

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Bauernschuster, Stefan; Rekers, Ramona

Working Paper Speed Limit Enforcement and Road Safety

IZA Discussion Papers, No. 12863

Provided in Cooperation with: IZA – Institute of Labor Economics

Suggested Citation: Bauernschuster, Stefan; Rekers, Ramona (2019) : Speed Limit Enforcement and Road Safety, IZA Discussion Papers, No. 12863, Institute of Labor Economics (IZA), Bonn

This Version is available at: https://hdl.handle.net/10419/215259

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 12863 Speed Limit Enforcement and Road Safety

Stefan Bauernschuster Ramona Rekers

DECEMBER 2019

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 12863

Speed Limit Enforcement and Road Safety

Stefan Bauernschuster University of Passau and IZA

Ramona Rekers University of Passau

DECEMBER 2019

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ISSN: 2365-9793

IZA – Institute of Labor Economics

Schaumburg-Lippe-Straße 5–9	Phone: +49-228-3894-0	
53113 Bonn, Germany	Email: publications@iza.org	www.iza.org

ABSTRACT

Speed Limit Enforcement and Road Safety*

We study the impact on road safety of one-day massive speed limit monitoring operations (SLMO) accompanied by media campaigns that announce the SLMO and provide information on the dangers of speeding. Using register data on the universe of police reported accidents in a generalized difference-in-differences approach, we find that SLMO reduce traffic accidents and casualties by eight percent. Yet, immediately after the SLMO day, all effects vanish. Further evidence suggests that people drive more slowly and responsibly on SLMO days to avoid fines; providing information on the dangers of speeding does not alter driving behavior in a more sustainable way.

JEL Classification:	H76, K42, R41
Keywords:	traffic, law enforcement, safety, accidents

Corresponding author:

Stefan Bauernschuster University of Passau Innstr. 27 94032 Passau Germany E-mail: stefan.bauernschuster@uni-passau.de

^{*} We thank Timo Hener, Michael Grimm, Michael Kosfeld, Helmut Rainer, Christian Traxler, seminar participants at the University of Aarhus, the University of Frankfurt, the University of Hanover and the University of Passau, as well as conference participants at the Annual Meeting of the German Economic Association in Leipzig and the Risky Health Behavior Workshop in Hamburg. We also thank the team of the research data centers of the Statistical Offices of Bavaria and Saxony-Anhalt for helpful comments regarding the accident statistics, Dominic Reese from the Ministry for Internal Affairs and Municipalities of the State North Rhine-Westphalia for valuable background information on the Blitzmarathons, the platform "blitzer.de" for making their speed trap data available as well as Nils Dorn from Straßenbau NRW and Wilfried Balke from Hessen Mobil for providing the driving speed data. Carina Hausladen, Leonie Kirchhoff, and Manuel Pannier provided excellent research assistance.

1 Introduction

Road traffic injuries are the eighth leading cause of death worldwide. Each year, more than 1.3 million people die in a road traffic accident and up to 50 million people are injured. Traffic accidents are the leading cause of death for young people aged 5 to 29 (WHO, 2018). While a large share of these traffic fatalities occur in middle- and low-income countries, traffic accidents continue to constitute a major health risk in high-income countries. The OECD (2018) estimates that the socio-economic cost of road traffic accidents in the European Union amount to 500 billion euro (or 3 percent of its GDP). Blincoe et al. (2015) argue that in the U.S., the economic cost of accidents amounted to 242 billion dollar (or 1.6 percent of its GDP) in 2010; this figure increases to 836 billion dollar if quality-of-life valuations are considered.

The main contributing factor to traffic accidents is inappropriate behavior of road users and, more specifically, excessive or inappropriate speed. In high-income countries, speeding accounts for around 30 percent of all fatal accidents; in middle- and low-income countries, this figure is even higher (WHO, 2004). The death rate of accidents due to speeding is considerably higher than the death rate for any other accident cause (Statistisches Bundesamt, 2018). Both OECD (2018) and WHO (2018) stress that even though most countries have enacted speed limits, the enforcement of these laws is often inadequate. However, while we have seen rising interest in the effect of speed limits and other traffic regulations on road safety in recent years, research on the impact of traffic law enforcement is still scarce.

This paper studies repeated speed limit enforcement campaigns enacted by German states. The campaigns build on one-day lasting massive speed limit monitoring operations (SLMO) accompanied by a temporary media campaign that announces the timing, extent, and purpose of the SLMO, and informs the public about the dangers of speeding. To evaluate the impact of the speed limit enforcement campaigns on the number of traffic accidents and casualties, we use a generalized difference-in-differences approach that exploits variation in the treatment over time and across states. Our analysis draws on rich register data on the universe of police reported accidents in combination with self-collected data on speed limit enforcement. Data on news media coverage, Google Trends' search volume data, and Twitter statistics allow us to assess the public awareness of the campaigns. To identify the effect mechanisms, we additionally rely on administrative data on hourly traffic volume and hourly driving speed from automated traffic monitors.

We find a highly significant reduction in the number of traffic accidents and road casualties on SLMO days as compared to regular days. The number of traffic accidents falls by 7.5 percent; the number of slightly injured by 8.5 percent. For the number of severely and fatally injured, we find quantitatively similar yet statistically insignificant effects. The effect of the speed limit enforcement campaigns on the number of accidents and casualties starts to appear with the onset of the media reporting, one to three days before the actual SLMO day. Strikingly, the effect is not persistent but disappears immediately after the end of the SLMO day. Extending the SLMO by an additional seven days continues to reduce the number of accidents and casualties though. Thus, these results suggest that people expect higher detection probabilities of speed limit offences on SLMO days and, consequently, drive more slowly and responsibly to avoid fines. We do not find any evidence that learning about the dangers of speeding through the information nudging campaigns alters driving culture in a more sustainable way.

A battery of validity checks and robustness tests support the interpretation of our findings. In particular, placebo treatment tests in the pre-treatment weeks corroborate the common time trends assumption of the difference-in-differences approach. Morevoer, we exploit the German peculiarity that there are no speed limits (and therefore no SLMO) on many freeways in a placebo outcome test, which provides additional support for the interpretation of our findings. Further estimates show that drivers do not avoid fines by systematically switching to other modes of transport not targeted by the speed limit enforcement campaigns, e.g., public transport. Rather, we observe a decline in average driving speed on roads. Detailed data about the causes of accidents suggest that accidents decrease not only because of less speeding but also because people drive in general more responsibly on SLMO days. Finally, heterogeneity analyses reveal that the effects are primarily driven by male drivers, by drivers out of their probation period, and by accidents on non-freeway roads with a speed limit of 50 km/h to 100 km/h in rural counties.

Our paper relates to three strands of the economics literature. The first related literature studies the effect of traffic regulations on accidents. Ashenfelter and Greenstone (2004) and van Benthem (2015) find that a rise in the speed limit by 10 mph in the U.S. increased traffic fatalities by 35 to 44 percent. The introductions of stricter traffic regulations are generally effective in reducing traffic fatalities. These regulations include mobile phone texting bans (Abouk and Adams, 2013) and the use of safety devices such as helmets, seat belts, airbags, and child restraints (Cohen and Einav, 2003; Dee, 2009; Doyle and Levitt, 2010; Levitt, 2008; Levitt and Porter, 2001; Markowitz and Chatterji, 2015). However, whether the police can primarily enforce traffic laws, i.e., stop and fine drivers for any violation, is important for the effect of these laws to materialize (Abouk and Adams, 2013; Cohen and Einav, 2003). Luca (2015) studies two one-week lasting periods of the "Click-it-or-ticket" campaign in Massachusetts. The campaign targets seat belt use but induces police officers to prosecute other offenses as well. Using the campaign as an instrument for the number of issued traffic tickets, she finds that traffic tickets significantly reduce the number of accidents and injuries. Deangelo and Hansen (2014) show that a layoff of roadway troopers due to budget cuts in Oregon substantially reduced traffic citations and increased traffic injuries and fatalities. Using budgetary shortfalls as an instrument for traffic citations, Makowsky and Stratmann (2011) find that issuing more traffic tickets reduces the number and the severity of motor vehicle accidents. Dusek and Traxler (2019) document that drivers punished for speed limit violations reduce their driving speed at least during the following twenty weeks. Similarly, Gehrsitz (2017) demonstrates that punishing drivers by temporarily suspending their driver's license lowers the probability of recidivating within the following year.

We also relate to the literature that analyzes the effect of the presence of the police on crime rates. Increasing the presence of the police is equivalent to increasing the (subjective) dectection probability for an offense. Theoretically, an increase in the probability of detection reduces the number of offenses (Becker, 1968). The earlier theoretical and empirical literature on the impact of policing on crime is nicely summarized by Cameron (1988). Levitt (1997) gave rise to a quasi-experimental literature that exploits exogenous increases in the presence of the police to find negative effects on violent crimes (e.g., murder, assault, and robbery) as well as property crimes (e.g., burglary and motor vehicle thefts) (Chalfin and McCrary, 2018; Di Tella and Schargrodsky, 2004; Draca et al., 2011; Evans and Owens, 2007; Klick and Tabarrok, 2005; Machin and Marie, 2011). Chalfin and McCrary (2017) provide a recent review of the literature on criminal deterrence in general, in which they also capture the effect of police on crime. The massively increased presence of the police in the streets on SLMO days (and the explicit announcement of the SLMO in the media) should increase the (subjective) detection probability of traffic offences and thus reduce accidents on SLMO days.

Finally, we speak to the literature presenting field evidence on the impact of information nudges. It has been shown that these comparatively cheap interventions can indeed affect behavior in many areas (see, e.g., Jensen (2010) for educational choices, Allcott and Rogers (2014) for energy consumption, Bott et al. (2019) for tax compliance, Dolls et al. (2018) and Duflo and Saez (2003) for retirement savings, or Dupas (2011) and Wisdom et al. (2010) for risky health behavior). Other studies fail to find significant behavioral impacts of information nudges in particular in the form of moral appeals (see, e.g., Blumenthal et al. (2001) and Fellner et al. (2013)). Typically, information nudges are particularly effective if they provide information that results in an update of prior beliefs. Our findings are compatible with a story in which even speeders are perfectly aware of the dangers of speeding in general, which is why information nudges on the dangers of speeding do not result in an update of beliefs, and consequently, do not more sustainably change driving behavior in the aftermath of the SLMO day.

The German speed limit enforcement campaigns that we analyze differ from other traffic law enforcement campaigns in particular by combining the scheduled one-day massive SLMO with an extensive media campaign that not only documents the exact locations of the temporary speed traps but also explicitly informs the public about the dangers of speeding. The underlying idea is that these information nudges should increase drivers' awareness about the dangers of speeding and thus alter their driving behavior more sustainably. This setting allows us to study in a very narrow time frame whether any effects on road safety can still be found after the one-day SLMO, which could then be traced back to effective information nudges. While this campaign started out in Germany, it became a pan-European effort in 2015. Ireland has run this campaign as the 'national slow down day' since 2015. In the German public, the usefulness of the speed limit enforcement campaigns to sustainably affect road safety is highly disputed. Not only drivers but also politicians and interest groups of the police have doubted any positive effects for road safety. As a consequence, several federal sates in Germany have recently opted out of the campaigns, also because of the high planning effort and excessive use of police resources.¹ However, so far, empirical evidence on the speed limit enforcement campaigns' effectiveness in reducing the occurrence and the severity of traffic accidents is missing. Given the general relevance of traffic law enforcement strategies, our results have implications for policy makers in designing adequate interventions beyond the German and European context.

The remainder of the paper is organized as follows. Section 2 provides background information about the speed limit enforcement campaigns. Section 3 describes the data. Section 4 outlines our empirical strategy. In Section 5, we present our main results and perform validity and robustness checks, while we analyze the underlying mechanisms in Section 6. We conclude in Section 7.

 $^{^1 {\}rm See,~e.g.,~https://www.faz.net/aktuell/gesellschaft/kriminalitaet/blitz-marathon-am-donnerstag-invielen-bundeslaendern-14182239.html, 2019/04/09$

2 Background

On February 10, 2012, the German federal state of North Rhine-Westphalia initiated the first massive state-wide speed limit enforcement campaign to reduce traffic accidents and casualties, and coined it "Blitzmarathon". Key features were (1) one-day lasting massive SLMO by the police using temporary speed traps, and (2) a media campaign that informed the public in advance about the locations of the speed traps, the purpose of the SLMO, and the dangers of speeding. After North Rhine-Westphalia had conducted its second Blitzmarathon on July 3, 2012, the federal state of Lower Saxony joined for the third campaign on October 24, 2012. One year later, on October 10, 2013, 15 German federal states, all states except Saxony, participated in a Blitzmarathon.² Bavaria prolonged the one-day lasting SLMO by an additional week. By the end of our period of observation in December 2014, seven one-day Blitzmarathons and two Blitzmarathon extension periods had occurred with varying participation of the German federal states. Table 1 provides a detailed overview of the Blitzmarathon dates and the respective participating states. It illustrates that apart from regional variation across participating states, we can use variation in the occurance of Blitzmarathon across day of the week, months of the year. and years. At the county level, we can draw on 1,194 treatment days for the one-day Blitzmarathons and 1,344 treatment days for the two Blitzmarathon extension periods.

Overview of the E	<u>Blitzmarathons in G</u>	ermany, 2012 to 2014	
Date	Day of the week	Federal State	Duration
February 10, 2012	Friday	North Rhine-Westphalia	one day
July 3, 2012	Tuesday	North Rhine-Westphalia	one day
October 24, 2012	Wednesday	North Rhine-Westphalia	one day
		& Lower Saxony	
June 4, 2013	Tuesday	North Rhine-Westphalia	one day
		& Lower Saxony	
October 10, 2013	Thursday	nation-wide (excl. Saxony)	one day
October 11 to 17, 2013	Friday to Thursday	Bavaria (extension)	seven days
April 8, 2014	Tuesday	North Rhine-Westphalia	one day
		& Lower Saxony	
September 18, 2014	Thursday	nation-wide	one day
September 19 to 25, 2014	Friday to Thursday	Bavaria (extension)	seven days

Table 1Overview of the Blitzmarathons in Germany, 2012 to 2014

Notes: The table shows the dates, the participating federal states, and the duration of the Blitzmarathons between 2012 and 2014.

Detected speed limit violations may result in a warning, be treated as a regulatory offense or as a criminal offense. Monetary fines start at 10 euro (driving 10 km/h above the speed limit outside built-up areas) and may go up to 700 euro (driving more than 70 km/h above the inner city speed limit). Apart from monetary fines, drivers might get punished with malus points for traffic law violations. The more severe the violation, the more malus points a driver receives. Each driver has an account that stores all malus points from past traffic violations. If a driver crosses a certain threshold of points, he or she will (at least temporarily) lose his or her driver's license. As a result of a severe speed

 $^{^{2}}$ Saxony conducted a traffic safety campaign targeting schools and kindergartens from October 7 to 18, 2013. The Blitzmarathon on October 10, 2013, overlaps with this period. We treat the campaign in Saxony and the Blitzmarathon on October 10, 2013, as two separate campaigns. In our empirical analysis, we test the robustness of our findings by controlling for other traffic safety campaigns, including the described campaign in Saxony.

limit violation, a driver's license may be immediately suspended for up to three months. Repeated speeding may result in an unlimited suspension of the driver's license. In this case, a driver's licence can only be regained after passing a special medical-psychological test.³ While the police officially target speed limit violations during a Blitzmarathon, they can fine drivers for other offenses as well. Press releases after the Blitzmarathons reveal that the police also prosecute law violations such as not using a seat belt, talking on the phone while driving, driving under the influence of drugs and alcohol, or possessing no driver's license.

The German public has witnessed heated debates about the usefulness of these Blitzmarathons. The initiators of the campaign emphasize that their ultimate goal is to increase the awareness of the dangers of speeding and thereby reduce the number of traffic accidents and casualties.⁴ However, many people hold the view that the true motivation for setting up the Blitzmarathons is to boost state revenues through traffic fines. A poll conducted by the German newspaper magazine *Spiegel Online* right before the nation-wide Blitzmarathon on April 19, 2017, showed that more than 25 percent of all participants held the view that the Blitzmarathon was a 'pure rip-off'; another 42 percent argued that the campaign was 'useless because most notorious speeders would continue violating speed limits the day after'; only less than 33 percent believed that the campaign was 'good because it highlights the dangers of speeding'.⁵

2.1 Speed Limit Monitoring on a Blitzmarathon Day and on a Regular Day

Speed limit enforcement in Germany is a combination of automated permanent (stationary) speed traps and temporary speed traps, i.e., mobile radar or laser speed measurement systems that allow for an easy and geographically flexible speed monitoring. On Blitzmarathon days, the police substantially increase the number of temporary speed traps.

To get an idea about the usual speed limit enforcement in German counties, we have collected data on permanent speed traps and temporary speed traps on a regular non-Blitzmarathon day. The information about permanent speed traps stems from '*blitzer.de*', a for-profit organization offering speed trap warnings through their homepage and mobile app.⁶ *blitzer.de*'s editorial staff collects information about permanent speed traps through screening of radio news, websites, and social media posts. Moreover, the company sends cars on a tour to check on permanent speed traps several times a year and validate that they are activated. In 2011, before the first Blitzmarathon, we observe on average 9.0 permanent speed traps per county. Analyzing data from 2014, we see a modest increase of on average 1.2 permanent speed traps over our study period. This increase is mostly driven by the state of Hesse, where the number of permanent speed traps increased on average by 8.8 per county. To control for these changes in the empirical analysis, we introduce county-

 $^{^{3}}$ The point system changed on May 1, 2014. While monetary fines remained unchanged, drivers might lose their driver's license after committing fewer traffic violations than in the old system. In our empirical strategy, we account for this change by including time fixed effects.

⁴To underline the awareness-concept, school children sometimes help the police during a Blitzmarathon by rewarding commendable drivers with sweets. For instance, the "Westfalen Blatt" reports on September 17, 2014: "Those drivers who follow traffic regulations get sweets [from the children]. Those who drive too fast receive a lemon with an unhappy looking smiley."

⁵The poll can be found at http://www.spiegel.de/auto/aktuell/ blitzermarathon-2017-standorte-wichtige-infos-das-sollten-autofahrer-wissen-a-1143852. html, 2019/04/04.

⁶There is no public institution that collects data on this type of regular enforcement.

specific time effects.⁷ blitzer.de also provided us with county-level data about temporary speed traps on non-Blitzmarathon days. This data comes from blitzer.de's four million active users, who can easily report speed traps through the company's homepage or mobile app. blitzer.de provided us with a list of all reported temporary speed traps in October 2015.⁸ According to the editorial staff, October is a representative month for speed limit enforcement with on average 5.8 temporary speed traps per day and county. Note that even if the number of temporary speed traps is not exhaustive (because blitzer.de is not aware of all temporary speed traps every day), the numbers reflect the expectations of the population about the level of speed limit enforcement on a regular day.

To measure the intensified speed limit enforcement during a Blitzmarathon day, we take advantage of the fact that the police announce the locations of the Blitzmarathon speed traps a few days before a Blitzmarathon through the local media.⁹ Reviewing all announcements, we count the number of temporary speed traps in each county during each Blitzmarathon and relate this number to speed limit enforcement on any other day. For counties where the information could not be collected anymore through the media, we contacted the local police departments to send us the lists of speed traps they published.¹⁰ The average number of temporary speed traps on a Blitzmarathon day is 24.3 per county.

The two maps presented in Figure 1 contrast SLMO on Blitzmarathon days and non-Blitzmarathon days. To this end, we have added the number of permanent speed traps to the number of temporary speed traps for both a regular day and a Blitzmarathon day. The figure highlights both the more intense enforcement on Blitzmarathon days as compared to regular days and the geographical variation in the intensity of the Blitzmarathon across counties even within federal states.

Table 2 exemplifies the intensity of the SLMO for the federal state of North-Rhine Westphalia, which participated in all Blitzmarathons. Taking the length of the roads in North-Rhine Westphalia and dividing it by the total number of speed traps, we obtain the average distance in km at which a driver should expect a speed trap. We compute this distance for a Blitzmarathon day and for a regular day. Using an average driving distance of 24 km per day (Lenz et al., 2010), an average driver in North-Rhine Westphalia should expect at most one speed trap on the road on a regular day. This number increases by almost a factor of three on a Blitzmarathon day. Comparing temporary speed traps only, drivers should expect five times more speed traps on a Blitzmarathon day than on a regular day.

⁷Note that the effect of permanent speed traps on driving behavior might differ from the effect of temporary speed traps. The police can relocate temporary speed traps at different places every time they are set up, while permanent speed traps remain fixed to a location. Hence, a county with a high number of temporary speed traps induces much more uncertainty to drivers with respect to the detection probability of speed limit violations than a county with the same number of permanent speed traps.

⁸Unfortunately, there is no data for the pre-treatment year 2011. Therefore, if temporary speed traps increased over the years, we may underestimate the increase in speed limit enforcement on a Blitzmarathon day as compared to a regular day.

⁹The public can suggest locations where temporary speed traps should be installed on a Blitzmarathon day. For example, for the second Blitzmarathon in North-Rhine Westphalia on July 3, 2012, more than 15,000 people nominated locations. The police implemented around 2,700 of these suggestions for the Blitzmarathon.

¹⁰For North Rhine-Westphalia, information is missing for one county during three Blitzmarathons as the county did not announce the exact locations of the speed traps. Similarly, the states of Baden-Wuerttemberg and Saxony did not announce the exact locations of the speed traps for the fifth and seventh Blitzmarathon, respectively.

Figure 1 Speed Limit Enforcement on a Regular Day and on a Blitzmarathon Day

(a) Speed traps on a regular day

(b) Speed traps on a Blitzmarathon day

Notes: The figure shows the total number of speed traps per county during a regular day [Panel (a)] and during a Blitzmarathon day [Panel (b)]. The total number of speed traps is the sum of temporary and permanent speed traps. In Panel (b), temporary speed traps are the average number of speed traps per county over all Blitzmarathons in which the respective county participated in the operations. The federal state of Saxony participated one time in a Blitzmarathon, but did not announce all speed traps in advance through the media.

lar day Blitzma	rathon-day
1)	(2)
75 2	,379
44	944
419 3	,323
21	9
.1	2.7
52	12
0.4	2.0
	1) 75 2 44 419 3 21 1 52 0.4

 Table 2

 Speed Limit Enforcement in North-Rhine Westphalia

Notes: The table shows speed limit enforcement in the federal state of North-Rhine Westphalia for a regular day (column (1)) and a Blitzmarathon day (column (2)). Total length of all roads is 29,582 km; average distance by car per day is 24 km (Lenz et al., 2010).

2.2 Media Campaign and Public Awareness

The details of the massive SLMO on a Blitzmarathon day are explicitly announced in a media campaign. In particular, the police disclose the exact date of a Blitzmarathon one to one and a half weeks in advance. In addition, they reveal the speed traps' locations a few days before a Blitzmarathon. Local print media, radio, and television as well as online news sources would print the speed traps' locations as forwarded by the police starting around three days before a Blitzmarathon. This information allows the public to form expectations about the extent of SLMO on Blitzmarathon days and should increase the subjective detection probability of a speed limit offense.

Announcing the Blitzmarathons, the local media also extensively report about the dangers of speeding, cite the county's current accident statistics, illustrate the vulnerability of pedestrians and bicyclists, or quote police officers and politicians explaining the purpose of the Blitzmarathon. By providing this information, the initiators try to nudge drivers to behave more responsibly and comply with speed limits. The following quotes provide examples of information nudges in the local media in advance of a Blitzmarathon:

- With a car driving speed of 50 km/h, eight out of ten pedestrians survive in case of an accident. With a car driving speed above 65 km/h, it is the other way around: eight out of ten pedestrians die in case of an accident. (Westdeutsche Zeitung, 02-07-2012)
- Last year, we counted 6,000 road accidents in Freiburg, in which almost 1,200 people were slightly injured and 140 were severely injured. 6 people died. (Badische Zeitung, 09-10-2013)
- With this initiative [the Blitzmarathon] we want to increase the awareness that speeding constitutes the highest risk [for traffic casualties] on German roads. With the Blitzmarathons, we want to promote a considerate driving culture on our roads. (Minister of the Interior of Lower Saxony in Bersenbrücker Kreisblatt, 04-07-2014)

To provide quantitative evidence that the public was well aware of the Blitzmarathons, we have gathered data from Google Trends' weekly search volume index for the word 'Blitzmarathon'. Google Trends counts the weekly number of searches for a specific term and relates this number to the global maximum of weekly searches for that term within the specified period. Hence, the week with the maximum number of searches for a specific term scores 100 in the weekly search volume index. To better assess the magnitude of the search activity for 'Blitzmarathon', we compare the weekly search volume index for the term 'Blitzmarathon' to the terms 'Arbeitslosigkeit' (unemployment) and 'Klimawandel' (climate change), two terms which are of continuous public interest. In Figure 2, we plot the search activity for these three terms from 2011 to 2014 separately for two states, namely for North Rhine-Westphalia, which participated in all seven Blitzmarathons (Panel (a)), and for Bavaria, which only participated in the two nation-wide Blitzmarathons (Panel (b)). The grey bars mark three week periods consisting of the week of a Blitzmarathon, the week before, and the week after. Filled bars indicate that North Rhine-Westphalia (Panel (a)) or Bavaria (Panel (b)) participated in the respective Blitzmarathon.

Figure 2 yields three key results: (1) There are more Google searches using the term 'Blitzmarathon' around a Blitzmarathon day than usual – also relative to searches using 'Arbeitslosigkeit' (unemployment) and 'Klimawandel' (climate change). (2) Search volumes around a Blitzmarathon correlate with the participation of a state in a Blitzmarathon. (3) The first Blitzmarathon received less attention compared to subsequent ones; the two nation-wide Blitzmarathons gained the most attention.¹¹

(a) Comparative weekly search volume index, North Rhine-Westphalia

(b) Comparative weekly search volume index, Bavaria

Notes: Panel (a) compares Google Trends' weekly search volume index for the word 'Blitzmarathon' for North Rhine-Westphalia to the terms 'Arbeitslosigkeit' (unemployment, light grey) and 'Klimawandel' (climate change, dark grey) from 2011 to 2014. Participation of North Rhine-Westphalia in a Blitzmarathon is marked by "x". Panel (b) compares Google Trends' weekly search volume index for the word 'Blitzmarathon' for Bavaria to the two terms 'Arbeitslosigkeit' (unemployment; light grey) and 'Klimawandel' (climate change; dark grey). Google assigns a value of 100 to the maximum number of searches within the specified period. Each bar marks a three week period: the week of a Blitzmarathon, the week before, and the week after. Filled bars mark Blitzmarathons in which the respective state did participate, unfilled bars bars mark Blitzmarathons in which the respective state did not participate.

To obtain a more complete and fine-grained picture, we have also collected the number of daily news media articles including the term 'Blitzmarathon' from the WiSo database

¹¹Additional analyses for the other German federal states support the finding that the search volume highly correlates with a state's participation in a Blitzmarathon. Moreover, comparing search volumes for the term 'Blitzmarathon' to the search volumes for more general expressions for speed limit enforcement such as 'Radarkontrolle' or 'Blitzer' yields very similar patterns.

(a) Average number of press articles

(b) Average number of Twitter Tweets

Notes: The figure shows the average daily number of press articles including the word 'Blitzmarathon' according to the WiSo database (Panel (a)) and the daily number of Twitter tweets including the word 'Blitzmarathon' (Panel(b)) 15 days before and a after a Blitzmarathon.

and the daily number of Twitter tweets including the term 'Blitzmarathon'. The WiSo database provides full text access to 60 million press articles from more than 150 regional and national newspapers in Germany, which allows a comprehensive media monitoring.¹² Regarding Twitter, we extracted about 13,000 Blitzmarathon tweets that may belong to accounts of the media, private persons, or government institutions (including the police).¹³ Panel (a) of Figure 3 shows that media coverage starts to increase on average about three days before a Blitzmarathon; three days after a Blitzmarathon, the media rarely covers the topic. The former observation supports our argument that the public knows beforehand about the intervention. A very similar pattern appears if we look at the number of Twitter tweets in Panel (b) of Figure 3. The number of Twitter tweets starts to increase around two days before a Blitzmarathon; two days after the Blitzmarathon, the campaign rarely receives attention on Twitter. Complementing this quantitative analysis, media sources reported that Twitter listed the hashtag '#Blitzmarathon' as the number one hashtag during the seventh Blitzmarathon (Handelsblatt, September 19, 2014).

Our analysis in this section has shown that the public is aware of the Blitzmarathon campaigns, in which SLMO are massively increased as compared to regular days. Roughly three days before the operation, Blitzmarathons start to get intense press and online media attention. To investigate whether drivers respond to the increased detection probability of speed limit violations in the very short run and whether the campaigns have a more sustainable effect on driving behavior, we exploit the quasi-experimental nature of the Blitzmarathons using rich register data.

¹²Using the platform Lexis Nexis, which provides full text access to over 75 regional and national newspapers, yields very similar results.

¹³We extracted the tweets manually from Twitter's advanced search, which contains a list of unfiltered tweets for the search term. While APIs are available and generally make data collection easier, Twitter currently only allows to go back seven days in time.

3 Data

3.1 Register Data on Police Reported Accidents

Our primary data source is the police reported accident statistic maintained by the Statistical Offices of the German states (Landesämter für Statistik). This register data set covers the universe of police reported vehicle crashes in Germany. The police report all accidents with slightly, severely, or fatally injured to the Statistical Offices. In addition, the police report accidents with material damage if at least one vehicle is non-roadworthy and the accident involves a traffic offense, e.g., speeding or ignoring the right of way. Accidents on which the involved parties reach a private agreement without giving notice to the police do not appear in the data. Each accident record contains information on the number of slightly, severely, and fatally injured as well as on characteristics of the people involved, the scene and the causes of the accident. For our sample period from 2011 to 2014, we have detailed information about 1.5 million police reported accidents.

We apply some restrictions to the accident data set to construct the sample for the main analysis. First, we exclude accidents where the person who caused the accident was conducting a train or omnibus, as these follow different traffic regulations and/or are not targeted by the Blitzmarathons. Moreover, we exclude accidents where the person who caused the accident was a bicyclist or a pedestrian. As we can see from the media quotes in section 2, the police motivate the Blitzmarathons also with the vulnerability of bicyclists or pedestrians in motor vehicle accidents. Feeling more protected during the Blitzmarathons, bicyclists or pedestrians might change their behavior and act in a more risky way. In additional analyses, we will also look at accidents where the person who caused the accident was a bicyclist or pedestrian. Because the Blitzmarathons focus on regular working days and weekends, we drop all days with a public holiday in any state. Since public holidays are often used for short getaways, we also drop long weekends and the day before a long weekend, which span the days from Wednesday (Thursday) to Sunday when the public holiday is a Thursday (Friday); or the days from Friday to Monday (Tuesday) when the public holiday is a Monday (Tuesday). Finally, for each county, we aggregate accidents at the day level.

Our sample includes the number of accidents, slightly injured, severely injured, and fatally injured for each of the 402 counties in Germany on a daily basis from January 1st, 2011 to December 31, 2014. Panel (a) in Table 3 provides summary statistics for these accident variables. The police register on average 2.4 accidents per day and county, summing up to around 950 accidents per day in Germany. In these 950 accidents, 770 people are slightly injured, 150 severely injured, and 8 fatally injured. In supplementary analyses, we use additional information on specific characteristics of the person who caused the accident (gender, age, probation period) and of the accident scene (type of road, speed limit, cause of accident).

3.2 Traffic Volume and Driving Speed Data

In addition to the police reported accident statistic, we draw on hourly data on traffic volume provided by the Federal Highway Research Institute (Bundesanstalt für Straßenwesen, BASt). Inductive loops embedded in the road pavement measure the hourly number of passenger vehicles (cars and motorbikes) and trucks passing a monitoring station. In total, we use traffic volume information from 1,408 automated monitoring stations in-

Summary Sta	tistics				
Variable	Ν	Mean	S.D.	Min	Max
(a) Accidents					
Number of accidents	493,518	2.362	3.132	0	75
Slightly injured persons	493,518	1.916	3.061	0	73
Severely injured persons	493,518	0.367	0.774	0	32
Fatally injured persons	$493,\!518$	0.021	0.157	0	8
(b) Traffic volume on non-freeway roads [1,000 v	ehicles/h]				
Passenger vehicles	$40,\!898,\!880$	0.252	0.335	0	6.320
Trucks	$40,\!898,\!880$	0.023	0.034	0	0.513
Passenger vehicles [q/v-data]	$20,\!462,\!014$	0.265	0.265	0	6.821
Trucks [q/v–data]	$20,\!433,\!158$	0.021	0.036	0	3.135
(c) Driving speed on non-freeway roads [km/h]					
Passenger vehicles [q/v-data]	20,244,303	70.748	17.674	1	254
Trucks [q/v–data]	$17,\!501,\!447$	64.273	13.670	1	153
(d) Weather control variables					
Mean temperature (° C)	493,518	9.712	7.321	-19.1	30.6
Precipitation (mm)	$493,\!518$	1.980	4.558	0.0	111.4
Snow cover	$493,\!518$	0.070	0.254	0	1
Missing mean temperature	$493,\!518$	0.008	0.089	0	1
Missing precipitation (mm)	$493{,}518$	0.009	0.097	0	1
Missing snow cover	$493,\!518$	0.117	0.322	0	1
(e) Vacation control variables					
Last school day before a school vacation	$493,\!518$	0.011	0.106	0	1
School vacation	$493,\!518$	0.229	0.420	0	1
Last day of a school vacation	$493,\!518$	0.010	0.099	0	1

Table 3Summary Statistic

Notes: The table shows the number of observations, mean, standard deviation, minimum, and maximum for the variables in the data. Panels (a), (d), and (e) are based on county-day observations; Panels (b) and (c) are based on monitor-hour observations.

stalled on non-freeway roads covering 273 out of 402 counties and spanning the period from 2011 to 2014. Appendix Figure B1 provides an overview of the spatial distribution of the monitoring stations. Panel (b) in Table 3 summarizes the traffic volume data. On average, 250 passenger vehicles and 20 trucks pass a monitoring station every hour.

Although no public organization systematically collects data on driving speed throughout Germany, we were able to receive hourly driving speed data from the state of Hesse (Hessen Mobil) as well as from the state of North Rhine-Westphalia (Landesbetrieb Straßenbau NRW) for the Ruhr area, a large region in this state. Using inductive monitoring loops or infrared detectors, driving speed is reported as the average hourly driving speed in km/h for passenger vehicles and trucks passing a monitoring station. Importantly, the police do not use the inductive loops or infrared detectors for speed limit enforcement. Moreover, because the loops are embedded in the road pavement and infrared detectors are rather small, the monitoring is not readily visible compared to the speed cameras used for enforcement. This ensures that the monitors measure driving speed which is unbiased by drivers' short-run reactions to visible speed limit monitoring. In total, we have information from 1,017 monitoring stations installed on non-freeway roads spanning the period from 2012 to 2014 and covering 39 counties. Appendix Figure B2 provides an overview of the spatial distribution of the monitoring stations. Panel (c) in Table 3 summarizes the driving speed data. Passenger vehicles pass a monitoring station with on average 71 km/h; trucks with 64 km/h. Note that the maximum speed limit on non-freeway roads is 100 km/h for passenger cars and 80 km/h for trucks.¹⁴

As the driving speed data also contains information about traffic volume, we can compare this traffic volume data covering only 10 percent of all German counties to the more extensive traffic volume data introduced in the previous paragraph. This should give us an idea about how representative the driving speed data are for the general traffic situation in Germany. And indeed, the means for traffic volume are very similar across these two data sets. In the driving speed data, 265 passenger vehicles and 21 trucks pass a monitoring station every hour as compared to 252 passenger vehicles and 23 trucks in the data provided by the Federal Highway Research Institute (see Panel (b) in Table 3).

3.3 Weather and Vacation Data

Finally, we have collected county level data about weather conditions and school vacations on a daily basis for the period from 2011 to 2014. Weather data comes from the National Meteorological Service of Germany (Deutscher Wetterdienst, DWD) and contains information about the daily temperature in $^{\circ}C$, the amount of precipitation in mm, and snow cover for 523 weather stations. For each county, we use the weather station that is closest to the center of the county. We impute missing values in the weather data with the daily mean value in the data. In the empirical analysis, we will include indicators for missing values.¹⁵ Information on school vacations is provided by the Standing Conference of the Ministers of Education and Cultural Affairs of the German states (Ständige Konferenz der Kultusminister). Using this data, we generate a dummy variable equal to one for school vacation days. Moreover, we generate a dummy variable for the last school day before a school vacation and a dummy variable for the last day of a school vacation.

¹⁴Unfortunately, we do not have information on the exact speed limit at each monitoring station.

¹⁵Missing values on snow cover are mainly concentrated in the summer time and the imputed values should produce very credible proxies. Dropping missing values instead of imputing them from the data yields very similar results.

4 Empirical Strategy

To identify the causal effect of the Blitzmarathons on road safety, we apply a generalized difference-in-differences approach which exploits state and day variation in the occurrance of Blitzmarathons.¹⁶ In its standard specification, the estimation equation takes the following form:

$$Y_{ct} = \beta_0 + \beta_1 (Blitzmarathon_{st}) + \beta_2 X_{ct} + \mu_y + \pi_m + \rho_d + \theta_c + \epsilon_{ct}$$
(1)

where Y_{ct} refers to the number of accidents or the number of road casualties on date t in county c. $Blitzmarathon_{st}$ denotes our variable of interest and equals one for every county of state s in which a Blitzmarathon, i.e., massive announced SLMO, is in force on date t, and is zero otherwise. We control for year (μ_y) , month-of-year (π_m) , and day-of-week (ρ_d) fixed effects, which absorb any time-varying shocks that are common to all counties, e.g., differences in traffic volume and, thus, accidents across days of the week or over the course of a year. X_{ct} includes controls for weather conditions and school vacations in county c at date t. Variables for weather conditions include the daily temperature in $^{\circ}C$, the amount of precipitation in mm, a dummy for snow cover, and three dummies indicating missing values for daily temperature, precipitation, and snow cover, respectively. The variables for school vacation include a dummy for school vacation days, a dummy for the last school day before a school vacation, and a dummy for the last day of a school vacation. The inclusion of county fixed effects (θ_c) absorbs any time-invariant heterogeneity across counties. ϵ_{ct} is an idiosyncratic error. Given the grouped structure of our data, we cluster standard errors at the county level to allow for serial correlation within counties.

In the most extensive specifications, we interact the full set of time fixed effects as well as all weather and vacation controls with county dummies. The resulting countyspecific time effects control not only for county-specific changes in traffic volume but also, for instance, for county-specific changes in automated permanent speed traps. Countyspecific weather and vacation effects capture, for example, the possibility that specific vacations might cause traffic volume and, thus, accidents to increase more in a specific county than in other counties.

The key identifying assumption for β_1 to yield the unbiased causal effect of massive announced SLMO on road safety is that treated and untreated counties would follow a common time trend in accidents in absence of the Blitzmarathon. Hence, we assume that conditional on county fixed effects as well as the full set of time fixed effects, weather and vacations controls (and all their interactions with county fixed effects), the occurance of a Blitzmarathon is uncorrelated with unobservable factors that affect road safety.

To check the validity of the key identifying assumption, we will perform placebo treatment tests in the pre-treatment period and investigate whether the Blitzmarathon affects placebo outcomes. Moreover, we will examine whether the Blitzmarathon has any effects beyond the SLMO day itself. This analysis will reveal whether drivers' behavior is altered even if the detection probability for speed limit violations has returned to its

 $^{^{16}}$ Our empirical strategy largely follows Bauernschuster et al. (2017) who estimate the effect of public transit strikes on traffic, accidents, air pollution, and health.

pre-treatment level. This could be the case if the media campaigns' information nudges on the dangers of speeding are effective.

In specifications in which we estimate the effect of the Blitzmarathons on traffic volume and driving speed, we replace the county fixed effects with monitoring station fixed effects. Because traffic volume and driving speed data is hourly data, we additionally include hour-of-day and hour-of-day×day-of-week fixed effects (as well as their interactions with monitor dummies). To account for the varying number of monitoring stations across counties, we weight observations with the inverse of the number of stations within each county.

5 Main Results

5.1 The Immediate Effect of Blitzmarathons on Traffic Accidents

Table 4 reports the main results for the immediate effects of the Blitzmarathons, i.e., days with massive announced SLMO, on road safety. Panel (a) shows the effects on the number of traffic accidents. In column (1), we start with a basic specification in which we only control for county fixed effects and the set of time fixed effects (day-of-week, month-of-year, and year fixed effects). We find a highly significant negative effect of Blitzmarathons on the number of traffic accidents. Adding weather controls (column (2)) and vacation controls (column (3)) slightly increases the point estimate. In column (4), we introduce interactions between the county fixed effects and the full set of time fixed effects, which leaves the point estimate virtually unaffected. Moreover, the estimate is unchanged when we allow for county-specific weather effects (column (5)) and countyspecific vacation effects (column (6)). The highly significant point estimate from the most extensive specification suggests that on the day of a Blitzmarathon, traffic accidents decline by 7.5 percent as compared to regular days. Panel (b) depicts the effects of Blitzmarathons on the number of slightly injured individuals. Again, the point estimates are very stable across the different specifications and statistically highly significant. In our preferred specification shown in column (6), we find that the number of slightly injured individuals decreases by 8.5 percent on Blitzmarathon days. The effects of Blitzmarathons on the number of severely injured (Panel (c)) and the number of fatally injured (Panel (d)) do not reach conventional significance levels. Still, the point estimates suggest a non-negligible decline of 9.0 percent in the number of severly injured, and of 4.8 percent in the number of fatalities.

We obtain very similar results if we use the number of temporary speed traps during a Blitzmarathon instead of a simple Blitzmarathon dummy as the treatment variable. While the Blitzmarathon dummy relies on daily variation in speed limit enforcement across states, this alternative treatment variable allows us to additionally exploit variation in treatment intensity within states across counties. Table 5 shows the results of the most extensive specifications. In column (1), we see that each additional temporary speed trap reduces the number of traffic accidents on a Blitzmarathon day by 0.006. Multiplying this point estimate by the mean number of temporary speed traps in a county during a Blitzmarathon predicts a reduction in the number of accidents by $0.006 \times 24.3 = 0.146$; the magnitude of this mean effect is very similar to the respective effect we obtained using the Blitzmarathon dummy as the treatment variable (see Panel (a) in Table 4). The same is true if we move to the number of slightly injured in column (2) ($0.006 \times 24.3 = 0.146$)

The Effect	of the Blit	tzmaratho	ns on Traf	fic Accide	nts	
	(1)	(2)	(3)	(4)	(5)	(6)
(a) Number of accidents [Mean: 2.362; N: 493,518]						
Blitzmarathon	-0.121^{***}	-0.146***	-0.171^{***}	-0.174^{***}	-0.161^{***}	-0.178^{***}
	(0.044)	(0.045)	(0.045)	(0.046)	(0.046)	(0.047)
R^2	0.669	0.671	0.672	0.706	0.709	0.710
(b) Number of slightly injun [Mean: 1.916; N: 493,518]	red					
Blitzmarathon	-0.126**	-0.132**	-0.154^{***}	-0.165^{***}	-0.155^{***}	-0.163^{***}
	(0.052)	(0.052)	(0.052)	(0.052)	(0.051)	(0.052)
R^2	0.582	0.583	0.584	0.620	0.623	0.624
(c) Number of severely inju [Mean: 0.367; N: 493,518]	red					
Blitzmarathon	-0.036^{*}	-0.032	-0.035^{*}	-0.031	-0.029	-0.033
	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)
R^2	0.123	0.124	0.124	0.130	0.130	0.128
(d) Number of fatally injure [Mean: 0.021; N: 493,518]	ed					
Blitzmarathon	-0.002	-0.001	-0.002	-0.001	-0.001	-0.001
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
R^2	0.122	0.123	0.124	0.129	0.129	0.128
County FE	×	×	×	×	×	×
Time FE	×	×	×	×	×	×
Weather		×	×	×	×	×
Vacation			×	×	×	×
County \times Time FE				×	×	×
County \times Weather					×	×
County \times Vacation						×

			Table 4				
ъœ	C + 1	D114	.1	m	m	٨	• 1

Notes: The table shows the effect of the Blitzmarathons on the number of traffic accidents [Panel (a)], slightly injured [Panel (b)], severely injured [Panel (c)], and fatally injured [Panel (d)]. Each column in each row presents a separate regression. All regressions are run at the county-day level. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. County \times Time, County \times Weather, and County \times Vacation are interaction of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. Standard errors (in parentheses) are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01

and the number of severly injured in column (3) $(0.001 \times 24.3 = 0.024)$. The latter effect now even turns marginally significant. We do not find any negative effects for the number of fatally injured (column (4)). In sum, the results from Table 4 and Table 5 show that the massive announced SLMO on Blitzmarathon days cause an immediate, economically meaningful and statistically significant reduction in the number of traffic accidents and casualties.

Table 5

The Effect of the Blitzmara	thons on Tr	affic Accidents:	Number of Spe	eed Traps
	Number of accidents (1)	Number of slightly injured (2)	Number of severely injured (3)	Number of fatally injured (4)
No. of temporary speed traps	-0.006***	-0.006*	-0.001^{*}	0.002
	(0.002)	(0.003)	(0.001)	(0.014)
Mean	2.362	1.916	0.367	0.021
Ν	$493,\!458$	$493,\!458$	$493,\!458$	$493,\!458$

Notes: The table shows the effect of the Blitzmarathons on the number of traffic accidents, slightly injured, severely injured, and fatally injured. The variable "No. of speed traps" counts the number of temporary speed traps in a county on a Blitzmarathon day. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last day before a school vacation, and the last day of a school vacation. Standard errors (in parentheses) are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01

5.2 The Effect of Blitzmarathons on Traffic Accidents over Time

In a next step, we investigate the validity of the common trend assumption and analyze how persistent the effect of the Blitzmarathons is over time. To this end, we add a set of dummy variables for the time spanning 15 days before and 15 days after a Blitzmarathon day to the most extensive specification of equation 1. We group the days before and after a Blitzmarathon in intervals of three so that we add five pre-treatment and five post-treatment indicators to our preferred specification.¹⁷ The coefficients of these dummy variables show how the accidents in the treated units evolve before and after a Blitzmarathon relative to the untreated units. Consequently, this specification allows us to perform placebo treatment tests in the pre-treatment period to assess the validity of the common trend assumption underlying the difference-in-differences approach. Moreover, this specification allows us to inspect the existence of any more sustainable effects of Blitzmarathons on road safety in the days after the massive announced SLMO. This could in particular be the case if the media campaigns' information nudges on the dangers of speeding are effective. Table 6 depicts the results of this analysis, from which we draw three conclusions.

First, the results from Table 6 provide evidence for the validity of the key identifying assumption, namely that treatment and control units follow the same trend in accidents in absence of the treatment. The coefficients of the indicator variables covering days

¹⁷The resulting pattern remains very similar if we group the days in intervals of two. The pattern becomes somewhat noiser if we use single days since the sample restriction to weekdays lowers the number of observations for days around a Blitzmarathon.

4 to 15 before a Blitzmarathon are small and far away from conventional significance levels for all four outcome variables; the only exception is the coefficient indicating 13-15 days before a Blitzmarathon in column (1), which is marginally significant. Even when looking at the size and signs of the pre-treatment coefficients in more detail, we do not detect any conspicuous pattern which would suggest a systematic deviation from the common trend in the pre-treatment period. The fact that accidents in treated units do not evolve differently from accidents in untreated units in the period of 4 and 15 days before the Blitzmarathon corroborates the validity of the key identifying assumption of the generalized difference-in-differences approach.

	Tal	ble 6		
The Effect of the Bl	itzmarathon	ns on Traffic Ac	cidents over Tin	ne
	Number of	Number of	Number of	Number of
	accidents	slightly injured	severely injured	fatally injured
	(1)	(2)	(3)	(4)
13–15 days before	-0.060*	-0.007	0.010	0.003
	(0.031)	(0.040)	(0.017)	(0.003)
10–12 days before	-0.012	-0.032	0.013	-0.000
	(0.028)	(0.033)	(0.013)	(0.003)
7–9 days before	-0.031	-0.019	-0.014	0.002
	(0.035)	(0.035)	(0.013)	(0.003)
4–6 days before	0.049	0.006	-0.004	-0.001
	(0.047)	(0.050)	(0.017)	(0.003)
1–3 days before	-0.112^{***}	-0.105^{***}	-0.019	-0.001
	(0.036)	(0.036)	(0.015)	(0.002)
Blitzmarathon	-0.188^{***}	-0.172^{***}	-0.032	-0.001
	(0.046)	(0.051)	(0.021)	(0.005)
1–3 days after	0.005	0.034	0.000	-0.000
	(0.033)	(0.038)	(0.016)	(0.003)
4–6 days after	-0.059^{*}	-0.041	0.006	0.004
	(0.034)	(0.040)	(0.016)	(0.004)
7–9 days after	-0.005	-0.017	0.020	-0.001
	(0.033)	(0.036)	(0.014)	(0.003)
10–12 days after	-0.018	-0.056	0.012	0.006
	(0.034)	(0.038)	(0.016)	(0.004)
13–15 days after	-0.003	-0.031	0.003	-0.003
	(0.034)	(0.039)	(0.015)	(0.003)
Mean	2.362	1.916	0.367	0.021
N	493,518	493,518	493,518	493,518

Notes: The table shows the effect of the Blitzmarathons +/-15 days on the number of traffic accidents [Column (1)], slightly injured [Column (2)], severely injured [Column (3)], and fatally injured [Column (4)]. We group the 15 days before and after a Blitzmarathon in three-day intervals. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Standard errors (in parentheses) are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01

Secondly, we find a quantitatively important and highly significant reduction of 4.7 percent in the number of accidents (column (1)) and 5.4 percent in the number of slightly injured (column (2)) one to three days before a Blitzmarathon. The timing of these reductions coincides with the onset of the media coverage and Twitter tweets before a

Blitzmarathon (see Figure 3). Note that we also find negative but insignificant coefficients for the number of severely injured and fatally injured one to three days before a Blitzmarathon. The effects observed shortly before the Blitzmarathon are roughly 60 percent of the treatment effect on the Blitzmarathon day itself. There are two possible explanations for this finding. It might be that the media coverage of the Blitzmarathon makes people aware of the dangers of speeding, which in turn induces them to drive more slowly and responsibly. Alternatively, people might have heard about the upcoming Blitzmarathon in the news but are not sure anymore about the exact date, which is why they take precautions and drive more slowly to avoid fines.

Thirdly, and probably most interestingly, the effects of the Blitzmarathons on traffic accidents and casualties disappear immediately after the termination of the one-day lasting massive SLMO. As can be seen from Table 6, the post-Blitzmarathon coefficients are small and insignificant for all four outcome variables. This finding suggests that the Blitzmarathons do not have a persistent effect on road safety. Particularly note that we do not find any evidence for Blitzmarathon effects one to three days after the massive SLMO despite the fact that the Blitzmarathons still receive considerable media coverage (Figure 3). Thus, in contrast to the initiators' idea, drivers do not seem to reconsider their driving behavior more sustainably as a reaction to the media campaigns highlighting the dangers of speeding. Rather, it seems that the reason why accidents decline shortly before and on the Blitzmarathon days is that people try to avoid fines by driving more slowly and responsibly. Once they understand that the massive SLMO are over and the detection probability of violating speed limits has returned to its usual level, they continue driving as they used to.

To analyze whether the effects would last for more than one day if the massive SLMO lasted for more than one day, we now exploit the fact that the state of Bavaria extended each Blitzmarathon by an additional seven days. There is no difference in the implementation of the Blitzmarathon extensions compared to the one-day Blitzmarathons. However, even though treatment exposure during the extension periods is similar to the one-day Blitzmarathons, drivers may become more familiar with the speed traps' locations during the extension period, leading to responsible driving only at the exact speed traps' locations. We first estimate the effect of the first day of the Blitzmarathons for Bavaria only. We do so by dropping all Blitzmarathon days outside the state of Bavaria as well as all days of the Blitzmarathon extension period in Bavaria. As Bavaria participated only in two Blitzmarathon campaigns, this reduces the number of treatment days at the county level substantially to $2 \times 96 = 192$. Then, to estimate the effect of the Blitzmarathon extensions in Bavaria, we drop all one-day Blitzmarathons and add the observations for the two extension periods. The number of treatment days at the county level substant periods. The number of treatment days at the county level substant periods. The number of treatment days at the county level substant periods.

Panel (a) of Table 7 depicts the effects of the first day of the Blitzmarathons in Bavaria while Panel (b) presents the effects for the extension periods. The point estimates in Panel (a) are somewhat smaller than our main estimates presented in column (6) of Table 4. Due to the low number of treatment units in this specification, it is not surprising that the effects are rather imprecisely estimated. However, the estimates in Panel (b) clearly show that continuing the publicly announced SLMO for another seven days keeps reducing the number of traffic accidents and slightly injured. In particular, the highly significant point estimates for the extension period are very similar to the point estimates of the first

The Effect of the Bl	itzmarathor	n–Extensions or	n Traffic Acciden	nts
	Number of	Number of	Number of	Number of
	accidents	slightly injured	severely injured	fatally injured
	(1)	(2)	(3)	(4)
(a) Blitzmarathon in Bavaria				
Blitzmarathon (Bavaria)	-0.106	-0.159^{*}	0.036	-0.001
	(0.084)	(0.087)	(0.046)	(0.012)
Mean	2.361	1.915	0.367	0.021
Ν	$492,\!516$	492,516	492,516	492,516
(b) Blitzmarathon Extension in	Bavaria			
Extension Blitzmarathon	-0.104***	-0.139***	0.002	0.005
	(0.031)	(0.034)	(0.015)	(0.004)
Mean	2.360	1.914	0.367	0.021
Ν	$493,\!668$	493,668	493,668	493,668

 Table 7

 The Effect of the Blitzmarathon–Extensions on Traffic Accided

Notes: The table shows the effect of the first day of the Blitzmarathon and the effect of the Blitzmarathon extension days in Bavaria on the number of traffic accidents [Column (1)], slightly injured [Column (2)], severely injured [Column (3)], and fatally injured [Column (4)]. Each column presents a separate regression. All regressions are run at the county-day level. The sample in Panel (a) drops all one-day Blitzmarathons outside of Bavaria; the sample in Panel (b) drops all one-day Blitzmarathons and adds the observations for the two extension periods. "Blitzmarathon (Bavaria)" is as a dummy variable indicating the first day of the Blitzmarathon in Bavaria. "Extension Blitzmarathon" is a dummy variable indicating the Blitzmarathon extension days in Bavaria. All regressions include county and time fixed effects, weather controls, vacation controls, and interaction of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Standard errors (in parentheses) are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01

day of the Blitzmarathon in Bavaria.¹⁸ This finding further supports the interpretation that drivers drive more slowly and responsibly to avoid fines as long as the probability of detecting speed limit offenses is increased.

5.3 Heterogeneity of the Blitzmarathon Effect

We now investigate the heterogeneity of the Blitzmarathon effects by driver and road characteristics. These analyses will provide us with detailed insights into which accidents by which drivers are reduced by the Blitzmarathon campaigns. At the same time, some of these analyses will also enable us to further corroborate the validity of our empirical approach. To perform these analyses, we first count the number of accidents, slightly injured, severly injured, and fatally injured for specific driver and accident scene characteristics per day and county. Then, we use these newly created variables as outcome variables of a generalized difference-in-differences model along the lines of equation 1 to estimate the heterogeneous effects of the Blitzmarathons.

In Table 8, we start with an analysis of the heterogeneity of the Blitzmarathon effect by driver characteristics. The upper panel shows that most of the Blitzmarathon effects come from male drivers. In particular, the effects for the number of accidents (column (1) and the number of slightly injured (column (2)) are almost three times larger for males than for females. The point coefficients for the number of severely injured (column (3)) are insignificant and of similar size for both sexes. For the number of fatally injured (column (4), for which we could not detect any significant effects in the overall sample, we now find a statistically significant negative effect for females and no effect for males. In the mid panel, we distinguish between accidents caused by drivers in probation period and by drivers out of probation period and find that the Blitzmarathon effects are exclusively driven by the latter group. After gaining a driver's licence, drivers are on probation for two years. During this period, they are sanctioned more fiercely for traffic offenses. It seems that the strict rules for drivers on probation already largely elimit deliberate misbehavior on streets such as speeding. As a result, the Blitzmarathons do not have any extra effect on this group. Finally, the lower panel of Table 8 shows that the Blitzmarathon effects are driven by a reduction of accidents due to driving behavior and not due to external conditions.¹⁹ This is exactly what we would expected if drivers react to the Blitzmarathons' SLMO.²⁰

In a next step, we analyze on which types of road the Blitzmarathon effects materialize. The upper panel of Table 9 presents results of estimations in which we split the sample into urban counties and rural counties. Note that treatment intensity is clearly higher in rural counties, where the number of speed traps increases by a factor of 4.2 on Blitzmarathon days, while it increases by a factor of 2.1 in urban counties. Although we observe a significantly negative effect for the number of fatally injured on urban roads (column (4)), in general, most of the Blitzmarathon effects materialize on rural county roads. If we distinguish between accidents on freeways and accidents on non-freeway roads, we clearly see that Blitzmarathons significantly reduce the number of accidents, slightly injured, and severely injured on non-freeway roads, while the effect on freeways is

¹⁸Unfortunately, we lack the statistical power to show how the effect evolves within these seven days of the extension period.

¹⁹Note that these two categories are not mutually exclusive.

²⁰Further regressions show that Blitzmarathons effects particularly reduce the number of accidents by drivers younger than 26 years, aged 51 to 55, and older than 70 years (see Appendix Table B1).

Elieet liete	iogeneity b	y Biller Chara	8001180108	
	Number of	Number of	Number of	Number of
	accidents	slightly injured	severely injured	fatally injured
	(1)	(2)	(3)	(4)
(-) F l-			. ,	
(a) Female	0.040*	0.049	0.015	0.000**
Blitzmarathon	-0.048	-0.043	-0.015	-0.002
	(0.027)	(0.031)	(0.010)	(0.001)
Mean	0.727	0.644	0.106	0.004
Ν	493,518	493,518	493,518	493,518
(b) Male				
Blitzmarathon	-0.129^{***}	-0.124^{***}	-0.016	0.002
	(0.038)	(0.040)	(0.018)	(0.005)
Mean	1.562	1.224	0.255	0.017
Ν	493,518	493,518	493,518	493,518
(c) Probation period				
Blitzmarathon	-0.010	-0.013	-0.003	0.001
	(0.118)	(0.024)	(0.008)	(0.001)
Moon	(0.110)	(0.024)	(0.008)	(0.002)
Nean	0.007 402 E19	0.200	0.000 402 E19	0.003
IN .	495,518	495,516	495,518	495,518
(d) No Probation period				
Blitzmarathon	-0.145^{***}	-0.147^{***}	-0.023	-0.002
	(0.043)	(0.050)	(0.019)	(0.004)
Mean	1.841	1.510	0.284	0.016
Ν	493,518	493,518	493,518	493,518
(e) Accident due to external co	nditions			
Blitzmarathon	-0.027	-0.032*	-0.004	-0.002*
Ditelinaration	(0.017)	(0.017)	(0.007)	(0.002)
Mean	(0.017)	0.223	0.049	0.003
N	493 518	493 518	493 518	493 518
	100,010	100,010	100,010	100,010
(f) Accident due to driving beh	avior			
Blitzmarathon	-0.151^{***}	-0.131^{***}	-0.029	0.001
	(0.045)	(0.049)	(0.020)	(0.005)
Mean	2.055	1.693	0.318	0.018
Ν	493,518	493,518	493,518	493,518

Table 8
Effect Heterogeneity by Driver Characteristics

Notes: The table shows the effect of the Blitzmarathons on the number of traffic accidents [Column (1)], slightly injured [Column (2)], severely injured [Column (3)], and fatally injured [Column (4)] for different driver characteristics. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Standard error clustered at the county level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

insignificant and very close to zero. Note that (with some exceptions) there is generally no speed limit on German freeways, which means that freeways are also not targeted by the massive SLMO. Consequently, the fact that we do not find any effects on freeways further supports our interpretation that people drive more slowly and responsibly on Blitzmarathon days to avoid fines and not because they react to the information nudges about the dangers of speeding. In this sense, this analysis might also be interpreted as a placebo treatment test.

	Number of accidents (1)	Number of slightly injured (2)	Number of severely injured (3)	Number of fatally injured (4)
(a) Urban County				
Blitzmarathon	-0.064	-0.088	-0.021	-0.006**
	(0.112)	(0.110)	(0.040)	(0.003)
Mean	2.878	2.461	0.294	0.009
Ν	$131,\!367$	$131,\!367$	131,367	$131,\!367$
(b) Rural County				
Blitzmarathon	-0.224^{***}	-0.193^{***}	-0.037	0.002
	(0.049)	(0.058)	(0.025)	(0.007)
Mean	2.175	1.719	0.393	0.025
Ν	362,151	362,151	362,151	362,151
(c) Freeway				
Blitzmarathon	-0.006	-0.015	-0.003	0.003
	(0.015)	(0.015)	(0.008)	(0.003)
Mean	0.200	0.157	0.035	0.003
Ν	493,518	493,518	493,518	493,518
(d) Non-Freeway Road				
Blitzmarathon	-0.172^{***}	-0.149^{***}	-0.030*	-0.003
	(0.045)	(0.050)	(0.019)	(0.004)
Mean	2.162	1.759	0.332	0.018
Ν	493,518	493,518	493,518	493,518

Table 9	
Effect Heterogeneity by Road (Characteristics

Notes: The table shows the effect of the Blitzmarathons on the number of traffic accidents [Column (1)], slightly injured [Column (2)], severely injured [Column (3)], and fatally injured [Column (4)] for different road characteristics. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Standard error clustered at the county level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

To further refine this placebo treatment test, we now explicitly focus on accidents happening on road segments without any speed limit and therefore also without any SLMO even on Blitzmarathon days. As can be seen from Table 10, the estimated effects for accidents and casualties on road segments without any speed limit are all insignificant and very close to zero. Again, this corroborates the interpretation that people drive more carefully on Blitzmarathon days as a reaction to the higher expected detection probability of speed limit offenses, and not because they reconsider their driving behavior more generally as a reaction to the media campaigns providing information on the dangers of speeding. The remaining results depicted in Table 10 reveal that the Blitzmarathon effects are largely driven by accidents on roads with a speed limit of 50 km/h and to a somewhat lesser extent by accidents caused by bicylists and pedestrians to our sample and show that Blitzmarathons do reduce the number of accidents of car drivers but not those of motorbike drivers, truck drivers, biyclists or pedestrians (see Appendix Table B2).

	Number of	Number of	Number of	Number of		
	accidents	slightly injured	severely injured	fatally injured		
	(1)	(2)	(3)	(4)		
(a) No Speed Limit						
Blitzmarathon	0.001	0.006	0.005	0.004		
Bitzinaration	(0.011)	(0.012)	(0.005)	(0.004)		
Meen	(0.011)	(0.012)	(0.007)	(0.003)		
N	0.132	0.099	402 518	402 518		
1	495,516	495,516	495,516	495,516		
(b) Speed Limit 30 km/h						
Blitzmarathon	0.030^{*}	0.019	0.003	0.000		
	(0.017)	(0.015)	(0.006)	(0.001)		
Mean	0.211	0.146	0.022	0.001		
Ν	493,518	493,518	$493,\!518$	493,518		
(c) Speed Limit 50 km/h						
Blitzmarathon	-0.110^{***}	-0.098**	-0.014	-0.002		
	(0.036)	(0.040)	(0.013)	(0.002)		
Mean	1.342	1.102	0.154	0.005		
N	493.518	493.518	493.518	493.518		
(d) Speed Limit 70 km/h	,	,	,	,		
Blitzmarathon	0.049***	0.035**	0.011	0.001		
Ditzinaration	-0.042	(0.015)	-0.011	(0.001)		
Moon	(0.012)	(0.015)	(0.008)	(0.002)		
N	403 518	403 518	403 518	403 518		
11	495,518	495,516	495,516	495,516		
(e) Speed Limit 100 km/h						
Blitzmarathon	-0.043^{**}	-0.040*	-0.013	-0.002		
	(0.018)	(0.021)	(0.011)	(0.003)		
Mean	0.454	0.366	0.118	0.010		
Ν	493,518	493,518	$493,\!518$	493,518		
(f) Speed Limit 130 km/h						
Blitzmarathon	-0.004	-0.006	-0.002	-0.000***		
	(0.005)	(0.005)	(0.002)	(0.000)		
Mean	0.028	0.023	0.005	0.000		
Ν	493,518	493,518	493,518	493,518		

 Table 10

 Effect Heterogeneity by Speed Limit

Notes: The table shows the effect of the Blitzmarathons on the number of traffic accidents [Column (1)], slightly injured [Column (2)], severely injured [Column (3)], and fatally injured [Column (4)] for different road characteristics. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Standard error clustered at the county level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

5.4 Robustness Checks

To check the robustness of our findings, we now slightly modify the outcome variables. In particular, we use the number of accidents with material damage only, the number of accidents with slightly injured, the number of accidents with severely injured, and the number of accidents with fatally injured as the new dependent variables. In Appendix Table B3, we again start with a basic specification which only includes the set of time fixed effects and county fixed effects (column (1)). Then, we add weather controls (column

(2)), vacation controls (column (3)), interactions between county fixed effects and the set of time fixed effects (column (4)), interactions between county fixed effects and weather controls (column (5)), and finally interactions between county fixed effects and vacation controls (column (6)). In the most extensive specification, we find significantly negative effects of the Blitzmarathons on the number of accidents with material damage and on the number of accidents with slightly injured. The effect on the number of accidents with severely injured is negative and marginally significant, while the effect on the number of accidents with fatally injured is negative yet insignificant.

In another robustness test, we control for the occurance of other smaller scale traffic law enforcement campaigns. In particular, the Traffic Information System Police (TISPOL) is a network of traffic police forces within the European Union and carries out pan-European traffic law enforcement operations with a focus on speed, seat belt use, and driving under the influence of alcohol and drugs.²¹ TISPOL operations usually last for one week without prior announcement of the geographical concentration of the police enforcement effort and receive much less media attention than the Blitzmarathons. For instance, while the news articles search using the term 'Blitzmarathon' yields 5,027 articles for seven Blitzmarathons, the term 'TISPOL' yields only 123 hits for 23 TISPOL operations in the same period. Moreover, the dimension of these enforcement operations is much smaller than the dimension of the Blitzmarathons. While during a TISPOL operation from April 18 to 24, 2011, 300 police officers monitored driving speed throughout Germany, more than 13,000 did so during the nation-wide Blitzmarathon in 2014. We create a dummy variable which is unity if a TISPOL operation is in force on a particular day and zero otherwise and add this variable to our preferred specification. Even though the point estimates for the TISPOL operations have the expected signs, the point estimates are small and insignificant. Most importantly, the point estimates for the Blitzmarathon dummies remain robust to controlling for TISPOL operations (see Appendix Table B4).²²

Finally, to rule out that a specific Blitzmarathon or the participation of a specific state drives the whole Blitzmarathon effect, we drop one-by-one a Blitzmarathon date (Appendix Figure B3) or a state (Appendix Figure B4) from our estimation sample and rerun the analysis. The effect of the Blitzmarathons is very stable across these estimations rebutting concerns that our results just reflect the effect from a particular state or Blitzmarathon date.

6 Further Discussion on Mechanisms

The previous sections have presented several pieces of empirical evidence suggesting that the Blitzmarathons increased the objective and subjective probability of detection of speed limit offences, which made drivers drive more slowly and responsibly to avoid fines. In particular, we have shown that traffic accidents are back up at the pre-Blitzmarathon level right after the massive SLMO end. Moreover, our analyses have revealed that there is no decrease of traffic accidents on roads without any speed limits and thus without SLMO

²¹TISPOL also carries out operations focusing on trucks and buses; in this analysis, we focus on TISPOL operations targeting passenger vehicles.

 $^{^{22}}$ We also tested the robustness of the Blitzmarathon effect with respect to small scale traffic law enforcement campaigns (e.g., the previously mentioned campaign in Saxony) and the occurrence of national railway strikes; we find that the point estimate for the Blitzmarathon is very robust to this exercise for all four outcomes.

on Blitzmarathon days. These findings rather speak against an alternative interpretation suggesting that drivers become aware of the dangers of speeding and adjust their driving behavior accordingly in a more general and sustainable manner. In the following, we exploit additional data on traffic volume and driving speed as well as detailed information on the causes of accidents to further investigate the mechanisms at play.

6.1 Evidence from Hourly Traffic Volume Data

We start this endeavor by examining the effect of the Blitzmarathons on traffic volume. Instead of driving more responsibly during a Blitzmarathon, drivers may leave their car at home and instead use public transport, ride a bicycle, or walk to avoid fines. The resulting reduction in cars on the streets might potentially explain the reduction of traffic accidents on Blitzmarathon days. We analyze the relevance of this argument by regressing the hourly number of vehicles passing traffic volume monitors on a Blitzmarathon dummy in a model along the lines of equation 1. Table 11 presents the results separately for passenger vehicles (cars and motorbikes) and trucks. We start with a basic specification controlling for monitoring station fixed effects and hour-of-day, day-of-week, month-of-year, hourof-day x day-of-week as well as year fixed effects (column (1)). Then, we add weather controls (column (2)), vacation controls (column (3)), and interactions of monitor fixed effects and the set of time fixed effects (column (4)), interactions of monitor fixed effects and weather controls (column (5)), and interactions of monitor fixed effects and vacation controls (column (6)). The results are very stable across these six specifications. Due to the large number of observations in this hourly specification, several point estimates turn out to be statistically significant. However, the magnitude of all effects is very small. The number of passenger vehicles on non-freeway roads decreases by between 0.4 and 1.2 percent on a Blitzmarathon day; also the number of trucks on the streets hardly changes - if at all, we even see an increase. These results provide evidence against the argument that the main reason why we see a decline of accidents on Blitzmarathon days is that the Blitzmarathons induce drivers to switch to other means of transport.

6.2 Evidence from Hourly Driving Speed Data

To more directly measure the impact of the Blitzmarathons on drivers' risky behavior, we now use complementary hourly data on driving speed. Our driving speed data does not cover all counties in Germany but our analyses suggest it is still representative.²³ We estimate a generalized difference-in-differences model along the lines of equation 1, start with a basic specification (column (1)) and then gradually move on to the most extensive specification which controls for monitor fixed effects, hour-of-day, day-of-week, month-of-year, hour-of-day x day-of-week as well as year fixed effects, interactions of monitor fixed effects with the full set of time fixed effects, weather controls and their interactions with monitor fixed effects (columns (2) to (6)).

Table 12 presents the effect of the Blitzmarathon days on hourly driving speed for the six different specifications and separately for passenger vehicles (cars and motorbikes) and trucks. Again, the estimates are very robust across all specifications. The results from

 $^{^{23}}$ Appendix Table B5 depicts the effect of the Blitzmarathons on traffic volume as measured in the driving speed data (q/v-data) separately for passenger vehicles and trucks. The results are very comparable to the previous analysis from Table 11 and show again no meaningful systematic change in traffic volume during a Blitzmarathon.

I ne Effect of the f	Shtzmara	thons of	1 Houriy	Trame ve	blume		
	(1)	(2)	(3)	(4)	(5)	(6)	
(a) Number of passenger vehicles / 1,000							
[Mean: 0.252; N: 40,898,880]							
Blitzmarathon	-0.002	-0.001	-0.001	-0.002^{***}	-0.002***	-0.003***	
	(0.001)	(0.001)	(0.001)	(0.000)	(0.000)	(0.000)	
R^2	0.707	0.707	0.708	0.981	0.982	0.982	
(b) Number of trucks / 1,000							
[Mean: 0.023; N: 40,898,880]							
\dot{B} litzmarathon \times 100	0.008	0.011	0.002	0.014^{*}	0.014^{**}	0.005	
	(0.015)	(0.015)	(0.015)	(0.007)	(0.007)	(0.007)	
R^2	0.693	0.693	0.693	0.962	0.962	0.962	
Monitor FE	×	×	×	×	×	×	
Time FE	×	×	×	×	×	×	
Weather		×	×	×	×	×	
Vacations			×	×	×	×	
Monitor \times Time FE				×	×	×	
Monitor \times Weather					×	×	
Monitor \times Vacation						×	

Table 11		
The Effect of the Blitzmarsthens on	Hourly Troffic	Volum

Notes: The table shows the effect of the Blitzmarathons on the number of passenger vehicles on non-freeway roads [Panel (a)], and the number of trucks on non-freeway roads [Panel (b)]. The sample includes 1,408 monitoring stations. An overview of the stations is given in Appendix Figure B1. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include monitor station and time fixed effects. Time fixed effects include hour-of-day, day-of-week, month-of-year, hour-of-day×day-of-week, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Monitor × Time, Monitor × Weather, and Monitor × Vacation controls, respectively. We weight observations with probability weights of the inverse of the number of stations within each county. Standard errors (in parentheses) are clustered at the monitor level. * p < 0.10, ** p < 0.05, *** p < 0.01

The Effect of	the Blitzn	narathons	on Hourly	Driving S	speed					
	(1)	(2)	(3)	(4)	(5)	(6)				
(a) Passenger vehicle driving speed [km/h]										
[Mean: 70.748; N: 20,244,303]										
Blitzmarathon	-1.816^{***}	-1.737^{***}	-1.586^{***}	-1.642^{***}	-1.730^{***}	-1.717^{***}				
	(0.109)	(0.096)	(0.094)	(0.093)	(0.113)	(0.111)				
R^2	0.872	0.873	0.873	0.921	0.922	0.922				
(b) Truck driving speed [km	/h]									
Mean: 64.273; N: 17,501,447]	, 1									
Blitzmarathon	-0.945^{***}	-0.933***	-0.812^{***}	-1.062^{***}	-1.117^{***}	-1.082^{***}				
	(0.104)	(0.094)	(0.089)	(0.089)	(0.107)	(0.105)				
R^2	0.716	0.717	0.717	0.787	0.788	0.791				
Monitor FE	×	×	Х	×	×	×				
Time FE	×	×	×	×	×	×				
Weather		×	×	×	×	×				
Vacations			×	×	×	×				
Monitor \times Time FE				×	×	×				
Monitor \times Weather					×	×				
Monitor \times Vacation						×				

 Table 12

 The Effect of the Blitzmarsthens on Hourly Driving Sp.

Notes: The table shows the effect of the Blitzmarathons on driving speed for passenger vehicles [Panel (a)] and trucks [Panel (b)]. The sample includes 1,017 monitoring stations on federal roads. An overview is given in Appendix Figure B2. All regressions are run at the monitor-hour level. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include monitor station and time fixed effects. Time fixed effects include hour-of-day, day-of-week, month-of-year, hour-of-day×day-of-week, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Monitor × Time, Monitor × Weather, and Monitor × Vacation controls, respectively. We weight observations with all time fixed effects, weather controls, and vacation controls, respectively. The reported R-squared is the adjusted R-squared. Standard errors (in parentheses) are clustered at the monitor level. * p < 0.10, ** p < 0.05, *** p < 0.01

Notes: The figure shows the effect of the Blitzmarathons on driving speed by hour of the day for passenger vehicles [Panel (a)] and trucks [Panel (b)]. The point markers indicate the point estimates of the variable Blitzmarathon interacted with dummies for hour of the day; the whiskers represent the 95 percent confidence intervals. All regressions include hour-of-day, day-of-week, month-of-year, hour-of-day×day-of-week, and year fixed effects; weather and vacation controls; and interactions of monitor station indicators with all time fixed effects, weather controls, and vacation controls, respectively.

the most extensive specification show a reduction in average passenger vehicle driving speed of 1.717 km/h measured over the whole Blitzmarathon day compared to a regular day. This effect is not only statistically significant but also economically meaningful if we consider the results of Ashenfelter and Greenstone (2004) who found that an increase of speed by two mph increased fatality rates by roughly 35 percent in the U.S.

To get more detailed insights, Figure 4 shows the effect on driving speed over the course of a Blitzmarathon day. In this exercise, we interact the Blitzmarathon dummy with each hour of the day. The resulting estimates depict the effect of the Blitzmarathon at a given hour compared to a regular day at the same hour. Figure 4 (a) shows that passenger vehicle driving speed is about two to three km/h lower from 5:00 in the morning until 21:00 at night, which corresponds to a decline of around 2.8 to 4.2 percent relative to the mean. Note that these effects are very similar to those identified by Dusek and Traxler (2019) as a reaction to receiving a speeding ticket. The effect on truck driving speed is slightly smaller but shows a pattern over the course of the day which is similar to passenger vehicles.

Thus, these findings substantiate the claims of police officials who report an overall lower driving speed during a Blitzmarathon.²⁴ The findings are also in line with a descriptive study from the Institute of Highway Engineering in Aachen (Oeser et al., 2015) showing that driving speed in the city of Cologne was two to three km/h lower during the Blitzmarathon in April 2015 compared to the five weeks surrounding the Blitzmarathon.²⁵

To further interpret the magnitude of the Blitzmarathon effects on driving speed, we should keep in mind that only a fraction of drivers usually violates speed limits and should

 $^{^{24}\}mathrm{See}$ Appendix A for selected quotes of police officers.

 $^{^{25}{\}rm The}$ April 2015 Blitzmarathon is not in our data; however, it is comparable to the Blitzmarathons we study.

therefore react to the Blitzmarathon campaigns. In a representative poll conducted by *Forsa* for the insurer *Cosmos Direkt* in 2014, 15 percent of all respondents admitted that they 'often' violated speed limits.²⁶ If we take this number and argue that only people who violate speed limits react to Blitzmarathons by slowing down, an average speed reduction of two to three km/h would translate into a 13 to 20 km/h speed reduction for those risky drivers who often violate speed limits. Finally, note that the locations of the speed monitors do not coincide with the locations of the speed traps. We might expect the speed reducing effects to be even stronger if we measured the effect closer to the speed traps.

6.3 Evidence from Data on Causes of Accidents

We expect the Blitzmarathons to not only reduce accidents due to speeding but also accidents due to other types of misbehavior for at least two reasons. First, when people drive more slowly, they can more easily react to street signs and other drivers, which should make them less likely to break traffic rules in general. Secondly, while the police are targeting speed limit violations during a Blitzmarathon, they can and do stop and fine drivers for other offenses as well, for instance, for using no seat belt, talking on the phone, driving under the influence of drugs and alcohol, or possessing no driver's license.²⁷

To empirically investigate whether drivers behave overall more responsibly during a Blitzmarathon, we exploit information on the causes of accidents reported by the police. In particular, we count the number of accidents per reported cause by county and day, and use these variables as dependent variables in a generalized differences-in-differences model as described by equation 1. Table 13 presents the effects of the Blitzmarathons on the number of traffic accidents and casualties for various reported accident causes. As can be seen, Blitzmarathons not only reduce the number of accidents due to speeding; we also find negative effects for several other behavior related causes of accidents such as ignoring the right of way, alcohol and drug use, or mistakes when overtaking others. Thus, the estimates provide evidence for the interpretation that people drive more slowly but also in general more responsibly during a Blitzmarathon.

Although these results are interesting, we should be cautious when using data on the causes of accidents. This is because except for fatal accidents, where an external expert assesses the accident cause, the reporting of causes reflect police officers' subjective evaluations. If these subjective evaluations induce measurement error in our dependent variables, the precision of our estimates will fall. Even more importantly, if the reporting is different on Blitzmarathon days and regular days, estimates might be biased. For example, a negative effect of the Blitzmarathons on the number of accidents due to speeding may overstate the true reduction if the police report fewer speeding related causes during a Blitzmarathon in favor of the goals of the campaign. Contrary, the police may systematically report more speeding related causes if the Blitzmarathons induce the police to pay more attention to speeding. Given these issues with respect to the reporting of accident causes, the results should be interpreted cautiously.

²⁶For the official press release, see https://www.presseportal.de/pm/63229/2882373, 2019/04/04.

²⁷According to the Peltzman-effect (Peltzman, 1976), a regulation induces drivers to become more risky in non-regulated domains of driving behavior. Given that the police can stop and fine drivers for all types of offenses, we find it unlikely that this type of offsetting behavior occurs for the Blitzmarathons.

The Encor of the En	21110110110		dabes of ficelde	1100
	Number of	Number of	Number of	Number of
	accidents	slightly injured	severely injured	fatally injured
	(1)	(2)	(3)	(4)
	/	· · · ·	· · ·	,
(a) Alcohol or drugs				
Blitzmarathon	-0.024*	-0.007	0.001	0.000
	(0.012)	(0.010)	(0.008)	(0.002)
Mean	0.246	0.071	0.037	0.002
(b) Wrong lane				
Blitzmarathon	-0.009	-0.006	-0.01/***	-0.002**
Ditzilaration	(0.000)	(0.010)	(0.004)	(0.002)
Maaa	(0.009)	(0.010)	(0.004)	(0.001)
Mean	0.069	0.071	0.024	0.005
(c) Speed				
Blitzmarathon	-0.030^{*}	-0.028	-0.004	0.001
	(0.018)	(0.018)	(0.008)	(0.003)
Mean	0.332	0.238	0.072	0.006
(d) Distance to next driver	0.000	0.00	0.010*	0.001***
Blitzmarathon	0.022	0.005	0.012**	-0.001
	(0.018)	(0.026)	(0.006)	(0.000)
Mean	0.268	0.339	0.021	0.001
(e) Overtaking				
Blitzmarathon	-0.018*	-0.020*	-0.004	-0.002***
	(0.010)	(0.011)	(0.005)	(0,000)
Moon	0.126	0.105	0.000)	0.001
Mean	0.120	0.105	0.022	0.001
(f) Right of way				
Blitzmarathon	-0.051^{**}	-0.055^{**}	0.001	0.001
	(0.022)	(0.023)	(0.009)	(0.002)
Mean	0.489	0.375	0.061	0.002
(a) Tump				
(g) Iuili Ditzmonsthon	0.020	0.020	0.019*	0.000
Diitziilaratiioli	-0.030	-0.029	-0.013	(0.001)
M	(0.019)	(0.022)	(0.007)	(0.001)
Mean	0.407	0.348	0.055	0.002
(h) Loading/ technical issues				
Blitzmarathon	-0.015^{**}	-0.013**	-0.003***	-0.000***
	(0.007)	(0.006)	(0.002)	(0.000)
Mean	0.044	0.033	0.006	0.000
(i) Other				
(I) Utiler	0.000	0.009	0.004	0.001
Biitzmarathon	-0.002	0.003	-0.004	0.001
	(0.017)	(0.019)	(0.008)	(0.002)
Mean	0.265	0.241	0.048	0.003

		Table	13	

The Effect of the Blitzmarathons on Different Causes of Accidents

Notes: The table shows the effect of the Blitzmarathons on the number of traffic accidents [Column (1)], slightly injured [Column (2)], severely injured [Column (3)], and fatally injured [Column (4)] for different reported accident causes. The number of observations is 493,518 for every regression. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects, weather controls, and vacation controls. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Standard errors (in parentheses) are clustered at the county level. $p < 0.10, \ ^{**} \ p < 0.05, \ ^{***} \ p < 0.01$

7 Conclusion

We evaluate the impact on road safety of extensive speed limit enforcement campaigns in Germany. These campagins, coined Blitzmarathons, are characterized by one day massive SLMO, accompanied by a temporary media campaign which informs the public about the date of the Blitzmarathon, the location of speed traps, and in particular about the dangers of speeding. Using rich register data on the universe of police reported accidents, we estimate a generalized difference-in-differences model exploiting regional and time variation in the occurance of Blitzmarathons.

We find that traffic accidents and casualties start to decline with the onset of the media campaign one to three days before a Blitzmarathon day. On the day of a Blitzmarathon, we observe roughly 8 percent less traffic accidents and casualties than usual. Interestingly, accidents return to the usual level right after the massive one day SLMO end. Moreover, we do not find any effects on freeways without speed limits and thus without SLMO on Blitzmarathon days. If the SLMO are extended for another seven days, we keep on finding negative effects on accidents over this period. These pieces of evidence suggest that people expect higher detection probabilities of speed limit offenses during Blitzmarathon days and thus drive more slowly and responsibly to avoid fines. Other than intended by the initiations of the Blitzmarathons, people do not more sustainably alter their driving behavior as would be the case if they became more aware of the dangers of speeding due to the media campaigns. A battery of validity checks and robustness tests confirm the findings and our interpretation.

In a back-of-the-envelope calculation, we try to monetize the benefits of the speed limit enforcement campaigns. Besides material damage, accidents raise medical care costs and reduce productivity, household production, and life satisfaction for casualties, where the size of the effect depends on the severity of the accident. Using monetized values of these accident costs, we find that the seven Blitzmarathon days between 2012 and 2014 saved economic costs in the order of 9.5 to 11.0 million euro (Appendix Table B6). If we include the decrease in accidents starting with the onset of the media coverage shortly before the actual Blitzmarathon day, this raises the benefits by an additional two million euros.

In contrast to the benefits, the costs of the Blitzmarathons are much more difficult to assess. From media reports, we calculate that around 47,000 police officers must have enforced speed limits during the seven Blitzmarathon days, but we do not know exactly into how many working hours this effort translates. From the state of Lower Saxony, we gained information that each counted police officer in a Blitzmarathon spendt around four hours with speed limit monitoring. Generalizing this to Germany, this results in 47,000 × 4 hours = 188,000 hours and expenditures of roughly 9.6 million euro.²⁸ The upper limit in terms of hours spent monitoring speed during a Blitzmarathon is eight hours, i.e., the length of a regular working day, summing to 47,000 × 8 hours = 376,000 hours and expenditures of 19.2 million euro.

In addition to these direct costs and benefits of Blitzmarathons, there may be indirect costs or benefits from an increased focus of police officers on enforcing speed limits. On the one hand, the deployment of police officers for the prosecution of speed limit violations

 $^{^{28}}$ For the average cost of a police officer we take the value of 51 euro per hour from Krems (2016), which includes wages, social security contributions, and future pensions.

might cause non-traffic related crime rates to increase. On the other hand, from a range of economics studies we know that an increased presence of the police in the streets (for whatever reason) causes violent and property crime rates to fall (see, for instance, Di Tella and Schargrodsky, 2004; Draca et al., 2011; Machin and Marie, 2011). These potential crime effects could be explored in future research.

References

- Abouk, R. and S. Adams (2013). "Texting Bans and Fatal Accidents on Roadway: Do They Work? Or Do Drivers Just React to Announcements of Bans?" American Economic Journal: Applied Economics 5(2), pp. 179–199.
- Allcott, H. and T. Rogers (2014). "The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental Evidence from Energy Conservation". The American Economic Review 104(10), pp. 3003–3037.
- Ashenfelter, O. and M. Greenstone (2004). "Using Mandated Speed Limits to Measure the Value of a Statistical Life". *Journal of Political Economy* 112(1), S226–S267.
- Bauernschuster, S., T. Hener, and H. Rainer (2017). "When Labor Disputes Bring Cities to a Standstill: The Impact of Public Transit Strikes on Traffic, Accidents, Air Pollution, and Health". American Economic Journal: Economic Policy 9(1), pp. 1–37.
- Becker, G. S. (1968). "Crime and Punishment: An Economic Approach". Journal of Political Economy 76, pp. 169–217.
- Blincoe, L., T. Miller, E. Zaloshnja, and B. Lawrence (2015). The Economic and Societal Impact of Motor Vehicle Crashes, 2010 (Revised). Washington, DC. NHTSA Technical Report.
- Blumenthal, M., C. Christian, and J. Slemrod (2001). "Do Normative Appeals Affect Tax Compliance? Evidence from a Controlled Experiment in Minnesota". *The National Tax Journal* 54(1), pp. 125–138.
- Bott, K., A. Cappelen, E. Sorensen, and B. Tungodden (2019). "You've Got Mail: A Randomized Field Experiment on Tax Evasion". *Management Science* (forthcoming).
- Bundesanstalt für Straßenwesen (2010). Volkswirtschaftliche Kosten durch Straßenverkehrsunfälle in Deutschland. Bergisch Gladbach. Berichte der Bundesanstalt für Straßenwesen Heft M 208.
- Cameron, S. (1988). "The Economics of Crime Deterrence: A Survey of Theory and Evidence". Kyklos 41(2), pp. 301–323.
- Chalfin, A. and J. McCrary (2017). "Criminal Deterrence: A Review of the Literature". Journal of Economic Literature 55(1), pp. 5–48.
- (2018). "Are U.S. Cities Underpoliced? Theory and Evidence". Review of Economic Studies 100(1), pp. 167–186.
- Cohen, A. and L. Einav (2003). "The Effects of Mandatory Seat Belt Laws on Driving Behavior and Traffic Fatalities". The Review of Economics and Statistics 85(4), pp. 828– 843.
- Deangelo, G. and B. Hansen (2014). "Life and Death in the Fast Lane: Police Enforcement and Traffic Fatalities". American Economic Journal: Economic Policy 6(2), pp. 231– 257.
- Dee, T. S. (2009). "Motorcycle Helmets and Traffic Safety". Journal of Health Economics 28(2), pp. 398–412.
- Di Tella, R. and E. Schargrodsky (2004). "Do Police Reduce Crime? Estimates Using the Allocation of Police Forces after a Terrorist Attack". The American Economic Review 94(1), pp. 115–133.
- Dolls, M., P. Doerrenberg, A. Peichl, and H. Stichnoth (2018). "Do Retirement Savings Increase in Response to Information About Retirement and Expected Pensions?" Journal of Public Economics 158, pp. 168–179.
- Doyle, J. J. and S. D. Levitt (2010). "Evaluating the Effectiveness of Child Safety Seats and Seat Belts in Protecting Children from Injury". *Economic Inquiry* 48(3), pp. 521– 536.

- Draca, M., S. Machin, and R. Witt (2011). "Panic on the Streets of London: Police, Crime, and the July 2005 Terror Attacks". *The American Economic Review* 101(5), pp. 2157–2181.
- Duflo, E. and E. Saez (2003). "The Role of Information and Social Interactions in Retirement Plan Decisions: Evidence from a Randomized Experiment". The Quarterly Journal of Economics 118(3), pp. 815–842.
- Dupas, P. (2011). "Do Teenagers Respond to HIV Risk Information? Evidence from a Field Experiment in Kenya". American Economic Journal: Applied Economics 3(1), pp. 1–34.
- Dusek, L. and C. Traxler (2019). "Punishment and Specific Deterrence: Evidence from Speeding Tickets". mimeo.
- Evans, W. N. and E. G. Owens (2007). "COPS and Crime". Journal of Public Economics 91(1-2), pp. 181–201.
- Fellner, G., R. Sausgruber, and C. Traxler (2013). "Testing Enforcement Strategies in the Field: Threat, Moral Appeal and Social Information". Journal of the European Economic Association 11(3), pp. 634–660.
- Gehrsitz, M. (2017). "Speeding, Punishment, and Recidivism: Evidence from a Regression Discontinuity Design". Journal of Law and Economics 60(3), pp. 497–528.
- Jensen, R. (2010). "The (Perceived) Returns to Education and the Demand for Schooling". The Quarterly Journal of Economics 125(2), pp. 515–548.
- Klick, J. and A. Tabarrok (2005). "Using Terror Alert Levels to Estimate the Effect of Police on Crime". *Journal of Law and Economics* 48(1), pp. 267–279.
- Krems, B., ed. (2016). Online-Verwaltungslexikon. Stichwort Personalkosten-Stundensätze, 20–02–2017. Köln.
- Lenz, B., C. Lenz, K. Köhler, and M. Mehlin (2010). *Mobilität in Deutschland 2008*. Bonn and Berlin: Bundesministerium für Verkehr, Bau und Stadtentwicklung.
- Levitt, S. D. (1997). "Do Electoral Cycles in Police Hiring Really Help Us Estimate the Effect of Police on Crime?" *The American Economic Review* 87(3), pp. 270–290.
- (2008). "Evidence that Seat Belts Are as Effective as Child Safety Seats in Preventing Death for Children Aged Two and Up". The Review of Economics and Statistics 90(1), pp. 158–163.
- Levitt, S. D. and J. Porter (2001). "Sample Selection in the Estimation of Air Bag and Seat Belt Effectiveness". *The Review of Economics and Statistics* 83(4), pp. 603–615.
- Luca, D. L. (2015). "Do Traffic Tickets Reduce Motor Vehicle Accidents? Evidence from a Natural Experiment". Journal of Policy Analysis and Management 34(1), pp. 85–106.
- Machin, S. and O. Marie (2011). "Crime and Police Resources: The Street Crime Initiative". Journal of the European Economic Association 9(4), pp. 678–701.
- Makowsky, M. D. and T. Stratmann (2011). "More Tickets, Fewer Accidents: How Cash-Strapped Towns Make for Safer Roads". Journal of Law and Economics 54(4), pp. 863– 888.
- Markowitz, S. and P. Chatterji (2015). "Effects of Bicycle Helmet Laws on Children's Injuries". *Health Economics* 24(1), pp. 26–40.
- Oeser, M., D. Kemper, and E. Diner (2015). *Begleituntersuchungen zum Blitzmarathon*. Aachen. Institut für Straßenwesen Aachen (RWTH Aachen).
- Organisation for Economic Co-operation and Development (2018). Road Safety Annual Report 2018. Paris. International Traffic Safety Data and Analysis Group.
- Peltzman, S. (1976). "The Effects of Automobile Safety Regulation". Journal of Political Economy 83(4), pp. 677–726.

- Statistisches Bundesamt (2018). Unfallentwicklung auf deutschen Straßen 2017. Wiesbaden. Begleitmaterial zur Pressekonferenz am 12. Juli 2018 in Berlin.
- van Benthem, A. (2015). "What Is the Optimal Speed Limit on Freeways?" Journal of Public Economics 124, pp. 44–62.
- Wisdom, J., J. S. Downs, and G. Loewenstein (2010). "Promoting Healthy Choices: Information Versus Convenience". American Economic Journal: Applied Economics 2(2), pp. 164–178.
- World Health Organization (2004). World Report on Road Traffic Injury Prevention. Geneva.
- (2018). Global Status Report on Road Safety 2018. Geneva. WHO Library Cataloguing-in-Publication Data.

A Media Quotes of Police Officers

Blitzmarathon February 10, 2012

- "Almost all were driving very responsibly." (WAZ Hattingen, 10-02-2012)
- "Because of the media reports, the drivers are especially attentive." (WAT Lethmathe, 10-02-2012)
- "Those who were on the road in Oberberg could see that many drivers were driving with less speed than on regular days, sometimes they were even going slower than what the maximum speed limit allows." (RP Hueckeswagen, 13-02-2012)

Blitzmarathon July 3, 2012

- He [chief inspector] knows that many drivers were driving especially careful because of the Blitzmarathon. "But that is the whole point of it". (RP Grevenbroich, 03-07-2012)
- "Many drivers were clearly much more disciplined than on other days which is not unexpected but a desirable effect, given the numerous announcements in advance." (Aachener Zeitung, 05-07-2012)
- "The announcements were effective: most drivers were going with less speed and more discipline." (General Anzeiger Bonn, 05-07-2012)

Blitzmarathon October 24, 2012

- "We noticed that many drivers adjusted to the announced police controls and followed traffic regulations." (Ruhr Nachrichten Luenen, 25-10-2012)
- The police confirm that drivers were behaving "pronouncedly disciplined." (West-faelische Nachrichten Muenster, 25-10-2012)
- "Drivers were obviously warned and comply with the speed limits." (HNA Goettingen, 24-10-2012)

Blitzmarathon June 4, 2013

- On June 4, 2013, four percent of the controlled vehicles violated the speed limit. "Considering that on normal days eight percent of all [controlled] drivers are caught for driving too fast, the drivers obviously complied more with the speed limits.(...) Most drivers behaved very responsibly and complied with the traffic regulations." (DerWesten Siegen, 05-06-2013)
- "People adjust and drive more slowly." (Aachener Zeitung Heinsberg, 04-06-2013)
- Drivers were "altogether exceptionally disciplined." (Ruhr Nachrichten Steinfurt, 05-06-2013)

Blitzmarathon October 10, 2013

• "People are driving especially careful today. We notice that our campaign is successful.(...) That there is no result [referring to the low detection rate] is a result for us, a good one." (Suedwest Presse Ulm, 10-10-2013)

- "We observe a strikingly calm driving style. (...) In total, we observe a very careful driving." The detection rate is much higher during announced speed controls, says the police spokeswoman. (Hamburger Abendblatt, 11-10-2013)
- "We achieved the goals we had. (...) Most cars were forewarned and were driving considerably more slowly." (Potsdamer Neueste Nachrichten, 11-10-2013)

Blitzmarathon April 8, 2014

- "Even if the number of detected traffic offenders is relatively low given the large number of controls, the police and the county are very satisfied with the result. It shows that the drivers complied with speed limits at least in the last 24 hours." (Hamburger Abendblatt Winsen/Stade, 10-04-2014)
- "We notice that the behavior has changed. The driving speed has already clearly declined." (RP Dinslaken, 09-04-2014)
- "When we usually conduct speed controls here, we have relatively many hits [of-fenders]. (...) Usually, only one percent of all trucks are driving at 60km/h [speed limit], most trucks are usually driving at 70 to 80 km/h."(Allgmeine Zeitung Uelzen, 09-04-2014)

Blitzmarathon September 18, 2014

- "They were clearly driving with less speed than usually." (NWZ Duesseldorf, 19-09-2014)
- The police note an "essentially more relaxed and responsible behavior" on Berlin's roads. (Berliner Morgenpost, 19-09-2014)
- "The drivers were warned. This leads to slower driving. This is exactly our goal." (Mitteldeutsche Zeitung Aschersleben, 18-09-2014)

(All quotes are translated from German)

B Supplementary Figures and Tables

Figure B1 Locations of Traffic Volume Monitoring Stations

Notes: The figure shows the locations of the monitoring stations for the data on the number of passenger vehicles and trucks per hour. The sample includes 1,408 monitoring stations on non-freeway roads, measuring the hourly number of vehicles on the road. Source: Federal Highway Research Institute (Bundesanstalt für Straßenwesen, BASt).

Locations of Driving Speed Monitoring Stations

Figure B2 Locations of Driving Speed Monitoring Stations

Notes: The figure shows the locations of the monitoring stations for the data on hourly driving speed for passenger vehicles and trucks. The sample includes 1,017 monitoring stations on non-freeway roads, measuring the hourly number of vehicles on the road and their average driving speed. Source: Federal State of Hesse (Hessen Mobil) and North Rhine-Westphalia (Landesbetrieb Straßenbau NRW).

(c) Number of severely injured

(d) Number of fatally injured

Notes: The figure shows the effect of the Blitzmarathons on the number of traffic accidents [Panel (a)], slightly injured [Panel (b)], severely injured [Panel (c)], and fatally injured [Panel (d)], sequentially dropping a particular Blitzmarathon date one by one. The point markers denote the point estimates of the variable Blitzmarathon, using a sample that deviates from Table 3 by dropping a particular Blitzmarathon date; the exception is "Base" which denotes the effect of the Blitzmarathons when all dates are included and corresponds to the estimates in Column (6) in Table 4. The whiskers represent the 95 percent confidence intervals. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a snow cover dummy. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include a dummy for school vacation, the last school day before a school vacation, and the last day of a school vacation.

(c) Number of severely injured

(d) Number of fatally injured

Notes: The figure shows the effect of the Blitzmarathon on the number of traffic accidents [Panel (a)], slightly injured [Panel (b)], severely injured [Panel (c)], and fatally injured [Panel d)], sequentially dropping a particular federal state one by one. The point markers denote the point estimates of the variable Blitzmarathon, using a sample that deviates from Table 3 by dropping all observations from a particular state; the exception is "Base" which denotes the effect of the Blitzmarathons when all states are included and corresponds to the estimates in Column (6) in Table 4. The whiskers represent the 95 percent confidence intervals. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a snow cover dummy. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include a dummy for school vacation, the last school day before a school vacation, and the last day of a school vacation.

		Number of accidents (1)	Number of slightly injured (2)	Number of severely injured (3)	Number of fatally injured (4)
Age < 21	Blitzmarathon Mean	-0.024 (0.016) 0.267	-0.031 (0.019) 0.236	-0.015^{**} (0.006) 0.049	$0.000 \\ (0.001) \\ 0.002$
Age 21–25	Blitzmarathon	-0.033^{**} (0.016)	-0.037^{**} (0.018)	0.005 (0.008)	0.001 (0.002)
Age 26–30	Blitzmarathon	$\begin{array}{c} 0.304 \\ 0.015 \\ (0.015) \end{array}$	$\begin{array}{c} 0.233 \\ 0.023 \\ (0.018) \end{array}$	$\begin{array}{c} 0.049 \\ 0.006 \\ (0.007) \end{array}$	-0.001 (0.001)
Age 31–35	Mean Blitzmarathon	0.223 -0.016 (0.014)	0.180 -0.011 (0.016)	0.033 - 0.005 (0.006)	0.002 - 0.001^{***} (0.000)
Age 36–40	Mean Blitzmarathon	0.190	0.155	0.027	0.002
A go 41-45	Mean Blitzmarathon	(0.012) 0.171 0.021^*	(0.014) 0.142 0.018	(0.005) 0.024 0.012^{**}	(0.002) 0.001 0.002***
nge 11 10	Mean	(0.012) 0.202	(0.015) 0.165	(0.005) 0.029	(0.002) (0.000) 0.002
Age 46–50	Blitzmarathon Mean	$0.003 \\ (0.015) \\ 0.216$	$\begin{array}{c} -0.013 \\ (0.015) \\ 0.171 \end{array}$	-0.003 (0.006) 0.033	$\begin{array}{c} 0.001 \\ (0.002) \\ 0.002 \end{array}$
Age 51–55	Blitzmarathon	-0.047^{***} (0.013)	-0.041^{***} (0.012)	-0.000 (0.007)	-0.000 (0.001)
Age 56-60	Mean Blitzmarathon	-0.007 (0.012)	-0.008 (0.014)	0.029 0.001 (0.007)	0.002 0.000 (0.002)
Age 61–65	Mean Blitzmarathon	0.142	0.111 0.016	0.023	0.001
	Mean	(0.010) 0.101	(0.011) 0.079	(0.005) 0.016	(0.000) 0.001
Age 66–70	Blitzmarathon Mean	-0.003 (0.009) 0.075	-0.005 (0.009) 0.060	-0.000 (0.004) 0.012	(0.002) (0.001) 0.001
Age > 70	Blitzmarathon	-0.035^{***} (0.013)	-0.023 (0.016)	-0.009 (0.006)	-0.002^{**} (0.001)
	Mean	0.193	0.157	0.037	0.003

Table B1Effect Heterogeneity by Driver's Age

Notes: The table shows the effect of the Blitzmarathons on the number of traffic accidents [Column (1)], slightly injured [Column (2)], severely injured [Column (3)], and fatally injured [Column (4)] for drivers of different age. The number of observations is 493,518 for every regression. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Standard errors clustered at the county level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

The Effect of the Blitzmarathons on Traffic Accidents by Traffic Participation					
	Number of accidents (1)	Number of slightly injured (2)	Number of severely injured (3)	Number of fatally injured (4)	
(a) Car					
Blitzmarathon	-0.193^{***}	-0.173^{***}	-0.030*	-0.004	
	(0.043)	(0.046)	(0.018)	(0.004)	
Mean	1.989	1.634	0.283	0.015	
Ν	$493,\!518$	$493,\!518$	$493,\!518$	493,518	
(b) Motorbike					
Blitzmarathon	-0.001	0.007	-0.006	0.000	
	(0.013)	(0.012)	(0.007)	(0.002)	
Mean	0.160	0.118	0.052	0.003	
Ν	493,518	493,518	493,518	493,518	
(c) Truck					
Blitzmarathon	0.011	0.001	0.005	0.002	
	(0.014)	(0.015)	(0.008)	(0.002)	
Mean	0.211	0.163	0.032	0.003	
Ν	493,518	493,518	493,518	493,518	
(d) Bicycle					
Blitzmarathon	0.036^{**}	0.035^{**}	0.011	-0.001	
	(0.018)	(0.017)	(0.008)	(0.001)	
Mean	0.243	0.197	0.060	0.002	
Ν	493,518	493,518	$493,\!518$	493,518	
(e) Pedestrian					
Blitzmarathon	0.000	0.002	-0.000	-0.001	
	(0.008)	(0.007)	(0.005)	(0.001)	
Mean	0.067	0.050	0.022	0.001	
Ν	$493,\!518$	$493,\!518$	$493,\!518$	493,518	

Table B2

Notes: The table shows the effect of the Blitzmarathon on the number of traffic accidents [Column (1)], slightly injured [Column (2)], severely injured [Column (3)], and fatally injured [Column (4)] for different types of road users. The sample deviates from Table 3 by including also accidents where the person who caused the accident was a pedestrian or a bicyclist. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last day before a school vacation, and the last day of a school vacation. Standard errors (in parentheses) are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01

The Effect of the Blitzmarathons on Traffic Accidents by Accident Category						
	(1)	(2)	(3)	(4)	(5)	(6)
(a) Number of accidents with m [Mean: 0.618; N: 493,518]	aterial da	mage				
Blitzmarathon	-0.034	-0.062^{**}	-0.065^{***}	-0.060^{**}	-0.058^{**}	-0.064^{**}
R^2	(0.023) 0.292	0.300	0.300	(0.025) 0.311	(0.025) 0.316	(0.025) 0.315
(b) Number of accidents with sli [Mean: 1.414; N: 493,518]	ightly inju	ıred				
Blitzmarathon	-0.049	-0.052	-0.070^{*}	-0.082**	-0.073^{*}	-0.080**
2	(0.038)	(0.038)	(0.038)	(0.038)	(0.037)	(0.038)
R^2	0.645	0.646	0.648	0.700	0.703	0.704
(c) Number of accidents with se [Mean: 0.312; N: 493,518]	verely inj	ured				
Blitzmarathon	-0.034^{**}	-0.030*	-0.032^{*}	-0.029*	-0.028	-0.031^{*}
	(0.017)	(0.017)	(0.017)	(0.018)	(0.018)	(0.018)
R^2	0.153	0.154	0.155	0.164	0.163	0.162
(d) Number of accidents with fa [Mean: 0.019; N: 493,518]	tally inju	red				
Blitzmarathon	-0.003	-0.003	-0.003	-0.003	-0.003	-0.002
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
R^2	0.008	0.008	0.008	0.006	0.005	0.002
County FE	×	×	×	×	×	×
Time FE	×	×	×	×	×	×
Weather		×	×	×	×	×
Vacation			×	×	×	×
County \times Time FE				×	×	×
County \times Weather					×	×
County \times Vacation						×

				Table	$\mathbf{B3}$	
m	C 1	D11	. 1	T	m	• 1

Notes: The table shows the effect of the Blitzmarathons on the number of traffic accidents with material damage [Panel (a)], with slightly injured [Panel (b)], with severely injured [Panel (c)], and with fatally injured [Panel (d)]. Each column in each panel presents a separate regression. All regressions are run at the county-day level. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. County \times Time, County \times Weather, and County \times Vacation are interactions of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. The reported R-squared is the adjusted R-squared. Standard errors (in parentheses) are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01

The Effect of the Ditzmarations and TISFOL Operations on Trainc Accidents						
	Number of	Number of	Number of	Number of		
	accidents	slightly injured	severely injured	fatally injured		
	(1)	(2)	(3)	(4)		
Blitzmarathon	-0.178^{***}	-0.164^{***}	-0.033	-0.001		
	(0.047)	(0.052)	(0.021)	(0.005)		
TISPOL Operation	-0.007	-0.013	-0.005	-0.000		
	(0.008)	(0.010)	(0.004)	(0.001)		
Mean	2.362	1.916	0.367	0.021		
Ν	$493,\!518$	$493,\!518$	$493,\!518$	493,518		

 Table B4

 The Effect of the Blitzmarathons and TISPOL Operations on Traffic Accidents

Notes: The table shows the effect of the Blitzmarathons and TISPOL operations on the number of traffic accidents [Column (1)], slightly injured [Column (2)], severely injured [Column (3)], and fatally injured [Column (4)]. Each column presents a separate regression. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include county and time fixed effects, weather controls, vacation controls, and interactions of county indicators with all time fixed effects, weather controls, and vacation controls, respectively. Time fixed effects include day-of-week, month-of-year, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. The reported R-squared is the adjusted R-squared. Standard errors (in parentheses) are clustered at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01

The Effect of the Ditzmarathons on nourly frame volume (q/v data)							
	(1)	(2)	(3)	(4)	(5)	(6)	
(a) Number of passenger vehicles / 1,000 (q/v-data)							
[Mean: 0.265; N: 20,462,014]							
Blitzmarathon	0.002^{**}	0.003^{***}	-0.003**	-0.003***	-0.003***	-0.004^{***}	
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	
R^2	0.718	0.718	0.719	0.955	0.955	0.956	
(b) Number of trucks / 1,000 (q/v-data)							
[Mean: 0.021; N: 20,433,158]							
$Blitzmarathon \times 100$	0.075^{**}	0.074^{**}	0.032	0.075^{***}	0.070^{***}	0.071^{***}	
	(0.037)	(0.037)	(0.038)	(0.023)	(0.023)	(0.022)	
R^2	0.57	0.57	0.57	0.81	0.81	0.81	
Monitor FE	×	×	×	×	×	×	
Time FE	×	×	×	×	×	×	
Weather		×	×	×	×	×	
Vacations			×	×	×	×	
Monitor \times Time FE				×	×	×	
Monitor \times Weather					×	×	
Monitor \times Vacation						×	

Table B5						
The Effect of the Blitzmarathons on	Hourly Traffic	Volume	$(\alpha/v-data)$			

Notes: The table shows the effect of the Blitzmarathons on the number of cars [Panel (a)] the number of trucks [Panel (b)] on federal roads in the q/v–data. The sample includes 1,017 monitoring stations on federal roads. An overview of the stations is given in Appendix Figure B2. All regressions are run at the monitor-hour level. "Blitzmarathon" is as a dummy variable indicating the Blitzmarathon is in force in a specific county on a specific day. All regressions include monitor station and time fixed effects. Time fixed effects include hour-of-day, day-of-week, month-of-year, hour-of-day×day-of-week, and year fixed effects. Weather controls include atmospheric temperature, amount of precipitation, and a dummy for snow cover. Additionally, we include dummies indicating missing atmospheric temperature, missing amount of precipitation, and missing snow cover. Vacation controls include dummies for school vacation, the last school day before a school vacation, and the last day of a school vacation. Monitor \times Time, Monitor \times Weather controls, and vacation controls, respectively. We weight observations with all time fixed effects, weather controls, and vacation controls, respectively. We weight observations with probability weights of the inverse of the number of stations within each county. The reported R-squared is the adjusted R-squared. Standard errors (in parentheses) are clustered at the monitor level. * p < 0.10, ** p < 0.05, *** p < 0.01

Denents of the frequetion in Accidents						
Variable		Point estimate	Prevented cases	Unit costs in 2014 prices	Total	
		(1)	(2)	(3)	(4)	
Costs per casualty						
Number	of slightly injured	0.163	195	5,014€	977,730€	
	of severely injured	0.033^{+}	39	120,921€	$4,715,919 \in$	
	fatally injured	0.001^{+}	1	$1, 191, 397 {\in}$	$1, 191, 397 \in$	
Material damage						
Accidents	with material damage	0.064	76	21,484€	$1,632,784{\in}$	
	with slightly injured	0.080	96	14,190€	$1,632,240 \in$	
	with severely injured	0.031	37	21,883€	809,671€	
	with fatalities	0.002^{+}	2	48,003€	96,006€	
Total (lower bound)					9,498,344€	
Total (upper bound)					10,785,747€	

Table B6Benefits of the Reduction in Accidents

Notes: The Table shows the number of prevented accidents and the corresponding cost reduction for the seven one-day Blitzmarathons between 2012 and 2014. In Column (2), we multiply the coefficient of the variable Blitzmarathon (Column (1)) with the 1,194 Blitzmarathon-county-days to get the prevented accident cases. Column (3) lists the unit costs for each accident case. Unit costs stem from calculations from the German Federal Highway Research Institute (BASt, 2010) with updates for the year 2014. Column (4) returns the total costs for each accident case given the prevented cases in Column (2). The upper bound for the reduction in costs includes the number of fatally injured and material damage for accidents with fatalities. ⁺ indicates not statistically significant at the ten percent level.