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ABSTRACT
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Bayesian Panel Quantile Regression 
for Binary Outcomes with Correlated 
Random Effects: An Application on Crime 
Recidivism in Canada

This article develops a Bayesian approach for estimating panel quantile regression with 

binary outcomes in the presence of correlated random effects. We construct a working 

likelihood using an asymmetric Laplace (AL) error distribution and combine it with suitable 

prior distributions to obtain the complete joint posterior distribution. For posterior inference, 

we propose two Markov chain Monte Carlo (MCMC) algorithms but prefer the algorithm 

that exploits the blocking procedure to produce lower autocorrelation in the MCMC draws. 

We also explain how to use the MCMC draws to calculate the marginal effects, relative risk 

and odds ratio. The performance of our preferred algorithm is demonstrated in multiple 

simulation studies and shown to perform extremely well. Furthermore, we implement the 

proposed framework to study crime recidivism in Quebec, a Canadian Province, using a 

novel data from the administrative correctional files. Our results suggest that the recently 

implemented “tough-on-crime” policy of the Canadian government has been largely 

successful in reducing the probability of repeat offenses in the post-policy period. Besides, 

our results support existing findings on crime recidivism and offer new insights at various 

quantiles.
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1 Introduction

The concept of quantile regression introduced in Koenker and Bassett (1978) has captured the at-

tention of both statisticians and econometricians, theorists as well as applied researchers, and across

school of thoughts i.e., Classicals (or Frequentists) and Bayesians. Quantile regression offers several

advantages over mean regression (such as robustness against outliers, desirable equivariance prop-

erties, etc.) and estimation methods, particularly for cross-section data, are also well developed1.

The method has been employed in various disciplines including economics, finance, and the social

sciences (Koenker, 2005; Davino et al., 2013). However, the development of quantile regression for

panel data witnessed noticeable delay (more than two decades) because of complexities in estima-

tion. The primary challenge was that quantiles, unlike means, are not linear operators and hence

standard differencing (or demeaning) methods are not applicable to estimation of quantile regres-

sion. The challenges in estimation increases, if, for example, the outcome variable is discrete (such

as binary or ordinal) because quantiles for such variables are not readily defined. Besides, modeling

of panel data brings in consideration of unobserved individual-specific heterogeneity and the related

debate on the choice of “random-effects” versus “fixed-effects”. Motivated by these challenges in

modeling and estimation, this paper considers a quantile regression model for panel data in the pres-

ence of correlated-random effects (CRE) and introduces two Markov chain Monte Carlo (MCMC)

algorithms for its estimation. The proposed framework is applied to study crime recidivism in the

Province of Quebec, Canada, using a novel data constructed from the administrative correctional

files.

The current paper touches on at least two growing econometric/statistic literatures – quantile re-

gression for panel data and panel quantile regression for discrete outcomes. In reference to the former,

Koenker (2004) was first to suggest a penalization based approach to estimate quantile regression

model with unobserved individual-specific effects2. Geraci and Bottai (2007) adopted the likelihood

based approach of Yu and Moyeed (2001) and constructed a working likelihood using the asymmetric

Laplace (AL) distribution. They proposed a Monte Carlo expectation-maximization (EM) algorithm

to estimate the panel quantile regression model and apply it to study labor pain data reported in Davis

(1991). Later, Geraci and Bottai (2014) extended the panel quantile regression model of Geraci and

Bottai (2007) to accommodate multiple individual-specific effects and suggested strategies to reduce

the computational burden of the Monte Carlo EM algorithm. A Bayesian approach to estimate the

panel quantile regression was presented in Luo et al. (2012), where they propose a Gibbs sampling al-

gorithm by exploiting the normal-exponential mixture representation of the AL distribution (Kozumi

and Kobayashi, 2011). Wang (2012) also utilized the AL density to develop a Bayesian estimation

method for quantile regression in a parametric nonlinear mixed-effects model.

The papers on quantile regression mentioned in the previous paragraph have assumed that the

unobserved individual-specific effects are uncorrelated with the regressors – also known as “random-

effects” in the Classical econometrics literature. In contrast, when the individual-specific effects

are assumed to be correlated with the regressors, the models have been termed as “fixed-effects”

model. Fixed-effects models suffer from the limitation that it cannot estimate the coefficient for

time-invariant regressors. So, when most of the variation in a regressor is located in the individual

dimension (rather than in the time dimension), estimation of coefficients of time varying regressors

1 Some Classical techniques include simplex method (Dantzig, 1963; Dantzig and Thapa, 1997, 2003; Barrodale and

Roberts, 1973; Koenker and d’Orey, 1987), interior point algorithm (Karmarkar, 1984; Mehrotra, 1992) and smoothing

algorithm (Madsen and Nielsen, 1993; Chen, 2007). Bayesian methods using Markov chain Monte Carlo (MCMC) algo-

rithms for estimating quantile regression was introduced in Yu and Moyeed (2001) and refined, amongst others, in Kozumi

and Kobayashi (2011). A non-Markovian simulation based algorithm was proposed in Rahman (2013). See also Soares

and Fagundes (2018) for interval quantile regression using swarm intelligence.
2 For other development in quantile regression on panel data see, amongst others, Lamarche (2010), Canay (2011),

Chernozhukov et al. (2013), Galvao et al. (2013), Galvao and Kato (2017), Graham et al. (2018), and Galvao and Poirier

(2019) to mention a few.
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may be imprecise. Most disciplines in applied statistics, other than econometrics, use the random-

effects model (Cameron and Trivedi, 2005). However, as shown in Baltagi (2013), most applied

work in economics have settled the choice between the two specifications using the specification test

proposed in Hausman (1978).

Between the questionable orthogonality assumption of the random-effects model and the limita-

tions of the fixed-effects specification, lies the idea of correlated random-effects (CRE). This concept

is utilized in the current paper to soften the assertion of unobserved individual heterogeneity be-

ing uncorrelated with regressors. The CRE was introduced in Mundlak (1978), where he models

the individual-specific effects as a linear function of the time averages of all the regressors. Haus-

man and Taylor (1981) proposed an alternative specification in which some of the time-varying and

time-invariant regressors are related to the unobserved individual-specific effects.3 Later, Chamber-

lain (1982, 1984) considered a richer model and defined the individual-specific effects as a weighted

sum of the regressors. These CRE models lead to an estimator of the coefficients of the regres-

sors that equals the fixed-effects estimator. The literature has numerous publications on the Haus-

man tests or the CRE models in a linear or non-linear framework. We refer the reader to Baltagi

(2013), Wooldridge (2010), Arellano (1993), Burda and Harding (2013), Greene (2015) and refer-

ences therein. Most recently, Joshi and Wooldridge (2019) extended the CRE approach to linear panel

data models when instrumental variables are needed and the panel is unbalanced.

Within the quantile regression for panel data literature, Abrevaya and Dahl (2008) incorporated

the CRE to the quantile panel regression model and utilized it to study birth weight using a balanced

panel data from Arizona and Washington. They make certain simplifying assumptions which allows

them to estimate the model using pooled linear quantile regression. Following the quantile regression

framework of Abrevaya and Dahl (2008), Bache et al. (2013) considers a more restricted specification

to model birth weight using an unbalanced panel data from Denmark. Arellano and Bonhomme

(2016) introduced a class of QR estimators for short panels, where the conditional quantile response

function of the unobserved heterogeneity is also specified as a function of observables. The literature

on Bayesian panel quantile regression with CRE is limited to Kobayashi and Kozumi (2012), where

they develop Bayesian quantile regression for censored dynamic panel data and proposed a Gibbs

sampling algorithm to estimate the model. The initial condition problem arising due to the dynamic

nature of the model was successfully managed using correlated random effects. In addition, they

implement the framework to study

The literature on panel quantile regression for discrete outcomes is quite sparse and most of the

work has only come recently4. Alhamzawi and Ali (2018) extended the Bayesian ordinal quantile re-

gression introduced in Rahman (2016) to panel data and use it to analyze treatment related changes in

illness severity using data from the National Institute of Mental Health Schizophrenia Collaborative

(NIMHSC), and previously analyzed in Gibbons and Hedeker (1993). Ghasemzadeh et al. (2018a)

proposed a Gibbs sampling algorithm to estimate Bayesian quantile regression for ordinal longitu-

dinal response in the presence of non-ignorable missingness and use it to analyze the Schizophrenia

data of Gibbons and Hedeker (1993). Ghasemzadeh et al. (2018b) developed a Bayesian quantile

regression model for bivariate longitudinal mixed ordinal and continuous responses to study the

relationship between reading ability and antisocial behavior amongst children using the Peabody In-

dividual Achievement Test (PIAT) data. Most recently, Rahman and Vossmeyer (2019) considered

3 Baltagi et al. (2003) suggested an alternative pretest estimator based on the Hausman-Taylor (HT) model. This pretest

alternative considers an HT model in which some of the variables, but not all, may be correlated with the individual

effects. The pretest estimator becomes the random-effects estimator if the standard Hausman test is not rejected. The

pretest estimator becomes the HT estimator if a second Hausman test (based on the difference between the FE and HT

estimators) does not reject the choice of strictly exogenous regressors. Otherwise, the pretest estimator is the FE estimator.
4 A body of work related to quantile regression for discrete outcomes include, but is not limited to, Kordas (2006),

Benoit and Poel (2010), Alhamzawi (2016), Omata et al. (2017), Alhamzawi and Ali (2018) and Rahman and Karnawat

(2019)
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a panel quantile regression model with binary outcomes and develop an efficient blocked sampling

algorithm. They apply the framework to study female labor force participation and home ownership

using data from the Panel Study of Income Dynamics (PSID).

This article contributes to the two literatures by incorporating the CRE concept into the panel

quantile regression model for binary outcomes. Our proposed framework is more general and can

accommodate the binary panel quantile regression model of Rahman and Vossmeyer (2019) as a

special case. We present two MCMC algorithms – a simple (non-blocked) Gibbs sampling algorithm

and another blocked Gibbs sampling algorithm that exploits the block sampling of parameters to

reduce the autocorrelation in MCMC draws. We also explain how to calculate the marginal effects,

relative risk and the odds ratio using the MCMC draws. The performance of the blocked algorithm

is thoroughly tested in multiple simulation studies and shown to perform extremely well. Lastly, we

implement the model to study crime recidivism in the Province of Quebec, Canada, using data from

the administrative correction files for the period 2007−2017. The results provide strong support

for including the CRE into the binary panel quantile regression framework. On the applied side,

we find that the recently implemented “tough-on-crime” policy has been successful in reducing the

probability of repeat offenses and this is most pronounced at the lower quantiles. Besides, our results

confirm existing findings from recent studies on crime recidivism, such as, schooling (unemployment

rate) is negatively (positively) associated with crime recidivism. Moreover, the marginal effects and

relative risk show considerable variability across the considered quantiles.

The remainder of the paper is organized as follows. Section 2 introduces the binary panel re-

gression model with correlated random-effects and the two MCMC algorithms. Section 3 presents

the simulation studies and discusses the performance of the algorithm. Section 4 discusses how to

compute the marginal effects, relative risk and odds ratio using the MCMC draws. Section 5 imple-

ments the proposed framework to study crime recidivism in Quebec, a Canadian Province. Section 6

presents concluding remarks.

2 The Model

We propose a binary quantile regression framework for panel data where the individual-specific ef-

fects are correlated with the covariates giving rise to correlated random effects. The resulting binary

panel quantile regression with correlated random effects (BPQRCRE) model can be conveniently

expressed in the latent variable formulation of Albert and Chib (2001) as follows,

zit = x′itβ +αi + εit ∀ i = 1, · · · ,n, t = 1, · · · ,Ti,

yit =

{
1 if zit > 0,
0 otherwise,

αi ∼ N(m′
iζ ,σ

2
α),

(1)

where zit is a continuous latent variable associated with the binary outcome yit , x′it =(xit,1,xit,2, · · · ,xit,k)
is a (1× k) vector of explanatory variables including the intercept, β is the (k×1) vector of com-

mon parameters, and αi is the individual-specific effect assumed to be independently distributed as

a normal distribution, i.e., αi ∼ N
(
m′

iζ ,σ
2
α

)
. Here mi, j = ∑

Ti

t=1 xit, j/Ti (for j = 2, ...,k) and m′
i =

(mi,2, · · · ,mi,k) is a (1× (k−1)) vector of individual means of explanatory variables excluding the

intercept. The dependence of α on the covariates (x) yields a correlated random effects model (Mund-

lak, 1978). The error term εit , conditional on αi, is assumed to be independently and identically dis-

tributed (iid) as an Asymmetric Laplace (AL) distribution i.e., εit |αi
iid∼ AL(0,1, p), where p denotes

the quantile. The AL error distribution is used to create a working likelihood and has been utilized in

previous studies on longitudinal data models such as Luo et al. (2012) and Rahman and Vossmeyer

(2019).
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In the proposed BPQRCRE framework, the modeling of correlated random effects as a function

of the means of the covariates is inspired from Mundlak (1978). Utilizing m′
i as a set of controls

for unobserved heterogeneity is both intuitive and advantageous. It is intuitive because it estimates

the effect of the covariates holding the time average fixed, and advantageous because it serves a

compromise between the questionable orthogonality assumptions of the random effects model and

the limitation of the fixed effects specification which leads to the incidental parameters problem.

The considered model reduces to the standard uncorrelated random effects case, if we set ζ = 0,

i.e., assume αi is independent of the covariates (Rahman and Vossmeyer, 2019). Here, we note that

Chamberlain (1982, 1984) allowed for correlation between αi and the covariates x′it (excluding the

intercept) through a more general formulation: αi ∼ N
(

∑
Ti

t=1 x′itζt ,σ
2
α

)
. However, this approach is

more involved for an unbalanced panel, particularly if endogeneity attrition is the reason for the

panel to be unbalanced (see Wooldridge, 2010). Besides, the correlated random effects specification

has a number of virtues for nonlinear panel data models as underlined in Burda and Harding (2013)

and Greene (2015). Hence, we prefer the approach presented in Mundlak (1978) compared to the

method in Chamberlain (1980, 1982, 1984).

The BPQRCRE model as presented in equation (1) can be directly estimated using MCMC al-

gorithms, but the resulting posterior will not yield the full set of tractable conditional posteriors

necessary for a Gibbs sampler. Therefore, as done in Luo et al. (2012) and Rahman and Vossmeyer

(2019), we utilize the normal-exponential mixture representation of the AL distribution to facilitate

Gibbs sampling (Kozumi and Kobayashi, 2011). The mixture representation for εit can be written as

follows,

εit = θwit + τ
√

wituit , (2)

where uit ∼ N (0,1) is mutually independent of wit ∼ E (1) with E representing the exponential

distribution and the constants are θ = 1−2p

p(1−p) and τ2 = 2
p(1−p) . The mixture representation gives

access to the appealing properties of the normal distribution.

To implement the Bayesian approach, we stack the model across i. Define zi = (zi1, ...,ziTi
)′,

yi = (yi1, · · · ,yiTi
)′, Xi = (x′i1, · · · ,x′iTi

)′, wi = (wi1, · · · ,wiTi
)′, Dτ

√
wi
= τ diag(

√
wi1, · · · ,√wiTi

)′ and

ui = (ui1, · · · ,uiTi
)′. The resulting hierarchical model can be written as,

zi = Xiβ + ιTi
αi +wiθ +Dτ

√
wi

ui ∀ i = 1, ...,n,

yit =

{
1 if zit > 0,
0 otherwise,

∀ i = 1, ...,n, ; t = 1, ...,Ti,

αi ∼ N
(
m′

iζ ,σ
2
α

)
wit ∼ E (1), uit ∼ N (0,1) ,

β ∼ Nk (β0,B0) σ 2
α ∼ IG

(
c1

2
,
d1

2

)
, ζ ∼ Nk−1 (ζ0,C0) ,

(3)

where ιTi
is a (Ti ×1) vector of ones and the last line in equation (3) presents the prior distribution

on the parameters. The notation Nk(·) denotes a multivariate normal distribution of dimension k and

IG(·) denotes an inverse-gamma distribution. We note that the form of the prior distribution on β
holds a penalty interpretation on the quantile loss function (Koenker, 2004). A normal prior on β
implies an ℓ2 penalty and has been used in Geraci and Bottai (2007), Yuan and Yin (2010), Luo et al.

(2012) and Rahman and Vossmeyer (2019).
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By Bayes’ theorem, we express the “complete joint posterior” density as proportional to the

product of complete likelihood function and the prior distributions as follows,

π(β ,α ,z,w,ζ ,σ 2
α | y) ∝

{
n

∏
i=1

f (yi | zi,β ,αi,wi,ζ ,σ
2
α)π(zi | β ,αi,wi,ζ ,σ

2
α )

×π(wi)π(αi)

}
π(β )π(ζ )π(σ 2

α )

∝

{
n

∏
i=1

[
Ti

∏
t=1

f (yit | zit)

]
π(zi | β ,αi,wi,ζ ,σ

2
α)π(wi)π(αi)

}

×π(β )π(ζ )π(σ 2
α ),

(4)

where the first line assumes independence between prior distributions and second line follows from

the fact that given zit , the observed yit is independent of all parameters because the second line of

equation (3) determines yit given zit with probability 1. Substituting the distribution of the variables

associated with the likelihood and the prior distributions in equation (4) yields the following expres-

sion,

π(β ,α ,z,w,ζ ,σ 2
α | y) ∝

{
n

∏
i=1

Ti

∏
t=1

[
I(zit > 0)I(yit = 1)+ I(zit ≤ 0)I(yit = 0)

]}

× exp

[
− 1

2

n

∑
i=1

{
(zi −Xiβ − ιTi

αi −wiθ)
′D−2

τ
√

wi
(zi −Xiβ − ιTi

αi −wiθ)
}]

× exp

(
−

n

∑
i=1

Ti

∑
t=1

wit

)(
2πσ 2

α

)− n
2 exp

[
− 1

2σ 2
α

n

∑
i=1

(αi −m′
iζ )

′(αi −m′
iζ )

]

× (2π)−
k
2 |B0|−

1
2 exp

[
−1

2
(β −β0)

′
B−1

0 (β −β0)

]
(2π)−

k−1
2 |C0|−

1
2

× exp

[
−1

2
(ζ −ζ0)

′
C−1

0 (ζ −ζ0)

]
×
(
σ 2

α

)−( c1
2
+1)

exp

[
− d1

2σ 2
α

]
.

(5)

The complete joint posterior density in equation (5) does not have a tractable form, and thus simula-

tion techniques are necessary for estimation. Similar to Rahman and Vossmeyer (2019), we adopt a

Bayesian approach due to the following two reasons.. First, the likelihood function of a discrete panel

data model is analytically intractable which makes optimization difficult using standard hill-climbing

techniques. Second, numerical simulation methods for discrete panel data models are often slow and

difficult to implement as noted in Burda and Harding (2013) and others. The complete joint posterior

distribution (equation 5) readily yields a full set of conditional distributions (outlined below) which

can be readily employed to estimate the model using Gibbs sampling.

We can derive the conditional posteriors of the parameters and latent variables from the joint

posterior density (5) by a straightforward extension of the non-blocked sampling method presented

in Rahman and Vossmeyer (2019). This is presented in Algorithm 1, and the derivations of the condi-

tional posterior densities can be found in the supplementary material. The parameters β are sampled

from an updated multivariate normal distribution. Similarly, the parameters αi are sampled from an

updated multivariate normal distribution. The latent weights wit are sampled element wise from a

generalized inverse Gaussian (GIG) distribution (Devroye, 2014). The variance σ 2
α is sampled from

an updated inverse-gamma (IG) distribution. The parameters ζ are sampled from an updated multi-

variate normal distribution. Last, the latent variable zit is sampled element wise from an univariate

truncated normal (T N) distribution. Note that while drawing each of the parameters or latent vari-

ables, we hold the remaining quantities fixed as presented in Algorithm 1.

The MCMC procedure presented in Algorithm 1 exhibits the conditional posterior distributions

for the parameters and latent variables necessary for a Gibbs sampler. While this Gibbs sampler is
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Algorithm 1 Non-blocked sampling in the BPQRCRE model

1. Sample β | α,z,w ∼ Nk

(
β̃ , B̃

)
where,

B̃−1 =

(
n

∑
i=1

X ′
i D−2

τ
√

wi
Xi +B−1

0

)
, and β̃ = B̃

(
n

∑
i=1

X ′
i D−2

τ
√

wi
(zi − ιTi

αi −wiθ )+B−1
0 β0

)
.

2. Sample αi | β ,z,w,σ2
α ,ζ ∼ N

(
ã, Ã

)
for i = 1, · · · ,n, where,

Ã−1 =
(

ι ′Ti
D−2

τ
√

wi
ιTi

+σ−2
α

)
, and ã = Ã

(
ι ′Ti

D−2
τ
√

wi
(zi −Xiβ −wiθ )+σ−2

α m′
iζ
)

.

3. Sample wit | β ,αi,zit ∼ GIG

(
1
2
, λ̃it , η̃

)
for i = 1, · · · ,n and t = 1, · · · ,Ti, where,

λ̃it =
(

zit−x′it β−αi

τ

)2

, and η̃ =
(

θ 2

τ2 + 2
)

.

4. Sample σ2
α | α,ζ ∼ IG

(
c̃1
2
, d̃1

2

)
where,

c̃1 = (n+ c1), and d̃1 = d1 +
n

∑
i=1

(αi −m′
iζ )

′ (αi −m′
iζ ).

5. Sample ζ | α,σ2
α ∼ Nk−1

(
ζ̃ , Σ̃ζ

)
where,

Σ̃−1
ζ

=

(
σ−2

α

n

∑
i=1

mim
′
i +C−1

0

)
, and ζ̃ = Σ̃ζ

(
σ−2

α

n

∑
i=1

miα
′
i +C−1

0 ζ0

)
.

6. Sample the latent variable z | β ,α,w for all values of i = 1, · · · ,n and t = 1, · · · ,Ti from an univariate

truncated normal (TN) distribution as follows,

zit | β ,α,w ∼
{

T N(−∞,0]

(
x′itβ +αi +witθ ,τ

2wit

)
if yit = 0,

TN(0,∞)

(
x′itβ +αi +witθ ,τ

2wit

)
if yit = 1.

straightforward, there is potential for poor mixing of the MCMC draws due to correlation between

(β , αi) and (zi, αi). This correlation arises because the variables corresponding to the parameters

in αi are often a subset of those in x′it . Thus conditioning these items on one another leads to high

autocorrelation in MCMC draws as demonstrated in Chib and Carlin (1999) and noted in Rahman

and Vossmeyer (2019).

To avoid the high autocorrelation in MCMC draws, we present an alternative algorithm that

jointly samples (β , z) in one block within the Gibbs sampler (see Rahman and Vossmeyer, 2019, for

more on the blocking procedure). The details of our blocked sampler are described in Algorithm 2,

and the derivations of the conditional posterior densities are presented in the supplementary file.

Specifically, β is sampled marginally of αi from a multivariate normal distribution. Then the latent

variable zi is sampled marginally of αi from a truncated multivariate normal distribution denoted

by T MV NBi
, where Bi is the truncation region given by Bi = (Bi1 ×Bi2 × ...×BiTi

) such that Bit is

the interval (0,∞) if yit = 1 and the interval (−∞,0] if yit = 0. To draw from a truncated multivariate

normal distribution, we utilize the method proposed in Geweke (1991, 2005); as done in Rahman and

Vossmeyer (2019). This involves drawing from a series of conditional posteriors which are univariate

truncated normal distributions. The parameter αi is sampled conditional on (β ,z,w,σ 2
α ,ζ ) from an

updated multivariate normal distribution. The latent weights wit are sampled element wise from a

generalized inverse Gaussian (GIG) distribution (Devroye, 2014). The variance σ 2
α is sampled from

an updated inverse-gamma (IG) distribution. Lastly, the parameters ζ are sampled from an updated

multivariate normal distribution. Once again, while sampling each quantity of interest, we hold the

remaining parameters or latent variables fixed as exhibited in Algorithm 2.
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Algorithm 2 Blocked sampling in the BPQRCRE model

1. Sample (β ,zi) marginally of α in one block as follows.

(a) Let Ωi = σ2
α JTi

+D2
τ
√

wi
with JTi

= ιTi
ι ′Ti

. Sample β | z,w,σ2
α ,ζ ∼ Nk

(
β̃ , B̃

)
where,

B̃−1 =

(
n

∑
i=1

X ′
i Ω−1

i Xi +B−1
0

)
, and β̃ = B̃

(
n

∑
i=1

X ′
i Ω−1

i (zi − ιTi
x′iζ −wiθ )+B−1

0 β0

)
.

(b) Sample the vector zi | β ,wi,σ
2
α ,ζ ∼ TMV NBi

(Xiβ + ιTi
m′

iζ +wiθ ,Ωi) for all i = 1, ...,n, where Bi =
(Bi1 ×Bi2 × ...×BiTi

) and Bit is the interval (0,∞) if yit = 1 and the interval (−∞,0] if yit = 0. This is

achieved by sampling zi at the j-th pass of the MCMC iteration using a series of conditional posterior

distributions as follows:

z
j
it | z

j
i1, ...,z

j

i(t−1)
,z j

i(t+1)
, ...,z j

iTi
∼ TNBit

(
µt|−t ,Σt|−t

)
, for t = 1, ...,Ti,

where T N denotes a truncated normal distribution. The terms µt|−t and Σt|−t are the conditional

mean and variance, and are defined as,

µt|−t = x′itβ +m′
iζ +witθ +Σt,−tΣ

−1
−t,−t

(
z

j
i,−t − (Xiβ + ιTi

x′iζ +wiθ )−t

)
,

Σt|−t = Σt,t −Σt,−tΣ
−1
−t,−t Σ−t,t ,

where z
j
i,−t =

(
z

j
i1, ...,z

j

i(t−1)
,z j−1

i(t+1)
, ...,z j−1

iTi

)′
, (Xiβ + ιTi

m′
iζ +wiθ )−t is a column vector with t-th

element removed, Σt,t denotes the (t, t)-th element of Ωi, Σt,−t denotes the t-th row of Ωi with

element in the t-th column removed and Σ−t,−t is the Ωi matrix with t-th row and t-th column

removed.

2. Sample αi | β ,z,w,σ2
α ,ζ ∼ N

(
ã, Ã

)
for i = 1, ...,n, where,

Ã−1 =
(

ι ′Ti
D−2

τ
√

wi
ιTi

+σ−2
α

)
, and ã = Ã

(
ι ′Ti

D−2
τ
√

wi
(zi −Xiβ −wiθ )+σ−2

α m′
iζ
)

.

3. Sample wit | β ,αi,zit ∼ GIG
(

1
2
, λ̃it , η̃

)
for i = 1, ...,n, and t = 1, ...,Ti, where,

λ̃it =
(

zit−x′it β−αi

τ

)2

, and η̃ =
(

θ 2

τ2 + 2
)

.

4. Sample σ2
α | α,ζ ∼ IG

(
c̃1
2
, d̃1

2

)
where,

c̃1 = (n+ c1), and d̃1 = d1 +
n

∑
i=1

(αi −m′
iζ )

′ (αi −m′
iζ ).

5. Sample ζ | α,σ2
α ∼ Nk−1

(
ζ̃ , Σ̃ζ

)
where,

Σ̃−1
ζ

=

(
σ−2

α

n

∑
i=1

mim
′
i +C−1

0

)
, and ζ̃ = Σ̃ζ

(
σ−2

α

n

∑
i=1

miα
′
i +C−1

0 ζ0

)
.

3 A Monte Carlo simulation study

In this section, we present two simulation studies to demonstrate the performance of the blocked

algorithm for the BPQRCRE model. The simulation data are generated from the following model,

zit = x′it β +αi + εit , ∀ i = 1, · · · ,n, and t = 1, · · · ,Ti,

αi = m′
iζ +ξi, ξi ∼ N

(
0,σ 2

α

)
.

(6)

where x′it = [1, xit,2, xit,3, xit,4], m′
i = [mi,3, mi,4], mi, j = ∑

Ti

t=1 xit, j/Ti, j = 3,4, β = (β1, β2, β3, β4)
′ =

(0.5, 1, 0.6,−0.8)′, ζ = (ζ3, ζ4)
′ = (−1,1)′. The covariates are generated as xit,2 ∼U(−2,2), xit,3 ∼

U(−2,2), xit,4 ∼U(−2,2), where U denotes a uniform distribution, and σ 2
α = 1. Our first sample is

unbalanced with n = 1,000 and Ti ∼U(5,15), leading to T = ∑n
i=1 Ti = 9,989 observations. In a sec-

ond exercise, we increase the number of individuals n = 2,000 leading to T = 19,985 observations.

The error term is generated from a standard AL distribution, i.e., εit ∼ AL(0,1, p) for i = 1, · · · ,n,

and t = 1, · · · ,Ti at three different quantiles p = 0.25, 0.5, 0.75.
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The binary outcome variable y is constructed from the continuous variable z, by assigning yit = 1

whenever zit > 0 and yit = 0 whenever zit ≤ 0 for all of i = 1, · · · ,n and t = 1, · · · ,Ti. We note

that the binary response values of 0s and 1s are different at each quantile, because the error val-

ues generated from an AL distribution are different for each quantile. In the first simulation ex-

ercise with n = 1,000, the number of observations corresponding to 0s and 1s for the 25th, 50th

and 75th quantiles are (2283,7706), (4217,5772) and (6442,3547), respectively. In the second sim-

ulation exercise with n = 2,000, the number of observations corresponding to 0s and 1s for the

25th, 50th and 75th quantiles are (4640,15345), (8691,11294) and (13234,6751), respectively. To

complete the Bayesian setup for estimation, we use the following independent prior distributions:

β ∼ Nk

(
0k,103Ik

)
, ζ ∼ Nk−1

(
0k−1,103Ik−2

)
, σ 2

α ∼ IG(10/2,9/2). For each exercise, we generate

16,000 MCMC samples where the first 1,000 values are discarded as burn-ins. The posterior esti-

mates are reported based on the remaining 15,000 MCMC iterations with a thinning factor of 10. The

mixing of the MCMC chain is extremely good as illustrated in Figure 1, which reports the trace and

autocorrelation plots of the parameters from the second simulation exercise at the 75th quantile. The

figure shows that, as desired, the chains mix well and the autocorrelation of the MCMC draws are

close to zero. The plots from the first simulation exercise and the remaining quantiles in the second

simulation exercise are extremely similar and not presented to avoid repetition and keep the paper

within reasonable length. To supplement the plots in Figure 1, Table 1 presents the autocorrelation in

MCMC draws at lag 1, lag 5, and lag 10 confirming the good mixing across simulation exercises and

at all quantiles.

The results from the two simulation exercises are presented in Table 2. Specifically, the table

reports the true values of the parameters used to generate the data, along with the posterior mean,

standard deviation and inefficiency factor (calculated using the batch-means method discussed in

Greenberg, 2012) of the MCMC draws. In general, the results show that the posterior means for

(β ,ζ ) are near to their respective true values, β = (0.5,1,0.6,−0.8)′ and ζ = (−1,1)′ across all

considered quantiles. The posterior standard deviations for all the parameters are small and all the

coefficients are statistically different from zero. So, the proposed MCMC algorithm is successful

in correctly estimating all the model parameters across all quantiles. This is especially important

because the number of 0s and 1s were different for each quantile. Moreover, the inefficiency factor

25th Quantile 50th Quantile 75th Quantile

Lag 1 Lag 5 Lag 10 Lag 1 Lag 5 Lag 10 Lag 1 Lag 5 Lag 10

n=1000

β1 0.1351 0.0338 −0.0258 0.0544 −0.0079 −0.0382 −0.0417 −0.0652 0.0165

β2 0.3066 0.0369 0.0161 0.2385 0.0099 −0.0218 0.2688 −0.0567 0.0253

β3 0.2828 0.0730 −0.0003 0.1745 0.0012 −0.0228 0.1784 −0.0215 −0.0125

β4 0.3372 0.0783 0.0179 0.2421 0.0037 0.0348 0.1871 −0.0254 −0.0617

ζ3 0.0653 0.0160 −0.0314 0.0389 −0.0080 0.0034 0.0669 −0.0388 −0.0338

ζ4 0.1438 0.0319 −0.0252 0.0649 −0.0217 −0.0721 0.0793 −0.0317 0.0362

σ2
α 0.4439 0.0658 0.0274 0.3115 −0.0004 −0.0181 0.3122 0.0151 −0.0050

n=2000

β1 0.1353 0.0200 −0.0296 0.0176 0.0207 0.0154 0.0200 0.0096 0.0134

β2 0.3092 0.0035 0.0189 0.3022 −0.0151 −0.0640 0.2539 −0.0229 −0.0079

β3 0.1679 0.0655 0.0404 0.2051 −0.0201 −0.0142 0.2171 0.0367 0.0325

β4 0.2648 0.0359 0.0222 0.2634 0.0415 −0.0073 0.1816 0.0262 0.0575

ζ3 0.0328 −0.0098 0.0132 0.0762 −0.0567 0.0017 0.0553 0.0340 −0.0261

ζ4 0.0782 −0.0415 −0.0178 0.0117 0.0179 0.0137 0.0314 0.0198 −0.0022

σ2
α 0.4381 0.0423 0.0227 0.3139 −0.0189 0.0215 0.4017 −0.0072 0.0621

Table 1: Autocorrelation in MCMC draws at Lag 1, Lag 5 and Lag 10 for n= 1,000 individuals (upper panel) and n= 2,000

individuals (lower panel).
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Fig. 1: Trace plots and autocorrelation plots of the parameters for the 75th quantile and n = 2,000 individuals.

for all the parameters is close to 1, suggesting a good sampling performance and a nice mixing

of the Markov chain. Comparing the results from the first and second simulation exercise, we see

that when the sample size is increased from (n = 1,000, T = 9,989) to (n = 2,000, T = 19,985),

the results improve and the posterior means of the coefficients are closer to their true values. In
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25th Quantile 50th Quantile 75th Quantile

TRUE MEAN STD IF MEAN STD IF MEAN STD IF

n=1000

β1 0.5 0.7155 0.0582 1.2290 0.5799 0.0480 1.0544 0.5319 0.0523 0.9583

β2 1.0 1.0093 0.0437 1.7885 0.9355 0.0331 1.3766 1.0155 0.0383 1.5226

β3 0.6 0.7284 0.0403 1.5750 0.5898 0.0310 1.2686 0.5616 0.0372 1.2588

β4 −0.8 −0.8699 0.0432 1.8581 −0.7587 0.0330 1.3724 −0.8482 0.0369 1.2620

ζ3 −1.0 −1.2082 0.1493 1.0653 −1.2043 0.1304 1.0389 −1.0786 0.1451 1.0669

ζ4 1.0 1.2781 0.1548 1.1919 1.0350 0.1373 1.0649 1.1079 0.1427 1.0793

σ2
α 1.0 1.1668 0.1502 2.1466 1.1444 0.1177 1.6006 1.1923 0.1321 1.6553

n=2000

β1 0.5 0.5241 0.0375 1.2201 0.4812 0.0326 1.0176 0.4661 0.0355 1.0200

β2 1.0 0.9852 0.0281 1.6192 0.9985 0.0249 1.6350 0.9784 0.0274 1.5347

β3 0.6 0.6134 0.0262 1.2643 0.5914 0.0226 1.3154 0.6017 0.0259 1.3277

β4 −0.8 −0.7745 0.0278 1.4142 −0.7719 0.0235 1.4121 −0.7897 0.0253 1.3079

ζ3 −1.0 −0.9418 0.0970 1.0328 −1.0325 0.0894 1.0762 −1.0957 0.1005 1.0553

ζ4 1.0 0.9678 0.0985 1.0782 1.0814 0.0913 1.0117 1.1127 0.0994 1.0314

σ2
α 1.0 0.8584 0.0857 2.1350 0.9433 0.0754 1.6048 1.0303 0.0895 1.8290

Table 2: True values (True), posterior mean (Mean), standard deviation (Std) and inefficiency factor (IF) of the parameters

in the simulation study. The upper panel presents results for n = 1,000 individuals and the lower panel presents results for

n = 2,000 individuals.

particular, some small observed biases for β1, ζ3, and ζ4 at the 25th quantile are reduced to a large

extent. To summarize, the proposed algorithm for estimating BQQRCRE model does well in both

the simulations, but the advantages of having a larger data is clearly evident in the posterior results.

4 Marginal Effects, Relative Risk and Odds Ratio

Our proposed binary panel quantile model is nonlinear, as such the coefficients by themselves do not

give the marginal effects (Rahman, 2016; Rahman and Vossmeyer, 2019). However, marginal effects

are important to understand the effect of a covariate on the probability of success. For example, in

our current application one may be interested in seeing how the probability of recidivism is affected

due to an additional year of schooling, decreasing regional unemployment rate by 1 percentage, or

involvement in violent crime. These may be useful to policy makers and researchers alike.

To formally derive the marginal effects, we rewrite the BPQRCRE model presented in Equa-

tion (1) as follows,

zit = x′it β +αi + εit , ∀ i = 1, · · · ,n, and t = 1, · · · ,Ti,

αi ∼ N(m′
iζ ,σ

2
α),

(7)

where εit = witθ + τ
√

wituit . We know εit
iid∼ AL(0,1, p) for i = 1, · · · ,n and t = 1, · · · ,Ti, which

implies zit |αi
ind∼ AL(x′itβ +αi,1, p), where ind denotes independently distributed.

Given the model framework, the probability of success can be calculated as,

Pr(yit = 1|xit ,β ,αi) = Pr(zit > 0|β ,αi,xit)

= 1−Pr(zit ≤ 0|β ,αi,xit)

= 1−Pr(εit ≤−x′itβ −αi|β ,αi,xit)

= 1−FAL(−x′itβ −αi,0,1, p),

(8)
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for i = 1, · · · ,n and t = 1, · · · ,Ti, where FAL(x,0,1, p) denotes the cumulative distribution function

(cdf ) of an AL distribution evaluated at x, with location 0, scale 1 and quantile p.

Marginal effect (i.e., the derivative of the probability of success with respect to a covariate) is

often computed at the average covariate values or by averaging the marginal effects over the sample,

alias average partial effects (Wooldridge, 2010; Greene, 2017). However, Jeliazkov and Vossmeyer

(2018) show that both these quantities can be clearly inadequate in nonlinear settings (e.g., binary,

ordinal and Poisson models) because they employ point estimates rather than their full distribution.

To account for the uncertainty in parameters, we need another layer of integration over the model

parameters. This idea of calculating the marginal effect that accounts for uncertainty in parameters

and the covariates has been previously considered, amongst others, by Chib and Jeliazkov (2006) in

the context of semiparametric dynamic binary longitudinal models, and Jeliazkov et al. (2008) and

Jeliazkov and Rahman (2012) in relation to ordinal and binary models. Within the quantile literature,

this has been mentioned by Rahman (2016) in the context of ordinal models and discussed by Rahman

and Vossmeyer (2019) in connection to binary longitudinal outcome models.

Suppose, we are interested in the average marginal effect i.e., average difference between proba-

bilities of success when the j-th covariate {xit, j}Ti

t=1 is set to the values a and b, denoted as {xa
it, j}Ti

t=1

and {xb
it, j}Ti

t=1, respectively. To proceed, we split the covariate and parameter vectors as follows:

xa
it = (xa

it, j,xit,− j), xb
it = (xb

it, j,xit,− j), and β = (β j,β− j), where − j in the subscript denotes all co-

variates/parameters except the j-th covariate/parameter. We are interested in the distribution of the

difference {Pr(yit = 1|xb
it, j)−Pr(yit = 1|xa

it, j)}, marginalized over {xit,− j} and the parameters (β ,α),
given the data y = (y1, · · · ,yn)

′. As done in Chib and Jeliazkov (2006) and Rahman and Vossmeyer

(2019), we marginalize the covariates using their empirical distribution and integrate the parameters

using their posterior distribution.

To obtain a sample of draws from the distribution of the difference in probabilities of success,

marginalized over {xit,− j} and (β ,α), we express it as follows,

{Pr(yit = 1|xb
it, j)−Pr(yit = 1|xa

it, j)}

=

∫ {
P(yit = 1|xb

it, j,xit,− j,β ,α)−P(yit = 1|xa
it, j,xit,− j,β ,α)

}

×π(xit,− j)π(β |y)π(α |y) d(xit,− j)dβ dα .

(9)

Drawing a sample from the above predictive distribution (i.e., equation 9) utilizes the method of

composition. This involves randomly drawing an individual, extracting the corresponding sequence

of covariate values, drawing a value (β ,α) from the posterior distribution and finally evaluating

{Pr(yit = 1|xb
it, j)−Pr(yit = 1|xa

it, j)}. This is repeated for all other individuals and other draws from

the posterior distribution. Finally, the average marginal effect (AMEBayes) is calculated as the average

of the difference in pointwise probabilities of success as follows,

AMEBayes ≈
1

T

1

M

n

∑
i=1

Ti

∑
t=1

M

∑
m=1

[
FAL(−xa

it, jβ
(m)
j − x′it,− jβ

(m)
− j −αm

i ,0,1, p)

−FAL(−xb
it, jβ

(m)
j − x′it,− jβ

(m)
− j −αm

i ,0,1, p)
] (10)

where the expression for probability of success follows from equation (8), T = ∑n
i=1 Ti is the total

number of observations, and M is the number of MCMC draws. Here, (β (m),α(m)) is an MCMC

draw of (β ,α) for m = 1, ...,M. The quantity in equation (10) provides estimate that integrates out

the variability in the sample and the uncertainty in parameter estimation.

Relative risk (RR) can be calculated to demonstrate the association between the risk factor or

exposure (x j) and the event (y) being studied. It is the ratio of the probability of the outcome with

the risk factor (x j = b) to the probability of the outcome with the risk factor (x j = a) (e.g., exposed
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(b = 1) /non-exposed (a = 0)). Following equation (10), the relative risk is given by,

RR(b/a)Bayes =
1

T

1

M

n

∑
i=1

Ti

∑
t=1

M

∑
m=1

Hb
AL

Ha
AL

. (11)

where Hr
AL = 1−FAL(−xr

it, jβ
(m)
j − x′it,− jβ

(m)
− j −αm

i ,0,1, p) for r = a,b, is the complement of the cdf

of the AL distribution. If there is a causal effect between the exposure and the outcome, values of

RR can be interpreted as follows: if RR > 1 (resp. RR < 1), the risk of outcome is increased (resp.

decreased) by the exposure and if RR = 1, the exposure does not affect the outcome.

The odds ratio is the ratio of the odds of the event occurring with the risk factor (x j = b) to the

odds of it occurring with the risk factor (x j = a). It is given by:

OR(b/a)Bayes =
1

T

1

M

n

∑
i=1

Ti

∑
t=1

M

∑
m=1

(
Hb

AL

1−Hb
AL

)/(
Ha

AL

1−Ha
AL

)
. (12)

The odds ratio, for a given exposure x j, does not have an intuitive interpretation as the relative risk.

OR are often interpreted as if they were equivalent to relative risks while ignoring their meaning as a

ratio of odds. Two main factors influence the discrepancies between RR and OR: the initial risk of an

event yit , and the strength of the association between exposure xit, j and the event yit . When the event

yit = 1 is rare, then OR(b/a) ≈ RR(b/a), but the odds ratio generally overestimates the relative risk,

and this overestimation becomes larger with increasing incidence of the outcome.

5 An application to crime recidivism in Canada

Crime has been extensively studied by economists both theoretically and empirically (see, e.g.Chalfin

and McCrary (2017) for a recent survey). Many empirical analyses have used panel data either at the

state (Cornwell and Trumbull, 1994; Baltagi, 2006; Baltagi et al., 2018) or at the individual level

(Bhuller et al., 2019). The vast majority of the published papers focus on the situation in the U.S.

Here, we study crime recidivism in Canada between 2007-2017 for two reasons. First, the Canadian

government implemented a “tough-on-crime” policy in 2012 which marked a shift from rehabilitating

to warehousing people. Our proposed estimator is well suited to measure the sensitivity of recidivism

to this new policy.5 Second, offenders who are sentenced to less than two years serve their sentence

in a provincial correctional institution while offenders sentenced to two years or more serve their’s in

a federal penitentiary. The former have committed less serious crimes and are more likely to reoffend

over the time span of our panel. Because our analysis focuses on this population, the impact of the

“tough-on-crime” policy may be more easily unearthed from the data than if it focused on detainees

serving long sentences.

5.1 The data

We utilize a sample data drawn from the administrative correctional files for the Province of Quebec.

The files are used by corrections personnel to manage activities and interventions related to hous-

ing offenders and contain detailed information on inmates’ characteristics, correctional facilities, and

sentence administration. While they offer a wealth of information, the files have never been used for

research purposes. For illustrative purpose, we have drawn a random sample of 8,974 detainees out

of a population of 148,441. Each detainee is observed upon release and up until 2017. The earliest

5 Starting in 2012, the government enacted a series of legislations that made prison conditions more austere; imposed

lengthier incarceration periods; significantly expanded the scope of mandatory minimum penalties; and reduced opportu-

nities for conditional release, parole, and alternatives to incarceration.
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Mean Std

Age 41.366 12.596

Schooling 6.011 3.814

Married 0.045 0.208

Aboriginal† 0.045 0.206

Mother Tongue Not Fr. or Eng. 0.070 0.255

Type of Crime:

Traffic Related 0.163 0.384

Violent (Domestic, Assault & Battery, etc.) 0.099 0.299

Property (Theft, Robbery, etc.) 0.439 0.496

Other Infractions to Criminal Code 0.299 0.458

Unemployment rate 8.329 2.063

Post 2012 (=1) 0.252 0.434

Recidivism Entire Sample 0.114 0.318

Recidivism Pre-Post 2012 0.091 0.288

Recidivism Post 2012 0.023 0.150

† First Nations, Inuit and Métis.

Table 3: Descriptive Summary of the Sample Data.

releases occur in 2007 and the latest in 2016. Overall, our unbalanced panel includes 61,880 obser-

vations. Of the 8,974 detainees, as many as 3,466 had at least one repeat offense over our sample

period.

Table 3 presents the main characteristics of our sample. Detainees are 41 years of age on average,

have a level of schooling corresponding to a high-school degree, and few are married. Aboriginal

detainees represent 4.5% of our sample and most are incarcerated in a correctional institution suited to

their needs and specificities. Approximately 7% of inmates do not have French or English, Canada’s

two official languages, as their mother tongue. These include some Aboriginal residents as well as

recent immigrants. Crimes have been aggregated into 4 distinct categories. By far the most common

concerns property crime. Traffic related and infractions to the criminal code usually entail shorter

sentences. Violent crimes receive the longest sentences in our data but necessarily less than two years.

As mentioned above, major crimes fall under the federal jurisdiction. The yearly unemployment rate

is measured at the regional level where a detainee is released. Over our sample period, it varies

between 4.4% and 17.5%. The “Post 2012” variable is equal to one if a detainee entered the panel at

any time during or after 2012 while the “Pre-Post 2012” variable is equal to one if a detainee entered

at any time before 2012. In the latter case, repeat offenses are observed over the entire duration of the

panel, i.e. 2007-2017. In the former, they are only observed over 2012-2017. Roughly a quarter of

our sample belongs to the period post the implementation of “tough-on-crime” policy. The remaining

observations (74.8%) were sanctioned prior to 2012 and may or may not have reoffended in the Post

2012 period. The next 3 lines of the table provide information on the rates of recidivism for distinct

periods.6 Thus, the overall rate of recidivism is equal to 11.4%. The next line focuses on individuals

who are present both before and after the implementation of the “tough-on-crime” policy. Their

recidivism rate is approximately 9%. The last line focuses on individuals who entered the panel on

or after 2012. Naturally, as they are observed for a shorter period of time, their recidivism rate is

relatively smaller at 2.3%.

Figure 2 depicts the proportions of repeat offenses for the entire sample period and for those

who entered the panel in 2012 or later. The figure provides prima facie evidence on the impact

6 Recidivism is a yearly dummy variable equal to one the year at which the new incarceration begins and zero otherwise.

Recidivism may be equal to one in consecutive years so long as the repeat offenses occurred after the end of the previous

sentence. Reincarcerations while on parole or on conditional release are not considered repeat offenses.
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Fig. 2: Frequency of Repeat Offenses

of the policy. Indeed, the proportion of detainees who do not reoffend upon release in the post-

policy period is 15 percentage points larger (74.1%) than the proportion for the whole sample period

(51.5%). Likewise, the proportion of repeat offenders is between 3 to 6 percentage points lower in the

post-policy period for any given number of repeat offenses.7 Naturally, such differences may results

from factors other than the “tough-on-crime” policy, such as, but not limited to, better economic

opportunities, and demographic compositional changes. In order to net these out, we now turn to

formal econometric modelling.8

5.2 Estimation results

The dependent variable y is an indicator variable that equals 1 if an individual commits a repeat

offense and 0 otherwise. We regress the probability of recidivism on time-varying covariates (age,

schooling, unemployment rate), on time-invariant policy variables (Pre-Post 2012 and Post 2012)

and on other time-invariant control variables.

Our Bayesian setup uses the same independent prior distributions as in the simulation exercise:

β ∼ Nk

(
0k,103Ik

)
, ζ ∼ Nk−1

(
0k−1,103Ik−2

)
, σ 2

α ∼ IG(10/2,9/2). We generate 60,000 MCMC

samples of which the first 10,000 are discarded as burn-ins. The posterior estimates are reported

using a thinning factor of 50, optimized following the approach in Owen (2017).9

The mixing of the MCMC chain is extremely good as illustrated in Figure 3 which exhibits the

trace plots of the parameters at the 75th quantile.10 Trace plots at other quantiles are similar and

not reported for the sake of brevity but they are available upon request. Figure 4 provides additional

information on the performance of the MCMC chain. The left-hand-side figure depicts the boxplots

7 Obviously, detainees who entered the sample on or after 2012 have had less time to reoffend. Yet, in our sample as

many as 34% of detainees are reincarcerated within 12 months upon release, and as many as 43% within two years. Hence,

the sharp decline in repeat offenses in the post-2012 period is unlikely due to the sampling frame. See Lalande et al. (2015).
8 To the extent the new legislation has indeed lowered the recidivism rates, it not clear whether it did so through de-

terrent or incapacitative effects. Yet, see Bhuller et al. (2019) for U.S. evidence according to which deterrence dominates

incapacitation.
9 Thinning has been criticized by some (MacEachern and Berliner, 1994; Link and Eaton, 2012) while others acknowl-

edge that it can increase statistical efficiency (Geyer, 1991). See Owen (2017) who claims that the arguments against

thinning may be misleading.
10 Note that the time-varying covariates (Age, Schooling and Unemployment rate) have been “demeaned” and that

Age has been divided by 10. The parameter estimates must thus be interpreted accordingly.
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Fig. 4: Boxplots of the Inefficiency Factors and Convergence Diagnostics for (β ,ζ ,σ2
α ) at 5 different quantiles.

of the inefficiency factors of the parameters (β s, ζ s and σ 2
α ) for each of the five different quantiles

used in estimating the model. Except perhaps for the 10th quantile, all are reasonably close to one.

Consistent with the simulation results, the parameter with the largest inefficiency factor at the 10th

quantile is σ 2
α (not shown, see Table 2). The right-hand-side figure reports the boxplots of the con-

vergence diagnostics of the parameter estimates for the same five specifications based on the first

10% and the last 40% values of the Markov chain (Geweke, 1992). As depicted, all parameters have

Z-scores within 2 standard deviation of the mean at the 5% level or within 2.58 standard deviation

at 1% level. All in all, the Markov chains behave satisfactorily and thus lend themselves to statistical

inference.

Table 4 reports the posterior means and standard deviations at five different quantiles separately.

To ease interpretation, the quantile-specific estimates are reported column-wise in increasing or-

der. Row-wise, we distinguish the time-varying covariates from the time-invariant and the correlated

random effects variables. Note that the correlated random effects specification does not include an

intercept. This is to allow the identification of the two time-invariant policy variables, Pre-Post

2012 and Post 2012. The former, is equal to one if the detainee was incarcerated prior to 2012 and

thus observed both before and after the implementation of the “tough-on-crime” policy. The latter is

equal to one if a detainee’s first incarceration occurred during or after 2012, and thus always exposed

to the policy. All other time-invariant variables are measured at first entry in the panel.11 The esti-

mates of the correlated random components associated with the individual mean Age, Schooling and

Unemployment, ζ̂ , are all statistically different from zero regardless of the quantile. The individual-

specific effects, αi, are thus highly correlated with the individual means of the time-varying variables.

Omitting this correlation may therefore bias the model estimates and hence their intrinsic marginal

11 Recall from Table 3 that very few men are married. In addition, next to none report a change in their marital status in

between incarcerations. Further, since the marital status of non-repeaters is not observed in the data we are constrained to

use the information at entry in the panel.
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Variable p = 10% p = 25% p = 50% p = 75% p = 90%

Mean Std Mean Std Mean Std Mean Std Mean Std

Time varying covariates

β -Age −12.634 0.426 −5.417 0.183 −3.024 0.099 −2.598 0.083 −3.829 0.123

β -Schooling −1.474 0.116 −0.649 0.047 −0.379 0.025 −0.335 0.021 −0.484 0.032

β -Unemp Rate 0.347 0.103 0.140 0.040 0.072 0.022 0.056 0.020 0.078 0.028

Policy Variables (Time invariant)

Pre-Post 2012 −28.671 0.465 −11.299 0.203 −5.034 0.113 −2.735 0.087 −1.800 0.121

Post-2012 −31.238 0.522 −12.389 0.224 −5.610 0.125 −3.202 0.097 −2.504 0.134

Other Time invariant covariates

Married −5.315 0.901 −2.286 0.399 −1.222 0.204 −0.932 0.164 −1.298 0.226

Aboriginals 5.661 0.634 2.494 0.295 1.359 0.148 1.132 0.121 1.645 0.197

Oth. Mot. Ton. 0.329 0.683 0.174 0.270 0.090 0.147 0.080 0.120 0.089 0.164

Violent Crime −12.286 0.948 −4.908 0.419 −2.484 0.224 −1.797 0.159 −2.253 0.205

Property Crime 3.111 0.495 1.674 0.210 0.906 0.112 0.713 0.090 0.967 0.126

Other Crime 5.656 0.498 2.707 0.212 1.456 0.116 1.171 0.092 1.636 0.131

Correlated Random Effects

ζ -Age 10.381 0.456 4.521 0.195 2.558 0.105 2.218 0.085 3.286 0.123

ζ -Schooling 1.263 0.127 0.560 0.051 0.331 0.027 0.295 0.023 0.426 0.034

ζ -Unemployment −0.311 0.137 −0.129 0.054 −0.067 0.029 −0.054 0.025 −0.080 0.037

σ2
α 75.810 3.325 13.133 0.540 3.871 0.165 2.777 0.132 6.217 0.325

Table 4: Posterior Mean (Mean) and Standard Deviation (Std) of the Parameters in the Crime Application.

effects and relative risks. This provides empirical support to the worthiness of incorporating corre-

lated random effects within a quantile regression.

The first noteworthy feature of the table is that all parameter estimates are statistically different

from zero, except for the parameter associated with Other Mother Tongue. Thus detainees who

report speaking a language other than English or French at home are no more and no less likely

to eventually reoffend. A second interesting feature concerns the sign of the parameter estimates.

Indeed, all are consistent with recent research on crime recidivism. For instance, Age and Schooling

are associated with lower rates of recidivism (Bhuller et al., 2019) whereas being released during a

period of high unemployment has been found to favour recidivism (Siwach, 2018; Rege et al., 2019).

Likewise, married men are less likely to reoffend whereas Aboriginal detainees are more likely to

do so (Justice Canada, 2017). The type of crime is also associated with recidivism. The estimates

must be interpreted relative to traffic related crimes, which is the base or omitted category in our

analysis. Clearly, sentences for Violent Crimes will be harsher and so the large parameter estimate

presumably reflects an incapacitative effect. Finally, the parameter estimates of Post 2012 is larger

than that of Pre-Post 2012 which suggests that the implementation of the “tough-on-crime” policy

may have had a detrimental effect on recidivism.

As stated in Section 4, the parameter estimates such as those reported in Table 4 do not give the

marginal effects. Yet, the latter are important from a policy perspective. Thus, while the parameter es-

timates vary considerably across quantiles, it is not clear that the marginal effects are equally sensitive

since they depend both on the time-varying variables and the correlated random components. Figure

5 reports the average marginal effects computed according to equation (10), along with their highest

posterior density intervals (HPDI).12 Note that most marginal effects have a relatively flat profile be-

12 The marginal effects for Age correspond to 1/10 of an additional year relative to the mean. Those for Unemployment

and Schooling correspond to one additional year and one additional percentage point relative to their individual means,

respectively. The remaining marginal effects correspond to a change in the indicator variables.
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Fig. 5: Marginal Effects with 95% HPDI.

tween p10 and p75 and then exhibit a small kink between p75 and p90. For instance, increasing Age

by 1/10th reduces the probability of reoffending by 1% at the 10th quantile and by 1.6% at the 90th

quantile. Similar results hold for Schooling (1% vs 2.0%), Married (0.3% vs 0.45%), and Violent

Crime (5% vs 6.5%). Thus, for all three time-varying covariates the marginal effects increase by one

half as we move from p10 to p90. As for the time-invariant variables, their marginal effects all in-

crease by at least 50% as we move from p10 to p90. In particular, the marginal effects associated to

First Nation, Property Crime and Other Crime exhibit a twofold increase. More importantly,

the marginal effects of the two “tough-on-crime” variables increase manifold and in a steady fashion

between p10 and p90. Furthermore, the HPDI is relatively narrow in both cases. Hence, according

to the parameter estimates associated with Pre-Post 2012, the probability of reoffending decreases

from 78% at the 10th quantile to as little as 10% at the 90th. Likewise, the parameters of Post 2012

imply that the probability decreases from 79% to 14% at both extremes. These results are impor-
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Fig. 6: Relative Risks with 95% HPDI.

tant from a policy perspective for two reasons. First, they imply that detainees from both groups are

sensitive to the “tough-on-crime” policy, and even more so for those in the Post 2012 group. Conse-

quently long-run recidivism (i.e. recidivism by the Pre-Post 2012 group between 2012-2017) can

be addressed just as well as short-run recidivism (i.e. recidivism by the Post 2012 group between

2012-2017) by such policies. Second, the policy does not impact all detainees alike. Those in the

lower quantiles are much more responsive than those in the upper quantiles.

In order to gain further insight into the sensitivity of recidivism to various covariates, we report

the corresponding relative risks in Figure 6 (see equation (11)) along with their HDPI. Not surpris-

ingly given the marginal effects, the relative risks are fairly constant for the first two or three quantiles

(p = 10%,25%,50%), with a few exceptions. Beyond the second or third quantiles, most increase or

decrease sharply. The figure also shows which covariates influence recidivism most. Thus, while Age,

Schooling and Unemployment Rate are associated with slightly different rates of repeat offenses,
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only those in the highest quantiles exhibit significantly different recidivism rates. On the other hand,

marital status (Married), First Nation and types of crime (Violent, Property, Other) all

have significantly higher or lower relative risks of reoffending as the case may be, and all exhibit

a sharp change between the last two quantiles. Here, as with the previous figure, the results con-

cerning the “tough-on-crime” variables are particularly interesting. Indeed, according to the figure

all detainees were much less likely to reoffend in the post 2012 period, irrespective of whether they

where first convicted prior to 2012 or after. As with the marginal effects, the policy appears to have

had a larger impact on those in the lower quantiles. Thus for every quantile the risk of recidivism is

much lower (and significantly different) for those who were exposed to the “tough-on-crime” policy.

For instance, the 95% HPDI at quantile p10 is [0.087;0.094] for the Pre-Post 2012 group and

[0.066;0.074] for the Post 2012 group. On the other hand, the 95% HPDI at quantile p90 for the

two groups are [0.323;0.385] and [0.189;0.240], respectively. In other words, for the lowest quan-

tile (p10), exposure to the policy decreases recidivism by as much as [90;91]% and [92;93]% for

the Pre-Post 2012 and Post 2012 groups, respectively. In contrast, for those in the highest quan-

tile, p90, the Post 2012 group decreases its recidivism rate more than that of the Pre-Post 2012

([76;81]% vs [61;67]%).

6 Conclusion

This paper presents a panel quantile regression model for binary outcomes with correlated random-

effects (CRE) and proposes two MCMC algorithms for its estimation. By incorporating the CRE into

the panel quantile regression for discrete outcomes, we move beyond the random-effects framework

typically considered in the Bayesian quantile regression literature. The paper makes an important

contribution to the literature on quantile regression for panel data and panel quantile regression for

discrete outcomes. The two proposed MCMC algorithms are simpler to implement, but we prefer the

algorithm that exploits block sampling of parameters to reduce the autocorrelation in MCMC draws.

This blocked algorithm is tested in multiple simulation studies and shown to perform extremely well.

We also emphasize the calculation of marginal effects in models with discrete outcome and explain

its computation, along with those of relative risk and odds ratio, using the MCMC draws. Finally,

we implement the proposed quantile framework to analyze crime recidivism in Quebec (a Canadian

Province) for the period 2007−2017 using a novel data from the administrative correctional files.

Amongst other things, we investigate the effect of the recently implemented “tough-on-crime” policy

on the probability of repeat offense. Our results show that the policy negatively affects the probability

of repeat offenses across quantiles and hence has been largely successful in achieving its objective.

Besides, the results suggest that the CRE structure is relevant in modeling the probability of repeat

offenses across quantiles.

This paper opens avenues for future research in several directions. The proposed framework can

be readily extended to panel quantile regression models with continuous and other discrete response

variables (e.g., count and ordinal outcomes). One may also consider the Hausman-Taylor version of

CRE, where the individual-specific effects are related to only some of the time-varying and time-

invariant regressors, and merge it with the panel quantile regression model for continuous or discrete

outcomes. Besides, a dynamic relationship can be introduced to panel quantile regression models

(with continuous or discrete outcomes) and the initial condition problems can be tackled using the

CRE structure.
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