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1 Introduction

There is substantial empirical evidence showing that peer effects matter in ed-
ucation (Calvó-Armengol et al., 2009; Epple and Romano, 2011; Sacerdote, 2011),
crime (Ludwig et al., 2001; Patacchini and Zenou, 2012; Damm and Dustmann,
2014), risky behavior (Clark and Loheac, 2007; Hsieh and Lin, 2017), performance
in the workplace (Herbst and Mas, 2015), participation in extracurricular activities
(Boucher, 2016), obesity (Christakis and Fowler, 2007), environmentally friendly be-
havior (Brekke et al., 2010; Czajkowski et al., 2017), and tax compliance and tax
evasion (Fortin et al., 2007; Alm et al., 2017), among other outcomes. The standard
model used in these studies is the so-called linear-in-means model, which can be
written as

xig = zigβ + ygγ +
θ

(Ng − 1)

Ng∑
j=1,j 6=i

xjg + εig (1)

where xig is the outcome of individual i belonging to group g,1 zig are the observable
characteristics of individual i (e.g., age, race, and gender), yg are the observed exoge-
nous characteristics that are common to all individuals in the same group g,2 Ng is
the number of individuals in group g, and εig is an error term. Parameter θ captures
the “social interaction effect” of the average outcome of the reference group on an
individual’s own outcome; this is the key parameter of interest that is estimated to
measure peer effects.3

As noted by Blume et al. (2015), Boucher and Fortin (2016), and Kline and
Tamer (2018), it is useful to interpret the linear-in-means model as corresponding
to a perfect information game in which (1) is the best-reply function of individual
i choosing action (outcome) xi. The corresponding utility function is such that in-
dividuals have a preference to conform to the average action of their neighbors in a
social network. For this reason, this game is often referred to as the local-average
model. Surprisingly, the theoretical properties of this model in terms of comparative

1For example, in relation to crime, xig is the criminal effort of individual i in neighborhood g
and, in relation to education, it is the test score of student i in classroom g.

2For example, yg are the average education or income level in a neighborhood g or the average
education or income level of students’ parents in a classroom g.

3If all agents belong to the same group g, this model is not identified, because it is difficult to
distinguish between the endogenous effect θ and the exogenous effect γ. Manski (1993) referred to
this as the reflection problem, because it is difficult to distinguish between an individual’s behavior
and the behavior being “reflected” back on the individual. The literature on peer effects has
proposed different ways of causally interpreting θ, including field experiments that randomly allocate
individuals to groups (see, e.g., Sacerdote, 2011, for an overview of peer effect studies in education).
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statics, welfare, and policies have not been investigated. On the contrary, the liter-
ature on games on networks4 (Ballester et al., 2006; Bramoullé et al., 2014; Jackson
and Zenou, 2015; Bramoullé and Kranton, 2016)5 studies the properties of another
model, the local-aggregate model, in which the sum (not the average) of actions (or
outcomes) of neighbors affects own action.6

Thus, there is a discrepancy between the theoretical analysis of the local-aggregate
model and the empirical applications using the linear-in-means model or local-average
model. In this study, we analyze the comparative statics, welfare properties, and pol-
icy implications of the local average model and show that these properties are very
different from those of the local-aggregate model.7 Indeed, we show that the differ-
ences between the local aggregate and the local average, although seemingly minor,
lead to substantial divergence in both positive and normative prescriptions. In other
words, the local-aggregate model fails to approximate the local-average model in each
of the following key dimensions: comparative statics, welfare properties, and policy
recommendations.

Our main findings are summarized as follows. First, we characterize the Nash
equilibrium in the local-average model and show that individual efforts, social norms,8

and aggregate effort are the weighted sums of productivity, whereby the weights are

4The economics of networks is a growing field. For overviews, see Jackson (2008), Ioannides
(2012), and Jackson et al. (2017).

5One can interpret the group g in (1) in terms of networks so that group g captures all agents
who individual i is connected to. In that case, the game underlying the linear-in-means model is
a game on networks in which Ng − 1 is the number of agents who are directly connected (direct
friends) to i.

6The key difference between the local-average and the local-aggregate model is that the former
aims to capture the role of social norms, such as conformist behavior or peer pressure, on outcomes
(Patacchini and Zenou, 2012; Liu et al., 2014; Blume et al., 2015; Topa and Zenou, 2015; Boucher,
2016), while the latter highlights the role of knowledge spillovers on outcomes (Ballester et al.,
2006, 2010; Bramoullé et al., 2014; De Marti and Zenou, 2015). Bramoullé et al. (2009) provide
conditions for identification in the local-average model while Liu et al. (2014) derive conditions for
identification in the local-aggregate model.

7In this study, we are interested only in positive peer effects, which is why we compare the local-
aggregate model with the local-average one—both are games with strategic complementarities; that
is, an increase in the effort of a neighbor increases the marginal utility of own effort. Another well-
studied model in network games is a game with strategic substitutability (Bramoullé and Kranton,
2007; Bramoullé et al., 2014; Allouch, 2015) in which there are negative peer effects, that is, an
increase in the effort of an individual’s neighbor decreases the marginal utility of making own effort.
This is not the topic of analysis in this study, since we focus on the linear-in-means model in which
peer effects are supposed to be positive.

8There are different definitions of social norms in the literature (see, e.g., Akerlof, 1997; Dutta
et al., 2019). Here, we define the social norm of an agent as the average action of her neighbors.
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non-linear functions of the taste for conformity. To understand these results, we
compare two extreme cases: pure individualism and total conformism. Under pure
individualism, each agent’s equilibrium effort is equal to her intrinsic productivity
and is independent of her own social norm. By contrast, under total conformism, all
agents choose the same level of effort, which is equal to the weighted mean of indi-
vidual productivity, whereby the weights are proportional to the degree (numbers of
links) of the agents in the network. Whether total effort is higher under pure indi-
vidualism or total conformism depends on the correlation between the productivity
distribution across individuals and the degree distribution of the social network.

Second, we provide comparative statics of individual and aggregate efforts with
respect to the key parameters of the model. We focus especially on the taste for
conformity. Endogenous social norms give rise to general-equilibrium effects. A
complex interplay between these effects may result in a non-monotonic relationship
between the taste for conformity and individual efforts. Whether an individual is
above or below her social norm is key for understanding the shape of this relationship.
Interestingly, in regular networks, aggregate effort remains neutral to changes in the
taste for conformity and is always equal to aggregate productivity.

We also study the impact of adding a link on the equilibrium efforts of all agents
in the network. All agents in the network increase their effort if and only if a link
between two agents with sufficiently high productivities is added in the network.
This result is driven by the following snowball effect. When a link is formed between
two very productive agents, their social norm increases, because the effort of the
newly added agent is high. The best response for the agent for whom the social
norm increases is to increase her effort. This, in turn, increases the effort of her
neighbor, which increases her social norm, and so forth. Note that, when a link
is created between a high-productive and a low-productive agent, then the low-
productive agent increases her effort, because her social norm increases while the
high-productive agent decreases her effort because her social norm is reduced. As
a result, the impact of adding this link on the effort of all agents in the network
is ambiguous. Using these results, we discuss the key-link policy, whose aim is to
determine the link between two agents which, once removed, reduces total crime
the most. We show that, irrespective of the network structure, the planner should
remove the link between the two most productive agents in the network.

Third, we provide a complete welfare analysis of the local-average model. We
derive a necessary and sufficient condition for the equilibrium to be socially optimal.
However, this condition is not likely to hold in most networks. Indeed, each agent
exerts externalities on her neighbors, which she does not take into account when
making effort. In particular, when the effort of agent i’s neighbor (say, agent j) is
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below her own social norm, then an increase in i’s effort increases the social norm of j,
which has a negative impact on j’s conformist utility, because j’s effort is now further
away from her own social norm. In this case, agent i exerts a negative externality
on her neighbor j. To restore the first best, the planner taxes agents who exert
negative externalities on their neighbors. If the effort of agent i’s neighbor (say,
agent j) is above her own social norm, then the reasoning is the same in reverse,
so that to restore the first best, the planner subsidizes agents who exert positive
externalities on their neighbors. This is very different from the policy implications of
the local-aggregate model, in which agents always exert positive externalities on their
neighbors so that the planner always subsidizes agents and gives higher subsidies to
more central agents. Here, if central agents have higher productivity, they are more
likely to exert negative externalities on their neighbors, since the latter are more
likely to have effort below their own social norms. For example, in a star-shaped
network, if the central agent has, on average, higher productivity than that of the
peripheral agents, in the local-aggregate model, to restore the first best, the planner
gives the highest subsidy to the central agent. By contrast, in the local-average
model, the planner taxes the central agent and subsidizes the peripheral agents.

We also consider different extensions of our benchmark model. First, we extend
our utility function so that agents have different tastes for conformity. We show that
all our results are robust to this extension. Second, we consider an anti-conformist
model in which agents benefit from deviating from the social norm of their friends.
We show that if agents are not too anti-conformist, then our results hold even if
some agents provide zero effort in equilibrium. However, when agents become more
anti-conformist, then either no equilibrium exists or multiple equilibria prevail. We
also consider a model in which agents may want to make effort above the average
effort of their friends. In this model, contrary to our benchmark model in which
agents either overinvest or underinvest in efforts compared to the first best, we show
that they tend to mostly overinvest, because they always want to exert efforts above
the social norm of their neighbors. Finally, we extend our model to directed and
weighted networks and show that all our results are robust to this extension.

Next, we study the implications of our model for network formation. Specifically,
we consider a two-stage model in which, in the first stage, agents form links, and
in the second stage, they exert effort. We show that, in the local-aggregate model,
the unique pairwise Nash equilibrium is the complete network. On the contrary,
in the local-average model, the unique pairwise Nash equilibrium is the complete
homophilous network in which agents of the same type form a complete network
but never create links with agents of the other type. In other words, the local-
average model provides a simple explanation of homophilous behavior, whereas the
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local-aggregate model fails to do so.
Finally, we discuss the differences in policy implications of the local-average and

the local-aggregate models. We show that, in the former model, group-based policies
are more efficient while in the latter model, it is better to implement individual-based
or key-player policies.

Contributions to the literature Other researchers have studied the local-average
(conformist) model in network games.9 Patacchini and Zenou (2012) and Liu et
al. (2014) characterized Nash equilibrium and showed that it exists and is unique;
Blume et al. (2015) and Golub and Morris (2017) introduced imperfect informa-
tion;10 Boucher (2016) embedded the local-average model into a network formation
model, while Olcina et al. (2017) embedded it into a learning model.11 To the best
of our knowledge, ours is the first study analyze the comparative statics properties
of the local-average model as well as its welfare and policy implications. Ours is also
the first study to examine how adding or removing a link changes the effort of all
agents in the network.

One may argue that many peer-effect empirical studies cannot distinguish be-
tween the local-average and the local-aggregate model because, in the usual case,
the size of the reference group is constant in the sample. For example, the neighbor-
hood is the class, or co-workers, and the network is the same for everyone, namely,
a complete graph in which all the students in a class, residents of a neighborhood,
or employees of a firm are interlinked. Fortunately, because of network data avail-
ability, many recent studies have precisely described the network of agents (see, e.g.,
Christakis and Fowler, 2007; Bramoullé et al., 2009; Calvó-Armengol et al., 2009;
Banerjee et al., 2013; for overviews, see Breza, 2016; Jackson et al., 2017) and there-
fore, can easily distinguish between the two models. Thus, the results of the present
study can be used to derive adequate policy recommendations for each model.12

9Some studies have introduced conformity in the utility function without an explicit network
analysis but the social norm is usually assumed to be exogenous. See, among others, Akerlof (1980,
1997), Kandel and Lazear (1992), Bernheim (1994), and Fershtman and Weiss (1998).

10See Ghiglino and Goyal (2010), Bloch and Quérou (2013), and Chen et al. (2018), who also
developed theoretical network models with average effects but focusing on different issues.

11Olcina et al. (2017) forms part of the wide literature on learning on networks using the DeGroot
model, whereby the utility function is implicitly assumed to be equivalent to the local-average model.
For an overview of this literature, see Golub and Sadler (2016).

12For example, Carrell et al. (2013) assigned students to peer groups so that the academic
performance of the least able students was maximized. The authors showed that using average peer
effects to “optimally” design these groups without taking into account the network relationships
between these students could backfire, since they found a negative and significant treatment effect
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The rest of the paper unfolds as follows. In Section 2, we develop the local-
average model and characterize the best response functions. In Section 3, we study
the comparative statics properties of the model. In Section 4, we investigate the wel-
fare properties of the local-average model. Section 5 considers different extensions
of our model. In Section 6, we examine the policy implications of our results. Fi-
nally, Section 7 concludes. All proofs are in Online Appendix A. Online Appendix B
provides a comparison between the local-average and the local-aggregate model. In
Online Appendix C, we provide a probabilistic interpretation of our model. In Online
Appendix D, we provide a simple example that shows how a mean-preserving spread
of the productivity impacts own and aggregate outcome. In Online Appendix E, we
provide additional results and examples on the comparative statics of the taste for
conformity while in Online Appendix F, we compare equilibrium and first-best out-
comes for specific networks. In Online Appendix G, we consider different extensions
of our model.

2 The local-average model

2.1 Definitions and notation

Consider n ≥ 2 individuals (or agents) who are embedded in a network g. The
adjacency matrix G = [gij] is an (n×n)-matrix with {0, 1} entries, which keeps track
of the direct connections in the network. By definition, agents i and j are directly
connected if and only if gij = 1; otherwise, gij = 0. We assume that the network is
undirected, that is, gij = gji, and has no self-loops, that is, gii = 0.

Denote by Ĝ = [ĝij] the (n × n) row-normalized adjacency matrix defined by
ĝij := gij/di, where di is individual i’s degree, or the number of her direct neighbors,
that is, di :=

∑n
j=1 gij.

Each agent i = 1, 2, . . . , n is described by: (i) her productivity αi ∈ R+, which is
an exogenous characteristic; (ii) her effort xi ∈ R+, which is agent i’s choice variable;
and (iii) her position in the network g, which defines her social norm. Following the
standard notation, we set

α := (α1, α2, . . . , αn)T ∈ Rn
+, x := (x1, x2, . . . , xn)T ∈ Rn

+,

while the subscript (−i) means dropping a vector’s ith coordinate:

x−i := (x1, . . . , xi−1, xi+1, . . . , xn)T ∈ Rn−1
+ .

for the least able students.
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Finally, agent i’s social norm, xi, is defined as the average effort across her neighbors,
namely,

xi :=
n∑
j=1

ĝijxj (2)

In equilibrium, each agent’s effort xi is represented13 as a convex combination of
her own exogenous productivity αi and her endogenous social norm xi. This is very
much in the spirit of the linear-in-means model (1).

2.2 Preferences

Agent i’s utility function has a standard linear-quadratic structure and is given
by

Ui(xi,x−i,g) = αixi −
1

2
x2
i −

θ

2
(xi − xi)2 , (3)

where αi > 0 stands for agent i’s individual productivity, while θ > 0 is the taste for
conformity.14

The utility function (3) has two terms. The first term, αixi − x2
i /2, is the utility

of exerting xi units of effort when there is no interaction with other individuals. The
second term, −θ (xi − xi)2 /2, captures the peer-group pressure faced by agent i, who
seeks to minimize her social distance from her reference group, and suffers a utility
reduction equal to θ (xi − xi)2 /2 from failing to conform to others.15

For the sake of analytical convenience, we reparametrize the taste for conformity
by setting

λ :=
θ

1 + θ
, 0 ≤ λ < 1. (5)

13See equation (11) below.
14 Note the difference between (3) and the local-aggregate model (Ballester et al., 2006), where

the utility of agent i = 1, 2, . . . , n is given by

Ui(xi,x−i,g) = αixi −
1

2
x2i + θ

n∑
j=1

gijxixj , (4)

that is, it is the aggregate effort of peers,
∑n

j=1 gijxj , which positively affects own utility. In
Appendix B, we compare the local-average and the local-aggregate model.

15This is the standard way in which economists have modeled conformity (see, among others, Ak-
erlof, 1980, 1997; Kandel and Lazear, 1992; Bernheim, 1994; Fershtman and Weiss, 1998; Patacchini
and Zenou, 2012; Boucher, 2016).
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By plugging (5) into (3), we obtain

Ui(xi,x−i,g) = αixi −
1

2
x2
i −

1

2

(
λ

1− λ

)
(xi − xi)2 (6)

The two parameterizations, (3) and (6), are clearly equivalent. Indeed, as observed
from (5), λ is a monotone transformation of θ.

We now point out some important properties of the utility function (6), which
provides useful intuition about our main results. First, if i and j are neighbors, we
have

∂Ui(xi,x−i,g)

∂xj
T 0 ⇐⇒ xi T xi. (7)

In other words, when agent j makes effort xj, she exerts a positive (negative) ex-
ternality on her neighbor i if and only if the effort of i is above (below) i’s social
norm. This is important in the welfare section, since we observe that the equilibrium
effort differs from the first-best, because agents fail to internalize externalities when
choosing their effort levels. These externalities are positive or negative depending on
whether the effort is above or below the social norm. This highlights the importance
of having endogenous social norms.

Second, efforts are strategic complements. Indeed, for ĝij > 0,

∂2Ui(xi,x−i,g)

∂xixj
> 0, (8)

which means that the higher is the effort of an individual’s peer, the higher is the
individual’s marginal utility of exerting effort.

Third, the cross-effect of individual i’s effort xi and the taste for conformity λ is
given by:

∂2Ui(xi,x−i,g)

∂xi∂λ
S 0 ⇐⇒ xi T xi. (9)

In other words, if xi > xi (xi < xi), then, when agents become more conformist,
an increase in xi increases (reduces) the gap between xi and xi, which leads to a
decrease (increase) in the utility level. In other words, an increase in λ decreases
(increases) the marginal utility of exerting effort for individual i if xi > xi (xi < xi).
We refer to this assumption when discussing the comparative statics of λ.

Finally, the cross-effects of effort and productivity are positive, as for any i, j, k =
1, 2, . . . , n we have

∂2Ui(xi,x−i,g)

∂xj∂αk
≥ 0. (10)
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Hence, productivities α and efforts x satisfy the standard Milgrom–Shannon
conditions, which guarantee monotone comparative statics in supermodular games
(see Proposition 2 below). However, this is not the case for the comparative statics
in terms of the taste for conformity λ (see (9)).

To summarize, the utility function (3)—equivalently, (6)—is the standard way
economists have modeled conformity. However, the social norm xi is usually as-
sumed to be exogenous (see, e.g., Akerlof, 1980, 1997), which makes the problem
less interesting, because it abstracts from general equilibrium effects (Dutta et al.,
2019). Here, we endogenize the social norm by making it dependent on the network
structure. In that case, agents create externalities for each other through the social
norm that they do not take into account when exerting their effort. This leads to
new policy implications that we explore in Sections 4 and 6.

2.3 Nash equilibrium

Each individual i chooses xi to maximize (6) taking the network structure g and
the effort choices x−i of other agents as given. By computing agent i’s first-order
condition (FOC) with respect to xi, we obtain the following best-reply function for
each i:

xi = (1− λ)αi + λxi. (11)

After some normalizations, it should be clear that (11) is equivalent to the standard
linear-in means model (1) in which individual effort is a function of individual ob-
servable characteristics αi, which can also depend on the characteristics of neighbors,
and on the endogenous peer effect xi.

Combining (11) with the definition (2) of agent i’s social norm, we find that the
vector x∗ := (x∗1, x

∗
2..., x

∗
n)T of equilibrium efforts must be a solution to

x = (1− λ)α+ λĜx, (12)

where α := (α1, . . . , αn)T is the productivity vector.16

16Observe that the linear-in-means model (1) is closely related to the spatial-autoregressive (SAR)
model in the spatial econometrics literature (LeSage and Pace, 2009) and is usually written in matrix
form as

x = β + λĜx + ε,

where, as in our model, Ĝ is a row-normalized matrix that captures the distance or proximity
in the geographical space (or any other space, e.g., the social space) between different agents or

entities, such as geographical areas. In this literature, the main reason for the matrix Ĝ to be row-
normalized is to obtain an intuitive interpretation of λ as the weighted average impact of neighbors
but also to avoid explosive spatial multipliers implied by λ (by analogy to time-series econometrics,
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Proposition 1 (Equilibrium efforts, norms, and utilities)

(i) There exists a unique interior Nash equilibrium x∗, which is given by

x∗ = M̂α, (13)

where M̂ = [m̂ij] is an (n× n)-matrix of marginal effects defined as follows:17

M̂ := (1− λ)
(
I− λĜ

)−1

= (1− λ)
∞∑
k=0

λkĜk. (14)

(ii) The equilibrium social norms x∗ are given by

x∗ = ĜM̂α = (1− λ)
∞∑
k=0

λk Ĝk+1α. (15)

(iii) For each i = 1, 2, . . . , n, agent i’s equilibrium utility level is given by

U∗i (α, λ,g) =
1

2

α2
i −

1

λ

(
αi −

n∑
j=1

m̂ijαj

)2
 . (16)

Several comments are in order. First, taking a closer look at the structure of the
marginal effect m̂ij of agent i’s productivity on agent j’s effort, we obtain

m̂ij =
∞∑
k=0

(1− λ)λk︸ ︷︷ ︸
geometric

distribution

ĝ
[k]
ij . (17)

As seen from (17), m̂ij is decomposed into a series whose kth term is proportional

to ĝ
[k]
ij , that is, the normalized number of paths from i to j of length k in the

in which the autoregression parameter λ is expected to be strictly less than 1 in modulus; see
Hamilton, 1994). Equation (12) is clearly equivalent to the spatial-autoregressive model and it
gives a microfoundation of the SAR model via the utility function (3) or (6).

17Because Ĝ is row-normalized and 0 ≤ λ < 1, the matrix M̂ of marginal effects is well defined
and can be represented by the Neumann series. This follows from Corollary 5.6.16 in Horn and
Johnson (1985, Ch. 5, p. 301), in which the suitable matrix norm is the maximum row sum norm.
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social network. Surprisingly, the coefficients of the series are given by the standard
geometric distribution with the odds ratio equal to θ ≡ λ/(1−λ). Therefore, although
the game under study is fully deterministic, one may inquire whether the marginal
effects m̂ij have some probabilistic origin. In Online Appendix C, we demonstrate
that the local average model is observationally equivalent to an average outcome of
a naive social learning model.18

Second, there is no need to impose any conditions on θ ≡ λ/(1− λ) (except that
θ > 0) to guarantee the existence of a unique and interior Nash equilibrium. This is
not the case in the local aggregate model.19

Third, it is readily verified that, if agents are ex ante homogeneous, that is, if αi =
αj for any i, j = 1, 2, . . . , n, then, regardless of the network structure, the equilibrium
effort levels are the same across agents : x∗i = x∗j for any i, j = 1, 2, . . . , n. This
result displays another significant difference with the local aggregate model, in which
the outcome is represented by the Katz–Bonacich centralities of the agents. Here,
the impact of the network structure on equilibrium is mediated by the correlation
between the productivity distribution α and the degree distribution of the network
g. We return to this property in Sections 3 and 4.

Fourth, instead of assuming (3) or (6), the following utility function can be as-
sumed:

Ui(xi,x−i,g) = αixi −
1

2
x2
i −

θ

2

n∑
j=1

ĝij(xi − xj)2, (18)

and exactly the same first-order condition (11) can still be obtained and thus, the
same equilibrium effort x∗i . The interpretation of the utility function (18) is still in
terms of conformism but now, each individual pays some cost from deviating from
the action of each of her neighbors instead of the average action of her neighbors.

Even if the equilibrium effort is the same and equals x∗i , the equilibrium utility is

18A similar result was obtained by Golub and Morris (2017).
19Indeed, in the local-aggregate model for which the utility function is given by (4), one needs a

condition on θ (i.e., θ < 1/µ(G, where µ(G) is the largest eigenvalue of G), to prove the uniqueness
of equilibrium. In the local-average model, one does not need such a condition, because the matrix

to be inverted is
(
I− λĜ

)
, where Ĝ is the row-normalized matrix of G. The largest eigenvalue of

Ĝ equals one and thus, the condition for invertibility of
(
I− λĜ

)
is λ := θ/(1 + θ) < 1, which is

always true.
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different.20 As a result, the equilibrium effort x∗i and its comparative statics results
are the same but the welfare analysis and its comparative statics may differ, because
the equilibrium utilities and thus, welfare are different.21

Finally, in part (iii) of Proposition 1, we calculate the equilibrium utility level
of each agent in the network as a function of the parameters of the model. An
important aspect of this model is whether individual i’s effort is above or below her
own social norm. The following result clarifies this relationship.

Lemma 1 For each i = 1, 2, . . . , n, we have

x∗i T x∗i ⇐⇒ αi T
n∑

j=1,j 6=i

m̂ij

(1− m̂ii)
αj. (19)

This lemma shows that agent i’s own effort is above (below) her social norm if
and only if her productivity is higher (smaller) than the weighted average of the
other productivities in the network. For example, in a star network, if the central
agent is more productive than the others, then her effort is always above the social
norm of her neighbors (the peripheral agents), who, in turn, exert effort below that
of their social norm, since the latter is the effort of the central agent. This is a useful
insight that helps us to understand the main results of Sections 3 and 4.

20It is easily verified that, in our model, the equilibrium utility is given by

Ui(x
∗
i ,x−i,g) = αix

∗
i −

1

2
(x∗i )2 − θ

2
(x∗i )2 + θx∗i x̄

∗
i −

θ

2

 n∑
j=1

ĝijx
∗
j

2

while, in this new model with preferences given by (18), we have:

Ui(x
∗
i ,x−i,g) = αix

∗
i −

1

2
(x∗i )2 − θ

2
(x∗i )2 + θx∗i x̄

∗
i −

θ

2

n∑
j=1

ĝij(x
∗
j )2

The only difference between these two utility functions is the last term which is clearly different,

since
(∑n

j=1 ĝijx
∗
j

)2
= (x̄∗i )2 6=

∑n
j=1 ĝij(x

∗
j )2.

21As noted by Boucher and Fortin (2016), another utility function could have generated the same
first-order conditions (11) and thus, the same equilibrium effort x∗i . It is given by

Ui(xi,x−i,g) = αixi −
(1 + θ)

2
x2i + θxi

n∑
j=1

ĝijxj .

However, in this case, the properties of the model are very different, since it is no longer a conformist
model.
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2.4 Linear-in-means model and heterogeneity: An example

In the Introduction, we discuss how peer effects are estimated in the literature
using the linear-in-means model (see (1)), which captures an average effect. In reality,
the same average effect can have a very different impact on outcomes, depending
on other moments of the distribution, in particular, the variance.22 Contrary to
the linear-in-means model, the local-average model can address this issue, since it
encompasses a network approach whereby the group each individual belongs to is
determined by her direct neighbors. In that case, the whole distribution matters in
evaluating the impact of peers on outcomes.

To illustrate this, in Online Appendix D, we provide a simple example that shows
how a mean-preserving spread of the productivity impacts own and aggregate out-
come. This example shows that estimating a linear-in-means model may be mis-
leading, because it focuses only on the average effect and does not take into account
other characteristics of the distribution of efforts in the population. In this example,
we show that the local-average model can have a very different prediction than the
linear-in-means model, depending on the value of λ, the taste for conformity, and the
value of t. Indeed, with exactly the same average characteristic (here, productivity)
in the group (here, network), the individual effort level may vary a lot. In this exam-
ple, these changes are driven by t, which is proportional to the standard deviation
of the productivity distribution. As a result, when studying the impact of the social
norm on individual effort, one should not only take into account the average social
norm of the reference group but also its variance.

3 Comparative statics

We aim to understand the properties of our model by performing some compar-
ative statics exercises of the Nash equilibrium with respect to the key parameters of
the model: (i) the productivity vector α; (ii) the taste for conformity λ; and (iii)
the density/sparsity of social network g.

22For example, in a classroom of 30 students, the impact of an average test score of 50/100 is
very different if all students have a test score of around 50/100 (i.e., low variance with a very
homogeneous distribution of test scores) than when some students have very high test scores and
others have very low test scores (i.e., high variance with a very heterogeneous distribution of test
scores).
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3.1 Effect of productivity

Let us start with the productivity α of all agents. We have the following result:

Proposition 2 (Comparative statics for productivity)

(i) For all i, j = 1, 2, . . . , n, the marginal effects of a change in individual i’s
productivity αi on individual j’s equilibrium effort x∗j and individual j’s social
norm x∗j are positive and do not exceed 1:

0 <
∂x∗j
∂αi

< 1, 0 <
∂x∗j
∂αi

< 1.

(ii) The equilibrium utility of each individual i = 1, 2, . . . , n is increasing with her
own productivity :

∂U∗i (α, λ,g)

∂αi
> 0.

(iii) For any j 6= i, agent i’s equilibrium utility U∗i (α, λ,g) increases (decreases)
in response to a small change in αj, if and only if agent i’s equilibrium ef-

fort x∗i is above (below) her equilibrium social norm x∗i ; that is, sign
[
∂U∗

i

∂αj

]
=

sign (x∗i − x∗i ), or equivalently, using Lemma 1,

∂U∗i
∂αj

T 0 ⇐⇒ αi T
n∑

l=1,l 6=i

m̂il

(1− m̂ii)
αl

The first result is straightforward because, as implied by (13), each x∗i is a convex
combination of productivity and social norms. The second result, although intuitive,
is relatively difficult to show. Indeed, when own productivity αi increases, own effort
x∗i increases, which raises U∗i , the equilibrium utility of i, but the social norm x∗i
also increases, which can increase or decrease U∗i depending on whether x∗i is higher
or lower than x∗i . We show in the proof that the first direct effect is stronger than
the second indirect effect, so that an increase in αi always increases U∗i . When we
analyze the effect of αj on U∗i for j 6= i, we find a similar result, that is, the impact
depends on whether x∗i is above or below x∗i .

3.2 Effect of conformity

We now look at the impact of taste for conformity λ on individual and social
outcomes.
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3.2.1 Pure individualism versus total conformism

To obtain some intuition, we begin by contrasting two extreme cases: pure in-
dividualism (λ = 0), where i’s utility depends only on own productivity αi; and
total conformism (λ → 1), where i’s utility depends only on others’ behavior. To
obtain these results, we use the observational equivalence between our models and
that of the Markov chain developed in Online Appendix C to compare the outcomes
generated by perfect individualism (λ = 0) and total conformism (λ = 1).

It is straightforward to observe that, under pure individualism (λ = 0), we have
x∗i = αi. In this case, norms play no role, and there are incentives for an individual
to exert neither higher nor lower effort than her intrinsically desirable level, αi.
However, the outcome when λ→ 1 is less obvious.

Proposition 3 (Totally conformist agents) For any network structure, individ-
ual efforts in a totally conformist society are given by

lim
λ→1

x∗i (λ) = πα =
n∑
j=1

πjαj, for all i = 1, . . . , n, (20)

where π ≡ (π1, π2, . . . , πn) are normalized degrees of agents:

πi :=
di∑n
j=1 dj

, for all i = 1, 2, . . . n, (21)

Proposition 3 shows that, for any network structure, when agents are perfectly
conformist, the equilibrium effort depends only on the weighted productivity in the
network, where the weights depend on the network structure. This implies, in par-
ticular, that πj is the probability that a perfectly conformist individual i exerts a
level αj of effort. This means that, when λ → 1, the effort of all agents in the net-
work is the same and that the level of these efforts depends on the network structure
captured by π and on the productivity distribution captured by α. Thus, the prob-
abilistic interpretation of the model helps us to understand the totally conformist
society, which is otherwise difficult to characterize.23

We are now equipped to compare the purely individualist society (λ → 0) and
the totally conformist society (λ→ 1).

Proposition 4 (Individualist versus conformist society)

23A similar result in terms of conformity limits was shown by Golub and Morris (2017), but in
the context of imperfect information.
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(i) Individual effort:

lim
λ→0

x∗i (λ) T lim
λ→1

x∗i (λ) ⇐⇒ αi T
n∑
j=1

πjαj

(ii) Aggregate effort:

lim
λ→0

∑
i

x∗i (λ) T lim
λ→1

∑
i

x∗i (λ) ⇐⇒
n∑
j=1

αj T n

n∑
j=1

πjαj

Part (i) of Proposition 4 shows that the effort exerted by each agent i can be
higher or lower in a pure individualist society than in a completely conformist one
if the productivity of i is above or below the weighted average productivity in the
network. This result depends on both own productivity and the network structure.
Part (ii) of Proposition 4 shows that conformity is not necessarily good for aggregate
effort. However, when αi and πi are positively (negatively) correlated, that is, agents
with higher productivity have (less) more central positions in the network,24 then
perfect conformity increases aggregate effort.

How do individual and aggregate efforts change when the taste for conformity
varies? To answer this question, we study the comparative statics with respect to
the conformity parameter λ.

3.2.2 The impact of the taste for conformity on outcomes

Let us totally differentiate (11) with respect to λ. We obtain

dx∗i = −αi dλ︸ ︷︷ ︸
productivity

effect

+ x∗i dλ︸ ︷︷ ︸
direct

norm effect

+λ (∂x∗i /∂λ) dλ︸ ︷︷ ︸
indirect

norm effect

(22)

Indeed, when λ increases, the individual effort of individual i, x∗i , is affected in three
different ways. First, there is a negative productivity effect, according to which, when

24 Indeed, it is straightforward to show that:

n∑
j=1

πjαj T
1

n

n∑
j=1

αj ⇐⇒ Corr (π,α) T 0,

where Corr (π,α) is the correlation between π and α. If Corr (π,α) > 0 (< 0), then more produc-
tive agents are also more (less) central (in terms of degree centrality) in the network.
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conformity increases, the impact of own productivity on effort decreases. Second,
there is a positive direct social-norm effect, indicating that, when λ increases, the
impact of the social norm on own effort increases. These are straightforward direct
effects due to the fact that, when λ increases, agents pay more attention to their
neighbors than to themselves. There is a third, more subtle effect, the indirect
social-norm effect, which can be positive or negative. This effect shows that, when λ
increases, the social norm itself changes as i changes her effort and her peers become
more conformist. The effect is ambiguous as i’s friends may increase or decrease their
effort following an increase in λ. As a result, the total effect of λ on x∗i is ambiguous.
To understand this better, using (11), (22) can be written as

dx∗i = − (x∗i − x∗i )
dλ

1− λ
+ λ

∂x∗i
∂λ

dλ

We now see that the total impact of a change of λ crucially depends on whether
the individual effort of i is above or below her own social norm. As observed from
(9), this is because the effect of λ on the marginal utility of effort is ambiguous and
depends on the gap, xi − xi, between the individual’s effort and her social norm. In
particular, when λ increases, agents become more conformist, and the gap between
xi and xi matters more.

Recall that π = (π1, . . . , πn) is the normalized degree distribution of the network
g (see (21)). We obtain the following result.

Proposition 5 (Non-monotonicity of individual efforts in conformism)

(i) For any λ ∈ (0, 1), if ∂x∗i /∂λ > 0 for some i, then it has to be that ∂x∗j/∂λ < 0
for some j 6= i.

(ii) When λ is small, we have

∂x∗i
∂λ
≷ 0 ⇐⇒ αi ≶

n∑
j=1

ĝijαj (23)

(iii) Assume that the following conditions hold:

n∑
j=1

πjαj ≤ αi <
n∑
j=1

ĝijαj. (24)

Then, agent i’s individual effort x∗i (λ) has an interior global maximum in λ.
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(iv) Assume that the following conditions hold:

n∑
j=1

πjαj ≥ αi >

n∑
j=1

ĝijαj. (25)

Then, agent i’s individual effort x∗i (λ) has an interior global minimum in λ.

Part (i) of Proposition 5 provides an expression of the impact of conformity on
individual i’s effort. We show that it crucially depends on whether both individual
i and all other agents in the network (since all agents are path-connected to each
other) make efforts above or below the social norm of their friends. In particular, if
we order agents by their productivity in descending order, so that αmax := α1 and
αmin := αn are the highest and lowest values of productivity among the n agents in
the network, respectively, then, by Lemma 1, it has to be that x∗1 > x∗1 and x∗n < x∗n.
As a result, because some individuals exert effort above the norm and some below
the norm, the total impact of λ on an individual is ambiguous, and has to increase
for some individuals and decrease for others. Equation (23) shows that, for small λ,
the sign of this derivative depends only on whether i’s productivity is above or below
that of her peers.25

Observe that this comparative statics result is very different to that obtained in
the local-aggregate model in which an increase in λ or θ (social multiplier or social
interaction effect in the local-aggregate model; see (4)) always leads to an increase
in effort x∗i . This is important for policy purposes, because, as noted by Boucher
and Fortin (2016), if there is a positive policy shock on λ, and we observe that
individual effort either decreases or the effect is non-monotonic, then we know that
the underlying utility function is defined by the local-average model (see (3) or (6))
and not by the local-aggregate model. To know which utility function each agent has
when choosing her effort is important for policy implications, as discussed in Section
6 below.

Parts (ii) and (iii) of Proposition 5 provide sufficient (but not necessary) condi-
tions for x∗i to vary non-monotonically with λ.26 Based on these conditions, which
depend only on the productivity parameters and the structure of the network, αi
cannot be neither too high nor too low for the relationship between x∗i and λ to be
non-monotonic. Clearly, if λi is very high (low), which implies that x∗i is very likely

to be above (below) x∗i , then
∂x∗i
∂λ

is negative (positive). Conditions (24) and (25)

25Proposition G4 in Online Appendix G.2 generalizes Proposition 5 when the taste for conformity
is individual specific and equal to λi for each agent i.

26We give sharper conditions for some specific types of network structures in Section E.3 in Online
Appendix E.
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also guarantee a global interior maximum or minimum in λ. In particular, if αi is
above (below) the productivity in the network, there is a global interior maximum
(minimum), which means that an increase in λ first has a positive (negative) impact
on x∗i and then a negative (positive) one.

In fact, the non-monotonicity expressed in parts (ii) and (iii) of Proposition 5
can be complex and not necessarily U shaped or bell shaped. In Figure 1, we provide
an example for a chain network with 13 nodes in which increasing λ yields an S
shape. In this chain network, node 0 is in the middle, nodes 1, 2, 3, 4, 5, and 6 are on
the right side of node 0, while nodes −1,−2,−3,−4,−5, and −6 are on the left side
of node 0.27

Figure 1: Non-monotonic effect of λ on individual effort for a chain network with
n = 13

In Proposition 5, we show that the impact of λ on individual effort is very complex
and difficult to sign. In Corollary E.1 in Online Appendix E, we show that the same
non-monotonicity results hold for the aggregate effort, which is an important aspect
of this model.28 Also, in Proposition E1 in Online Appendix E, we demonstrate that,
in regular networks, the aggregate effort does not vary with λ. This is because, in a
regular network, there is perfect compensation between the positive impact of λ on
low-productive agents and the negative impact of λ on high-productive agents. As a
result, neither the average nor aggregate effort in a regular network are affected by a
change in λ. In Section E.4 in Online Appendix E, we illustrate this result by means

27The values of productivity are assumed to be: α0 = 0.75, α1 = 1 = α−1, α2 = 0.5 = α−2,
α3 = α−3 = 0.25, α4 = 0.5 = α−4 =, α5 = 2α−5, and α6 = 0.5 = α−6.

28For example, in crime, we would be interested in analyzing how conformity affects individual
crime effort but also the total crime level in the network.
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of a circular network. When we rewire the links in this network without changing
the network topology, we show that the convergence of agents’ efforts to the average
effort can be faster or slower than in the original network depending on the rewiring.

To summarize, in this section, we show that the impact of the taste for confor-
mity λ on i’s effort depends on the productivity of each individual and the network
topology, which determines the links between all agents and, thus, the peer pressure
(via the social norm) that neighbors exert on own effort. Therefore, the effect of a
higher taste for conformity on own effort is complex and determined by whether the
individual is an “underdog” or someone who has high productivity. If we consider
crime, this determination is important, since it shows how delinquents influence each
other and how an individual’s crime effort is affected by the degree of conformism in
the peer group she belongs to.

3.3 Do agents exert more effort in denser networks?

We now consider the consequences of a change in the network structure by asking
the following question: how does adding a new link to the existing network affect
the equilibrium efforts? In the local-aggregate model, the answer is straightforward:
because of strategic complementarities, regardless of the productivities αs, all agents
always exert more effort in denser networks. However, as the following proposition
shows, this is not always true in the local-average model.

Proposition 6 Assume that agents i and j are not connected to each other (gij = 0).
Then, adding a link between i and j leads to:

(i) an increase in everyone’s effort, if the following two conditions hold simulta-
neously:

αi >

∑
l 6=i (m̂il − λm̂jl)αl

1− λ− m̂ii + λm̂jj

, (26)

αj >

∑
l 6=j (m̂jl − λm̂il)αl

1− λ− m̂jj + λm̂ii

; and (27)

(ii) a reduction of everyone’s effort, if the inequalities are opposite in (26) and
(27).

Otherwise, there is an ambiguous outcome.

This proposition shows that, in any network, adding a link between two agents
who have high (low) productivities not only increases (decreases) the effort of these
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two agents but also increases (reduces) the effort of all the other agents in the net-
work. Indeed, if we connect agent i to a high-productivity agent j, then i’s norm
increases and the best response for i is to increase her effort (see (11)). This implies
that the norm of i’s neighbors increases, which, in turn, increases their effort, and
so forth. Similarly, if we connect j to a high-productivity agent i, then j’s norm
increases and the best response for j is to increase her effort. We have again the
same snow-ball effect. The same reasoning applies in the opposite direction if we
connect two low-productive agents. Indeed, if agent i connects to low-productivity
agent j, then i’s norm decreases, which reduces i’s effort. This, in turn, decreases
the norm of i’s neighbors, which reduces their effort, and so forth.

To illustrate this result, consider a star network with three agents in which agent
1 is in the center. The row-normalized adjacency matrix is then given by

ĜS =

 0 0.5 0.5
1 0 0
1 0 0


Let us first assume that α1 = 2, α2 = 1 and α3 = 0.5, so that the star is more
productive than the peripheral agents are. It is easily verified that

x∗S =
1

4(1 + λ)

 3λ+ 8
−λ2 + 8λ+ 4
λ2 + 8λ+ 2

 , x∗S =
1

4(1 + λ)

 8λ+ 3
3λ+ 8
3λ+ 8

 .

According to part (ii) of Proposition 6, adding the link 2−−3 between the two less
productive agents should decrease the efforts of all agents in the network. Let us
verify this. By adding the link between agents 2 and 3, the network becomes complete
and the row-normalized adjacency matrix is now given by

ĜC =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0


In that case, we obtain

x∗C =
1

2(2 + λ)

 8− λ
4 + 3λ
2 + 5λ

 , x∗C =
1

2(2 + λ)

 3 + 4λ
5 + 2λ
6 + λ

 .

It is easily verified that x∗Si > x∗Ci , for all i = 1, 2, 3, so that adding the link 2−3,
indeed, decreases the effort of all agents in the network. Consider first agent 2. By
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adding the link 2−3, her social norm decreases, that is, x∗S2 > x∗C2 , since, before
adding the link 2−−3, the social norm of agent 2 was equal to the effort of agent 1, a
very productive agent, while, after adding the link 2−−3, it becomes the average of
the efforts of 1 and that of 3, a low-productive agent. Since agent 2’s norm decreases,
her best response is to decrease her effort. The same reasoning applies for agent 3,
whose norm changes from the effort of agent 1 to the average effort of agents 2 and
3. Thus, agent 3’s norm decreases and her best response is to decrease her effort.
Since both agents 2 and 3 reduce their effort, the social norm of agent 1, which is
the average effort of agents 2 and 3, decreases and her best response is to decrease
her effort. As a result, by adding the link 2−−3, all agents reduce their effort.

Assume now that α1 = 0.5, α2 = 1, and α3 = 2 so that the peripheral agents are
now the most productive ones in the network. Then, it is easily verified that adding
the link 2−−3 increases the effort of all agents in the network, as predicted by part
(i) of Proposition 6. This is because, when the link 2−−3 is added, the social norm
of agent 2 increases, as it changes from being equal to the effort of agent 1, a low-
productive agent, to the average effort of agents 1 and 3, where 3 is a high-productive
agent. Her best response is to increase her effort. The same applies to agent 3. Since
both agents 2 and 3 increase their effort, agent 1 also increases her effort, because
her social norm increases.

Finally, if we assume that α1 = 1, α2 = 0.5, and α3 = 2, then adding the link
2−3 has no clear monotonic effect on the effort of all agents in the network. Indeed,
on the one hand, it increases the social norm of agent 2, who increases her effort,
but reduces the social norm of agent 3, who decreases her effort. This implies that
the effect on the social norm of agent 1 (and her effort), which is the average effort
of agents 2 and 3, would be ambiguous.

Observe that the results obtained in Proposition 6 can easily be extended to
removing links.

Remark 1 Assume gij = 1. If both (26) and (27) hold, then removing the link
between agents i and j decreases the effort of all agents in the network. If the in-
equalities are opposite in (26) and (27), then removing the link between agents i and
j increases the effort of all agents in the network. Otherwise, the effect of removing
the link i-j is ambiguous.

This is an important result that has interesting policy implications. Consider
crime. The usual objective of the planner is to reduce total crime, which, here,
amounts to reducing aggregate effort. Thus, Remark 1 helps us answer the following
question: if the planner wants to reduce total crime, which link should she remove
from the network? This is referred to as the key-link policy. As Remark 1 shows,
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the planner needs to remove the link between the two most productive agents in the
network and this is independent of the network structure. Ballester et al. (2010)
determined the key link in the local-aggregate model and showed that it strongly
depends on the network structure, in particular, the Katz–Bonacich centrality of the
two agents involved in the key link. The main advantage of our result in Remark 1 is
that the planner does not need to know the network but only the crime productivity
of all agents in the network, which can be determined in the data by their crime
records.

What does a key-link policy mean in the real-word? A link removal would lead
to a disruption of the communication between two criminals. For example, when
a police officer keeps watch over a street, she disrupts the possible communication
between criminals from the same neighborhood. Another example of a key-link policy
is to move a delinquent teenager to another residential location where there are less
delinquents.29 By doing so, this delinquent stops her activities and communication
with other delinquents in the older residential area.30

4 Welfare and first best

We now analyze socially optimal outcomes. For that, let us first calculate the
first-best outcome of this economy and then determine the taxes/subsidies that can
restore the first best.

4.1 First best

Define the social welfare W as

W :=
∑

i=1,2,...,n

Ui(xi,x−i,g). (28)

The following proposition characterizes the first best and establishes a necessary and
sufficient condition for the Nash equilibrium in efforts to be socially optimal.

Proposition 7 (First best)

29See, for example, Ludwig et al. (2001) and Kling et al. (2005, 2007), who study the moving
to opportunity experiment that relocates families from high- to low-poverty neighborhoods. The
authors found that this policy reduces juvenile arrests by 30 to 50% of the arrest rate for control
groups.

30For a general discussion of removing links and disrupting the network in criminal activities, see
Lindquist and Zenou (2019).
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(i) For each i = 1, 2, . . . , n, the first-best effort xO is a solution to

xi = (1− λ)αi + λxi + λ

n∑
j=1

ĝji (xj − xj) , (29)

or, in matrix form,

x = (1− λ)α+ λĜx + λĜT
(
I− Ĝ

)
x. (30)

(ii) For the Nash equilibrium to be the first best (x∗ = xO), it is necessary and
sufficient that the vector α of productivity satisfies the following system of
linear constraints:

ĜT (I− Ĝ)M̂α = 0. (31)

(iii) Moreover, for any network,

n∑
i=1

xOi =
n∑
i=1

αi. (32)

Part (i) of Proposition 7 clearly shows the difference in effort between the Nash
equilibrium (see (11)) and the first best (see (29)). In particular, compared to the
Nash equilibrium, the first best has an extra term, λ

∑n
j=1 ĝji (xj − xj), which could

be positive or negative. In fact, this extra term is the result of the following deriva-
tion:

∑
j 6=i

∂Uj

∂xj

∂xj
∂xi

(see the proof of Proposition 7), where
∂xj
∂xi

> 0, that is, an in-

crease in i’s effort increases the average effort of j’s friends if i and j are friends,
and

∂Uj

∂xj
= ( λ

1−λ) (xj − xj) R 0. This last result implies that, if xj > xj (xj < xj),

then an increase in xj reduces (increases) the difference between xj and xj, which,
because of conformism, increases (decreases) utility. Thus, at the Nash equilibrium,
when deciding their individual effort, agents do not take into account the effect of
their effort of the social norm of their peers, which creates an externality that can be
positive or negative. Indeed, if individual i has friends for whom xj > xj (xj < xj),
then when she exerts her effort, she does not take into account the fact that she
positively affects xj, the norm of her friends, which increases (decreases) the utility
of their neighbors. In that case, compared to the first best, individual i underin-
vests (overinvests) in effort, because she exerts positive (negative) externalities on
her friends.
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This result contrasts with that obtained in the local-aggregate model in which
agents always underinvest in effort, because they always exert positive externalities
on their neighbors. Here, even though the efforts are strategic complements (see (8)),
agents can exert positive or negative externalities on their neighbors. This is why,
in the local-aggregate model, the planner always wants to subsidize agents (Helsley
and Zenou, 2014) while, in the local-average model, the planner subsidizes agents
who underinvest in effort and taxes agents who overinvest in effort. We investigate
these issues in detail in Section 4.3 below.

Part (ii) of Proposition 7 gives an exact condition on the productivity vector α
that ensures that the Nash equilibrium in efforts is always optimal. Unfortunately,
this condition is very unlikely to hold in most networks, as shown in Online Appendix
E.

Finally, in part (iii), we demonstrate that, for any network, the aggregate first-
best effort is independent of λ, the taste for conformity, and is equal to the aggregate
productivity in the network. In particular, this implies (see Proposition E1 in Online
Appendix E) that, for regular networks, we have:

n∑
i=1

x∗i =
n∑
i=1

xOi =
n∑
i=1

αi.

In other words, for regular networks, even if the individual effort is generally not
optimal, the aggregate effort in a network is always optimal. This is because, in
regular networks, the positive and negative externalities imposed by agents on their
neighbors exactly cancel out, so that the aggregate effect is optimal. Consequently,
when the network is regular, some agents overinvest while others underinvest, and
it is not possible that all agents underinvest. This result stands in sharp contrast to
the local aggregate model, in which all agents exert too little effort in equilibrium,
regardless of whether the network is regular or not.

Remark 2 If agents are ex ante homogeneous in productivity, that is, αi = αj for all
i, j = 1, 2, . . . , n, then the Nash equilibrium in effort is always optimal. Furthermore,
if det(Ĝ) 6= 0, the converse is also true.

Indeed, if agents are ex ante homogeneous, we know that, in equilibrium, the position
in the network does not matter and all agents exert the same effort level, which is
equal to the common social norm in the network. As a result, there are no more
social interactions, since xi = xi, for all i, and each utility depends only on own
productivity. Thus, the equilibrium is always optimal.
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In Online Appendix F, we illustrate condition (31) for specific networks. We show
that for the equilibrium efforts to be optimal, there needs to be some compensation
for the externalities that agents exert on others. In particular, for bipartite networks,
such as the star and circular network, the average productivity of the different agents
has to be the same, which is very unlikely to be the case.

4.2 Equilibrium versus first-best outcomes in a sufficiently
conformist society

Let Corr (π,α) be the correlation between the productivity distribution α and
the degree distribution π.

Proposition 8 (First best in a sufficiently conformist society)
If Corr (π,α) < 0 (Corr (π,α) > 0), then there exists λ ∈ (0, 1) such that, in

equilibrium, for any λ > λ, all agents underinvest (overinvest) in effort compared to
the first best.

This result implies that more central agents make higher effort and exert stronger
externalities on their neighbors. As a result, all agents overprovide effort. This result
is true when λ is sufficiently high since, in that case, externalities to neighbors become
very important. For example, in a star network with three agents, we show below
that λ does not need to be very high (λ > λ = 1/2) for the result in Proposition 8
to hold (see footnote 31).

Remark 3 In a perfectly conformist society,

lim
λ→1

xOi =
1

n

n∑
j=1

αj, for all i = 1, 2, . . . , n (33)

This result shows that, when the society becomes perfectly conformist, the first-best
effort is the same for all agents and does not depend on the position of each agent
in the network. All agents should make an effort equal to the average productivity
in the network. This implies that, unless the network is regular, the equilibrium in
effort is never optimal when λ is sufficiently close to 1.

4.3 Restoring the first best

Let us return to the general case in which λ can take any value and assume that
condition (31) does not hold. Then, to restore the first best, the planner can either
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subsidize or tax efforts. Let SOi denote the optimal per-effort subsidy for each agent
i, where

SOi =
λ

(1− λ)

∑
j 6=i

ĝji
(
xOj − xOj

)
,

If we add one stage before the effort game is played, the planner announces the
optimal per-effort subsidy SOi for each agent i such that,

U
SO
i

i =
(
αi + SOi

)
xi −

1

2
x2
i −

1

2

(
λ

1− λ

)
(xi − xi)2 (34)

Observe that, when each agent i chooses xi that maximizes (34), she takes SOi as
given, in particular, xOj and xOj . In that case, the solution of this maximization
problem for each agent i is the first-best.

Proposition 9 (Subsidies) The first best is restored if the social planner gives to
each agent i the following tax/subsidy per unit of effort:

SOi =
λ

(1− λ)

∑
j 6=i

ĝji
(
xOj − xOj

)
(35)

or, in matrix form:

SO =
λ

(1− λ)
ĜT

(
I− Ĝ

)
xO.

By doing so, the planner restores the first best and subsidizes (taxes) agents
whose neighbors make efforts above (below) their social norms. In other words, it is
necessary to subsidize agents who exert effort below that of their neighbors and to
tax those who exert effort above that of their neighbors.

Let us illustrate this result with an example. Assume a star network in which
n = 3, and agent i = 1 is the star. Set α1 = 2, α2 = α3 = 1, so that the star is
more productive than the peripheral agents are. Since α1 = 2 > 1 = (α2 + α3) /2,
condition (31) is not satisfied, and hence, the Nash equilibrium is not optimal. We
have

x∗ =
1

(1 + λ)

 2 + λ
1 + 2λ
1 + 2λ

 , xO =
1

(1 + 4λ)

 2 + 5λ
1 + 6λ
1 + 6λ

 .

The star agent overinvests compared to the first best
(
x∗1 > xO1

)
. Indeed, since

x∗2 = x∗3 < x∗2 = x∗3 = x∗1, the externality term λ
∑n

j=1 ĝji (xj − xj) (see (29)) is
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negative and the star, when deciding her effort level, does not take into account the
negative externalities she exerts on agents 2 and 3. For the peripheral agents 2 or
3, we obtain x∗2 = x∗3 R xO3 = xO2 ⇐⇒ λ R 1/2, so that they may overinvest
or underinvest in effort, depending on the value of λ.31 However, the externality
term is always positive, since x∗1 > x∗1 and thus, agents 2 and 3 always exert positive
externalities on agent 1. As a result, the planner should tax agent 1 and subsidize
agents 2 and 3. Since x2 = x3, it is easily verified that the subsidies per unit of
effort are equal to SO1 = 2λ

(1−λ)
(xO2 − xO1 ) < 0 and SO2 = SO3 = λ

(1−λ)
(xO1 − xO2 ) > 0.

The subsidies or taxes exactly correct for the externalities exerted by the agents. We
obtain:

SO =
λ

(1 + 4λ)

 −2
1
1

 (36)

Clearly, this result strongly depends on the productivity values. For example, if
α1 = 0.5 and α2 = α3 = 1 so that the productivity of the central agent is the lowest,
then, to restore the first best, the planner now needs to subsidize agent 1 (the star)
and to tax agents 2 and 3 (the peripheral agents) since, now, the former exerts
positive externalities on agents 2 and 3 while the latter exert negative externalities
on agent 1.

5 Extensions

In this section, we develop several extensions of the baseline local-average model.
We consider weighted networks, heterogeneous tastes for conformity, anti-conformist
attitudes, ambitious behavior, and network formation. These extensions show how
various features of individual behavior affect our main results and how our model
can be applied to a wide range of different contexts.

31 Observe that, for the star network with n = 3 and α1 = 2, α2 = α3 = 1, we have

3∑
j=1

πjαj =
α1

2
+
α2 + α3

4
=

3

2
>

4

3
=

1

3

3∑
j=1

αj ,

which means that Corr (π,α) > 0, since the star has both a higher productivity and a higher
degree than the peripheral agents. Thus, our results confirm Proposition 8. When λ > λ = 1/2,
all three agents in the star network overinvest in effort compared to the first best. It is also
easily verified that, if we now assume for the same network that α1 = 1, α2 = α3 = 2, then,∑3

j=1 πjαj = 3
2 <

5
3 = 1

3

∑3
j=1 αj , and thus, Corr (π,α) < 0. In this case, if λ > λ = 1/2, all three

agents in the star network underinvest in effort compared to the first best.
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5.1 Weighted networks

Consider, first, an extension of the baseline local-average model in which the net-
work is directed, weighted, and may have self-loops, as in the standard DeGroot model
(Golub and Jackson, 2010). Let W = [wij] be an arbitrary (n × n) row-normalized
irreducible matrix with non-negative entries. Each cell wij, i, j = 1, 2, . . . , n, gives
the relative impact (weight) of agent j’s effort on agent i’s social norm xi, defined
as follows: xi ≡

∑n
j=1wijxj. In particular, we do not rule out self loops, that is, we

allow for the possibility that wii > 0 for some i. Otherwise, agent i’s utility function
is the same as in the baseline model and given by (3).

In Online Appendix G.1, we study this more general model with the adjacency
matrix W and show that most of our results (total conformism, comparative statics,
and welfare) remain qualitatively the same.

In Proposition G3, we show that a slight change in the network W may increase
everyone’s effort if highly productive agents have more impact on everyone’s social
norms. This echoes our result established in Proposition 6 in which we demonstrate
that adding a link in the network may increase everyone’s effort if this link is between
two highly productive agents. However, in the weighted network model, this result is
much easier to prove, because the standard calculus technique can be used to study
the consequences of small changes in the weights on outcomes.

5.2 Heterogeneous tastes for conformity

In Online Appendix G.2, we relax the assumption that λ is the same across all
agents by allowing each agent i to have a specific taste for conformity λi. We first
show that our existence, uniqueness, and interiority results when λ is the same for
all agents (Proposition 1) are robust to this extension.

Then, Proposition G4 provides additional intuition about the non-monotonicity
results of Proposition 5. We show that higher conformity of some agents—namely,
those who exert efforts below their social norms—increases everyone’s effort because
of strategic complementarities, while higher conformity of the others has the opposite
effect. Therefore, it is not surprising that the total effect is ambiguous, as Proposition
5 states.
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5.3 Anti-conformism

We now consider what happens if agents are anti-conformist,32 that is if the taste
for conformity θ is negative. In this case, the magnitude of |θ| can be viewed as
the degree to which an agent wants to be different from the others (although not
necessarily better than the others). In other words, each individual obtains a benefit
of θ

2
(xi − xi)2 if she does not conform to the norm of her neighbors. This model

can still be considered a local-average model but it is now a game with strategic
substitutes (θ < 0) instead of strategic complements (θ > 0).

In Proposition G5 of Online Appendix G.3, we derive our main results for the
anti-conformist model. We show that our model can be extended to the case of anti-
conformity if agents are not too non-conformist (|θ| < 1/2), although it loses a good
deal of tractability. In particular, because we have a game with strategic substitutes,
even if the equilibrium is unique, it is not always interior.

For example, in the case of a dyad (n = 2), in Online Appendix G.3, we show that
the two agents exert strictly positive effort only if they are not too heterogeneous
in terms of productivities, not too anti-conformist, or both. When this is not the
case, then some agent may exert zero effort (see (G.25), which totally characterizes
the Nash equilibrium for the dyad network). Indeed, in the anti-conformist model
with a dyad network, when the difference in productivity between the two agents
is too high, then it becomes optimal for the low-productivity agent to exert zero
effort, because she wants to differentiate herself as much as possible from the high-
productivity agent (whose effort is her social norm). On the contrary, when the
productivity difference is not too large, then the low-productivity agent can still
differentiate herself from the high-productivity agent and exert positive effort. This
never happens in the conformist model, because agents always want to be as close
as possible to each other.33

Furthermore, we show that, in contrast to Proposition 2, the impact of αj on x∗i is
a priori ambiguous. Finally, we demonstrate that if agents are very anti-conformist,
there are either multiple equilibria or an equilibrium fails to exist.

32See Bramoullé et al. (2004), Bramoullé (2007), Grabisch and Rusinowska (2010a,b), and Gra-
bisch et al. (2017) for network models with anti-conformist agents but in very different settings.

33Observe that, when all agents have the same productivity α and |θ| is low enough, then the
conformist and anti-conformist models lead to the same outcome, that is, all agents make an effort
equal to α. When |θ| becomes larger, then even with ex ante identical agents and a regular network,
in the anti-conformist model, there may be multiple equilibria in which one agent makes a higher
effort than the other. See Figure G5 in Online Appendix G.3. This never occurs in the conformist
model since, with identical productivities, all agents always make the same effort for any possible
network, including the regular one.
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5.4 Ambition and social norms

It seems realistic to assume that agents may benefit from choosing an effort that
is higher than the average effort of their neighbors. To address this issue, let us
extend our utility function (3) so that, for each individual i, it is now given by

Ui(xi,x−i,g) = αixi −
x2
i

2
− θ

2
(xi − βixi)2 ,

where βi ≥ 1 is agent i’s ambition factor. Since βi ≥ 1, the “reference effort” of each
individual i is now higher than the social norm xi of her neighbors.34 Denote βmax ≡
max{β1, . . . , βn}. Then, if λβmax < 1, there exists a unique interior equilibrium.

To investigate the welfare properties of this model, assume that all agents are ex
ante identical, that is, α1 = . . . = αn = α > 0, and that they have the same ambition
factor, that is, β1 = . . . = βn = β > 1. In that case, we show in Appendix G.4, that,
in equilibrium, each individual exerts an effort above the social norm (average effort)
of their direct friends.

Moreover, for regular networks, we show that all agents overinvest in equilib-
rium compared to the social optimum. For non-regular networks, we demonstrate
(see Proposition G6) that if the agents are either sufficiently conformist (high λ) or
sufficiently non-conformist (low λ), they all overinvest in equilibrium compared to
the first best. These results contrast with Proposition 7 for the benchmark model,
in which the equilibrium is socially optimal when productivities do not vary across
agents. This is because ambitious behavior creates an additional positive externality,
which cannot be fully internalized by individuals even in the absence of any ex ante
heterogeneity.

5.5 Network formation

Thus far, we have assumed that the network is fixed and taken as given when
agents decide their effort level. Consider now a two-stage game in which, in the first
stage, agents create links (endogenous network formation) while, in the second stage,
they exert effort.

Assume, for simplicity, that there are two types of agents: high-productivity
agents for which αi = αH and low-productivity agents for which αi = αL, with
αH > αL > 0. Assume also that creating or severing a link is costless.

34See Ghiglino and Goyal (2010), who also develop a model in which agents want to consume
more than the average consumption (social norm) of their neighbors.
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In Proposition G7 in Online Appendix G.5, we show that, in the local-aggregate
model, the only pairwise Nash equilibrium35 is the complete network in which all
agents of any type are linked to each other. On the contrary, in the local-average
model, the only pairwise Nash equilibrium is a network of two disconnected compo-
nents; in each component, all agents of the same type form a complete network. This
network is called the completely homophilous network.

This means that, in the local-aggregate model, there is complete “integration”
of the two types of agents while, in the local-average model, there is complete “seg-
regation” of the two types of agents so that extreme homophily behavior prevails in
equilibrium. In other words, in the local-aggregate model, even if agents are het-
erogeneous in terms of productivities, complete homophily cannot emerge because,
independently of the type, there is always a benefit of forming new links due to
strong positive spillovers.

On the contrary, in the local-average model, an agent of one type never wants
to form a link with an agent of the other type. Indeed, when agents have the same
productivity α, independently of their position in the network, they all exert the
same effort level and have the same social norm, both equal to α. As a result, they
no longer bear the cost of not conforming to their social norm and their equilibrium
utility equals α2/2. However, if an agent forms a link with someone of a different
type, she suffers an extra loss, because a gap between her effort and her social norm
emerges. For this reason, in the local-average model, agents of one type are better
off not having links with agents of the other type. Using the same reasoning, one
can show that, if we introduce a cost of forming and severing links, we still have
the same pattern, that is, complete homophily or segregation in the local-average
model, and integration and heterophily in the local-aggregate model, but there may
be more than one equilibrium. Furthermore, we can easily generalize our results to
more than two types of agents.

6 Policy implications: local-average versus local-

aggregate model

As stated in the Introduction, there are two main models of games on networks
with positive peer effects (strategic complementarities): the local-average and the
local-aggregate model. In the local-average model, deviating from the average effort
of one’s peers negatively affects the utility of an individual (see (3)). The closer each
individual’s effort is to the average of her friends’ efforts, the higher is her utility.

35 For a precise definition of pairwise Nash equilibrium, see Bloch and Jackson (2006).

33



By contrast, in the local aggregate model, the sum of the efforts of an individual’s
peers positively affects the utility of each individual (see (4)). When peers exert
more effort, the utility derived from own effort increases.

We believe that it is important to be able to disentangle different behavioral
peer-effect models because, even if they look very similar, they have different policy
implications. To highlight these differences between the models, we consider in the
next subsection education and crime and observe how these two models yield different
policy implications.

6.1 Policy implications: Education

In terms of education, if the local-aggregate model describes well the preferences
of students (Calvó-Armengol et al., 2009), then any individual-based policy, such
as vouchers, would be efficient, because if one or more “key” students (e.g., the
disruptive ones) are positively affected by the policy, because of peer effects (social
multiplier), many other students are also positively affected. If, on the contrary, we
believe that the local-average model describes students’ preferences more adequately,
then we should change the social norm in the school or classroom (group-based policy)
and attempt to implement the idea that it is “cool” to work hard at school. Affecting
a few students will not change anything if it does not change the social norm in the
school.

An example of an educational policy that has attempted to change the social norm
of students is the charter-school policy. Charter schools are very good at screening
teachers and selecting the best ones. In particular, the “No Excuses policy” (Angrist
et al., 2010, 2012) is a highly standardized and widely replicated charter model
that features a long school day, an extended school year, selective teacher hiring,
and strict behavioral norms, while it emphasizes traditional reading and math skills.
The main objective is to change the social norms of disadvantaged children by being
very strict on discipline. This is a typical policy that is in accordance with the
local-average model, since its aim is to change the social norms of students in terms
of education. Angrist et al. (2012) focus on special needs students who may be
underserved. The study’s results show average achievement gains of 0.36 standard
deviations in math and 0.12 standard deviations in reading for each year spent at
a charter school called the Knowledge is Power Program (KIPP) Lynn, with the
largest gains coming from the Limited English Proficient (LEP), Special Education
(SPED), and low-achievement groups. The authors show that the average reading
gains were driven almost entirely by SPED and LEP students, whose reading scores
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rose by roughly 0.35 standard deviations for each year spent at KIPP Lynn.36

In summary, an effective policy for the local-average model would be to change
people’s perceptions of “normal” behavior (i.e., their social norm) so that a school-
based policy could be implemented. Meanwhile, for the local-aggregate model, this
would not be necessary and an individual-based policy should instead be implemented.

6.2 Policy implications: Crime

It is well documented that crime is, to a large extent, a group phenomenon, and
the source of crime is located in the intimate social networks of individuals (see, e.g.,
Warr, 2002; Bayer et al., 2009; Damm and Dustmann, 2014).

In the local-aggregate model, a key-player policy (Ballester et al., 2006; Zenou,
2016; Lee et al., 2018), whose aim is to remove the criminal that reduces total crime
in a network the most, would be the most effective way of reducing total crime.37 In
other words, the removal of the key player can have large effects on crime because
of the feedback effects or “social multipliers” at work. Indeed, as the proportion
of individuals participating in criminal behavior increases, the impact on others is
multiplied through social networks. Thus, criminal behavior can be magnified, and
interventions can become more effective.

On the contrary, a key-player policy would have nearly no effect in the local-
average model, since it would not affect the social norm that committing crime is
morally wrong. To be effective, one would have to change the norm for each of the
criminals, which is clearly a more difficult objective. In that case, it is necessary to
target a group or gang of criminals to reduce crime drastically. This illustrates the
fact that, for the local-aggregate model, individual-based policies are more appropri-
ate while, for the local-average model, group-based policies are more effective.38

36See also Curto and Fryer (2014), who study the SEED schools, which are boarding schools
serving disadvantaged students located in Washington DC and Maryland. The SEED schools,
which combine a “No Excuses” charter model with a 5-day-a-week boarding program, are the United
States’ only urban public boarding schools for the poor for students in grades 6–12. Using admission
lotteries, Curto and Fryer (2014) show that attending a SEED school increases achievement by 0.211
standard deviation in reading and by 0.229 standard deviation in math per year.

37In Section 3.3, we also discuss the difference between the local-average and local-aggregate
models in terms of the key-link policy, whose aim is to choose how to optimally remove a link
between two criminals in order to minimize the total crime level in a network. See, in particular,
Remark 1 and the discussion that follows.

38For recent overviews on place-based policies, see Kline and Moretti (2014) and Neumark and
Simpson (2015).
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6.3 Which model is the most empirically relevant?

Which model is relevant is clearly an empirical question. To statistically iden-
tify whether the average model or the aggregate model is more appropriate for a
particular outcome, Liu et al. (2014) proposed the following methodology. It is
necessary to estimate an augmented model, which includes both average and aggre-
gate peer effects, and to determine which one is statistically significant. Using data
for the National Longitudinal Study of Adolescent to Adult Health (Add Health),
Liu et al. (2014) showed that, for study effort in education, the endogenous peer
effect is mostly captured by a social-conformity (local average) effect rather than a
social-multiplier (local aggregate) effect. This implies that a charter-school policy
that aims to change the social norms of students (as in Angrist et al., 2010, 2012)
would be the most effective policy to improve education in schools. On the other
hand, for sport activities, Liu et al. (2014) found that both social-conformity and
social-multiplier effects contribute to the endogenous peer effect. Moreover, Lee et
al. (2018), who studied juvenile delinquency, showed that the local-aggregate model
is at work for the AddHealth data. This implies that a key-player policy would be
the most effective policy to reduce crime for adolescents in the United States.

6.4 An illustrative example

Let us illustrate the above discussion about individual versus group-based policy
with a simple example. Consider the network g in Figure 2 with n = 11 players.
This network was considered by Ballester et al. (2006) to illustrate their formula of
the key player. In this network, player 1 bridges together two fully intra-connected
groups with five players each.
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Figure 2: A bridge network
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6.4.1 An individual-based policy: Key player

Consider a network-crime model in which agents choose crime effort that max-
imizes their utility, which can be based on either the local-aggregate or the local-
average model. As an illustration of an individual-based policy, we consider the key
player policy, which consists of determining the player who, once removed from the
network, reduces total crime effort the most. To make the comparison between the
two models easier, we assume that agents are ex ante identical, that is, αi = 1, for
all i = 1, . . . n. We also assume that θ = 0.2.

The local-aggregate model Consider the local-aggregate model whereby the
utility function is given by (4). Then, if θ < 1/µ(g) (where µ(g) is the largest
eigenvalue of g),39 then a unique Nash equilibrium in efforts exists, which is equal
to:

x∗ = (I− θG)−1 1

It is easily verified that the key player is agent 1 (Ballester et al., 2006). In particular,
the total crime effort in equilibrium is equal to 91.67 while, after the removal of
individual 1, it is 50. Thus, the removal of player 1 leads to a decrease of total crime
activity by 45.46%. This is because removing player 1 disrupts the network and
leads to two different networks that are no longer connected. The change in efforts
after the removal of agent 1 varies a lot depending on the position in the network.
For example, agent 2, who was directly linked to 1, reduces her effort from 9.17 to
5 (45.47% reduction) while agent 3, who was two links away from 1, decreases her
effort from 7.78 to 5 (35.73% reduction).

The local-average model Consider now the local-average model in which the
utility function is given by (3). We have shown that the Nash equilibrium is given
by

x∗ = M̂α =
1

(1 + θ)

(
I− θ

(1 + θ)
G

)−1

1

It is easily verified that all agents make the same effort level equal to 1 (which is the
social norm) so that total crime effort is 11. Let us remove player 1 (or in fact any
other player) and renormalize the resulting adjacency matrix. It is easily checked
that nothing changes since each player still makes an effort of 1 and the social norm
is exactly the same and equal to 1. Because there is one less player in the network,
the total effort is now given by 10 and the reduction in total crime is then equal to
9.09%.

In summary, an individual policy, such as the key player, has a big impact on total
crime when the preferences of agents are based on the local-aggregate model while

39This condition is verified for the network displayed in Figure 2, since θ = 0.2 < 0.227 = 1/µ(g).
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it has nearly no impact when the preferences are based on the local-average model.
As a result, if the planner believes that the agents have preferences according to the
local-aggregate model and implements a key-player policy while, in fact, agents have
local-average preferences, then this example shows that this policy will fail to reduce
crime, as agents will not change their criminal behavior.

6.4.2 A group-based policy: Changing the norm

Consider again the network g in Figure 2 and implement a group-based policy,
which is common to everybody. For example, consider a reduction of α from 1 to
0.7. All agents in the network are affected in the same way.

The local-aggregate model By implementing such a policy, it is easily verified
that total crime effort decreases from 91.67 (before the policy) to 64.17 (after the
policy), giving a reduction in total crime of 30%.

The local-average model In this model, the effort and social norm change
for all agents in the network. It is easily verified that all agents now reduce their
crime effort to 0.7 and the social norm is now given by 0.7. As a result, we switch
from a total crime effort of 11 (before the policy) to 7.7 (after the policy), that is, a
reduction in total crime of 30%. In other words, changing the social norm from 1 to
0.7 now has a large impact on total crime in the network.

In summary, a group-based policy, such as changing the social norm by reducing
the productivity of all agents in the network, has a much bigger impact on total
crime when the preferences of agents are based on the local-average model. However,
a group-based policy is less efficient when the agent’s preferences are based on the
local-aggregate model. Again, if the planner has the wrong beliefs about agents’
preferences, then the impact of a group-based policy on reducing crime may be
limited.

7 Concluding remarks

In this study, we analyze the linear-in-means model (also known as the local-
average model in the network literature), which is the workhorse model in empirical
work on peer effects. Apart from their position in the network, agents are hetero-
geneous in terms of productivity. We characterize the Nash equilibrium in efforts of
this game in which each agent minimizes the social distance between her own effort
and that of her peers (her own social norm). While individual productivity posi-
tively affects equilibrium effort, the impact of taste for conformity is non-monotone.
Both the sign and the magnitude of this conformity effect depend on whether an
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individual is above or below her own social norm. We also study how adding or
removing a link affects the aggregate effort in the network and show that it depends
on the productivity of the agents involved in the link. Equilibria are usually ineffi-
cient and we provide a condition on the productivity distribution and the network
structure that guarantees the efficiency of equilibrium. Because this condition often
fails to hold, we show how to restore the first best. Unexpectedly, the optimal tax-
ation/subsidy scheme is to subsidize agents whose peers would exert efforts above
their social norms while taxing agents whose peers would exert efforts below their
social norms. Hence, the planner does not necessarily subsidize central agents, as is
the case in the local-aggregate model.

More generally, we consider our framework to be rich enough to encompass many
real-world situations in which people are conformist and dislike to deviate from the
social norms of their friends. We also believe that our results lead to important
policy implications that can be tested empirically. In particular, we shed light on
the debate on whether individual-based policies are more effective in maximizing
welfare or minimizing total activity (in the case of crime) than group- or place-based
policies.
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[22] Bramoullé, Y., Kranton, R., and D’Amours, M. (2014), “Strategic interaction
and networks,” American Economic Review 104, 898–930.
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Online Appendix

A Proofs of the results in the main text

Proof of Proposition 1.
Proof of part (i). The FOC is given by

xi = (1− λ)αi + λxi. (A.1)

Plugging the definition (2) of the social norm xi into (A.1) implies (11). Restating
(11) in matrix form, we obtain (12). By solving (12) for x, we verify that the Nash
equilibrium x∗ is indeed defined by (13). The existence and uniqueness of the Nash
equilibrium x∗ is guaranteed by the fact that, for any λ > 0, we have:

λ < ρ(Ĝ) = 1,

where ρ(Ĝ) stands for the spectral radius of Ĝ, and ρ(Ĝ) = 1 holds true because Ĝ
is a row-normalized matrix with non-negative entries. This proves part (i). �

Proof of part (ii). Using (13) and observing that x∗ = Ĝx
∗
, we obtain equation

(15) for the equilibrium social norms. This proves part (ii). �
Proof of part (iii). We now prove that the equilibrium utility levels are given

by (16). To do this, we use (A.1) to express agent i’s equilibrium social norm x∗i as
follows:

x∗i =
1

λ
x∗i −

1− λ
λ

αi.

Plugging this expression into the utility function (6), and simplifying it, we obtain

Ui(x
∗
i ,x

∗
−i,g) =

1

2

[
α2
i −

1

λ
(αi − x∗i )

2

]
. (A.2)

Plugging agent i’s equilibrium effort

x∗i =
n∑
j=1

m̂ijαj (A.3)

into (A.2) yields (16) and proves part (iii).
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The proof of Proposition 1 is now completed.

Proof of Lemma 1. First, restate the FOC as

x∗i − x∗i = (1− λ) (αi − x∗i ) . (A.4)

We have:

(1− λ) (αi − x∗i ) = (1− λ) (αi − x∗i + x∗i − x∗i )
= (1− λ) (αi − x∗i ) + (1− λ) (x∗i − x∗i ) .

Combining this with (A.4) yields:

λ (x∗i − x∗i ) = (1− λ) (αi − x∗i ) .

Hence,
x∗i T x∗i ⇐⇒ αi T x∗i .

Using (A.3), this is equivalent to

x∗i T x∗i ⇐⇒ αi T
n∑
j=1

m̂ijαj = m̂iiαi +
n∑

j=1,j 6=i

m̂ijαj,

which leads to (19). �

Proof of Proposition 2: We start with the following lemma.

Lemma A2 The matrixes M̂ and ĜM̂ are row-normalized.

Proof of Lemma A2 Let us first prove that M̂ is row-normalized, that is,

M̂1 = 1,

where 1 := (1, ..., 1)T . Because Ĝ is row-normalized, Ĝk for any integer k is also row-

normalized. Combining this with the power-series representation of M̂, we obtain

M̂1 = (1− λ)
∞∑
k=0

λkĜk1 = (1− λ)
∞∑
k=0

λk1 = 1.

This proves that M̂ is row-normalized. Since the product of two row-normalized
matrixes is a row-normalized matrix, ĜM̂ is also row-normalized. This completes
the proof of Lemma A2. �
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Proof of part (i): Let us now show that 0 <
∂x∗i
∂αi

< 1. We have

x∗ = M̂α. (A.5)

Hence,
∂x∗

∂α
= M̂,

which is strictly positive. Since, by Lemma A2, M̂ is a row-normalized matrix with
positive entries, it must be that

∂x∗i
∂αj

< 1 for any i, j = 1, . . . , n.

Let us now prove that 0 <
∂x∗i
∂αi

< 1. By definition of the social norm, we have

x = Ĝx, and hence,

x∗ = ĜM̂α. (A.6)

As seen from (A.6),
∂x∗i
∂αi

is the iith entry of ĜM̂. Since ĜM̂ is a non-negative matrix,

we have
∂x∗i
∂αi

> 0. Furthermore, by Lemma A2, ĜM̂ is row-normalized. Hence, none

of its entries can exceed 1, which implies that
∂x∗i
∂αi

< 1 and proves part (i). �
Proof of part (ii): The payoff function of individual i is given by (6). Let us

first determine
∂U∗

i

∂αi
. In equilibrium, xi is determined as the maximizer of (6) under

x−i = x∗−i. By the envelope theorem, we obtain

∂U∗i
∂αi

= x∗i +
λ

1− λ
(x∗i − x∗i )

∂x∗i
∂αi

. (A.7)

Let us state the following lemma for the rest of the proof.

Lemma A3 The following inequalities hold for all i = 1, ..., n:

max
j
αj ≥ max {x∗i , αi} ≥

∂U∗i
∂αi
≥ min {x∗i , αi} ≥ min

j
{αj} . (A.8)

Proof of Lemma A3: Let us, first, establish the second and the third inequalities
in (A.8):

max {x∗i , αi} ≥
∂U∗i
∂αi
≥ min {x∗i , αi} .

If x∗i ≥ x∗i , then it follows from equation (A.7) and Proposition 2 that

x∗i +
λ

1− λ
(x∗i − x∗i ) ≥

∂U∗i
∂αi
≥ x∗i .
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If, on the contrary, x∗i < x∗i , then equation (A.7) and Proposition 2 imply

x∗i ≥
∂U∗i
∂αi
≥ x∗i +

λ

1− λ
(x∗i − x∗i ).

In summary, we have:

max

{
x∗i , x

∗
i +

λ

1− λ
(x∗i − x∗i )

}
≥ ∂U∗i

∂αi
≥ min

{
x∗i , x

∗
i +

λ

1− λ
(x∗i − x∗i )

}
. (A.9)

The individual i’s FOC can be recast as follows:

x∗i +
λ

1− λ
(x∗i − x∗i ) = αi. (A.10)

Combining (A.9) with (A.10) proves that: max {x∗i , αi} ≥
∂U∗

i

∂αi
≥ min {x∗i , αi}.

Let us now prove that maxj αj ≥ max {x∗i , αi} and min {x∗i , αi} ≥ minj {αj}. By

Lemma A2, M̂ is a row-normalized matrix. Since

x∗i =
n∑
j=1

m̂ijαj,

while m̂ij are positive and sum up to one, we have:

min
j
αj < x∗i < max

j
αj.

This completes the proof of Lemma A3. �
It remains to observe that Lemma A3 immediately implies that

∂U∗
i

∂αi
> 0.

Proof of part (iii): As implied by (16), U∗i is a strictly concave quadratic
function of αj for any j = 1, 2, . . . , n \ {i}. Hence, two cases may arise: either U∗i
decreases with αj for all positive values of αj, or U∗i is bell shaped in αj. Which of
the two cases arises depends on the sign of the partial derivative ∂U∗i /∂αj evaluated
at αj = 0. Computing this derivative yields

∂U∗i
∂αj

∣∣∣∣
αj=0

=
1

λ

(
αi −

n∑
k=1

m̂ikαk

)
.

Hence, U∗i is bell shaped in αj if and only if αi is sufficiently larger than the
productivity of agents other than i and j, meaning that the following inequality
holds:
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αi >
∑
k 6=i

m̂ik

1− m̂ii

αk.

Otherwise, U∗i strictly decreases in αj.
Let us now obtain a more general result: agent i’s equilibrium utility increases

(decreases) in response to a small change in αj, where j 6= i, if and only if agent i’s
equilibrium efforts are above (below) the social norm. For that, we obtain

∂U∗i
∂αj

= x∗i δij +
λ

1− λ
(x∗i − x∗i )

∂x∗i
∂αj

,

where δij is the Kronecker delta:

δij =

{
1, if i = j,
0, if i 6= j.

(A.11)

Since, by Proposition 2,
∂x∗i
∂αj

> 0, we obtain the desired result:

sign

[
∂U∗i
∂αj

]
= sign (x∗i − x∗i ) . (A.12)

This proves part (iii) by using Lemma 1.

Proof of Proposition 3. Define aik, where i = 1, 2, . . . , n and k = 0, 1, . . ., as
follows:

aik :=
n∑
j=1

ĝ
[k]
ij αj,

where ĝ
[k]
ij is the ijth entry of Ĝk. Then, restating (13) in coordinate form, we can

express x∗i (λ) as follows:

x∗i (λ) = (1− λ)
∞∑
k=0

aikλ
k. (A.13)

By Lemma C6 in the Online Appendix C, two cases may arise.

Case 1: Ĝ is ergodic. Subtracting the scalar πα =
∑n

j=1 πjαj from both parts of
(A.13) yields

x∗i (λ)− πα = (1− λ)
∞∑
k=0

(aik − πα)λk. (A.14)
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The ergodicity condition (C.4) in the Online Appendix C implies

lim
k→∞

aik = πα for all i = 1, . . . , n.

Furthermore, it is well known (see Jackson, 2008, Chap. 8) that, for any ergodic
Markov chain, convergence to the stationary distribution π is exponential at the
rate of |λ2|, where λ2 is the second largest eigenvalue of Ĝ in absolute value. In
other words, there exists a constant C > 0, such that, for any i = 1, 2, . . . , n, and for
any k = 0, 1, 2, . . ., we have

|aik − πα| < C|λ2|k. (A.15)

Inequality (A.15) implies that the series
∑∞

k=0 (aik − πα) converges. Hence, by
Abel’s theorem (Courant and John, 2012, Ch. 7, p. 569), the expression

∑∞
k=0 (aik − πα)λk

considered as a function of λ has a finite limit when λ → 1. Using this, and taking
the limit on both sides of (A.14) under λ→ 1, we obtain (20).

Case 2. Ĝ is periodic. Then, by Lemma C6 in the Online Appendix C, g = Km,n.
Combining this with (13), the equilibrium efforts x∗i (λ) belonging to component Vr
of the bipartite network g can be represented as follows:

x∗i (λ) = (1− λ)αi +
λ

1 + λ
αs +

λ2

1 + λ
αr,

where r, s = 1, 2, r 6= s, while αr is defined by (F.2). When λ→ 1, we obtain:

lim
λ→1

x∗i (λ) =
α1 + α2

2
=

1

2m

∑
j∈V1

αj +
1

2n

∑
j∈V2

αj. (A.16)

Combining (C.3) with (C.6) in the Online Appendix C, it is readily verified that,
when g = Km,n, we obtain:

π =

 1

2m
, . . . ,

1

2m︸ ︷︷ ︸
m times

,
1

2n
, . . . ,

1

2n︸ ︷︷ ︸
n times

 .

This, together with (A.16), implies (20) and completes the proof. �

A6



Proof of Proposition 5:
(i) Multiplying both parts of (13) by π from the left, we obtain:1

πx∗ = πα. (A.17)

Differentiating both parts of (A.17) with respect to λ leads to

π
∂x∗

∂λ
= 0 ⇐⇒

n∑
j=1

πj
∂x∗j
∂λ

= 0.

By the Perron–Frobenius theorem, πj > 0, for all j. Thus, for any λ ∈ (0, 1), if
∂x∗i
∂λ

> 0 for some i, then it has to be that
∂x∗j
∂λ

< 0 for some j 6= i. This proves part
(i).

(ii) By totally differentiating both parts of (11) with respect to λ and setting
λ = 0, we obtain

∂x∗i
∂λ

∣∣∣∣
λ=0

=
n∑
j=1

ĝijαj − αi.

Hence, (23) holds at λ = 0. By continuity, (23) also holds in the vicinity of λ = 0,
that is,when λ is positive but not too large. This proves part (ii).

(iii) First, as implied by Proposition 2, the inequality
∑n

j=1 πjαj ≤ αi is equiv-
alent to x∗i (0) ≥ x∗i (1). Second, owing to (23), the inequality αi <

∑n
j=1 ĝijαj is

equivalent to
∂x∗i
∂λ

∣∣∣∣
λ=0

> 0,

meaning that x∗i (λ) strictly increases in λ in the vicinity of λ = 0. Combining this
with x∗i (0) ≥ x∗i (1), we conclude that x∗i (λ) has an interior global maximizer over
[0, 1], and hence, it is non-monotone in λ. This proves part (iii).

(iv) The proof of part (iv) repeats verbatim that of part (iii), up to reverting all
the inequalities.

Proof of Proposition 6.
Let ∆ij denote the operator that maps a vector or a matrix into the difference

between the values of this vector or matrix before and after adding the link ij. For
example, ∆ijx

∗ is the n-dimensional column vector that captures how the equilibrium

efforts change, while ∆ijĜ is the (n×n)-matrix that captures how the row-normalized

adjacency matrix Ĝ social network changes after agents i and j form a link. Also,

1Observe that πM̂ = π.
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denote by Ĝ the original row-normalized adjacency matrix without the link i-j and
by Ĝ[+ij] the row-normalized adjacency matrix when the link i-j has been added.
Similarly, we denote by x∗ the equilibrium effort without the link i-j and by x[+ij]∗

the equilibrium effort when the link i-j has been added.
Applying ∆ij to both sides of the equilibrium condition (12), we obtain:

∆ijx
∗ = λĜ (∆ijx

∗) + λ
(

∆ijĜ
)

x∗. (A.18)

Observe that

∆ijx
∗ = x[+ij]∗ − x∗

= λ
(
Ĝ[+ij]x[+ij]∗ − Ĝx∗

)
= λ

(
Ĝ[+ij]x[+ij]∗ − Ĝ[+ij]x∗ + Ĝ[+ij]x∗ − Ĝx∗

)
= λ

(
Ĝ[+ij] (∆ijx

∗) +
(

∆ijĜ
)

x∗
)
.

Since Ĝ[+ij] := Ĝ +
(

∆ijĜ
)

, we have:

∆ijx
∗ = λ

(
Ĝ[+ij] (∆ijx

∗) +
(

∆ijĜ
)

x∗
)

= λ
[(

Ĝ +
(

∆ijĜ
))

(∆ijx
∗) +

(
∆ijĜ

)
x∗
]

= λĜ (∆ijx
∗) + λ

(
∆ijĜ

)
x∗ + λ

(
∆ijĜ

)
(∆ijx

∗) .

Denote M̂[+ij] := (1− λ)
(
I− λĜ[+ij]

)−1

. Then,

∆ijx
∗ =

λ

1− λ
M̂[+ij]

(
∆ijĜ

)
x∗. (A.19)

Let us calculate
(

∆ijĜ
)

x∗. For the sake of the presentation and without loss of

generality, assume that i = 1 and j = 2. Before the link 1−2 is created, the row-
normalized adjacency matrix is equal to:

Ĝ =


0 0 g13

d1
· · · g1n

d1

0 0 g23
d2
· · · g2n

d2
...

...
. . .

...
...

gn1

dn

gn2

dn

gn3

dn
· · · 0

 .
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After the link 1−2 is created, the row-normalized adjacency matrix is equal to:

Ĝ[+12] =


0 1

d1+1
g13
d1+1

· · · g1n
d1+1

1
d2+1

0 g23
d2+1

· · · g2n
d2+1

...
...

. . .
...

...
gn1

dn

gn2

dn

gn3

dn
· · · 0

 ,

where di is the degree (i.e., number of links) of agent i. Therefore,

Ĝ[+12] − Ĝ := ∆12Ĝ =


0 1

d1+1
−g13

d1(d1+1)
· · · · · · −g1n

d1(d1+1)
1

d2+1
0 −g23

d2(d2+1)
· · · · · · −g2n

d2(d2+1)

0 0 0 · · · · · · 0
...

...
...

...
...

...
0 0 0 · · · · · · 0

 .

Thus,

(
∆12Ĝ

)
x∗ =


Z1

Z2

0
...
0

 ,

where Z1 :=
((

∆12Ĝ
)

x∗
)

1
and Z2 :=

((
∆12Ĝ

)
x∗
)

2
, where the subscripts 1 and 2

indicate the first and second element of the vector
(

∆12Ĝ
)

x∗. We have:

Z1 =
1

d1 + 1
x∗2 −

g13

d1(d1 + 1)
x∗3 − · · · −

g1n

d1(d1 + 1)
x∗n

=
1

d1 + 1
x∗2 −

1

d1 + 1

n∑
j=3

g1j

d1

x∗j

=
1

d1 + 1
x∗2 −

1

d1 + 1

n∑
j=3

ĝ1jx
∗
j

=
(x∗2 − x∗1)

(d1 + 1)
.

In a similar way, it is straighforward to show that:

Z2 =
(x∗1 − x∗2)

(d2 + 1)
.

A9



The same reasoning can be applied for the creation of any i−j link, so that

Zi :=
((

∆ijĜ
)

x∗
)
i

=

(
x∗j − x∗i

)
(di + 1)

and Zj :=
((

∆ijĜ
)

x∗
)
j

=

(
x∗i − x∗j

)
(dj + 1)

.

Therefore, (
∆ijĜ

)
x∗ =

(
x∗j − x∗i

)
(di + 1)

ei +

(
x∗i − x∗j

)
(dj + 1)

ej,

where ei is the n-dimensional vector whose ith component is equal to 1 while all the
others are equal to zero. By plugging this expression into (A.19), we obtain:

∆ijx
∗ =

λ

(1− λ)

(
(x∗j − x∗i )
(di + 1)

M̂[+ij] ei +
(x∗i − x∗j)
(dj + 1)

M̂[+ij] ej

)
. (A.20)

Because M̂[+ij] is a strictly positive matrix, the vectors M̂[+ij] ei and M̂[+ij] ej are
both strictly positive. Hence, the vector ∆ijx

∗ of changes in equilibrium effort levels
is:

(i) strictly positive, if x∗j > x∗i and x∗i > x∗j ;

(ii) strictly negative, if x∗j < x∗i and x∗i < x∗j ;

(iii) may involve both positive and negative components, otherwise.

It remains to prove that the inequalities x∗j > x∗i and x∗i > x∗j are equivalent to,
respectively, (26) and (27). Using (11), we find that:

x∗i > x∗j ⇐⇒ x∗j < (1− λ)αj + λx∗i , x∗j > x∗i ⇐⇒ x∗i < (1− λ)αi + λx∗j .

Combining this with (A.3), we find after simplifications that x∗j > x∗i is equivalent
to condition (26), while x∗i > x∗j is equivalent to condition (27). This completes the
proof.

Proof of Proposition 7.
Using (6), it is readily verified that, for any λ ∈ [0, 1) the welfare functional (28)

can be written as

W = αTx− 1

2
xT H(λ) x, (A.21)

where the Hessian matrix H(λ) of the welfare functional is given by

H(λ) := I +
λ

1− λ

(
I− Ĝ

)T (
I− Ĝ

)
. (A.22)

The following lemma summarizes the properties of H(λ).
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Lemma A4

(i) For any λ ∈ [0, 1), the matrix H(λ) is positive definite.

(ii) For any λ ∈ (0, 1), H(λ) has a prime eigenvalue equal to one, the corresponding
eigenspace being the span of 1; other n − 1 eigenvalues of H(λ) are strictly
greater than one, and they unboundedly grow as λ→ 1.

(iii) We have

lim
λ→1

H−1(λ) =
1

n


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 , (A.23)

where H−1(λ) is the inverse to H(λ).

Proof of Lemma A4.
(i) For any x ∈ Rn, we have

xT H(λ) x = ‖x‖2 +
λ

1− λ
‖x− Ĝx‖2 ≥ ‖x‖2, (A.24)

where ‖ · ‖ stands for the Euclidean norm. Whenever x 6= 0, we have ‖x‖2 > 0. This
proves positive definiteness of H(λ).

(ii) Observe that H(λ) is a symmetric matrix:

HT (λ) = H(λ).

Hence, all its eigenvalues are real. Furthermore, as shown in (i), H(λ) is positive
definite, and hence, all its eigenvalues are strictly positive. It is well known (Horn
and Johnson, 1985, Ch. 1, p. 34) that the minimum eigenvalue of a symmetric
matrix is given by

min
x∈R+

n

{
xTH(λ)x : ‖x‖2 = 1

}
,

while the corresponding eigenspace is the span of all the minimizers. When ‖x‖2 = 1,
(A.24) implies that xTH(λ)x ≥ 1. Furthermore, when λ ∈ (0, 1) we have

xTH(λ)x = 1 ⇐⇒ ‖x− Ĝx‖2 = 0 ⇐⇒ x = Ĝx ⇐⇒ x =
1√
n
,
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where the last equivalence follows from the fact that Ĝ is irreducible, and hence, 1
is the only eigenvector (up to a scalar multiple) of Ĝ corresponding to the unitary

eigenvalue. All the other eigenvalues of Ĝ are bounded from below by

1 +
λ

1− λ
δ,

where δ is the smallest strictly positive eigenvalue of
(
I− Ĝ

)T (
I− Ĝ

)
, given by:

δ := min
x∈R+

n

{
xTH(λ)x : ‖x‖2 = 1, 1Tx = 0

}
.

Because δ > 0, we clearly have

lim
λ→1

(
1 +

λ

1− λ
δ

)
=∞.

This proves part (ii).
(iii) Because H(λ) is positive definite for any λ ∈ [0, 1), we have

det [H(λ)] > 0,

and hence, H−1(λ) is well defined for any λ ∈ [0, 1). Because H(λ) is symmetric,
it can be diagonalized. Finally, because the eigenvalues (eigenvectors) of the inverse
matrix are the reciprocals of (coincide with) those of the original matrix, part (ii) of
the lemma implies that the largest eigenvalue of H−1(λ) equals one, the corresponding
eigenspace being the span of 1, while other n − 1 eigenvalues of H−1(λ) converge
to zero as λ → 1. Putting all these considerations together, and denoting by si the
ith column eigenvector of H−1(λ), chosen so that sTi si = 1 for all i = 1, 2, . . . , n, we
obtain

lim
λ→1

H−1(λ) =

(
1√
n

1, s2, . . . , sn

)T 
1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


(

1√
n

1, s2, . . . , sn

)
.

Combining this with the fact that the eigenvectors of a symmetric matrix form
an orthonormal basis, i.e., sTi sj = δij for all i, j = 1, 2, . . . , n, where δij is defined by
(A.11), we get (A.23). This completes the proof of Lemma A4. �

We now proceed with the proof of Proposition 7.
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Proof of part (i): Using (A.21), the social planner’s problem can be written as
follows:

max
x∈Rn

+

[
αTx− 1

2
xT H(λ) x

]
,

where H(λ) is defined by (A.22). The FOC to this problem is given by

H(λ) x = α. (A.25)

Combining (A.25) with (A.22), it is readily verified that (A.25) is equivalent to
(30). Clearly, the solution to (A.25)—or, equivalently, to (30)—is unique and is given
by

xO = H−1(λ)α. (A.26)

To finish the proof of part (i), we need to verify that, when the FOC holds, the
second-order condition also holds. It suffices to prove that the welfare function W
is strictly concave in x. As observed from (A.21), the Hessian matrix of W equals
−1

2
H(λ), which is negative definite by part (i) of Lemma A4. Hence, W is strictly

concave.
We also need to show that xO is an interior optimum. However, this is not

an issue when the mean productivity is sufficiently large. To make this statement
precise, denote by µα and σα the mean and standard deviation of the individual
productivity, respectively:

µα :=
1

n

n∑
j=1

αj, σα :=

√√√√ 1

n

n∑
j=1

(αj − µα)2.

Lemma A5 If µα >
√
nσα, then xO is the interior solution to the social planner’s

problem.

Proof of Lemma A5. For all i = 1, 2, . . . , n, define

εi :=
αi − µα
σα
√
n
.

εi is the deviation of agent i’s individual productivity from the mean, rescaled so
that ‖ε‖ = 1, where ε := (ε1, ε2, . . . , εn)T . Clearly, αi can be decomposed as follows:

αi = µα + σα
√
n εi,

1

n

n∑
j=1

εj = 0,
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or, in vector-matrix form,
α = µα1 + σα

√
n ε. (A.27)

Plugging (A.27) into (A.26), we obtain

xO = µα1 + σα
√
n H−1(λ) ε.

For each i = 1, 2, . . . , n, we have

xOi ≥ µα − σα
√
n max
j=1,2,...,n

∣∣∣(H−1(λ)ε
)
j

∣∣∣ ≥ µα − σα
√
n ‖H−1(λ)ε ‖, (A.28)

where the second inequality follows from the standard triangle inequality. As implied
by part (ii) of Lemma A4, the spectral radius of H−1(λ) equals 1. Hence, we obtain

‖H−1(λ)ε ‖ ≤ ‖ ε ‖ = 1.

Combining this with (A.28) yields

xOi ≥ µα − σα
√
n > 0

for all i = 1, 2, . . . , n. This completes the proof of Lemma A5. �
We have shown that xO is a unique global maximizer of the welfare functional

W , which is interior provided that the mean productivity is sufficiently high. This
proves part (i). �

Proof of part (ii): Comparing (30) with (13), we find that x∗ = xO if and only
if the following condition holds:

ĜT
(
I− Ĝ

)
x∗ = 0. (A.29)

Using (13), this is equivalent to

ĜT
(
I−Ĝ

)
M̂α = 0.

This proves part (ii). �
Proof of part (iii): Multiplying both parts of (30) by 1T from the left leads to

1TxO = (1− λ) 1Tα+ λ1T
(
Ĝ + ĜT − ĜT Ĝ

)
xO.

Because Ĝ is row-normalized, we have 1T ĜT = 1T . Using this, and simplifying
it, we obtain

1TxO = (1− λ) 1Tα+ λ1TxO =⇒ 1TxO = 1Tα.
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This completes the proof.

Proof of Proposition 8
We focus on the case in which

∑n
j=1 πjαj <

1
n

∑n
j=1 αj. For the other case, the

proof goes along the same lines.
Combining (20) with (33), we find that

n∑
j=1

πjαj <
1

n

n∑
j=1

αj ⇐⇒ lim
λ→1

x∗i (λ) < lim
λ→1

xOi (λ)

for all i = 1, 2, . . . , n. Because x∗i (λ) and xOi (λ) are all continuous in λ (see proof of
part (i) above), the inequalities x∗i (λ) < xOi (λ) must keep holding when λ is slightly
below 1. Setting

λ := max

{
λ > 0

∣∣∣∣ min
i=1,2,...,n

{xOi (λ)− x∗i (λ)} = 0

}
completes the proof.

Proof of Remark 3
Taking the limit as λ→ 1 on both sides of (A.26), and using part (ii) of Lemma

A4, we obtain (33). This proves the result. �

Proof of Proposition 9 Omitted.
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B Local-average versus local-aggregate model: A

more detailed comparison

In the local-average model, agent i’s payoff, i = 1, 2, . . . , n, is given by (3), which
becomes after some rearrangement:

Ui(xi,x−i,g) = αixi −
1 + θ

2
x2
i +

θ

di

n∑
j=1

gijxixj −
θ

2d2
i

(
n∑
j=1

gijxj

)2

, (B.1)

where gij is the ijth entry of the (non-row-normalized) adjacency matrix. Note that,

although the last term, θ
2d2i

(∑n
j=1 gijxj

)2

, in (B.1) is immaterial for equilibrium

analysis, it affects the welfare results.
Equation (B.1) allows us to have a convenient comparison between the two mod-

els. To see this, consider agent i’s payoff in the local-aggregate model:

Ui(xi,x−i,g) = αixi −
1

2
x2
i + θ

n∑
j=1

gijxixj. (B.2)

From a formal viewpoint, both models are special cases of a unifying model in which
agent i’s payoff is given by:

Ui(xi,x−i,g) = αixi −
βi
2
x2
i + γi

n∑
j=1

gijxixj −
δi
2

(
n∑
j=1

gijxj

)2

, (B.3)

where αi, βi, γi, and δi, i = 1, 2, . . . , n, are all agent-specific. Indeed, we obtain the
local aggregate model if we set in (B.3):

β1 = β2 = . . . = βn = 1,

γ1 = γ2 = . . . = γn = θ < 1
ρ(G)

,

δ1 = δ2 = . . . = δn = 0,

For (B.3) to become the local-average model, the following constraints must hold for
all i, j = 1, 2, . . . , n:

βi − di γi = 1, diγi = djγj = . . . = djγn = θ,

diδi − γi = 0, d2
i δi = d2

jδj = . . . = d2
jδn,

where di denotes agent i’s degree.
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As it is formulated, model (B.3) is not very informative in terms of both theo-
retical insights (because it hardly yields any clear-cut predictions) and in terms of
empirical applications (because it has too many parameters to be estimated). The
only way model (B.3) can be put to work is by imposing economically meaningful
restrictions on the coefficients in (B.3).

Indeed, imposing different sets of meaningful restrictions on the coefficients in
(B.3) can lead to models telling different stories, displaying different properties (such
as comparative statics, welfare and network formation), and giving different policy
recommendations. In other words, the local-aggregate model essentially fails to ap-
proximate a number of essential qualitative effects that arise in the local-average
model, despite the fact that both can be obtained from (B.3) by imposing certain
constraints on parameters. This should not come as surprise as the two models tell
different stories.

Assume, for example, that the number of direct neighbors of agent i doubles,
while individual effort of each neighbor remains roughly the same. Then, the local-
aggregate model predicts an increase in agent i’s effort by 2θ (which might be a
considerable amount if θ is not small), whereas the local-average model predicts
a zero reaction of agent i. Thus, while the former puts forwards spillover effects,
the latter highlights the importance of conformity, i.e., blending with one’s social
environment. Therefore, it is quite natural that the two models differ so much in
terms of outcomes.
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C A probabilistic interpretation of the model

It should be clear from Proposition 1 and Lemma 1 that the change in m̂ij with
respect to the key parameters of the model is key for understanding equilibrium
behavior. However, equation (17) that defines m̂ij is not easy to interpret. To gain
more intuition, we reformulate the local-average model in probabilistic terms. In this
interpretation, Ĝ = [ĝij] is now a transition probability matrix of a Markov chain
with n finite states, where each state is the location of each agent in the network.
Since there are n agents, there are n states.

A discrete-time Markov chain is a sequence of random variables Z1, Z2, Z3, . . .,
with the Markov property that the probability of moving to the next state depends
only on the present state. We have

ĝij = P {Zk+1 = j | Zk = i}

Consider individual i who chooses effort Xi. With probability 1− λ, she chooses to
exert αi units of effort while, with probability λ, she mimics the behavior of one of
her neighbors (or direct links), say individual j, which is given by αj. Then, with
probability λ, agent i adopts this behavior (chooses αj) while, with probability 1−λ,
she chooses to talk to one of j’s neighbors, and so forth. In this interpretation, λ is
still a measure of conformity but helps each individual to collect information about
the productivity of other agents.

To formalize this process, denote by Xi the effort of agent i, which is a random
variable defined by

P {Xi = αj} = (1− λ)
∞∑
k=0

λkĝ
[k]
ij .

By combining this equation with (17), we find:

P {Xi = αj} = m̂ij(λ).

Thus, m̂ij(λ) is the probability that, starting from i, the random walk terminates at
j. In other words, m̂ij(λ) is the probability that agent i ends up mimicking the
behavior of agent j. The expected value E [Xi] of agent i’s effort is given by:

E [Xi] =
n∑
j=1

m̂ijαj.

In matrix form, we have:

E [X] = M̂α = (1− λ)
∞∑
k=0

λkĜkα, (C.1)
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where X := (X1, X2, . . . , Xn)T is the vector of efforts in the probabilistic model. By
comparing (C.1) and (13), we see that:

x∗ = E [X] , (C.2)

where x∗ is the Nash equilibrium in the local-average model. Thus, the two models
are observationally equivalent. This is quite remarkable since, in the former, agents
are perfectly rational and solve a game with peer effects, while, in the latter, agents
make decisions stochastically, a little bit like in models of evolutionary game theory,
in which agents act like robots or automas and then converge to some behavior. We
show that, on average, the two types of behavior (Nash equilibrium and stochastic
decision) lead to exactly the same outcomes.

The interpretation of the equilibrium in terms of Markov chain is relatively fa-
miliar in the network literature. In particular, in the learning literature (see, e.g.,
DeGroot, 1974; DeMarzo et al., 2003; Golub and Jackson, 2012; for recent overviews,
see Mobius and Rosenblat, 2014; Golub and Sadler, 2016), the social structure of a
society is described by a weighted directed network, which captures the pattern of
communication and transmission of information between agents. Agents have beliefs
about some common state of the world and, at each date, agents communicate with
their neighbors in the social network and update their beliefs. An agent’s updated
belief at time t is the (weighted) average of his or her neighbors’ beliefs from the
previous period t−1. This defines a Markov chain in which the states are the beliefs
each agent has on the state of the world. In our model, the interpretation is different
since there is no time variation and each state is the location of each agent in the
network. Moreover, we believe that we are the first to show the equivalence between
the Nash equilibrium in effort of a network static game and the expected effort of a
Markov chain.

Remember that, in the probabilistic model, Ĝ = [ĝij] is the transition probability
matrix of a Markov chain with n finite states. It should then be clear that, given
that network g is connected, this Markov chain is irreducible. Hence, by the Perron–
Frobenius theorem, the stationary distribution π can be uniquely defined as the left
eigenvector of Ĝ associated with the unitary eigenvalue, that is

πĜ = π, (C.3)

where π = (π1, π2, . . . , πn) is a (1× n) vector, while πi > 0 for all i = 1, 2, . . . , n. As
pointed out by DeMarzo et al. (2003) and Golub and Jackson (2010), because our
network is undirected, we have

πi =
di∑n
j=1 dj

, for all i = 1, 2, . . . n,
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where di :=
∑n

j=1 gij is the degree of i. In other words, πi is the relative degree of
individual i.

Definition. The Markov chain with transition matrix Ĝ is ergodic if and only if
the following condition is satisfied :

lim
k→∞

Ĝk =


π
π
...
π

 . (C.4)

In general, an irreducible Markov chain need not be ergodic. However, as stated
by the following lemma, in our model, most (although not all) network structures
give rise to ergodic Markov chains.

Lemma C6 The Markov chain with transition matrix Ĝ is not ergodic if and only
if g = Km,n, that is, g is a complete bipartite graph, with a partition V1 ∪ V2 where
|V1| = m, |V2| = n. A star-shaped network is a special case with m = 1.

Proof of Lemma C6. If an irreducible Markov chain is non-ergodic, it must be
periodic, meaning that, up to a simultaneous permutation of rows and columns, its
transition matrix Ĝ can be represented as follows (see Horn and Johnson, 1985, Ch.
8, p. 512.):

Ĝ =


0 A12 0 . . . 0
0 0 A23 . . . 0
...

...
. . .

...
...

0 0 0 . . . AK−1,K

AK1 0 0 . . . 0

 , (C.5)

where K > 1 is an integer that shows the period of the Markov chain, Aij are
matrixes with positive entries, while 0 is a zero matrix of appropriate dimension.
Combining this with the fact that

ĝij > 0 ⇐⇒ ĝji > 0,

we find that the only case when Ĝ has a structure satisfying (C.5) is when g = Km,n.

Indeed, in this case, the row-normalized adjacency matrix Ĝ is given by
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Ĝ =

(
0m×m

1
n
1m×n

1
m

1n×m 0n×n

)
, (C.6)

where 0p×q and 1p×q stand for (p× q)-matrixes of zeros and ones, respectively. This
completes the proof.

This lemma states that, for most networks, the Markov chain is ergodic, apart
from when we have a complete bipartite graph, since, in that case, they are cycles
that prevent the Markov chain from being aperiodic.
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D Linear-in-means model and heterogeneity: An

example

Consider a star-shaped network with n = 3 agents where agent 1 is the star and
in which the individual productivities are given by: α1 = 1 + 2t, α2 = 1 − t and
α3 = 1− t, where t ∈ (−1/2, 1).1 Clearly, the mean productivity, µα, in the network
is independent of t and equal to µα := (α1 + α2 + α3) /3 = 1. Furthermore, it is
readily verified that the variance, σ2

α, of productivity across agents is given by

σ2
α :=

(α1 − µα)2 + (α2 − µα)2 + (α3 − µα)2

3
= 2t2.

When t = 0, there is no heterogeneity in productivity, as αi = 1 for each agent
i = 1, 2, 3. As t increases in absolute value (no matter in which direction), a mean-
preserving spread in productivity occurs, as it does not affect the average but in-
creases the variance of the productivity across agents.

Using (13), the Nash equilibrium in efforts is given by:

x∗1 = 1 +
(2− λ)

1 + λ
t, x∗2 = 1− (1− 2λ)

1 + λ
t, x∗3 = 1− (1− 2λ)

1 + λ
t. (D.1)

While the star agent’s effort level, x∗1, always increases in t, the effort exerted by
peripheral agents, x∗2 and x∗3, increases (decreases) when the taste λ for conformity
is above (below) 0.5.

We can relate the variance of equilibrium efforts, σ2
x, to the variance of produc-

tivities, σ2
α. Indeed, it is readily verified that:

σ2
x = 2

(
1− λ
1 + λ

)2

t2 =

(
1− λ
1 + λ

)2

σ2
α.

There is clearly a positive relationship between σ2
x and σ2

α. We have:(
1− λ
1 + λ

)2

≷ 1 ⇐⇒ λ ≶ 0.

This implies that our game dampens heterogeneity in productivities if agents are
conformists (λ > 0) while it magnifies heterogeneity in productivities if agents are
anti-conformists (λ < 0).2

1This domain is chosen for all individual productivities to remain positive.
2We study our game with anti-conformism agents (λ < 0) in Section 5.3 and in the Online

Appendix G.3.
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Using (D.1), the aggregate effort is given by

x∗1 + x∗2 + x∗3 = 3 +
3λ

1 + λ
t,

which always increases in t for any λ > 0. Figure D1 illustrates these results by
contrasting the case in which λ = 0.25 < 0.5 and when λ = 0.75 > 0.5.

As seen from Figure D1, the effort of the central agent, i = 1, always increases
with t, and so does the aggregate effort. However, the effort of the periphery agents,
i = 2, 3, decrease with t when conformity is relatively low (i.e., when λ = 0.25). More
surprisingly, when conformity is relatively high (i.e., when λ = 0.75), the efforts of the
periphery agents increase with t, even though their individual productivity decreases
with t. This is because, when periphery agents are very conformist, they care a
lot about their social norm, which is equal to the effort of the central agent. This
gives rise to a positive indirect effect of an increase in t, which is the peer-effect
generated by the star agent (whose productivity increases with t), which dominates
the negative direct effect of the reduction of own productivity. As a result, the net
effect of t on all individual efforts is positive. Therefore, the increase in aggregate
effort is steeper when agents are more conformist (λ = 0.75) than when they are less
conformist (λ = 0.25).

λ = 0.25 λ = 0.75

Figure D1: Impact of a mean-preserving spread of productivity on individual and aggre-
gate effort in a star network
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E Comparative statics exercises of λ: Additional

results and examples

E.1 Impact of conformism on aggregate effort: General re-
sults

In the main text, we study the impact of λ on individual effort. Here, we study
the impact of λ on aggregate effort.

Corollary E.1 (Non-monotonicity of aggregate effort in conformism)

(i) Assume that Corr(π, α) > 0 and that and agents are, on average, more pro-
ductive than their direct neighbors. Then, the aggregate effort in the network
varies non-monotonically with λ and has an interior global minimum in λ.

(ii) Assume that Corr(π, α) < 0 and that agents are, on average, less productive
than their direct neighbors. Then, the aggregate effort in the network varies
non-monotonically with λ and has an interior global maximum in λ.

Proof of Corollary E.1
(i) First, by totally differentiating both parts of (11) with respect to λ and setting

λ = 0, we obtain after summation across all i = 1, 2, . . . , n:

∂

∂λ

(
n∑
i=1

x∗i

)∣∣∣∣∣
λ=0

=
n∑
i=1

(
n∑
j=1

ĝijαj − αi

)
.

Hence, when λ = 0, we have

sign

{
∂

∂λ

n∑
i=1

x∗i

}
= sign

{
1

n

n∑
i,j=1

ĝijαj −
1

n

n∑
i=1

αi

}
. (E.1)

That agents are, on average, more productive than their neighbors means that
the right-hand side of (E.1) is negative. Hence, the aggregate effort decreases with
λ in the vicinity of λ = 0.

Second, using the standard definition of the correlation coefficient Corr(· , ·), we
have

sign {Corr (π,α)} = sign

{
n∑
j=1

πjαj −
1

n

n∑
j=1

αj

}
.
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Combining this with part (ii) of Proposition 4 yields

Corr(π,α) > 0 ⇐⇒
n∑
j=1

x∗j(1) >
n∑
j=1

x∗j(0),

that is, aggregate effort under total conformism (λ = 1) is higher than that under
pure individualism (λ = 0). Combining this with the fact that the aggregate effort
decreases when λ is small, we conclude that

∑n
i=1 x

∗
i (λ) is non-monotone λ and has

an interior global minimum. This proves part (i).
(ii) The proof of part (ii) repeats verbatim that of part (i), up to reverting all

the inequalities.

E.2 Impact of conformism on aggregate effort: Regular net-
works

Let us study regular networks. Recall that a network is regular if each agent
has the same number of neighbors. Specifically, a network is regular of valency r,
where r < n is a positive integer, if each individual has exactly r neighbors. For
example, a circular network is regular of valency r = 2, while a complete network of
n individuals is regular of valency r = n − 1. In our model, regular networks have
the following remarkable property.

Proposition E1 (Regular networks) In regular networks, the aggregate effort does
not vary with λ, that is,

n∑
i=1

x∗i =
n∑
i=1

αi. (E.2)

Proof of Proposition E1.
Given (A.17), for a regular network, we have π = (1/n, . . . , 1/n), which we plug

into (A.17) and multiply both parts of the resulting equality by n, yielding

n∑
j=1

x∗i =
n∑
j=1

αj.

Because this equality holds for any λ, the proof is complete.
Proposition E1 shows that, even if each individual effort varies non-trivially with

λ in simple regular networks, the total effort is not affected by a change in the taste
for conformity.

E10



E.3 Impact of conformism on individual and aggregate ef-
fort: Star-shaped networks

Consider a star-shaped network in which i = 1 is the star agent. Denote

αs := α1, αp :=
α2 + . . .+ αn

n− 1
.

In other words, αs is the productivity of the star agents, while αp is the average
productivity of all periphery agents.

Proposition E2 (Star-shaped networks) Consider a star network.

(i) Assume αs < αp. Then, the effort x∗1 of the star agent increases with λ but the
aggregate effort

∑
i x
∗
i decreases in λ. For any periphery agent i ≥ 2, we obtain

(ia) if αi ≤ αs, then x∗i increases with λ;

(ib) if αs < αi < (3αp + αs)/4, then x∗i is U shaped in λ;

(ic) if αi ≥ (3αp + αs)/4, then x∗i decreases with λ.

(ii) Assume αs > αp. Then, the effort of the star agent xs∗
i decreases with λ but the

aggregate effort
∑

i x
∗
i increases in λ. For a periphery agent i ≥ 2, we obtain

(iia) if αi ≤ (3αp + αs)/4, then x∗i increases with λ;

(iib) if (3αp + αs)/4 < αi < αs, then x∗i is bell shaped in λ;

(iic) if αi ≥ αs, then x∗i decreases with λ.

Proof of Proposition E2.

Let us start with the following lemma:

Lemma E7 Assume that g is a star-shaped network where i = 1 is the star agent.
Then, for all λ ∈ (0, 1), we have

∂x∗1
∂λ

=

(
αP − αS

)
(1 + λ)2

and for the periphery agents i = 2, .., n,

∂x∗i
∂λ

= αP − αi +

(
αS − αP

)
(1 + λ)2

E11



Proof of Lemma E7: It is readily verified that, for a star-shaped network with
n agents, i = 1 being the star node, the row-normalized adjacency matrix Ĝ and its
square Ĝ2 are given by

Ĝ =


0 1

n−1
. . . 1

n−1

1 0 . . . 0
...

...
. . .

...
1 0 . . . 0

 , Ĝ2 =


1 0 . . . 0
0 1

n−1
. . . 1

n−1
...

...
. . .

...
0 1

n−1
. . . 1

n−1

 . (E.3)

Furthermore, we have

Ĝ3 =


0 1

n−1
. . . 1

n−1

1 0 . . . 0
...

...
. . .

...
1 0 . . . 0

 = Ĝ, (E.4)

In other words, the matrix Ĝ is cyclical with the cycle length equal to 2. Combining
(E.3)–(E.4) with (11) and simplifying it, we obtain

x∗(λ) = (1− λ)α+
λ

1 + λ
Ĝα+

λ2

1 + λ
Ĝ2α.

Further simplification yields that the effort of the star agent, i = 1, is given by

x∗1(λ) = αp +
αs − αp

1 + λ
, (E.5)

while the efforts of periphery agents, i = 2, . . . , n are as follows:

x∗i (λ) = (1− λ)αi +
λ

1 + λ
αs +

λ2

1 + λ
αp (E.6)

Differentiating (E.5)–(E.6) with respect to λ, we obtain

∂x∗1
∂λ

= −(αs − αp)

(1 + λ)2
, (E.7)

∂x∗i
∂λ

= αp − αi +
αs − αp

(1 + λ)2
. (E.8)

respectively. This completes the proof of this lemma.
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Using Lemma E7, it is straightforward to characterize the effect of λ on x∗i for
the periphery agents.

Let us prove the impact of λ on the aggregate effort. Using (E.7) and (E.8), we
obtain

∂
∑

i x
∗
i

∂λ
=

∂x∗1
∂λ

+
n∑
i=1

∂x∗i
∂λ

= −(αs − αp)

(1 + λ)2
+ (n− 1)αp +

(n− 1) (αs − αp)

(1 + λ)2
−

n∑
i=2

αi

=
(n− 2) (αs − αp)

(1 + λ)2

since, by definition, (n− 1)αp =
∑n

i=2 αi. This completes the proof.

Proposition E2 provides a more precise description of the impact of a higher
taste for conformity on equilibrium efforts in a star network. In particular, it shows
that, if the productivity of an agent is high (low), then an increase in the taste for
conformity reduces (increases) her effort, because she feels pressured by her friends
who provide, on average, lower (higher) effort.

E.4 Impact of conformism on individual and aggregate ef-
fort: Circular networks

Consider a circular network (which is a regular network of valency r = 2) with
n = 5 agents in which productivity is given by αi = i for all i = 1, . . . , 5.

Figure E2: How λ affects effort in a circular network
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The left panel of Figure E2 depicts the network structure and productivity pat-
tern, while the right panel shows how individual efforts vary with λ. Clearly, the
efforts x∗1 and x∗2 of the low-productive agents 1 and 2 increase with λ, while the
efforts x∗4 and x∗5 of highly productive agents 4 and 5 decrease with λ. However, the
effort of the “median” agent (individual 3) remains at the same level as the average
effort

∑5
j=1 x

∗
i /5 in the network and is not affected by a change in λ. This is in

accordance with Proposition E1, as the average effort is strictly proportional to the
aggregate effort.

Let us now rewire the links in the network of Figure E2 so that, topologically, the
new network, displayed in the left panel of Figure E3, is isomorphic to the previous
one. In particular, the new network is still a circular (regular) network with n = 5
agents but the social norms are very different to those in Figure E2. In particular,
the neighbors of agent 2 are now agents 4 and 5, the two most productive individuals
in the economy, whereas before, her neighbors were 1 and 3, who are clearly less
productive. By contrast, the neighbors of agent 4 are now agents 1 and 2 instead of
agents 3 and 5, which means that her neighbors are now less productive. Thus, when
we compare the right panels of Figures E2 and E3, we observe that the convergence
of agent 2’s and agent 4’s efforts to the average effort is now faster than in the original
network.

Figure E3: How λ affects effort in a rewired circular network

Finally, let us rewire again the social ties without changing the network topology.
We obtain the network depicted in the left panel of Figure E4. Although the network
is regular, we observe, in the right panel of Figure E4, that the effect of λ on the
effort of the median player (agent 3) is now U shaped and is different from the
average effort in the network. Indeed, when λ is small, the immediate impact of
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direct neighbors dominates the indirect impact of the others on individual i. The
neighbors of agent 3 are now agents 1 and 2, who are both less productive than
agent 3 is. Therefore, under pure individualism (λ = 0), we have x∗3 = α3 = 3, but
as λ becomes slightly positive, x∗3 decreases. However, when λ becomes larger, the
indirect impact of agents 4 and 5, who are more productive than agent 3, becomes
sufficiently strong, which results in a higher effort of agent 3.

Figure E4: How λ affects effort in another rewired circular network
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F Equilibrium versus first best: Specific networks

We illustrate condition (31), which gives a condition for the equilibrium effort to
be optimal, for specific networks.

Example 1. Consider a star network in which agent 1 is in the center. Then,
we have x∗ = xO if and only if the star-agent productivity is equal to the average
productivity of all periphery agents:

α1 =
1

n− 1

n∑
j=1

αj. (F.1)

In particular, when there are two levels of productivity, that is, αi ∈ {αL, αH},
αH > αL > 0, the Nash equilibrium in a star-shaped network is never optimal.

Example 2. Assume now that g is a circular network with n = 4, so that each
agent has two links. Then, we have x∗ = xO if and only if the average productivity
across maximum independent sets3 is the same, that is,

α1 + α3

2
=
α2 + α4

2
.

In particular, when there are two levels of productivity, that is, αi ∈ {αL, αH},
αH > αL > 0, the Nash equilibrium is optimal if and only if there are two highly
productive agents and two low-productive agents, and the highly productive agents
are all linked to each other.

Examples 1 and 2 are special cases of the following more general results.

Corollary F.1 If the network is a complete bipartite graph (i.e., g = Km,n) with
a partition V1 ∪ V2 where |V1| = m, |V2| = n, then we have x∗ = xO if and only if
α1 = α2, where αr is the average productivity over Vr, r = 1, 2, that is

αr :=
1

|Vr|
∑
k∈Vr

αk. (F.2)

Proof of Corollary F.1: Let us derive (31) for complete bipartite graphs:
g = Km,n. The Nash equilibrium x∗ is the solution to (12). A necessary and

3In graph theory, an independent set is a set of nodes in a graph such that no two nodes are
adjacent. In other words, it is a set S of nodes such that for every two vertexes in S, there is no
edge connecting the two. A maximum independent set is an independent set of the largest possible
size for a given graph.
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sufficient condition (31) for the Nash equilibrium x∗ to deliver a first best is given
by

ĜT (x∗ − x∗) = 0.

Using (12), this condition can be equivalently restated as follows:

ĜTα = ĜTx∗, (F.3)

where x∗ = Ĝx
∗

is the vector of equilibrium social norms.
Recall that, when g = Km,n, the row-normalized adjacency matrix Ĝ is given by

(C.6). Hence, the best reply functions (11) take the following form:

xi = (1− λ)αi +


λ

n

∑
k∈V2

xk, i ∈ V1,

λ

m

∑
k∈V1

xk, i ∈ V2.
(F.4)

Computing the means across all i ∈ V1 and across all i ∈ V2, we obtain

1

m

∑
k∈V1

xk =
1− λ
m

∑
k∈V1

αk +
λ

n

∑
k∈V2

xk, (F.5)

1

n

∑
k∈V2

xk =
1− λ
n

∑
k∈V2

αk +
λ

m

∑
k∈V1

xk. (F.6)

respectively. Note that 1
n

∑
k∈V2 xk = xi for any individual i ∈ V1, while 1

m

∑
k∈V1 xk =

xj for any individual j ∈ V2. Without loss of generality, let agent i = 1 belong to V1,
and let agent i = 2 belong to V2. Then, we have

1

n

∑
k∈V2

xk = x1,
1

m

∑
k∈V1

xk = x2.

Solving the system (F.5)–(F.6) in terms of x1 and x2, we obtain

x∗r =
λ

1 + λ
αr +

1

1 + λ
αs, (F.7)

where r, s = 1, 2, r 6= s. Finally, observe that the following equalities hold:
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ĜTα =

(
0m×m

1
m

1m×n
1
n
1n×m 0n×n

)


α1
...
αm
αm+1

...
αn


=



n
m
α2
...

n
m
α2

m
n
α1
...

m
n
α1


,

ĜTx∗ =

(
0m×m

1
m

1m×n
1
n
1n×m 0n×n

)


x∗1
...
x∗1
x∗2
...
x∗2


=



n
m
x∗2
...

n
m
x∗2

m
n
x∗1
...

m
n
x∗1


.

Hence, the condition (F.3) holds if and only if αr = x∗r for r = 1, 2. Using (F.7),
we find that this is equivalent to α1 = α2. This completes the proof.

This corollary and the examples above show that, in order for the equilibrium
efforts to be optimal, there needs to be some compensation for the externalities that
agents exert on others. In particular, for bipartite networks, such as the star and
circular network, the average productivity of the different agents has to be the same.
For example, in the star network, it cannot be that the productivity of the star is
much higher than the average productivity of the peripheral agents because, in that
case, the externalities that the star exerts on the peripheral agents are not exactly
compensated by the externalities created by the peripheral agents on the star.
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G Extensions of the benchmark model

G.1 Weighted networks

In the baseline local-average model, the social network was undirected, unweighted
and with no self-loops. Consider an extension in which the network may be directed,
weighted and may have self-loops as in the standard DeGroot model (Golub and
Jackson, 2010). Let W = [wij] be an arbitrary (n × n) row-normalized irreducible
matrix with non-negative entries. Each cell wij, i, j = 1, 2, . . . , n, gives the relative
impact (weight) of agent j’s effort on agent i’s social norm xi defined as follows:

xi ≡
n∑
j=1

wijxj. (G.1)

In particular, we do not rule out self loops, i.e., we allow for the possibility that
wii > 0 for some i. Agent i’s utility function is the same as in the baseline model
and given by (3), i.e.

Ui(xi,x−i,W) = αixi −
1

2
x2
i − θ (xi − xi)2 ,

but agent i’s social norm xi is now equal to (G.1). The best reply mapping is then
given by

x = (1− λ)α+ λWx, (G.2)

where λ ≡ θ/(1 + θ) ∈ (0, 1). Because the weighting matrix W is row-normalized,
non-negative, and irreducible, we have: ρ(W) = 1, where ρ(·) is th spectral radius
of matrix W. Combining this with λ ∈ (0, 1), we infer that the best-reply mapping
(G.2) is a contraction mapping, hence, a unique (interior) equilibrium x∗ exists.
Furthermore, equilibrium efforts x∗ can be represented using the Newman-series
formula:

x∗ = (1− λ)
∞∑
k=0

λkWkα. (G.3)

Let us now examine if our main results remain the same with a weighted adjacency
matrix W instead of a non-weighted one Ĝ.

Total conformism. Let π be the left eigenvector of W associated with ρ(W) =
1. Then, the analysis of total conformism (λ → 1) exactly follows the one of the
baseline model, that is

lim
λ→1

x∗i = πα, (G.4)
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Observe, however, that π can no longer be expressed in a closed form as a function
of W. The proof of (G.4) repeats almost verbatim to that of Proposition 3, up to

replacing Ĝ with W everywhere. Similarly, Proposition 4 remains true, except that
π is no longer proportional to (d1, d2, . . . , dn).

Comparative statics. The comparative statics exercises of equilibrium efforts
with respect to α remain the same. The comparative statics with respect to the taste
for conformity λ is already ambiguous in the baseline model with Ĝ (see Proposition
5), so there is no reason to expect more clear-cut results in the setting with arbitrary
weights.

The only aspect of the analysis where this extension with W buys substantial
tractability compared to the baseline model is when we study the effects of changes
in the network structure. The reason is that one can use standard tools of calculus
to study the consequences of infinitesimal perturbations in W. Indeed, assume that
the weighting matrix changes as follows:

W→W + dW, (G.5)

where dW = [dwij] is the (n×n) perturbation matrix. Assume that the perturbations
dwij are arbitrarily small (infinitesimal in the limit). Furthermore, because the new
weighting matrix, W + dW, must be row-normalized, the perturbation dW must
satisfy:

dW1 = 0.

Let dx∗ stand for the response of the equilibrium efforts x∗ to the infinitesimal weight
perturbation (G.5). Using (G.3), we get:

x∗ = (1− λ)
∞∑
k=1

kλkWk−1dWα. (G.6)

We have the following result:

Proposition G3 A small perturbation (G.5) of the weighting matrix W leads to:

(i) an increase in everyone’s effort, if

dWα > 0; (G.7)

(ii) a reduction in everyone’s effort, if

dWα < 0; (G.8)
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(iii) an ambiguous outcome, otherwise.

Intuitively, condition (G.7) means that high-productive agents end up having
more impact on everyone’s norms, while condition (G.7) means the reverse. To see
this, let [dW]i denote the ith column of the perturbation matrix dW, i = 1, 2, . . . , n.
Then, we have:

dWα =
n∑
i=1

αi[dW]i.

Hence condition (G.7) clearly holds if [dW]i > 0 for agents with high productivities.

Welfare results. The exact counterparts of Propositions 7, 8 and 9 hold true.
The proofs repeat verbatim those of the baseline model, up to replacing Ĝ with W
throughout.

G.2 Heterogeneous tastes for conformity

In our model, we assume that all individuals have the same taste for conformity λ.
We now allow for heterogeneity in taste for conformity. Agent i’s payoff (6) becomes

Ui(xi,x−i,g) = αixi −
1

2
x2
i −

1

2

(
λi

1− λi

)
(xi − xi)2 , (G.9)

where λi ∈ (0, 1) is the taste for conformity, which is now agent-specific. For each
agent i = 1, 2, . . . , n, her best-reply function is given by

xi = (1− λi)αi + λixi. (G.10)

or, equivalently, in vector-matrix form

x = (I−Λ)α+ ΛĜx, (G.11)

where I is the identity matrix, while Λ is the (n× n)-matrix defined by

Λ :=


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .
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Observe that the matrix ΛĜ has non-negative entries, while its maximum eigenvalue
is smaller than one. Combining this with (G.11), it is readily verified that a unique
Nash equilibrium exists, it is interior and is given by:

x∗ = (I−ΛĜ)−1(I−Λ)α =
∞∑
k=0

(ΛĜ)k(I−Λ)α, (G.12)

where the expansion to the Neumann series is justified by the fact that the spectral
radius of ΛĜ is smaller than one. This implies that:

x∗ = Ĝ
∞∑
k=0

(ΛĜ)k(I−Λ)α, (G.13)

Furthermore, since x∗i is a convex combination of αi and x∗i , we have:

xi T x∗i ⇐⇒ αi T x∗i , (G.14)

which is the extension of Lemma 1 for the case of heterogeneous taste for conformity.
This result proves useful in studying comparative statics of equilibrium with respect
to an individual taste for conformity. Indeed, by total differentiation of (G.10) with
respect to λj, and using the definition of agent i’s social norm xi, we obtain:

∂x∗i
∂λj

= δij(x
∗
j − αj) + λi

∂x∗i
∂λj

,

where δij is defined by (A.11). In vector-matrix form, this can be written as:

∂x∗

∂λj
= (x∗j − αj)ej + ΛĜ

∂x∗

∂λj
, (G.15)

where ej is the n-dimensional vector whose jth component is equal to 1 while all the
others are equal to zero. Solving the linear system (G.15) for ∂x∗/∂λj yields:

∂x∗

∂λj
= (x∗j − αj)

∞∑
k=0

(ΛĜ)kej. (G.16)

Define the following vector:

a(α,Λ,g) := x∗ − x∗ = (I− Ĝ)
∞∑
k=0

(ΛĜ)k(I−Λ)α.
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Proposition G4 Assume that agent j becomes slightly more conformist, i.e., λj
marginally increases, then

(i) the efforts of all agents, including agent j, change in the same direction;

(ii) the efforts of all agents increase (decrease) if and only if x∗j < x∗j (x∗j > x∗j) or
equivalently aj(α,Λ,g) < 0 (aj(α,Λ,g) > 0).

Proof of Proposition G4
(i) Because the matrix ΛĜ is irreducible, the vector

∑∞
k=0(ΛĜ)kej is strictly

positive. Hence (G.16) implies that all components of ∂x∗/∂λj have the same sign.
This proves (i).

(ii) Equation (G.16) implies that:

∂x∗

∂λj
T 0⇔ x∗j T x∗j . (G.17)

We can restate this in terms of the primitives of the model. Consider a(α,Λ,g).
Clearly, each component aj(α,Λ,g) of this vector is a well-defined function of the
primitives. Combining (G.17) with (G.14), we obtain (ii).

G.3 Anti-conformism

In the baseline local-average model, individual i’s utility function is given by (3),
that is

Ui(xi,x−i,g) = αixi −
x2
i

2
− θ

2
(xi − xi)2 , (G.18)

where θ > 0 is taste for conformity. Let us now assume that θ < 0 so that agents
are anti-conformists. Denote, as above, λ ≡ θ/(1 + θ). We have the following result:

Proposition G5 (Anti-conformism) Assume θ < 0.
(i) If θ > −1/2, then, there exists a unique equilibrium, in which player i’s best

reply is given by:
xi = max{0, (1− λ)αi + λxi}. (G.19)

(ii) If −1/2 ≤ θ < −1, player i’s best reply is still given by (G.19) but multiple
equilibria may arise.

(iii) If θ ≥ −1, no pure-strategy equilibrium exists.
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Proof of Proposition G5:
Case (i) Assume θ > −1/2. In this case, most of the equilibrium analysis still

works through, unless the productivity dispersion across individuals is very high. As
implied by the first-order conditions, at least in the vicinity of the equilibrium, the
best-reply mapping has to be given by:

x = (1− λ)α + λĜx,

where λ ≡ θ/(1 + θ). The condition θ > −1/2 guarantees that |λ| < 1, hence,
the best-reply mapping is still a contraction mapping. Therefore, a unique interior
equilibrium exists, and, more importantly, the widely used Neumann-series decom-
position

x∗ = (1− λ)
∞∑
k=0

λkĜkα (G.20)

of equilibrium efforts still holds. Two issues arise, however.
First, in the anti-conformist case, efforts are strategic substitutes rather than

strategic complements. This implies a more tricky comparative statics of equilibrium
efforts with respect to individual productivities α. To see this, observe that, because
λ < 0 in the anti-conformist model, the terms of the series in the right-hand-side
of (G.20) have alternating signs. As a result, the average productivity across the
neighbors of agent i leads to a reduction of x∗i while the average productivity across
her neighbors of distance 2 leads to an increase in x∗i , etc.4 Thus, in contrast to
Proposition 2, the impact of αj on x∗i is a priori ambiguous.

Second, unlike the case with conformity (θ > 0), in general, the interiority of
equilibrium is not guaranteed. To see this, let us restate (G.18) as follows:

Ui(xi,x−i,g) = (αi + θxi)xi −
1 + θ

2
x2
i −

θ

2
x2
i . (G.21)

Since θ < 0, we have take into account the possibility that αi + θxi < 0, in which
case we have:

arg max
xi≥0

Ui(xi,x−i,g) = 0.

Hence, player i’s best reply is thus given by (G.19). Since |λ| < 1, the best-reply
mapping is still a contraction mapping. Hence, the equilibrium is always unique.

To explain why the equilibruim needs not be interior, consider the simplest possi-
ble case when two agents (n = 2) are linked to each other (the dyad). The candidate

4A similar effect, called “my enemy’s enemy is my friend”, has also been found by Ushchev and
Zenou (2018) in a model of price competition in product variety networks.
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interior equilibrium is given by

x∗i =
1

1 + λ
αi +

λ

1 + λ
αj, (G.22)

where i, j = 1, 2, and i 6= j. Since λ < 0, for (G.22) to be an interior equilibrium, it
is necessary and sufficient that the following inequalities hold:

− λ < α1

α2

< −1

λ
. (G.23)

Condition (G.23) can be equivalently restated as:

|λ| < min{α1, α2}
max{α1, α2}

. (G.24)

Condition (G.23) or, equivalently, (G.24), means that agents must be either not too
heterogeneous in productivities, or not too non-conformist, or both.

To illustrate this, we contrast the cases when λ = 1/2 (moderate conformity) and
when λ = −1/2 (moderate anti-conformity). These cases emerge when, respectively,
θ = 1 and θ = −1/3, so that the condition θ > −1/2 is satisfied in the anti-conformity
case. Without loss of generallity, assume that α1 ≥ α2.

In the conformity case (λ = 1/2), equation (G.22) takes the form of:

x∗i =
2

3
αi +

1

3
αj,

and defines an interior equilibrium for any values (α1, α2) ∈ R2
++ of productivities.

Furthermore, in accordance with part (i) of Proposition 2, each agent’s effort in-
creases both with her own productivity and her peer’s productivity.

In the anti-conformity case (λ = −1/2), equation (G.22) becomes:

x∗i = 2αi − αj.

Two observations are in order. First, in contrast to Proposition 2, when the equilib-
rium is interior, each agent’s effort increases with her own productivity but decreases
with the productivity of the other agent. Second, for the equilibrium to be interior,
condition (G.24) must hold. Because α1 ≥ α2 and λ = −1/2, condition (G.24) takes
the form:

α1 < 2α2.
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When α1 ≥ 2α2, it is readily verified that the unique equilibrium is given by
(x∗1, x

∗
2) = (3α1/2, 0). Combining this with (G.22), we have:

x∗1 =

{
2α1 − α2, if α1 < 2α2,
3
2
α1, if α1 ≥ 2α2;

x∗2 =

{
0, if α2 ≤ α1

2
,

2α2 − α1, if α2 >
α1

2
.

(G.25)

Case (ii): Assume −1/2 ≤ θ < −1. In this case, the best replies are still given
by (G.19). However, the best-reply mapping is no longer a contraction maping. As
a result, multiple equilibria may arise.

To illustrate this, consider again the dyad example with n = 2, but set α1 = α2 =
1, and θ = −2/3. Then, it is readily verified that the best reply of player i is given
by

xi = max{0, 3− 2xj}, (G.26)

where i, j = 1, 2, and i 6= j. A simple graphical analysis shows there are three
different equilibria (see Figure G5 below), including a symmetric interior equilibrium
and two corner equilibria:

(x∗1, x
∗
2) = (1, 1), (x∗∗1 , x

∗∗
2 ) = (3, 0), (x∗∗∗1 , x∗∗∗2 ) = (0, 3).

Figure G5: Multiple equilibria under anti-conformism
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Case (iii): Assume θ ≥ −1. In this case, as implied by (G.18), individual i’s
payoff function becomes unbounded with respect to xi. Hence, no pure-strategy
equilibrium exists.

G.4 Ambition and social norms

Assume that the utility of individual i is now given by:

Ui(xi,x−i,g) = αixi −
x2
i

2
− θ

2
(xi − βixi)2 , (G.27)

where βi ≥ 1 is agent i’s ambition factor. Since βi ≥ 1, the “reference effort” of
each individual i is now higher than the social norm xi of her neighbors. Clearly, by
setting β1 = . . . = βn = 1, we are back to our benchmark model.

We also impose the following condition on taste λ for conformity:

λβmax < 1, (G.28)

where βmax ≡ max{β1, . . . , βn}. It is readily verified that the equilibrium efforts
and the socially optimal efforts are given by the same expressions as above, up to
replacing Ĝ with BĜ, where B is a diagonal (n× n)-matrix given by

B ≡


β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...
0 0 . . . βn

 .

The condition (G.28) guarantees that the linear mapping BĜ, hence the best-reply
mapping, is still a contraction mapping, so that we still have existence and uniqueness
of (interior) equilibrium.

To gain some intuition about how ambitious behavior affects our welfare results,
we focus here on the simplest possible case when:

α1 = . . . = αn = α > 0, β1 = . . . = βn = β > 1, (G.29)

i.e., all agents are equally productive and equally ambitious. In this case, if λβ < 1,
there is a unique interior equilibrium in efforts, which is given by:

x∗ ≡ x∗1 = . . . = x∗n =
1− λ

1− λβ
α. (G.30)
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Observe that, in our benchmark model where β = 1, if λ < 1, there exists a unique
interior equilibrium given by: x∗ = x∗ = α. Since β > 1, we see that by introducing
an ambition factor in the utility function (see (G.27)), each individual exerts an effort
above the social norm (average effort) x∗ = α of their direct friends.

Let us now consider welfare issues. The social planner’s first-order condition is
given by:

x = (1− λ)α1 + λ
(
βĜ + βĜT − β2ĜT Ĝ

)
x. (G.31)

Consider first the case of a regular network. We have: Ĝ = ĜT , and, after some
simple algebra, (G.31) implies that the socially optimal effort levels are identical
across agents and equal to:

xO1 = . . . = xOn = xO :=
1− λ

1− λβ + λβ(β − 1)
α. (G.32)

Comparing (G.32) with (G.30), we see that all agents over-invest in equilibrium
compared to the social optimum. Indeed, because β > 1, we have:

xO =
1− λ

1− λβ + λβ(β − 1)
α <

1− λ
1− λβ

α = x∗.

Assume now that the social network g is not regular. In this case, it is still
true under certain conditions that agents overinvest in efforts even with identical
productivities.

Proposition G6 Assume that conditions (G.28)-(G.29) hold, and that the social
network g is not regular. Then:

(i) the decentralized equilibrium is never optimal;

(ii) the set of agents overinvesting in equilibrium compared to the first best is non-
empty;

(iii) there exist two threshold values, λ(β,g) and λ(β,g), satisfying 0 < λ(β,g) ≤
λ(β,g) < 1/β, and such that, if either λ ≤ λ(β,g), or λ ≥ λ(β,g), then all
agents overinvest in equilibrium compared to the first best.

Proof. (i) To prove that x∗ 6= xO, we will show that, unlike the equilibrium efforts
given by (G.30), the first-best efforts are no longer identical across agents. To see this,
assume that, on the contrary, there exists xO > 0, such that xO = xO1. Plugging
xO = xO1 into (G.31), we get:

xO1 =
[
(1− λ)α + λβxO

]
1 + λβ(1− β)xOĜT1. (G.33)
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This, in turn, implies that ĜT1 is collinear to 1, or, equivalently, that 1T is the
left eigenvector of Ĝ. Then, by Frobenius-Perron theorem, because 1T is a positive
vector, it must correspond to the principal eigenvalue of Ĝ, which is equal to one.
But we know that the left eigenvector of Ĝ corresponding to the unitary eigenvalue
is unique up to a scalar multiple (by Frobenius-Perron theorem), and is collinear to
(d1, d2, . . . , dn), where di is agent i’s degree (see (21)). Thus, g must be a regular
network, which contradicts our assumption. This proves part (i).

(ii) The vector ∆x ≡ xO − x∗ captures the differences between first best efforts
and equilibrium efforts. We need to show that ∆x has a strictly negative entry.

Using (G.30) – (G.31), we get after some linear algebra:

∆x = −αλβ(β − 1)
1− λ

1− λβ

[
(1− λ)I + λ

(
I− βĜ

)T (
I− βĜ

)]−1

GT1. (G.34)

Because the matrix (1 − λ)I + λ
(
I− βĜ

)T (
I− βĜ

)
is positive definite,5 its

inverse is well defined and is also positive definite. Therefore, multiplying both parts
of (G.34) by the positive row-vector 1T Ĝ, we get:

1T Ĝ∆x < 0,

which implies that ∆x has a strictly negative entry. This proves part (ii).
(iii) Consider the limit case when λ→ 0. In this case, we have:

lim
λ→0

[
(1− λ)I + λ

(
I− βĜ

)T (
I− βĜ

)]−1

GT1 = GT1 > 0.

By continuity, the inequality[
(1− λ)I + λ

(
I− βĜ

)T (
I− βĜ

)]−1

GT1 > 0 (G.35)

must hold for sufficiently small positive values of λ. Define λ(β,g) as follows:

λ(β,g) := sup

{
µ ∈

(
0,

1

β

) ∣∣∣∣ (G.35) holds for all λ < µ

}
. (G.36)

Combining (G.36) with (G.34), we find that ∆x < 0 when λ < λ(β,g).

5The argument is the same as in the proof of part (i) of Lemma A4 in Appendix A.
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Next, consider the other extreme case: λ→ 1/β. Using (G.30), we find that, for
all i = 1, 2, . . . , n, we have:

lim
λ→1/β

x∗i =∞. (G.37)

Using (G.31), we get:

lim
λ→1/β

xO =

(
1− 1

β

)
α

[(
1− 1

β

)
I +

1

β

(
I− βĜ

)T (
I− βĜ

)]−1

1. (G.38)

Because the matrix
(

1− 1
β

)
I + 1

β

(
I− βĜ

)T (
I− βĜ

)
is positive definite, its

inverse is well defined. Thus, it follows from (G.38) that, for all i = 1, 2, . . . , n, agent
i’s first best effort level xOi converges to a finite limit as λ→ 1/β. Comparing (G.38)
to (G.37), we get:

lim
λ→1/β

∆xi = −∞.

Combining this with (G.34), we infer that (G.35) must hold when λ is sufficiently
close to 1/β. Define λ(β,g) as follows:

λ(β,g) := inf

{
µ ∈

(
0,

1

β

) ∣∣∣∣ (G.35) holds for all λ > µ

}
. (G.39)

Putting (G.39) and (G.34) together, we find that ∆x < 0 when λ > λ(β,g). This
proves part (iii) and completes the proof of the whole proposition.

G.5 Network formation

Consider a two-stage game where, in the first stage, agents create links while, in
the second stage, they exert effort as in our model.

Assume, for simplicity, that there are two types of agents: high-productive agents
with α = αH and low-productive agents for which α = αL, with αH > αL > 0.

The equilibrium concept of network formation is Pairwise Nash Equilibrium, as it
is standard in this literature (see Bloch and Jackson, 2006, for a precise definition).6

We follow the standard agreement so that each agents only breaks a link if that
makes her strictly better off while a new link is created if and only if it makes both
agents weakly better off. Define a completely homophilous network gh as a network

6As Bloch and Jackson (2006) put it: “Pairwise Nash Equilibrium is a refinement of both pairwise
stability and Nash equilibrium, where one requires that a network be immune to the formation of
a new link by any two agents, and the deletion of any number of links by any individual agent”.
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for which agents of different types are not linked to each other and all agents of the
same type form a complete network. It is equivalent to a complete bi-partite network
where links only exist between agents of the same type. The following figure displays
a completely homophilous network with 10 agents, 5 of each type:
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Figure G6: Completely homophilous network

We have the following result:

Proposition G7 Assume that there are two types of agents with productivities αL

and αH , where αH > αL > 0. Assume also that creating a link is costless and so is
severing a link. Then:

(i) Consider the local-aggregate model, where each agent’s utility is given by
(4). Then, the unique Pairwise Nash Equilibrium is the complete network where
all agents of any type are linked to each other.

(ii) Consider the local-average model, where each agent’s utility is given by (3).
Then, the unique Pairwise Nash Equilibrium is the completely homophilous
network, which is a network of two disconnected components, where in each
component all agents of the same type form a complete network.

Proof.
(i) Consider the local-aggregate model. If there is no cost of forming a link,

then because of strategic complementarities and the local-aggregate nature of the
model, it is always beneficial for an individual (of any type) to form a link with any
other individual (of any type). As a result, the only equilibrium network is the one
for which everybody is linked to everybody else (see König et al., 2014).
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(ii) Consider now the local-average model. In order to prove that the only
Pairwise Nash Equilibrium is the completely homophilous network, we proceed in
two steps:

[(iia)] We first show that the completely homophilous network gh is a pairwise
Nash equilibrium;

[(iib)] Then, we show that no other network g 6= gh is a pairwise Nash equilibrium.

(iia) Let us first show that gh is pairwise Nash equilibrium. It is readily verified
that, when g = gh, each agent i, whatever her type, exerts effort x∗i (g

h) = αi, follows
the social norm x∗i (g

h) = αi, and gains utility level U∗i (gh) = α2
i /2.

Assume that agent i chooses to break a link with her neighbor j (who must be
of the same type as i for such a link to exist). It is readily verified that:

U∗i
(
gh − ij

)
= α2

i /2 = U∗i (gh).

Thus, breaking the link with j does not make i strictly better off, hence, there is
no reason to do so.

It remains to show that no one is willing to form a link. Assume that, on the
contrary, there is an agent i who would benefit from forming a new link with another
agent, j. Note that, because i is already linked to everyone who has same type, i
and j must be of a different type. Then, i’s equilibrium utility becomes:

U∗i (gh + ij) =
α2
i + 2θαix

∗
i (g

h + ij)− θx∗i (gh + ij)2

2(1 + θ)
. (G.40)

Using (G.40), it is readily verified that:

U∗i (gh + ij) <
α2
i

2
⇐⇒ x∗i (g

h + ij) 6= αi.

Hence, to show that U∗i (gh + ij) < U∗i (gh) = α2
i /2, it remains to prove that x∗i (g

h +
ij) 6= αi. To see this, observe that, because the network gh + ij is connected, its

row-normalized adjacency matrix Ĝ(gh + ij) is irreducible. Hence, there is a path
linking i with any other agent, i.e., for any agent r 6= i, there exists an integer k > 0,
such that:

ĝ
[k]
ir (gh + ij) > 0.

Combining this with Proposition 1, we find that agent i’s new equilibrium social
norm x∗i (g

h + ij) is a strict convex combination (i.e., with strictly positive weights)
of α1, α2, . . . , αn. Hence,

αL < x∗i (g
h + ij) < αH ,
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which implies x∗i (g
h + ij) 6= αi ∈

{
αL, αH

}
. This proves (i).

(iib) We now prove that any g 6= gh is not a pairwise Nash equilibrium. Two
cases may arise.

Case 1: cross-type links. Assume first that g has a cross-type link, i.e., there
are i and j, such that αi 6= αj, but gij = 1. Let gij be the component of g agents
i and j both belong to. We will show that dropping all links and remaining alone
makes agent i strictly better off. Indeed, because agents who are not in gij affect
neither i’s effort nor her well-being, i’s equilibrium untility level is given by

U∗i (g) = U∗i
(
gij
)

=
α2
i + 2θαix

∗
i (gij)− θ [x∗i (gij)]

2

2(1 + θ)
. (G.41)

We now show that U∗i (g) < α2
i /2, where α2

i /2 is the utility level gained by agent
i in the absence of neighbors. As implied by (G.41), we have: U∗i (g) ≤ α2

i /2, and

U∗i (g) =
α2
i

2
⇐⇒ x∗i

(
gij
)

= αi.

Because gij is connected, we find, using the same argument as in the proof of
(iia), that x∗i (gij) 6= αi. Hence, U∗i (g) < α2

i /2, i.e., breaking unilaterally all the
links (including one with j) makes i strictly better off. Hence, no network with links
between agents of different types is a pairwise Nash equilibrium.

Case 2: no cross-type links. Assume now that, for any (i, j), we have: αi 6=
αj ⇒ gij = 0. We need to show that, if there are i and j 6= i, such that αi = αj,
but gij = 0, then g is not pairwise Nash equilibrium. Let gi and gj be, respectively,
components of g agents i and j belong to. Because g does not have cross-type links,
it must be true that all agents in gi have the same type, and so do all agents in gj.
Moreover, because αi = αj, all agents gi+gj have the same type. Then, this implies:

x∗i (g) = x∗i
(
gi
)

= αi, x∗i (g + ij) = x∗i
(
gi + gj

)
= αi;

x∗i (g) = x∗i
(
gi
)

= αi, x∗i (g + ij) = x∗i
(
gi + gj

)
= αi;

U∗i (g) = U∗i
(
gi
)

=
α2
i

2
, U∗i (g + ij) = U∗i

(
gi + gj

)
=
α2
i

2
.

Thus, adding a link between i and j does not change equilibrium utilities. By the
agreement above, if agents are both indifferent between creating or not creating a
link, they choose to create it. Hence, g 6= gh is not a pairwise Nash equilibrium in
the network formation game. This completes the proof.
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