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Abstract 
 
We model the dynamic contest between two players as a game of tug-of-war with a Tullock 
contest success function (CSF). We show that (pure strategy) Markov perfect equilibrium of this 
game exists, and it is unique. In this equilibrium - in stark contrast to a model of tug-of-war with 
an all pay auction CSF - players exert positive efforts until the very last battle. Since the 
outcome of an individual battle is determined stochastically, even disadvantaged players who 
fell behind will occasionally win battles and hence the advantage likely change hands. We 
deliver a set of empirically appealing results on effort dynamics. 
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1 Introduction

Many competitive settings involve multiple, sequential contests where par-
ties compete against each other. The �nal outcome of such dynamic contests
depend on the outcomes of individual battles (or sub-contests). Examples
abound: �rms in an R&D race competing for a patent, committee decision-
making in organizations, candidates in election campaigns, political parties
in coalition talks, teams or singles in sports competitions, adversaries in pub-
lic debates, countries in wars, etc. In a multi-battle (or dynamic) contest,
e¤orts in an individual battle and the corresponding battle outcome may
in�uence future e¤orts and battle outcomes. When such an in�uence exists,
this may have implications for parties�behavior in earlier rounds (see Kon-
rad, 2012). For instance, if losing the �rst battle makes the whole contest a
write-o¤, then this may induce excessive e¤orts in the �rst battle. The pres-
ence of such dynamic linkages gives rise to some interesting questions such
as �How do e¤orts vary across battles?�, �How do e¤orts vary with intensity
of rivalry?�, and �Who exerts a greater e¤ort: the leader or the follower?�
(see Harris and Vickers, 1987).
The literature on contest games produced various models of dynamic

contests, such as race, tug-of-war, elimination contests, war of attrition, and
repeated incumbency �ghts (see Konrad, 2012 for a review). The current
paper is concerned with the questions mentioned above, and it focuses on
the model of tug-of-war between two players. A tug-of-war is a multi-battle
contest game with a �nite number of (ordered) states and potentially in�nite
number of battles. Players start at an initial state (neutral or non-neutral)
and simultaneously exert e¤ort in each battle to win the contest. Winning a
battle moves the state towards the winning player�s favorite terminal state.
This game can be illustrated by a horizontal line with an interior point that
represents the initial state and two end-points that represent respective play-
ers�favorite terminal states �resembling the sports competition after which
the model is named. A player wins the prize/award if he has won su¢ -
ciently many battle victories to pull the state to his terminal state. The
winner of each battle is determined by a contest success function (CSF for
short), which takes players�e¤orts as an input. As the description of the
game above reveals, what matters in tug-of-war is not the absolute number
of battle victories, but the di¤erence between the two players�numbers of
victories.
Harris and Vickers (1987) argued that tug-of-war is possibly the sim-
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plest framework to address questions regarding the e¤ort dynamics since the
model has a single state variable �a measure of the distance between players.
Another reason why tug-of-war is an appealing modeling device for dynamic
contests in multiple disciplines is its empirical relevance. Harris and Vickers
(1987) modeled an R&D competition between �rms whereas Budd, Harris,
and Vickers (1993) modeled dynamic evolution of a duopoly as tugs of war.
In international relations, Yoo (2001) described the relations between the US
and the North Korea, whereas Organski and Lust-Okar (1997) described the
Israeli-Palestinian con�ict on the status of Jerusalem as tugs of war. Schutten
et al. (1996) described the ongoing debate in the manufacturing literature
on e¢ cient production vs delivery performance as tug-of-war.1

The following observation is worth mentioning here since it is one of
the motivations for the current work: a common element in many dynamic
con�icts is that the laggard does not immediately surrender, but instead
exerts e¤ort and occasionally wins some battles as the contest continues.
This perseverance, and the suspense it produces are two trademarks of many
real-life dynamic contests.
Our second observation concerns how the existing models of tug-of-war

handle uncertainty. Exogenous noise is a ubiquitous aspect of many real-life
contests (see Konrad, 2007 for examples and Jia, 2008 for foundations): bat-
tle outcomes are a¤ected by factors such as weather conditions, contestants�
or jury members�moods, technical breakdowns, most of which are stochastic
by nature. The all-pay-auction CSF used in Konrad and Kovenock (2005),
Agastya and McAfee (2006) and the more recent work on tug-of-war team
contests rules out exogenous stochastic factors (i.e., whoever exerts a greater
e¤ort wins the battle for sure) that may a¤ect the outcome of a battle. A
natural alternative is the Tullock CSF (Tullock, 1980), which is possibly the
most frequently employed CSF in the literature (see Konrad, 2007); and it
incorporates a stochastic component. More precisely, in the Tullock CSF, the
probability of a player winning a battle is given by the ratio of that player�s
e¤ort to total e¤ort exerted by all players. Therefore, even the player who

1There are examples from other disciplines as well. Larsson et al. (2004) described the
interactions between viruses and the dendritic cells as a tug-of-war. Bradley et al. (2005)
reported that their data suggests a tug-of-war scenario for the battle between certain male
members of wild mountain gorilla groups for the control over reproduction. Recently,
Tsend-Ayush et al. (2016) found that the hormone, known as glucagon-like peptide-1 has
con�icting functions in the platypus and described the interactions between these functions
as tug-of-war.
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exerts a lower e¤ort has a chance of winning. Besides its empirical appeal,
the presence of exogenous noise allows for the existence of a pure strategy
equilibrium.2 A practical downside is that it is much more di¢ cult to analyt-
ically solve for the equilibrium of tug-of-war with Tullock CSF. In fact, to the
best of our knowledge, characterizing the equilibrium of a tug-of-war game
between two players with Tullock CSF was an open problem up to date.
The research reported here is primarily motivated by these two observa-

tions. First, we observe more suspense and perseverance in real-life tugs of
war (see Deck and Sheremeta, 2015 for a recent experimental evidence) �an
observation not completely captured by the theoretical literature. Second,
we observe that exogenous noise is an essential feature of many real-life con-
tests (see Thorngate and Carroll, 1987). Consequently, we study a tug-of-war
game between two players, where the battle outcomes are determined by a
Tullock CSF. There are no intermediate prizes, the cost of e¤ort is convex,
and players do not discount future.
We completely characterize the Markov perfect equilibrium of this game,

under a regularity assumption. The equilibrium strategies are deterministic
(i.e., pure). Furthermore, we prove that the equilibrium is unique. We also
o¤er a set of results on e¤ort dynamics and some comparative statics. Our
main results are as follows:

(i) equilibrium e¤orts in all interior (i.e., non-terminal) states are positive,

(ii) the player who is closer to winning (advantaged player) exerts a higher
e¤ort than the other player,

(iii) the ratio of the advantaged player�s e¤ort to the disadvantaged player�s
e¤ort increases as the former approaches his favorite terminal state,

(iv) the sum of players�e¤orts decreases as either player gets closer to win-
ning,

(v) players� equilibrium e¤orts follow monotonic paths across interior
nodes, and

2See Vojnovíc (2015) for some natural instances where the ratio-form CSFs (generalized
form of Tullock CSF) is a good �t (pages 164-166), and Fu and Lu (2012) and Lu and
Wang (2015) for further justi�cation for Tullock CSF.
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(vi) equilibrium e¤ort levels at all interior nodes increase with the di¤erence
between the values of winner and loser prizes and decrease with the
threshold level of victory di¤erence.

Our �rst result is in stark contrast with the equilibrium of tug-of-war
with all-pay auction CSF (see Konrad and Kovenock, 2005). Also note that
positive equilibrium e¤orts in all interior states and the stochastic nature of
the Tullock CSF imply that there will be swings back-and-forth (i.e., the ad-
vantage may change hands). On the other hand, (ii), (iii), and (iv) show that
a partial discouragement is still present. We will talk about the implications
of our results in greater detail in Section 2.
This paper contributes to the theoretical literature on dynamic contests.

Our model delivers empirically more appealing predictions on e¤ort dynamics
compared to the model of tug-of-war with all-pay auction CSF. Our results
are also of interest from a design perspective: a contest-designer who values
neck-to-neck competition or suspense (e.g., since it is a desirable feature from
audience�s perspective in sports competitions) should prefer Tullock CSF to
all-pay auction CSF, in tug-of-war. Finally, we believe that our model will
be of practical value for experimental economists studying dynamic contests,
due to the existence of pure strategy equilibrium, which is easier to inter-
pret/identify empirically, and a rich set of testable hypotheses.

2 Literature Review

We restrict our attention mostly to the literature on tug of war here. Theoret-
ical work on tug-of-war mostly developed in the realm of economics. Harris
and Vickers (1987) were the �rst to study it, formally. They modeled an
R&D competition between �rms as such. The outcome of a battle was de-
termined probabilistically and was a function of �rms�e¤orts. Harris and
Vickers presented some qualitative results but did not characterize equilib-
rium with complete generality �mainly due to the probabilistic dependence
of battle outcomes on �rm e¤orts.
Konrad and Kovenock (2005) used an all-pay-auction (without noise) as

a CSF to study tug-of-war. Accordingly, the player who exerts the highest
e¤ort wins the battle for sure (see Hillman and Riley, 1989; Baye, Kovenock,
and de Vries, 1996) in their model. They analytically solved for equilibrium
and provided conditions for uniqueness. Since their CSF is deterministic, the
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equilibrium is in mixed strategies. Perhaps, the most striking result of the
paper is the extreme discouragement e¤ect (see Konrad, 2012 for a review)
that emerges in equilibrium: players exert considerable e¤ort (using mixed
strategies) in the �rst battle and zero e¤orts in all the remaining battles.3

Consequently, the player who wins the �rst battle wins the contest without
exerting any further e¤ort. The deterministic nature of the CSF employed
was the major reason behind this result (see Konrad, 2010).
Later �building on McAfee (2000)�s analysis�Agastya and McAfee (2006)

also investigated a model of tug-of-war using an all-pay-auction CSF. Two
major di¤erences from Konrad and Kovenock (2005) were (i) the presence of
a negative loser prize in Agastya and McAfee (2006) and (ii) the way their
CSF broke ties. Now, the disadvantaged party may have a reason to con-
tinue exerting e¤ort: escaping from the negative loser prize. These authors
showed that there exists two types of stationary equilibria with very di¤er-
ent characteristics. In one of them, e¤ort tends to rise as either player gets
close to winning, whereas in the other one, players remain in an interior state
forever, not �ghting against each other. The latter equilibrium resembles a
discouragement e¤ect di¤erent from the one in Konrad and Kovenock (2005).
Moscarini and Smith (2007) extended Harris and Vickers (1987)�s model to
a continuous-time and continuous state-space environment. In their model,
a player continously exerts e¤ort at a quadratic cost to produce a �ow out-
put, and when a predetermined output di¤erence is reached, the game ends.
A player�s e¤ort controls (linearly) the drift of the Brownian motion, which
governs his cumulative output. The authors�main focus is on the optimal
contest design (optimal prize and optimal scoring rule). They showed that
the optimal prize (maximizing expected total output) is �nite, and conjec-
tured that the optimal scoring rule penalizes the leader so that the laggard
does not give up, for which they provided numerical results.
Recently, there has been an increased interest in team contests using tug-

of-war and other multi-battle contest designs (see Fu, Lu, and Pan, 2015;
Häfner and Konrad, 2016; Häfner, 2017). On the other hand, to the best of
our knowledge, Deck and Sherameta (2015) is the only experimental work
on tug-of-war contests. Their experimental design builds on Konrad and
Kovenock (2005). That said, their results are very di¤erent from the predic-

3Konrad and Kovenock (2005) assumed that the discount factor is strictly less than 1.
Later, Vojnovíc (2015) proved that the same result holds for the no-discounting case, as
well.
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tions of Konrad and Kovenock (2005). In particular, they observed that par-
ticipants invested fewer resources than what the model would predict in the
�rst battle, and more resources than what the model would predict in the fol-
lowing battles. Furthermore, they observed that resources invested increase
in the duration of the tug-of-war, which is also contrary to the theoretical
prediction. Finally, very recently, Ewerhart and Teichgräber (2019) studied a
class of dynamic contests, using �nite automata techniques. They restricted
their attention to dynamic contests that can be de�ned using a �nite state
machine and satisfy three assumptions (exchangability, monotonicity, and
centeredness). Tug of war is of special interest. The alternative description
of the problem and the methods they use allow them to prove that tug of
war admits a unique, symmetric, interior Markov perfect equilibrium under
a general form of Tullock contest success function.

3 The Results

We consider a tug-of-war contest, a multi-stage game with observed actions
and potentially in�nite horizon, characterized by the following elements.4

The set of players is N = fL;Rg. The set of states of the contest (or war) is
given by �nite ordered nodes of a regular grid.5 Probability of moving from
one node to another is determined by the Tullock contest success function
(Tullock, 1980). More precisely, if the players� e¤orts at a (non-terminal)
node k are (lk; rk), the probability of a win by Player L is given by

p (lk; rk) =

�
lk

lk+rk
if max flk; rkg > 0;

1
2
otherwise.

and the probability of a win by Player R is given by 1 � p (lk; rk). The
cost of e¤ort is determined by a quadratic cost function. In particular, the
cost of spending e¤ort e is C (e) = e2

2
. In this contest, (i) a win by Player

L results in a move towards left; (ii) a win by Player R results in a move
towards the right. The game ends when one of the players wins su¢ cient
number of battles to drive the state of the game to his favored terminal
state. Corresponding prizes are awarded to the winner/loser of the game.

4To make it clear, e¤ort choices in each battle are simultaneous, but all past actions
and battle outcomes are publicly observable.

5We use the terms, state and node, interchangeably.
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There are no intermediate prizes, and the players do not discount future. We
denote this game by �.

3.1 Equilibrium

In this section, we analyze the equilibrium of �. Under no intermediate
prize and no discounting assumptions, tug-of-war turns out to be a multi-
stage game with a simple Markov structure. In particular, players do not
distinguish among di¤erent histories that may lead them to a given state
when choosing their e¤orts at a given state (see Konrad 2012, page 9). In
what follows, we restrict our attention to Markov strategies that end the
game in �nite time with probability 1.6 We solve for the (pure strategy)
equilibrium for odd and even number of nodes, separately. The analysis of
even number of nodes is relegated to the Appendix since the di¤erences from
the odd number of nodes case are marginal.
Suppose that we have 2n + 1 nodes, and the set of states is given by

Kn = f�n;�(n� 1); :::; 0; :::; (n� 1) ; ng for all n 2 Z++. We denote the set
of terminal states by T n = f�n; ng. A winning (losing) prize is awarded
to player L (R) if the terminal state �n is reached and, vice-a-versa if the
terminal state n is reached (see Figure 1).

Figure 1. Tug-of-War with Odd Number of States

Consider now the node � (n� 1), which represents the state of the game
in which Player L has (n� 1) victories advantage over Player R. At this
node, Player L maximizes

p
�
l�(n�1); r�(n�1)

�
V�n +

�
1� p

�
l�(n�1); r�(n�1)

��
V�(n�2) � C

�
l�(n�1)

�
where V�n is the value of winning the tug of war contest and V�(n�2) is
the equilibrium expected value for Player L seen from node � (n� 2). In a

6Without this assumption, there exists Markov strategies that prolong the game indef-
initely, which induces in�nite costs. This is a well-known problem in stochastic games (see
Kushner and Chamerlain, 1969); and the literature tackles this problem in the same way
we do (see Bertsekas and Tsitsiklis, 1991; Patek and Bertsekas, 1999 among others).
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similar vein, at node � (n� 1), Player R maximizes

p
�
l�(n�1); r�(n�1)

�
Vn +

�
1� p

�
l�(n�1); r�(n�1)

��
V(n�2) � C

�
r�(n�1)

�
where Vn is the value of losing the contest and V(n�2) is the equilibrium
expected value for Player R seen from node � (n� 2). Note that V Left�k �
V�k and V

Right
�k � Vk. Hence, given that the game ends in �nite time with

probability 1, we have V�n > V�n+1 > � � � > V0 > ::: > Vn in equilibrium,
where

V�k = max
l�k

l�k
l�k + r�k

V�k�1 +
r�k

l�k + r�k
V�k+1 �

l2�k
2
, (1)

Vk = max
r�k

l�k
l�k + r�k

Vk+1 +
r�k

l�k + r�k
Vk�1 �

r2�k
2
. (2)

Our �rst proposition shows that there exists a unique pro�le of Markov
strategies such that no one-shot deviation is pro�table.7 Furthermore, we
characterize the equilibrium value of each non-terminal node as a convex
combination of the values of the terminal nodes.These weights (i.e., bi and
1� bi) will be derived in a constructive fashion in the proof of Proposition 1.

Proposition 1. There exists a unique Markov perfect Nash equilibrium of
�. In this equilibrium,

Vi = biV�n + (1� bi)Vn, 8i 2 KnnT n,

where 0 < bi+1 < bi < 1. Furthermore, equilibrium strategies are given by

li =
t
1=2
�i (Vi�1 � Vi+1)1=2

1 + t�i

ri =
t
1=2
�i (V�i�1 � V�i+1)1=2

1 + t�i

where t�i =
�

Vi�1�Vi+1
V�i�1�V�i+1

�1=2
.

7Note that since we consider Markov strategies that end the game in �nite time with
probability 1, payo¤s are continuous at in�nity, which allows us to use one-deviation
property in the proof of Proposition 1.
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Proof. Consider the optimization problems in (1) and (2). By the �rst order
conditions,

r�k
(l�k + r�k)2

(V�k�1 � V�k+1) = l�k (3)

l�k
(l�k + r�k)2

(Vk�1 � Vk+1) = r�k (4)

we obtain that

l�k
r�k

=

�
V�k�1 � V�k+1
Vk�1 � Vk+1

�1=2
, (5)

l�k + r�k = (V�k�1 � V�k+1)1=4 (Vk�1 � Vk+1)1=4 . (6)

Now, let tk �
�
V�k�1 � V�k+1
Vk�1 � Vk+1

�1=2
and xk �

V�k � V�k+1
Vk�1 � Vk

. Note that

tk = 1=t�k represents the relative e¤orts of the players at node �k, and
xk represents the ratio of the changes in the valuations of the players when
Player R wins at node �k. We have then

l�k
l�k + r�k

=
tk

1 + tk
, (7)

r�k
l�k + r�k

=
1

1 + tk
, (8)

so that equilibrium e¤orts can be given as

l�k =
(V�k�1 � V�k+1)1=2 t1=2k

1 + tk
, (9)

r�k =
(Vk�1 � Vk+1)1=2 t1=2k

1 + tk
. (10)

By substituting the solutions of the �rst order conditions (5) and (6) in (1)
and (2), we obtain

V�k � V�k+1
V�k�1 � V�k+1

=
(2tk + 1)tk
2(1 + tk)2

. (11)
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Thus,
Vk�1 � Vk
Vk�1 � Vk+1

=
(2tk + 3)tk
2(1 + tk)2

. (12)

By (11) and (12), we can deduce

t2k
xk
=
2tk + 3

2tk + 1
,

and hence
t2k+1
xk+1

=
2tk+1 + 3

2tk+1 + 1
. (13)

Similarly, since V�k�V�k+1
V�k�1�V�k+1 +

V�k�1�V�k
V�k�1�V�k+1 = 1, we can write

V�k�1 � V�k
V�k�1 � V�k+1

=
3tk + 2

2(1 + tk)2
and

Vk � Vk+1
Vk�1 � Vk+1

=
tk + 2

2(1 + tk)2
.

Thus,
t2k
xk+1

=
tk + 2

3tk + 2
. (14)

By combining (13) and (14), we can get

(3tk + 2)t
2
k

tk + 2
= xk+1 =

(2tk+1 + 1)t
2
k+1

2tk+1 + 3
. (15)

Now, let�s de�ne f(x) � (3x+2)x2

x+2
and g(x) � (2x+1)x2

2x+3
. Clearly f(0) =

g(0) = 0 and f(1) = g(1) =1. Moreover,

f 0(x) =
6x3 + 20x2 + 8x

(x+ 2)2
.

So, for all x > 0, f 0(x) > 0. Similarly, g0(x) > 0 can be shown. Now,
note that we have f(tk) = g(tk+1). Any tk > 0 value implies f(tk) > 0.
Moreover, since g(x) is continuous and increasing at (0;1), it is one-to-one;
thus tk+1 = g�1(f(tk)) is a uniquely determined positive value. Similarly,
tk = f

�1(g(tk+1)).
We know t0 = 1. Thus, by the equations above, we can �nd all values of

tn sequence for all n 2 Z. Now, let�s prove that tk � 1 implies tk+1 � tk. If
tk > 1 then g(tk) < t2k < f(tk). Thus g(tk) < g(tk+1) and tk < tk+1.
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We can determine xk sequence as well. By de�nition, we know

(V�k�1 � V�k) + (V�k � V�k+1)
(Vk � Vk+1) + (Vk�1 � Vk)

= t2k.

Since

xk+1 =
V�k�1 � V�k
Vk � Vk+1

and xk =
V�k � V�k+1
Vk�1 � Vk

,

we can get

(V�k�1 � V�k) + (V�k � V�k+1) =
t2k
xk+1

(V�k�1 � V�k) +
t2k
xk
(V�k � V�k+1).

Thus,

V�k�1 � V�k
V�k � V�k+1

=

t2k
xk
� 1

1� t2k
xk+1

=
2

2tk+1
2tk
3tk+2

=
3tk + 2

(2tk + 1)tk
� h (tk) . (16)

Similarly,
Vk � Vk+1
Vk�1 � Vk

=
t�k + 2

(2t�k + 3)t�k
.

Now, let us de�ne aj, j = 1; 2; :::; 2n according to

a1 = V�n � V�n+1,
a2 = V�n+1 � V�n+2,

...

aj = V�n+j�1 � V�n+j,
aj+1 = V�n+j � V�n+j+1,

...

a2n = Vn�1 � Vn. (17)

It is clear that
2nX
j=1

aj = V�n � Vn. (18)

By (16), one can easily �nd aj, j = 1; 2; :::; 2n, and hence, the valuation of
the players at each node as a convex combination of V�n (winning) and Vn

12



(losing) prizes.
First, note from (16) that aj

aj+1
= h (tn�j), j = 1; 2; :::; 2n � 1, which

implies

aj =
a1

j�1Q
i=1

h (tn�i)

, 8j.

From (18), we have

a1 =
V�n � Vn:

2nP
j=1

0@ 1
j�1Q
i=1

h(tn�i)

1A .

From the de�nition of aj, j = 1; 2; :::; 2n, we deduce that

8i 2 KnnT n, Vi = V�n �
n+iX
j=1

aj.

Equivalently,

Vi = V�n �
n+iX
j=1

0BBB@ a1
j�1Q
s=1

h (tn�s)

1CCCA

= V�n �
V�n � Vn:

2nP
j=1

0@ 1
j�1Q
s=1

h(tn�s)

1A
n+iX
j=1

0BBB@ 1
j�1Q
s=1

h (tn�s)

1CCCA , 8i 2 KnnT n.

13



Hence,

Vi =

0BBBBBB@1�
n+iP
j=1

0@ 1
j�1Q
s=1

h(tn�s)

1A
2nP
j=1

0@ 1
j�1Q
s=1

h(tn�s)

1A

1CCCCCCA
| {z }

bi

V�n +

0BBBBBB@
n+iP
j=1

0@ 1
j�1Q
s=1

h(tn�s)

1A
2nP
j=1

0@ 1
j�1Q
s=1

h(tn�s)

1A

1CCCCCCA
| {z }

(1� bi)

Vn, (19)

where 0 < bi+1 < bi < 1, 8i 2 KnnT n.
The fact that any intermediate node has an equilibrium value, which can

be expressed as a convex combination of the values of terminal nodes has
important implications for equilibrium e¤ort levels. In particular, it implies
that any non-terminal node has a positive value, which leads to positive
equilibrium e¤orts by both players in any such node (given in the propo-
sition). This shows that the extreme discouragement (e.g., losing the �rst
battle makes the whole contest a write-o¤) is not present in our model, and
every node in the game is reached with a positive probability.

3.2 E¤ort Dynamics

Now, we investigate the changes in individual e¤orts and the sum of individ-
ual e¤orts across di¤erent states. Note that by (9) and (10), we can compute
the equilibrium e¤ort levels of both players. In the following Proposition,
we �rst show that the player who is closer to winning (i.e., the advantaged
player) exerts a higher e¤ort than the other (disadvantaged) player, and the
ratio of the advantaged player�s e¤ort to the disadvantaged player�s e¤ort
increases as the advantaged player approaches his favorite terminal node.
Second, we show that the sum of players�e¤orts decreases as the advantaged
player approaches to his favorite terminal node.

Proposition 2. Given V�n and Vn, the equilibrium e¤ort choices of the two
players in � satisfy
i) 8k 2 f1; 2; :::; n� 1g, l�k > r�k and, moreover, l�kr�k

increases in k.
ii) 8k 2 f1; 2; :::; n� 1g, l�k+1 + r�k+1 > l�k + r�k.

14



Proof. i) Recall from (7) and (8) that l�k
r�k

= tk, 8k and t0 = 1. As tk+1 > tk,
8k (see the proof of Proposition 1), the result immediately follows.
ii) Using (6) and (17), we have

l�k + r�k = lk + rk = (an�k + an�k+1)
1=4 (an+k + an+k+1)

1=4

8k 2 f1; 2; :::; n� 1g.
Also recall from (16) that aj

aj+1
= h (tn�j), j = 1; 2; :::; 2n. These allow us

to write

l�k+1 + r�k+1
l�k + r�k

=

�
an�k+1 + an�k+2
an�k + an�k+1

�1=4�
an+k�1 + an+k
an+k + an+k+1

�1=4
=

�
an�k+1 + an�k+2

h (tk) an�k+1 + h (tk�1) an�k+2

�1=4�
h (t�k+1) an+k + h (t�k) an+k+1

an+k + an+k+1

�1=4
>

�
h (t�k+1)

h (tk�1)

�1=4
, 8k 2 f1; 2; :::; n� 1g ,

as tk+1 > tk, 8k and h (:) is a strictly decreasing function. Noting that
h(t�k+1)
h(tk�1)

= 1 for k = 1 and, moreover, h(t�k)
h(tk)

is increasing in k ends the proof.

Proposition 2 shows that a partial discouragement is still present in our
game: the disadvantaged player exerts a lower e¤ort (than the advantaged
player), and the gap between their e¤orts (measured as a ratio) widens as
the advantaged player approaches victory. That said, the advantage can still
change hands since the disadvantaged player keeps exerting a positive e¤ort
(till the very end) and as long as he does so, he has a chance to win.
Proposition 2 makes a point about the relative values and the sums of

individual e¤orts, but does not pin down the dynamics of individual e¤orts,
separately. Proposition 3 below completes the picture by analytically show-
ing that �except around the central node�players�individual e¤orts follow
monotonic paths (across nodes) in equilibrium.8

8Since in the case of even number of nodes, there is no (single) central node, the state-
ment of the corresponding Proposition for the even number of nodes case (i.e., Proposition
7) is slightly di¤erent (see Appendix).
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Proposition 3. The equilibrium e¤ort choices of an advantaged player in �
follow a monotonic path, i.e.,

l�1 > l�2 > ::: > l�n+1 or r1 > r2 > ::: > rn�1.

The equilibrium e¤ort choices of a disadvantaged player also follow a
monotonic path, i.e.,

l1 > l2 > ::: > ln�1 or r�1 > r�2 > ::: > r�n+1.

However, l�1 > l0 and r0 < r1.

Proof. By (9), we have

l�k
l�k�1

=

�
V�k�1 � V�k+1
V�k�2 � V�k

�1=2
� (tk)

� (tk+1)
,

where � (tk) =
t
1=2
k

1+tk
, 8k 2 f0; 1; 2; :::; n� 1g. It follows from (17) and (16)

that

V�k�1 � V�k+1
V�k�2 � V�k

=
an�k + an�k+1
an�k�1 + an�k

=
an�k+1 (1 + h (tk))

an�k (1 + h (tk+1))

=
1

h (tk)

�
1 + h (tk)

1 + h (tk+1)

�
.

Accordingly, we can write l�k
l�k�1

= �k, 8k 2 f0; 1; 2; :::; n� 1g, where

�k �
�

1

h (tk)

�
1 + h (tk)

1 + h (tk+1)

��1=2
� (tk)

� (tk+1)
.

Recall t0 = 1 and tk+1 = g�1 (f (tk)). Then, from the proof of Proposition 1,
we know that tk+1 � tk for all k. Hence, tk � 1 for all k. Now, note that tk > 1
implies �0 (tk) < 0, which further implies

�(tk)
�(tk+1)

> 1. Moreover, recall that
h(:) is a strictly decreasing function. This implies that h (tk)h(tk+1) < 1.

Accordingly,
h

1
h(tk)

�
1+h(tk)
1+h(tk+1)

�i1=2
> 1. Thus, �k > 1 for all k � 1. So,

l�k
l�k�1

> 1, 8k 2 f1; 2; :::; n� 1g, and l�1 > l0. As rk = l�k, 8k, we can also
conclude that rk

rk+1
> 1, 8k 2 f1; 2; :::; n� 1g, and r0 < r1. The fact that
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r�k
r�k�1

> 1 or lk
lk+1

> 1, 8k 2 f1; 2; :::; n� 1g can also be shown in a similar
way.

3.3 Comparative Statics

In this subsection we investigate how the players�equilibrium e¤orts respond
to changes in (i) the di¤erence between winning and losing prizes and (ii) the
required victory threshold. More precisely, in the next Proposition, we show
that an increase in the di¤erence between the winning prize and the consola-
tion (or losing) prize encourages players to exert more e¤ort in every interior
node. We also show that an increase in the required winning threshold (the
di¤erence in the number of victories a player has to reach to win the contest)
decreases players�e¤orts in every interior node.

Proposition 4. Players�equilibrium e¤orts at any interior node (i) increase
with (V�n � Vn) and (ii) decrease with the number of nodes.

Proof. (i) Note from (15) that tk and xk sequences are both independent
from V�n and Vn. Then, equation (19) shows that bi�s are also independent
from V�n and Vn. Recalling the equation (9) and applying simple algebra
obtains

l�k = ((b�k�1 � b�k+1) (V�n � Vn))1=2
t
1=2
k

(1 + tk)
,

which clearly shows that l�k is strictly increasing in (V�n � Vn). The fact
that r�k is strictly increasing in (V�n � Vn) can be shown in a similar way.
(ii) We will now prove that the equilibrium e¤ort choices of the players de-
crease with the number of nodes. To do so, consider the tug-of-war contest
under two di¤erent sets of states: Kn = f�n;�n+ 1; :::; 0; :::; (n� 1) ; ng
and K~n = f�~n;�~n+ 1; :::; 0; :::; (~n� 1) ; ~ng, where n; ~n 2 Z++. Without loss
of generality, assume that ~n > n. Let the corresponding equilibrium values

of the nodes be denoted by Vi, i 2 Kn and
s
Vi,i 2 K~n. Since the winning and

losing prizes are not altered, we have

s
V �n <

s
V �~n = V�n and Vn =

s
V ~n <

s
V n.

This implies
s
V �n �

s
V n < V�n � Vn.
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As we have already shown in (i) that the equilibrium e¤ort choices of the
players increase with (V�n � Vn), which ends the proof.
We state an immediate consequence of Proposition 4 on the sum of e¤orts

below, as a corollary.

Corollary 1. The sum of equilibrium individual e¤orts at any interior node
(i) increase with (V�n � Vn) and (ii) decrease with the number of nodes.

Proof. Follows directly from Proposition 4.

Finally, we �nish this subsection by stating another consequence of Propo-
sition 4.

Corollary 2. Consider two di¤erent sets of states,
Kn = f�n;�n+ 1; :::; 0; :::; (n� 1) ; ng and K~n =
f�~n;�~n+ 1; :::; 0; :::; (~n� 1) ; ~ng, where n; ~n 2 Z++. For any node
k < min(n; en), l�k

r�k
is the same in both games.

Proof. Follows from (5) and (19), and Proposition 4.

This last corollary shows that in two games with di¤erent numbers of
nodes, l�k

r�k
ratio is identical in each interior node common to both games.

This has an interesting implication: the ratio of players�e¤orts �the density
of competition, in a sense�depends on how far the state in question is from
the initial state but not on how far it is from the terminal states. In other
words, the density of competition has a backward-focus rather than a forward-
focus, which is an interesting theoretical result that calls for an empirical test.

4 Concluding Remarks

Many real-life dynamic contests are described as tugs of war. In most of
these contests, (i) exogenous stochastic factors (e.g., chance) play a non-
negligible role in determining battle outcomes, (ii) parties do not give up
easily, and (iii) advantage occasionally changes hands. We model a multi-
battle contest between two players as a tug-of-war where the battle outcome
is determined by a Tullock CSF. The equilibrium of such a contest game was
an open question. We provided a characterization of pure strategy Markov
perfect equilibrium under a regularity assumption. As we expected, in the
equilibrium, both players exert positive e¤orts until the very last battle. The
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player closer to winning exerts more e¤ort and the asymmetry between the
two players�e¤orts increase as the advantageous player approaches winning
the contest. Furthermore, the total e¤ort decreases as either player gets closer
to winning. Finally, equilibrium e¤ort levels at all interior nodes increase with
the di¤erence between the values of winning and losing prizes, and decrease
with the threshold level of victory di¤erence.
It is worthwhile mentioning that McAfee (2000), Agastya and McAfee

(2006), Häfner and Konrad (2016) and Häfner (2017) also report pervasive-
ness (i.e., all states are reached with positive probabilities) in a game of tug
of war, despite using an all pay CSF. However, the �rst two papers added a
negative losing prize and changed the tie-breaking assumption, whereas the
last two papers studied team contests. In our model, we do not need neg-
ative losing prizes, alternative tie-breaking assumptions, or team structure:
Tullock CSF provides su¢ cient incentives to players.
Recently, Deck and Sheremata (2015) conducted the �rst experiment on

tug-of-war contests. Their experimental design was built on Konrad and
Kovenock (2005). To bridge the gap between subjects� behavior and the
predictions of a tug of war model with all-pay auction CSF, they o¤ered
behavioral explanations. Our model relies on standard preferences, yet de-
livers empirically more appealing predictions compared to tug of war with
all-pay auction CSF. We believe that our model will be of practical value to
experimental economists who study tug-of-war contests in the lab.
Our results could also be of interest from a design perspective: a contest-

designer who values neck-to-neck competition (e.g., since it is a desirable
feature from audience�s perspective in sports competitions) should prefer
Tullock CSF to all-pay auction CSF in a tug-of-war (see Moscarini and Smith,
2007 for a work in this spirit).
We focused on a standart Tullock CSF with an impact function of the

form, f(x) = x. Whether our results generalize to an impact function of the
form, f(x) = xr, where r < 1 or 1 < r � 2 is far from trivial, and hence left
as an open question.
Future work may investigate tug-of-war team contests (see Häfner and

Konrad, 2016; Häfner, 2017 for recent examples) or multi-player tugs of war
(see Do¼gan et al., 2018 for a recent work on multi-player race), with Tullock
CSF. Comparison of results with Tullock CSF and all-pay CSF would be of
interest to researchers in the �eld.
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5 Appendix

5.1 Even number of Nodes

Suppose that we have 2n nodes and the set of states is given by Kn =
f�2n+ 1;�2n+ 3; :::;�1; 1; :::; 2n� 3; 2n� 1g for all n 2 Z++. We denote
the set of terminal states by T n = f�2n+ 1; 2n� 1g : The winning prize
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V�2n+1 is awarded to player L if the terminal state �2n + 1 is reached and,
alternatively, it is awarded to player R if the terminal state 2n�1 is reached.
We have V�2n+1 > V�2n+3 > � � � > V�1 > V1 > ::: > V2n�1 in equilibrium,

where

V�k = max
l�k

l�k
l�k + r�k

V�k�2 +
r�k

l�k + r�k
V�k+2 �

l2�k
2
; (20)

Vk = max
r�k

l�k
l�k + r�k

Vk+2 +
r�k

l�k + r�k
Vk�2 �

r2�k
2
: (21)

Proposition 5. There exists a unique Markov perfect Nash equilibrium of
�. In this equilibrium,

Vi = biV�n + (1� bi)Vn; 8i 2 KnnT n;

where 0 < bi+1 < bi < 1. Furthermore, equilibrium strategies are given by

li =
t
1=2
�i (Vi�2 � Vi+2)1=2

1 + t�i

ri =
t
1=2
�i (V�i�2 � V�i+2)1=2

1 + t�i

where t�i =
�

Vi�2�Vi+2
V�i�2�V�i+2

�1=2
.

Proof. Consider (20) and (21). By the �rst order conditions of optimality,

r�k
(l�k + r�k)2

(V�k�2 � V�k+2) = l�k (22)

l�k
(l�k + r�k)2

(Vk�2 � Vk+2) = r�k (23)

we obtain that

l�k
r�k

=

�
V�k�2 � V�k+2
Vk�2 � Vk+2

�1=2
, (24)

l�k + r�k = (V�k�2 � V�k+2)1=4 (Vk�2 � Vk+2)1=4 . (25)
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Let us de�ne tk �
�
V�k�2 � V�k+2
Vk�2 � Vk+2

�1=2
and xk �

V�k � V�k+2
Vk�2 � Vk

. Note

that tk = 1=t�k represents the relative e¤orts of the players at node �k and
xk represents the ratio of the changes in the valuations of the players when
Right wins at node �k. Accordingly, we continue to have

l�k
l�k + r�k

=
tk

1 + tk
,

r�k
l�k + r�k

=
1

1 + tk
,

so that

l�k =
(V�k�2 � V�k+2)1=2 t1=2k

1 + tk
, (26)

r�k =
(Vk�2 � Vk+2)1=2 t1=2k

1 + tk
. (27)

By substituting the solutions of the �rst order conditions in (20) and (21),
we get

V�k � V�k+2
V�k�2 � V�k+2

=
(2tk + 1)tk
2(1 + tk)2

, (28)

and hence
Vk�2 � Vk
Vk�2 � Vk+2

=
(2tk + 3)tk
2(1 + tk)2

. (29)

By (28) and (29), we can deduce

t2k
xk
=
2tk + 3

2tk + 1
,

thus
t2k+2
xk+2

=
2tk+2 + 3

2tk+2 + 1
. (30)

Similarly, since V�k�V�k+2
V�k�2�V�k+2 +

V�k�2�V�k
V�k�2�V�k+2 = 1 we can write that

V�k�2 � V�k
V�k�2 � V�k+2

=
3tk + 2

2(1 + tk)2
and

Vk � Vk+2
Vk�2 � Vk+2

=
tk + 2

2(1 + tk)2
.
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Thus,
t2k
xk+2

=
tk + 2

3tk + 2
. (31)

By combining these we can get

(3tk + 2)t
2
k

tk + 2
= xk+2 =

(2tk+2 + 1)t
2
k+2

2tk+2 + 3
. (32)

Now let�s de�ne f(x) � (3x+2)x2

x+2
and g(x) � (2x+1)x2

2x+3
. Clearly f(0) =

g(0) = 0 and f(1) = g(1) =1. Moreover,

f 0(x) =
(9x2 + 4x)(x+ 2)� (3x+ 2)x2

(x+ 2)2
=
6x3 + 20x2 + 8x

(x+ 2)2

so, when x > 0, f 0(x) > 0. Similarly g0(x) > 0 can be shown as well. Now
note that we have f(tk) = g(tk+2). Now for any tk > 0 value, f(tk) > 0
as well. Moreover, since g(x) is continuous and increasing at (0;1), it is
one-to-one thus tk+2 = g�1(f(tk)) is a uniquely determined positive value.
Similarly tk = f�1(g(tk+2)).
We know x1 =

V�1�V1
V�1�V1 = 1. By (32),

t21
x1
=
2t1 + 3

2t1 + 1
=) 2t31 + t

2
1 � 2t1 � 3 = 0,

that induces a unique solution t1 = 1:25316: We can then �nd all values of
tk sequence for all k 2 KnnT n.
Now let�s prove tk � 1 implies tk+2 � tk. If tk > 1 then g(tk) < t2k < f(tk).

Thus g(tk) < g(tk+2) and tk < tk+2:
Also we can determine xk sequence as well. By de�nition, we know

(V�k�2 � V�k) + (V�k � V�k+2)
(Vk � Vk+2) + (Vk�2 � Vk)

= t2k.

Since

xk+2 =
V�k�2 � V�k
Vk � Vk+2

and xk =
V�k � V�k+2
Vk�2 � Vk
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we can obtain

(V�k�2 � V�k) + (V�k � V�k+2) =
t2k
xk+2

(V�k�2 � V�k) +
t2k
xk
(V�k � V�k+2).

Thus,

V�k�2 � V�k
V�k � V�k+2

=

t2k
xk
� 1

1� t2k
xk+2

=
2

2tk+1
2tk
3tk+2

=
3tk + 2

(2tk + 1)tk
� h (tk) (33)

Similarly,
Vk � Vk+2
Vk�2 � Vk

=
t�k + 2

(2t�k + 3)tk
:

Now let us de�ne aj, j = 1; 2; :::; 2n� 1 according to

a1 = V�2n+1 � V�2n+3;
a2 = V�2n+3 � V�2n+5;

...

aj = V�2n+2j�1 � V�2n+2j+1;
aj+1 = V�2n+2j+1 � V�2n+2j+3;

...

a2n�1 = V2n�3 � V2n�1: (34)

It is clear that
2n�1X
j=1

aj = V�2n+1 � V2n�1: (35)

By (33), one can then easily compute aj, j = 1; 2; :::; 2n � 1; and hence,
the valuation of the players at each node as a convex combination of V�2n+1
(winning) and V2n�1 (losing).
First, note from (33) that aj

aj+1
= h (t2n�2j�1), j = 1; 2; :::; 2n � 1, which

implies
aj =

a1
j�1Q
i=1

h (t2n�1�2i)

, 8j.
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From (35), we �nd that

a1 =
V�2n+1 � V2n�1:

2n�1P
j=1

0@ 1
j�1Q
i=1

h(t2n�1�2i)

1A :

From the de�nition of aj, j = 1; 2; :::; 2n� 1, we deduce that

8i 2 KnnT n; Vi = V�2n+1 �
n+ i�1

2X
j=1

aj.

Then,

Vi = V�2n+1 �
n+ i�1

2X
j=1

0BBB@ a1
j�1Q
s=1

h (t2n�1�2s)

1CCCA

= V�2n+1 �
V�2n+1 � V2n�1:

2n�1P
j=1

0@ 1
j�1Q
s=1

h(t2n�1�2s)

1A
n+ i�1

2X
j=1

0BBB@ 1
j�1Q
s=1

h (t2n�1�2s)

1CCCA , 8i 2 KnnT n.

Hence,

Vi =

0BBBBBB@1�
n+ i�1

2P
j=1

0@ 1
j�1Q
s=1

h(t2n�1�2s)

1A
2n�1P
j=1

0@ 1
j�1Q
s=1

h(t2n�1�2s)

1A

1CCCCCCA
| {z }

bi

V�2n+1+

0BBBBBB@

n+ i�1
2P

j=1

0@ 1
j�1Q
s=1

h(t2n�1�2s)

1A
2n�1P
j=1

0@ 1
j�1Q
s=1

h(t2n�1�2s)

1A

1CCCCCCA
| {z }

(1� bi)

V2n�1;

(36)
where 0 < bi+1 < bi < 1, 8i 2 KnnT n.
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Proposition 6. Given V�2n+1 and V2n�1; the equilibrium e¤ort choices of
the players in � satisfy
i) 8k 2 f1; 3; 5:::; 2n� 3g ; l�k > r�k and, moreover, l�kr�k

increases in k.
ii) 8k 2 f1; 3; 5; ::; 2n� 3g ; l�k+2 + r�k+2 > l�k + r�k:

Proof. i) Recall that l�k
r�k

= tk, 8k and t1 = 1; 25316: As tk+2 > tk, 8k (see
the proof of Proposition 5), the result immediately follows. ii) Using (25)
and (34), we have

8k 2 f1; 3; :::; 2n� 3g , l�k+r�k = lk+rk =
�
a 2n�1�k

2
+ a 2n+1�k

2

�1=4 �
a 2n�1+k

2
+ a 2n+1+k

2

�1=4
.

Also recall from (33) that aj
aj+1

= h (t2n�2j�1), j = 1; 2; :::; 2n�1. These allow
us to write

l�k+2 + r�k+2
l�k + r�k

=

 
a 2n+1�k

2
+ a 2n+3�k

2

a 2n�1�k
2

+ a 2n+1�k
2

!1=4 
a 2n�3+k

2
+ a 2n�1+k

2

a 2n�1+k
2

+ a 2n+1+k
2

!1=4

=

 
a 2n+1�k

2
+ a 2n+3�k

2

h (tk) a 2n+1�k
2

+ h (tk�2) a 2n+3�k
2

!1=4 
h (t�k+2) a 2n�1+k

2
+ h (t�k) a 2n+1+k

2

a 2n�1+k
2

+ a 2n+1+k
2

!1=4

>

�
h (t�k+2)

h (tk�2)

�1=4
, 8k 2 f1; 3; :::; 2n� 3g ,

as tk+2 > tk; 8k and h (:) is a strictly decreasing function. Noting that
h(t�k+2)
h(tk�2)

= 1 for k = 1 and, moreover, h(t�k)
h(tk)

is increasing in k ends the proof.

Proposition 7. The equilibrium e¤ort choices of an advantaged player follow
a monotonic path in �, i.e.,

l�1 > l�3 > ::: > l�2n+1 or r1 > r3 > ::: > r2n�1:

The equilibrium e¤ort choices of a disadvantaged player also follow a
monotonic path, i.e.,

l1 > l3 > ::: > l2n�1 or r�1 > r�3 > ::: > r�2n+1:
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Proof. By (26), we have

l�k
l�k�2

=

�
V�k�2 � V�k+2
V�k�4 � V�k

�1=2
� (tk)

� (tk+2)
;

where � (tk) =
t
1=2
k

1+tk
: It follows from (34) and (33) that

V�k�2 � V�k+2
V�k�4 � V�k

=
a 2n�k�1

2
+ a 2n�k+1

2

a 2n�k�3
2

+ a 2n�k�1
2

:

Accordingly, we can write l�k
l�k�2

= �k; 8k 2 f1; 3; :::; 2n� 3g where

�k �
�

1

h (tk)

�
1 + h (tk)

1 + h (tk+2)

��1=2
� (tk)

� (tk+2)
:

Recall t1 = 1:25316 and tk+2 = g�1 (f (tk)). Then, from the proof of Propo-
sition 5, we know that tk+2 � tk for all k. Hence, tk > 1 for all k. Now,
note that tk > 1 implies �0 (tk) < 0, which further implies �(tk)

�(tk+2)
> 1.

Moreover, recall that h(:) is a strictly decreasing function. This implies that

h (tk)h(tk+2) < 1. Accordingly,
h

1
h(tk)

�
1+h(tk)
1+h(tk+2)

�i1=2
> 1. Thus, �k > 1

for all k � 1, which concludes that l�k
l�k�2

> 1, 8k 2 f1; 3; :::; 2n� 3g. As
rk = l�k, 8k, we can also conclude that rk

rk+2
> 1;8k 2 f1; 3; :::; 2n� 3g. The

fact that r�k
r�k�2

> 1 or lk
lk+2

> 1, 8k 2 f1; 3; :::; 2n� 3g can also be shown in
a similar way.

Proposition 8. The equilibrium e¤ort choices of the players at any interior
node (i) increase with (V�2n+1 � V2n�1) and (ii) decrease with the number of
nodes.

Proof. (i) Note from (32) that tk and xk sequences are both independent of
V�n and Vn. The equation (36) then depicts that bi�s are also independent
from V�n and Vn. Recalling the equation (9), simple algebra is applied to
arrive at

l�k = ((b�k�2 � b�k+2) (V�2n+1 � V2n�1))1=2
t
1=2
k

(1 + tk)
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which clearly depicts that l�k is strictly increasing in (V�2n+1 � V2n�1). The
fact that r�k increases with (V�2n+1 � V2n�1) can also be shown in a similar
way.

(ii) We will now prove that the equilibrium e¤ort choices of
the players decrease with the number of nodes. To do so, con-
sider the tug of war contest under two di¤erent sets of states:
Kn = f�2n+ 1;�2n+ 3; :::;�1; 1; :::; 2n� 3; 2n� 1g and K~n =
f�2~n+ 1;�2~n+ 3; :::;�1; 1:::; 2~n� 3; 2~n� 1g where n; ~n 2 Z++. Without
loss of generality, assume that ~n > n. Let the equilibrium values of the
nodes be denoted by Vi, i 2 Kn and Vi; i 2 K~n. Since the winning and the
consolation prizes are not altered, we have

s
V �2n+1 <

s
V �2~n+1 = V�2n+1 and V2n+1 =

s
V 2~n+1 <

s
V 2n+1:

This implies
s
V �2n+1 �

s
V 2n�1 < V�2n+1 � V2n�1;

which ends the proof as we have already shown that the equilibrium e¤ort
choices of the players increase with (V�2n+1 � V2n�1).

Corollary 3. The sum of equilibrium individual e¤orts at any interior node
(i) increase with (V�2n+1 � V2n�1) and (ii) decrease with the number of nodes.

Proof. Follows directly from Proposition 8.

Finally, we �nish this subsection by stating another consequence of Propo-
sition 4.

Corollary 4. Consider two di¤erent sets of states,
Kn = f�n;�n+ 1; :::; 0; :::; (n� 1) ; ng and K~n =
f�~n;�~n+ 1; :::; 0; :::; (~n� 1) ; ~ng, where n; ~n 2 Z++. For any node
k < min(n; en), l�k

r�k
is the same in both games.

Proof. Follows from (24) and (36), and Proposition 8.
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