired with a smoker relative
to a non-smoker on grades. This causal statement lies at the heart of the interpretation of results in
most studies based on random peer groups.

We should be careful about interpretation, however. The researcher here does not estimate the
causal impact of peers’ smoking behavior. This is due to omitted variables: even if being paired, by
chance, with a smoker leads to a drop in grades, this may have nothing to do with peer smoking. Per-
haps smokers, on average, have lower ability or drink more and peers’ ability or drinking behavior is
what really drives peer effects. Random allocation of peers does not solve this problem. To estimate
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the causal impact of peer smoking on grade, an exogenous shock on peer smoking is needed. In our
view, this important issue limits the relevance of random peers to identify and estimate contextual
peer effects.

More generally, potential problems of omitted variables pervade empirical research based on
random matching between agents. To illustrate, consider an interesting and important analysis by
Breza and Chandrasekhar (2019). The authors conduct an experiment to study whether individuals
in rural Indian villages save more when information about the progress toward their self-set savings
goal is shared with another village member, a monitor. In some treatments, the monitor is randomly
assigned and authors find that savings increase when the monitor has a more central position in the
village’s social network. Authors make use of innovative high-dimensional econometric techniques
to verify that this apparent impact of monitor’s centrality is not caused by correlated observables. It
could, however, potentially be caused by correlated unobservables. Even with random peers, then,

researchers who wish to identify causal impacts of peers’ characteristics face a classical problem

of omitted variables. Absent other sources of exogenous variation, they must address this problem
in classical ways: they must ascertain likely confounders, depending on the context, and control for
relevant variables and proxies.

Identification with random network peers. By contrast, we now show that under network inter-
actions, random peers allow researchers to identify endogenous peer effects. The key property is
that with random peers an agent’s observed and unobserved characteristics are uncorrelated with her
peers’ observed and unobserved characteristics. To illustrate, consider, again, the relation between
smoking, peers and academic achievement. Suppose that any two students are linked with the same
probability. The proportion of smokers among peers of peers who are not peers is uncorrelated with
individual observed and unobserved characteristics. This proportion thus affects individual achieve-
ment only through its effect on peers’ outcomes and hence provides a valid instrument for peers’
outcomes in the main regression. By contrast, as with groups, estimates of contextual peer effects
may not capture the causal impact of the proportion of smoking peers x̄i. Rather, they capture the
causal impact of being connected, by chance, to peers with average smoking rate x̄i and this impact
may have nothing to do with smoking because of omitted variables.

Formally, consider the following variant of model (1)

yi = α+ γxxi + γuui + δx x̄i + δuūi + βȳi + εi (5)

where E(εi|x, u, G) = 0 and ui is unobserved and potentially correlated with xi, ui = a + bxi + ηi

with E(ηi|xi) = 0. Denote by ¯̄xi the average value of x among peers of peers of i who are not
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peers of i. With random peers, observed characteristics of agents two-step away in the network are
uncorrelated with unobserved characteristics of the individual and her peers:

cov( ¯̄xi, ui) = cov( ¯̄xi, ūi) = 0

This implies that ¯̄xi provides a valid instrument for ȳi in model (5), and endogenous peer ef-
fects are identified. To see what happens for contextual peer effects, rewrite model (5) in terms of
observables. With random peers, E(ηi|xi, x̄i) = 0 and ūi = a + bx̄i + η̄i. This yields:

yi = α+ (γx + γu)a + (γx + γub)xi + (δx + δub)x̄i + βȳi + νi

with E(νi|xi, x̄i) = 0. We recognize the classical formula for omitted variables. The apparent

contextual peer effect δx + δub aggregates the causal impact of peers’ observed characteristics δx and
the causal impact of peers’ unobserved characteristics δu times the conditional correlation between
the unobserved and the observed characteristics b. In particular, δx + δub , 0 implies that δx , 0 or
δu , 0. Detecting apparent contextual peer effects indicates that some average peer characteristics,
observed or unobserved, have a causal impact on individual outcomes.

These conclusions also hold under group interactions. With random peer groups and if model (5)
is the correct model, researchers can empirically recover apparent contextual peer effects δx + δub

and endogenous peer effects β from group size variation. Identification then relies on size effects
in the reduced-form impact of individual and average group characteristics, as discussed in Section
2. To our knowledge, no study has tried to estimate models (1) or (2) on data with random peer
groups. It would be interesting to reanalyze the data from key studies on random peer groups to
estimate variants of models (1) and (2). This would help advance our understanding of the validity,
performance and robustness of the identification strategy based on group size variation.

Observational data. In the literature, many studies of peer effects based on observational data
rely on quasi-random peers to address the problem of correlated effects. In the best cases, peer as-
signment is as good as random conditional on observables and our previous arguments apply. The
endogenous peer effect is identified under network interactions and estimates of contextual peer ef-
fects may not capture the causal impact of peer characteristics. For instance, a standard identification
strategy in an education context and under group interactions is to exploit quasi-random variations
in observable characteristics across cohorts within a school (see Hoxby, 2000). The identifying as-
sumption here is that, conditional on school fixed effects, variations in cohort characteristics such
as the share of female students are as good as random. And indeed, many studies analyzing gen-
der effects in education rely on this identification strategy, (e.g. Feld and Zolitz, 2017; Hoekstra,
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Mouganie, and Wang, 2018; Cools, Fernández, and Patacchini, 2019). Because of omitted vari-
ables, however, estimates of the impact of the share of female peers on individual outcomes may not
capture the causal impact of peers’ gender.

Studies of peer effects in networks which do not rely on some explicit exogenous shock (see the
next Section) also address the problem of correlated effects, implicitly or explicitly, by assuming that
the network is as good as random conditional on the observables. This notably concerns most papers
analyzing peer effects in networks using datasets from the National Longitudinal Study of Adoles-
cent to Adult Health (Add Health) (e.g. Trogdon, Nonnemaker, and Pais, 2008; Calvó-Armengol,
Patacchini, and Zenou, 2009; Liu, Patacchini, and Rainone, 2017). Are self-reported friendships in
Add Health conditionally quasi-random? Given the importance of this dataset in the analysis of peer
effects, we believe that this question deserves a separate, focused investigation.

3.2 Random shocks

When peers are not random, researchers have been trying to identify peer effects using other sources
of exogenous variations. This connects the analysis of peer effects to the large literature on ran-
domized interventions. In this Section, we first discuss how researchers can combine a randomized
treatment with the network structure to identify contextual and endogenous peer effects in a linear-
in-means framework. Identification holds even with endogenous peers as long as the network is not
affected by the treatment. The linear-in-means model imposes strong restrictions, however. We then
discuss another strand of the literature, closer to the statistical tradition prevalent in the analysis of
treatment effects, which tries to avoid parametric restrictions. Researchers in that literature analyze
what can be learned on spillovers from randomized treatments and how this depends on assumptions
made on the structure of these spillovers.

Random shocks and linear-in-means peer effects. As shown by Dieye, Djebbari, and Barrera-
Osorio (2017), treatment randomization allows researchers to address the problem of correlated
effects and, within a linear-in-means framework, to identify the causal impacts of the treatment
and of peers’ treatments and peers’ outcomes even when the network is endogenous. To see why,
consider a variant of model (5) with unobserved characteristics and under the assumption that there
is no isolated individual. Assume that each individual is treated with probability q, that individual
treatments are independent and that the network of interactions is not affected by the treatment. Let
ti = 1 if i is treated and ti = 0 otherwise.

yi = α+ γtti + γuui + δt t̄i + δuūi + βȳi + ei
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with E(ei|t, u, G) = 0. The network may be endogenous: E(ui|G) , 0. Here t̄i represents the share
of treated peers. Incorporate individual and peers’ unobserved characteristics in the error term,
εi = γuui + δuūi + ei:

yi = α+ γtti + δt t̄i + βȳi + εi

Randomization implies that cov(ti, u j) = 0 for every pair i, j. Because the interaction matrix is
row-normalized, applying the law of iterated expectations leads to13

cov(ti, ui) = cov(t̄i, ui) = cov(ti, ūi) = cov(t̄i, ūi) = 0

which means that individual treatment and the share of treated peers are uncorrelated with the error
term: cov(ti, εi) = cov(t̄i, εi) = 0.14 More generally, for any power k of the interaction matrix,
cov((Gkt)i, εi) = 0. In particular, the weighted share of treated peers of peers, (G2t)i is uncor-
related with the error term and hence provides a valid instrument for peers’ outcomes. Therefore,
the three parameters γt, δt and β are causally identified with random shocks in a linear-in-means
framework and even when the network is endogenous.

This conclusion also holds in a model with individual and contextual peer effects from predeter-
mined observed characteristics. These effects can be included in regressions although their estimates
do not generally have a causal interpretation. In addition, predetermined characteristics of peers of
peers who are not peers may not provide valid instruments for peers’ outcomes when the network
is endogenous. Therefore, only instruments built from the treatments of indirectly connected agents
should be included in instrumental regressions of peer effects exploiting the network structure.

Interestingly, the identification of peer effects may not hold when the network is endogenous
and the interaction matrix is not row-normalized. For instance, in a linear-in-sums model and if ui is
positively correlated with degree, then cov(ui,

∑
j gi jt j) > 0. Agents with more friends tend to have

more treated friends and the estimate of the impact of the number of treated friends on outcomes
is biased, even with a randomized treatment. This shows that the identification of peer effects with

randomized treatments depends on the specific model of peer effects considered. Peer effects may
be identified in one model (linear-in-means) but not in another (linear-in-sums).

Because of peer effects, the impact of the treatment cannot be estimated by the naive difference in
average outcomes between treated and untreated individuals. Dieye, Djebbari, and Barrera-Osorio

13For instance, note that E(ui t̄i) = E(
∑

j gi juit j) = EG(E(
∑

j gi juit j|G)) = EG(
∑

j gi jE(ui|G)E(t j)) =
qEG(E(ui|G)) = E(ui)E(t̄i) where the second equality comes from the law of iterated expectations, the third equality
from the fact that t y u, G, and the fourth equality from row-normalization.

14By contrast, we can have E(ui|t̄i) , 0 when unobserved characteristics are correlated with degree.

17



(2017) propose a measure of treatment effect, which can be decomposed into a direct effect and
indirect effects due to contextual peer effects and to changes in outcomes mediated by endogenous
peer effects. They also compute the difference in expected outcomes between treated and untreated
individuals as a function of the parameters of the model, see their Proposition 2. This provides a
testable prediction which can be used to validate the model, complementing overidentification tests.

Arduini, Patacchini, and Rainone (2019a) analyze the impact of a randomized treatment under
group interactions and in a linear-in-means framework with heterogeneous peer effects. An impor-
tant limitation of their framework, however, is that they assume that there is no contextual peer effect
associated with the treatment. An individual is thus not directly affected by her peers’ treatments
and this assumption greatly facilitates identification.

Comola and Prina (2019) analyze a situation where the network is also affected by the random-
ized intervention. They consider a linear-in-means model with two periods and two networks: before
and after the intervention. Outcome in the first period depends on individual fixed effects and aver-
age outcomes among old peers. Outcome in the second period depends on individual fixed effects,
individual treatment, the shares of treated agents among old and new peers and average outcomes
among old and new peers. The authors provide identification conditions, and associated instrumen-
tal variable strategies, extending those of Bramoullé, Djebbari, and Fortin (2009). They assume that
the networks before and after intervention are conditionally exogenous. This condition may fail to
hold, however, if some time-varying unobservable affects both network change and outcome. They
propose a measure of treatment impact, which can be decomposed into a direct effect and indirect
effects coming both from the treatment of baseline peers and from the change in the network. They
use their model to estimate the impact of an intervention in rural Nepal providing randomized access
to savings accounts. Their results suggest that neglecting network changes leads to underestimate
the impact of the intervention. This paper contributes to an emerging literature analyzing the impact
of interventions on social networks (see Banerjee et al., 2018).

Observational studies. In empirical studies of peer effects in networks based on observational data,
researchers have exploited naturally occurring shocks. In the best cases, these shocks are as good as
conditionally random and hence allow researchers to identify peer effects. De Giorgi, Frederiksen,
and Pistaferri (2019) study peer effects in consumption based on administrative panel data on house-
holds in Denmark. They build a measure of household consumption based on tax records and assets
and consider a network of coworkers. They assume that an individual is affected by people who
work in the same plant and have similar education and occupation. An important feature of their
framework is that consumption is shared among spouses and defined at the household level while
working relationships are individual based. They consider a linear-in-means model with two kinds
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of endogenous peer effects: log household consumption depends on household fixed effects, aver-
age log consumption of the husband’s coworkers, average log consumption of the wife’s coworkers,
and individual and contextual peer effects.15 To address endogeneity issues, they account for time-
invariant household characteristics and exploit firm-level shocks. In particular, they instrument the
first-difference of the average log consumption of the husband’s and the wife’s coworkers by firm-
specific variables of peers at distance 3: the coworkers of the spouses of the coworkers. Combining
professional and marital connections helps ensure that intransitivity indeed holds: individuals have
coworkers, these coworkers have spouses and these spouses interact with their own coworkers in
another workplace. This approach is valid if the firm-specific variables are indeed conditionally ex-
ogenous. The authors find evidence of positive endogenous peer effects in consumption and further
explore the mechanisms at work.

Nicoletti, Salvanes, and Tominey (2018) analyze peer effects on mothers’ working hours in the
year after childbirth based on administrative data from Norway. They consider a linear-in-means
model of peer effects with two kinds of peers: family peers (sisters and female cousins who gave
birth before the focal mother) and geographic neighbors (with similar education and who also gave
birth before the focal mother). In their main regression, they instrument the working hours of family
peers by the working hours of the neighbors of family peers controlling for the working hours of
neighbors. Past labor supply of family peers’ neighbors thus constitutes a kind of shock on family
peers’ labor supply. If this shock is conditionally exogenous, it can be used to identify the effect
of family peers’ working hours on mothers’ working hours. They find evidence of positive family
peer effects. They do not estimate a full-fledged extension of model (1), however, including both
endogenous and contextual peer effects for the two kinds of peers.

Randomized treatments and spillovers. Linear-in-means peer effects are a particular case of situ-
ations where individual outcome is affected by others’ treatments. Historically, such spillovers were
considered a nuisance in the literature on treatment effects. With spillovers, the causal impact of
a randomized treatment cannot be estimated by simply computing the difference between the aver-
age outcome among treated and among untreated individuals.16 In light of mounting evidence that
these spillovers are widespread and have a critical impact on the evaluation and design of public
policies, the literature on treatment effects recently changed its point of view (see Miguel and Kre-

15The model is a variant of model (8) introduced in Section 3.4 on panel data, with no contextual peer effects associ-
ated with time-invariant unobserved characteristics.

16A common assumption in the literature on treatment effects is the Stable Unit Treatment Value Assumption
(SUTVA), which rules out the possibility that potential outcomes may depend on the treatment of peers (see Rubin
(1978)). The early negative view of spillovers is reflected in the use of expressions like "interference" and "contamina-
tion of the control group" to denote such situations.
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mer, 2004; Kremer and Miguel, 2007; Crépon et al., 2013). Researchers are now trying to estimate
these spillovers and to better understand their determinants, their implications and the experimental
designs and assumptions under which they can be identified. In general, an individual’s potential
outcome may depend on the full vector of potential treatments and no parameter of interest is iden-

tified without further assumptions and restrictions (see Manski, 2013). One possible solution is to
assume that agents are organized in groups and that spillovers take place within but not between
groups, (e.g. Hudgens and Halloran, 2008; Vazquez-Bare, 2017). Spillovers may then be identified
by comparing outcomes of untreated individuals in treated versus untreated groups, (e.g. Duflo and
Saez, 2002; Angelucci and Giorgi, 2009).

This assumption generally does not hold, however, when agents interact through a network. In
an emerging and fast-growing literature, researchers analyze detection, identification and estimation
of treatment spillovers under network interactions (see Aronow and Samii, 2017; Athey, Eckles,
and Imbens, 2018; Manski, 2013). Given information on the network of interactions, they explore
the implications of various assumptions such as "no second and higher order effects" (treatment of
agents at network distance 2 or more has no impact) and "no peer effect heterogeneity" (the number
of treated peers may matter but not their identity). Athey, Eckles, and Imbens (2018) notably build
exact randomization tests for different hypothesis on the presence and structure of spillovers. How
these studies address problems of correlated effects and network endogeneity is quite unclear, how-
ever. As shown above, the identification of peer effects in networks with a randomized treatment
depends on the specific model of peer effects. When the network is endogenous, linear-in-means
peer effects are identified with a randomized treatment but linear-in-sums peer effects are not iden-
tified.

Overall, applied researchers interested in peer effects and spillovers face a variant of the usual
structural trade-off. Imposing structure on the data helps identification at the risk of misspecification.
With interacting agents, imposing some structure cannot be avoided (Manski, 2013). Much research
is needed to understand what can be learned on peer effects and spillovers under which assumption
and whether parametric models like the linear-in-means model and its extensions (see Section 2)
provide good representations of the data.

3.3 Structural endogeneity

In the absence of a clear source of exogenous variation, can a researcher still address the problem of
correlated effects and identify and estimate peer effects in networks? Researchers have developed a
number of structural frameworks to do this, and we now review this growing literature. As a pre-
liminary remark, we observe that these studies generally rely on a specific modelization of one kind
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of correlated effects. The proposed approach may be invalid, then, if the models are misspecified or
if other kinds of correlated effects matter. Relatedly, it would be interesting to cross-validate these
structural approaches with experimental data (see Griffith (2019b) for a first step in this direction).

At this stage, researchers have explored three approaches. In the first two, they combine a model
of peer effects in networks with a model of network formation. A primary objective is to account for
network endogeneity in the estimation of peer effects. Conversely, combining these two models may
allow researchers to address endogeneity issues affecting the estimation of network formation. In a
first approach, unobservable characteristics explicitly affect both individual outcomes and network
formation. In a second approach, network formation itself depends on outcomes. In a third approach,
omitted variables are introduced under some specific assumptions.

Network formation and common unobservables. Goldsmith-Pinkham and Imbens (2013) first
proposed a structural approach to address the problem of correlated effects. They consider the
following variant of model (5):

yi = α+ γxxi + γuui + δx x̄i + βȳi + εi (6)

with E(εi|x, u, G) = 0. They introduce an unobserved characteristic, ui, which may affect outcome
directly but does not generate contextual peer effects. This unobserved characteristic also affects
network formation, modelled through a dyadic process where undirected links are formed indepen-
dently. They consider a random utility framework under the assumptions that errors’ distribution is
logistic and that links are formed through mutual consent. This leads to a variant of the following
model.17 Denote by pi j the probability that i wants to form a link with j. Then, the link between i

and j is formed with probability pi j p ji with

ln(
pi j

1 − pi j
) = a0 − ax|xi − x j| − au|ui − u j| (7)

This formulation is designed to capture observed and unobserved homophily. Homophily is a key
property of social networks, referring to the fact that similar individuals are generally more likely to
be connected, (see McPherson, Smith-Lovin, and Cook, 2001). Homophily implies that the proba-
bility of link formation is higher when the distance between the characteristics of the two agents is
lower. Model (7) thus displays homophily of both kinds if ax > 0 and au > 0.

Authors then estimate a version of models (6) and (7) on Add Health data using Bayesian meth-

17Goldsmith-Pinkham and Imbens (2013) also exploit information on past connections and include a dummy for
whether i and j were connected in the previous period and another dummy for whether they had common friends. This
connects their analysis to the analysis of peer effects in networks in a panel context, see Section 3.4.
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ods. They analyze grade-point average and data from one school with 534 students. In their estima-
tion, they assume that the unobserved characteristic is binary, ui ∈ {0, 1}, with both values equally
likely. They find that accounting for this common unobserved characteristic appears to matters for
network estimation but not for peer effects. It has little impact, in particular, on the estimates of
contextual and endogenous peer effects.

While implementation can be improved in many ways,18 this approach provides a potentially
powerful way to control for network endogeneity in peer effect regressions, reminiscent of Heck-
man’s correction for sample selection. Modelling peer effects in networks and network formation
simultaneously may allow researchers to recover information on common unobservables. One gen-
eral limitation, of course, is that this may not help with unobservables which are not common.
Potential problems of omitted variables are thus reduced but not eliminated.

In addition, we observe that identification is not very transparent and would deserve to be better
understood (see Bramoullé, 2013). Identification here likely relies both on non-linearities present in
the dyadic regressions and on a functional exclusion restriction related to homophily: the absolute
value of differences in observed characteristics affect links but not outcomes. Relatedly, it is unclear
whether this model can generate a significant bias in peer effect regressions, and precisely how this
bias would be generated. A bias appears in peer effect regression if cov(x̄i, ui) , 0, and the relation
between this condition and equations (6) and (7) is not immediate. Ability to generate a bias is, of
course, a key precondition to account for such a bias empirically, and this would also need to be
further investigated.

Finally, Goldsmith-Pinkham and Imbens (2013) suggest that the exogeneity of the network is

testable (see Section 6.2). This a powerful and intuitive idea, relying on homophily. Friends who are
dissimilar in terms of observed characteristics must be, on average, similar in terms of unobserved
characteristic. Formally, let ηi be the residual of the peer effect regression, estimated without trying
to account for the unobserved characteristic. Then under network exogeneity, E(|ηi − η j|||xi − x j| =

x, gi j = 1) does not depend on x while under network endogeneity and homophily, E(|ηi − η j||xi −

x j| = x, gi j = 1) decreases with x. And similar properties hold for pairs of individuals who are
not connected.19 Network exogeneity can then potentially be tested without having to estimate the
combined models. Researchers have started to implement this test in applied setups (e.g. Boucher
and Fortin, 2016). Indeed, we believe that testing for network exogeneity could become standard
practice in applied studies of peer effects in networks. The literature is still missing, however, a

18For instance ui could take continuous values and could generate contextual effects, and xi and x j and ui and u j could
also enter additively in equation (7).

19Non-friends who are similar on observed characteristics must be dissimilar on unobserved characteristics, and hence
E(|ηi − η j|||xi − x j| = x, gi j = 0) also decreases with x under network endogeneity.

22



proper econometric analysis of this test and its statistical properties.
Researchers have extended Goldsmith-Pinkham and Imbens (2013)’s analysis in many ways. In

a study developed independently, Hsieh and Lee (2016) introduce multidimensional continuous un-
observed characteristics into similar combined models. They estimate their model through Bayesian
methods on an Add Health sample composed of 2020 students in 73 small school-grade groups.
They also analyze grade-point average and consider one, two and three unobserved characteristics.
They find, interestingly, that the estimate of the endogenous peer effect is unaffected when including
one unobservable, drops when including two unobservables and is then further unaffected by a third
one. This suggests that introducing multiple common unobservables may be necessary to account
for network endogeneity in peer effect regressions. Griffith (2019b) considers one continuous un-
observed characteristic. In a first stage, he develops a dyadic model of link formation, where links
are directed and weighted: the strength of the link is a non-negative real number. In his setup, unob-
served characteristics can be identified and estimated from the network formation model alone, as
in Graham (2017).20 In a second stage, he estimates a variant of model (5) without endogenous peer
effects including estimated unobserved characteristics from the first stage on the right hand side,
both directly and through contextual peer effects.

Recent extensions of this approach include Hsieh and van Kippersluis (2018), Hsieh, Lee, and
Boucher (2019), Auerbach (2019), Arduini, Patacchini, and Rainone (2015), Qu and Lee (2015),
and Johnsson and Moon (2019) who develop econometric frameworks based on control functions,
following ideas proposed by Blume et al. (2015). These studies are naturally connected to the litera-
ture on the econometrics of network formation (see Chandrasekhar, 2016; Graham, 2015; de Paula,
2017), and researchers are leveraging progress made in that literature, as in Graham (2017), to help
account for the endogeneity of the network in peer effect regression.

Network formation and outcomes. Two recent studies propose an alternative approach to analyze
peer effects in endogenous networks, by assuming that network formation is affected by outcomes
(see Boucher, 2016; Badev, 2018). Boucher (2016) considers a model of conformism where agents
simultaneously choose a continuous outcome yi ∈ R and which peer to connect to. Conditional
on the network, individual outcome depends on others’ outcomes through a best response equation,
which is a variant of model (1) without contextual peer effects. Using our notations, equation (2) in
Boucher (2016) becomes:

yi =
λdi

1 + λdi
ȳi +

1
1 + λdi

(γxi + εi)

20In Griffith (2019b)’s approach, the link gi j depends on ui, u j and the product uiu j rather than the absolute value of
the difference |ui − u j|. His model thus captures complementarities, rather than homophily, in unobserved characteristics.
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where λ is a structural parameter capturing preferences for conformity. This is a particular case of
an extension of model (1) where structural parameters may depend on degree, β = β(di), γ = γ(di).
When λ > 0, agents with a higher degree are subject to a higher endogenous peer effect β and to
a lower individual effect γ. Conditional on outcomes, links are formed through a variant of dyadic
model (7) accounting for homophily in outcomes. The probability that individual i wants to form
a link with j notably depends on observable characteristics and on −λ(yi − y j)2. In this model, the
parameter λ thus controls both endogenous peer effects conditional on the network and outcome
homophily in link formation. The author then derives theoretical implications of the model and
develops an econometric framework based on bounds. Identification exploits the fact that changes
in peers induce discontinuous changes in an individual’s behavior while changes in peer behavior,
holding peers fixed, induce continuous changes. He estimates his model on an Add Health sample of
30,241 individuals in the 100 smallest schools, analyzing participation in extracurricular activities.
He finds that accounting for the impact of outcomes on links has little effect on the estimation of
the conformism parameter, suggesting that this kind of network endogeneity matters little in this
context.

Badev (2018) develops a framework where individuals simultaneously choose a binary action
yi ∈ {0, 1} and peers. Conditional on the network, agent i’s relative utility from playing action yi = 1
depends linearly on i’s observable characteristics, on the total number of agents playing 1 in the
population, and on the difference between the number of friends playing 1 and the number of friends
playing 0. The second term captures a global endogenous peer effects while the third term capture
a network-based endogenous peer effect. Conditional on the actions, agent i’s utility to connect
with j depends on observable characteristics, on common neighbors and on action homophily. The
second term implies that the formation of the link i j depends on the presence or absence of links ik

and k j. Conditional on actions, links are then not independent and the network formation process
does not reduce to dyadic regressions. This model and approach are thus related to a literature
accounting for interdependencies in link formation (see Mele, 2017; Chandrasekhar and Jackson,
2018; Chandrasekhar, 2016). The third term captures homophily on outcomes: two agents who play
the same action have an extra incentive to connect. As in Boucher (2016), a common parameter
controls both peer effects conditional on the network and outcome homophily in network formation.

The author then develops an econometric framework based on the stationary distribution of a
myopic dynamic process subject to random preference shocks, related to the frameworks of Mele
(2017) and Nakajima (2007). He estimates his model on the "saturated" Add Health in-home sample
of 16 schools, analyzing smoking behavior. He also finds that accounting for network formation
has little impact on the estimates of the peer effect parameter. He finally performs counterfactual
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experiments and shows that the response of the friendship network to an increase in tobacco price
amplifies the intended decrease in smoking.

Structured omitted variables. In a recent analysis and building on Zacchia (2019), Pereda-Fernandez
and Zacchia (2019) proposes a different structural approach to address problems of correlated un-
observables. Rather than considering a model of network formation, they impose some specific
structure on the unobservables and on their correlations with observables in a variant of model (5).
In their baseline model, they assume no contextual peer effects, homoscedasticity on u and that
Exi = λ

∑
j hi ju j + ηi with E[ηiu j] = 0. They further assume that the econometrician knows the

structure of the correlation between observed and unobserved characteristics H but not the extent
of this correlation λ. They show that model (5) is identified under mild conditions on the interac-
tion network G and the correlation network H. For instance, if gi j = 0 and hi j , 0, the impact of
x j on yi conditioning on endogenous peer effects helps identify the correlation parameter λ. They
then extend their analysis and identification conditions to a more general framework.21 While the
assumption that the researcher knows the correlation structure seems strong, we believe that this
analysis provides an interesting exploration of a potentially important idea. In some contexts, the
structure of the network can also be used to address problems of correlated effects.

3.4 Panel Data

As is well-known, panel data open up identification possibilities (see Hanushek et al., 2003). The
introduction of individual fixed effects, in particular, allows researchers to control for agents’ time-
invariant unobserved characteristics and this should help with problems of correlated effects. The
literature on peer effects in networks with panel data is surprisingly scarce, however. We believe that
this scarcity is due both to problems of data availability and to methodological challenges emerg-
ing when extending models (1) and (2) to a panel context. In particular, the network itself may be
endogenously evolving, individual outcome may be affected by peers’ time-invariant unobserved
characteristics and lagged peer effects may matter. We expect network panel data to become in-
creasingly available, however, and econometricians and applied economists should therefore devote
more attention to analyze identification and estimation of panel models of peer effects in networks.

To illustrate, a natural extension of the linear-in-means model to a panel context can be written
as follows:

21They consider a linear-in-means model with endogenous peer effects and contextual peer effects from observable
characteristics, where unobservables characteristics follow a stationary Spatial Autoregressive Moving Average process
function of primitive shocks and where observed characteristics are linearly correlated with these primitive shocks.
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yi,t = ui + δu

∑
j

gi j,tu j + γxxi,t + δx

∑
j

gi j,tx j,t + β
∑

j

gi j,ty j,t + εi,t (8)

where observed characteristics, outcomes and the network of interactions all depend on time t and
with E(εi,t|u, xt, Gt) = 0. Here, ui captures time-invariant unobserved and observed characteristics
of agent i affecting outcomes. These time-invariant characteristics may give rise to contextual peer
effects, as in model (5), captured by the parameter δu.

In panel contexts, dynamic effects often matter and researchers may want to include various lags
in the main regressions. An extension of model (8) with one-period lags can be written:

yi,t = ui + δu,0

∑
j

gi j,tu j + δu,1

∑
j

gi j,t−1u j + γx,0xi,t + γx,1xi,t−1 + δx,0

∑
j

gi j,t x j,t

+ δx,1

∑
j

gi j,t−1x j,t−1 + β0

∑
j

gi j,ty j,t + β1

∑
j

gi j,t−1y j,t−1 + θyi,t−1 + εi,t (9)

In this case, individual outcome is affected by time-invariant individual characteristics, by the time-
invariant characteristics of current and past peers (δu,0 and δu,1), by current and past individual
time-varying observed characteristics (γx,0 and γx,1), by the time-varying observed characteristics of
current and past peers (δx,0 and δx,1), by the outcomes of current and past peers (β0 and β1) and by
past individual outcome (θ).

At this stage in the literature, no study has analyzed or applied full-fledged versions of model (8)
or model (9). All studies consider particular cases, missing important ingredients. In a group context,
Arcidiacono et al. (2012) consider a model where individual outcome is only affected by individual
and peers’ time-invariant characteristics.22 They propose a non-linear least square estimator and
show that if peer groups change over time, and under some further assumptions, the estimator does
not run into an incidental parameter problem and yields consistent estimates of δu. It would be
interesting to see whether their analysis extends to network interactions.

A few papers analyze peer effects in networks with panel data, see Patnam (2013), De Giorgi,
Frederiksen, and Pistaferri (2019) and Comola and Prina (2019).23 Patnam (2013) analyzes the
effect of corporate networks on firms’ investment and executive pay using panel data for publicly
traded companies in India. She assumes that a firm’s reference group is composed of all other firms

22Their model is a case of model (8) with no impact of individual and peers’ observed time-varying characteristics
and with no endogenous peer effect, γx = δx = β = 0.

23In other studies, researchers assume that they do not know the network and exploit panel data to identify peer effects
and the network structure itself, see Section 4.
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with whom it shares a board director. She considers shocks on the board interlock network caused
by directors’ retirement or death. She discusses how endogenous peer effects can be identified if
these shocks on the network are exogenous, a variant of the random peers arguments presented in
Section 3.1. These three studies introduce individual fixed effects but do not consider contextual peer
effects associated with these time-invariant characteristics. We view this as a potentially important
limitation of their frameworks.

4 Imperfect knowledge of the network

In the previous Sections, we assumed that the researcher knows the true network of interactions be-
tween agents. This is a strong assumption, which may not hold in reality and for different reasons.
The researcher may have information on a sample of the population and on links between them, but
not on individuals outside the sample and on their connections. The network in the data may be
measured with errors. More generally, even if a specific network of relationships is well measured,
how to be sure that this is the relevant network of interactions with respect to the outcome consid-
ered? For instance, many studies analyze peer effects on grade-point average among high school
students based on self-reported friendships. Are self-reported friends necessarily the relevant peers
with respect to academic achievement?

We believe that imperfect knowledge of the network of interactions is a first-order empirical
issue which deserves more attention. For instance, difficulties raised by incomplete sampling appear
in every analysis of in-home data from Add Health on the non-saturated sample and are generally
neglected. Misspecifying the network can, of course, invalidate the identification and estimation
of peer effects based on the network structure. As pointed out by Blume et al. (2015), incorrectly
assuming an absence of connections invalidates the exclusion restriction for instrumental variables
built from the network structure. When the network is mismeasured, peers of peers who are not

peers in the observed network can, in fact, be peers in the real network. Their characteristics then
have a direct impact on individual outcome and cannot be used to instrument for friends’ outcomes
in peer effect regressions. This issue is particularly relevant given the documented tendency of social
networks towards clustering and transitivity: friends’ friends are generally quite likely to have some
form of direct relationship.

How to ensure, then, an absence of direct connections between indirectly connected agents?
Applied economists have developed an ingenious potential solution to the problem, by combining
information from different networks. In their study of peer effects on mothers’ working hours,
Nicoletti, Salvanes, and Tominey (2018) consider both family peers - sisters and female cousins - and
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geographic neighbors. In their main regression, they instrument the working hours of family peers by
the past working hours of the family peers’ neighbors. In their study of peer effects on consumption,
De Giorgi, Frederiksen, and Pistaferri (2019) combine information on spouses and on coworkers.
They instrument coworkers’ consumption by shocks on the firms of coworkers of the spouses of
these coworkers. Juxtaposing different dimensions of the social space helps ensure that indirectly
connected agents are not directly connected.24 This is a conservative approach: researchers focus
on parts of the observed social structure where intransitivity and the related exclusion restrictions
are likely to hold.

More generally, a promising idea emerging from the recent literature is that peer effects can be
identified even with very imperfect knowledge of the actual network of interactions, see in particular
Theorems 6 and 7 in Blume et al. (2015). In a panel context, peer effects can even be identified with
no knowledge of the network under the assumption that the network does not change over time,
see Manresa (2016), de Paula, Rasul, and Souza (2018), Rose (2016). In that case, the network
of interactions itself can potentially be identified and be recovered from the data. Network time-
invariance is of course a strong assumption, unlikely to hold in many contexts. However, panel data
are not necessarily needed to identify and estimate peer effects with imperfect knowledge of the
network. Boucher and Houndetoungan (2019) propose methods to estimate models (1) and (2) with
cross-sectional data when the network is imperfectly observed but the researcher can consistently
estimate the network’s probability distribution.

Sampling and measurement error are two important and underresearched topics. Chandrasekhar
and Lewis (2016) provide an econometric analysis of sampled networks (see Conti et al. (2013) for
an early contribution). They consider two sampling schemes. The researcher observes a random
sample of nodes and either their connections with other sampled nodes or their connections with
all other nodes. They notably show that in regressions based on model (1), instruments built from
friends of friends who are not friends in the observed network are generally invalid, see their Propo-
sition 3.4. To see why, suppose that i is connected to j and l who are both connected to k. Suppose
also that i, j and k are sampled but l is not. Even though i and k are not directly connected, xk

also affects yi through its impact on the unobserved yl and the corresponding exclusion restriction
is not satisfied. They also propose a simple analytical correction for the second scheme when the
researcher also observes the outcomes and characteristics of all agents. Griffith (2019a) explores the
implications of degree censoring, i.e. imposing upper bounds on the number of peers when eliciting
network data, on the estimation of model (1). He shows that degree censoring is widespread in prac-
tice, as with Add Health data (Jackson, 2013). He finds that this can significantly bias the estimates

24Relatedly, Brollo, Kaufmann, and Ferrara (2018) find that individuals’ compliance responds to penalties incurred
by siblings’ classmates, in a study on learning spillovers about the enforcement of a social program.
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and discusses strategies to address this issue. Overall, much more research is needed to understand
the statistical and econometric implications of network sampling, network measurement error and,
more generally, imperfect network knowledge on peer effect regressions.

5 Concluding remarks

An important theme which emerges from our survey is the adaptability of the identification strategy
based on the network structure: peers of peers who are not peers affect individual outcome only
through their effect on peers’ outcomes. This strategy can be applied directly with a randomized
treatment even when the network is endogenous, if the network is not affected by the treatment; it
can be applied to identify endogenous peer effects with random peers even when contextual peer
effects are not identified; it can be adapted to account for correlated effects in some contexts. This
strategy may not be valid, however, when the network is mismeasured and agents with no apparent
connection are, in fact, peers. In empirical applications, researchers have notably combined infor-
mation from different networks to help ensure an absence of connections between peers of peers.

The literature on peer effects in networks is growing fast, with no lack of important open ques-
tions. There is, for instance, still very little research on panel data (Comola and Prina, 2019), on
measurement error (Chandrasekhar and Lewis, 2016), or on combining structural and experimental
approaches (Griffith, 2019b). Perhaps the most challenging open question, however, concerns the
mechanisms behind peer effects. How to disentangle the roles of conformity, complementarities,
social learning, risk sharing and other motives behind peer effects? Recent progress on this question
has been made thank to well-designed experiments (Beugnot et al., 2019; Breza and Chandrasekhar,
2019) and to structural estimation of theoretical models (Banerjee et al., 2013). More generally, we
believe that the development, analysis and empirical estimation of new theoretical models of net-
work interactions will prove key to identify the reasons behind peer effects. While future research
will undoubtedly open up new perspectives, we conjecture that the key insight that the network
structure contains useful information for causal identification will prove long lived.
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