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Abstract 
 
We study bribing in a sequential team contest with multiple pairwise battles. We allow for 
asymmetries in winning prizes and marginal costs of effort; and we characterize the conditions 
under which (i) a player in a team is offered a bribe by the owner of the other team and (ii) she 
accepts the bribe. We show that these conditions depend on the ratios of players’ winning prizes 
and marginal costs of effort: the team owner chooses to bribe the player with the most favorable 
winning prize to marginal cost of effort ratio, and offer a bribe that leaves her indifferent 
between accepting (and exerting zero effort) and not accepting (and exerting her optimal effort). 
In some cases, the competition between players and the negative consequences of one player 
receiving a bribe on the team performance can drag down equilibrium bribe to zero. We also 
study the impact of changes in winning prizes and marginal costs of effort on equilibrium 
bribing behavior. 
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1 Introduction

Bribing can be defined as giving someone money or something else of value
in order to make her act in one’s favor. Practically, all definitions incorpo-
rate phrases such as ‘often illegally’ or ‘something dishonest’. Despite the
illegality or immorality attached to the act, bribing in real life is ubiqui-
tous. According to an OECD report (see OECD, 2014), bribes amount to
10% of the total value created by all commercial transactions and 34.5% of
firm profits are spent on bribing. The World Bank estimates the amount
of bribe exchanging hands in a year to be around 1 trillion dollars (see
Kaufmann, 2005). Giving/accepting money to rig professional sport com-
petitions is also very widespread. Transparency International, in its Global
Corruption Report: Sport, describes match-fixing as a fully acknowledged,
real threat to the integrity of sport and as such it is one of the six major
topics in the report (see Sweeney, 2016). Some most well-known examples
of bribing/match-fixing are Olympique de Marseille match-fixing scandal in
1993, Italian Football match-fixing scandal in 2011–2012, and Spanish Foot-
ball League match-fixing scandal in 2019.

In this paper, we theoretically study bribing in a sequential team contest
with multiple pairwise battles. In our model, there are two teams with
equal number of players. To keep the model tractable yet sufficiently rich
to derive interesting results, we fix the number of players in each team to
three. Hence, the contest is made up of three pairwise battles. In each
pairwise battle, the paired players simultaneously exert costly efforts, and
a Tullock contest success function (see Tullock, 1980) determines who wins
the battle. The team that wins at least two battles wins the contest, and
the team members collect positive winning prizes while the members of the
losing team receive zero. We allow individual winning prizes and marginal
costs of effort to be heterogeneous across players. The pairs of players in each
battle as well as the sequence of those battles are exogenously given at the
beginning of the game.1 At this point we make three modeling assumptions:
(i) only one of the team owners can offer a bribe, (ii) she can offer a bribe to
only one player in the other team, and (iii) the bribed player does not exert
any effort.2 The team owner that can offer a bribe chooses whom to bribe

1Obviously, the pairing can be modeled as an equilibrium phenomenon—especially
when there are asymmetries across players. However, that is a different research question
that should be handled in a separate paper.

2We discuss in detail how restrictive these assumptions are in the Conclusion section.
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and by which amount, with the objective of maximizing her own expected
payoff. The other team owner does not have a decision to make. Finally, all
players are expected payoff maximizers.

We analytically solve for the subgame perfect Nash equilibrium of this
sequential game. Our main result shows which player is offered a bribe
in equilibrium, by which amount, and whether she accepts it or not. In
particular, we show that the answers to all of these questions are closely
connected to the ratios of individual winning prizes and marginal costs of
effort. More precisely, the team owner chooses to bribe the player with the
most favorable winning prize to marginal cost of effort ratio (after taking
into account the same ratios for the players paired with them), and offer a
bribe that leaves her indifferent between accepting (and exerting zero effort)
and not accepting (and exerting her optimal effort). Our results show that
even a zero-bribe can be accepted by a player under some circumstances.
Furthermore, we conduct comparative static analyses on winning prize and
marginal cost parameters in some illustrative examples to see the impact of
a change in these parameters on equilibrium bribing behavior.

To the best of our knowledge, this is the first paper in the contest theory
literature to incorporate bribing into team contests. In fact, bribing (or, cash
transfers or side payments) is a very understudied topic even in individual
contest games.3 Preston and Syzmanski (2003) formulate a simple model
of match-fixing, which takes into account the probability of getting caught
and the uncertainty regarding the type of players (i.e., a moral type who
does not accept bribes or immoral type who accepts bribes). The authors
describe the conditions under which bribe exists in equilibrium. Schoonbeek
(2009) studies a two-stage Tullock rent-seeking contest. In the first stage,
the existing players in the game can choose to bribe a potential entrant to
persuade her not to enter. In the second stage, the actual contest takes place.
The author characterizes the conditions under which the potential entrant
is bribed and hence stays out. Kimbrough and Sheremata (2013) study
a two-stage game of (potential) conflict and show—both theoretically and
experimentally—that with binding commitments, side payments can lead to

Let us be brief here and note that relaxing those assumptions does not bring significantly
new insights, but it considerably complicates the analysis.

3Bribing is one type of a destructive/unethical action in contests. There are others
such as sabotage, doping, and spying. For those, we refer the reader to Baik and Shogren
(1995), Konrad (2000), Preston and Szymanski (2003), Amegashie (2012), Chowdhury
and Gürtler (2015), and Doğan, Keskin, and Sağlam (2019) among others.
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large efficiency gains through avoided conflicts. Finally, Esö and Schummer
(2004), Rachmilevitch (2013), and Rachmilevitch (2015) all study bribing in
the context of auctions, which can be considered as a contest-like interaction.
As we mention above, neither these papers nor the others in the literature
consider bribing in a team contest.

The organization of the paper is as follows. In Section 2, we introduce
the baseline model of team contest with multiple pairwise battles without
bribing. In Section 3, we introduce bribing into the baseline model, present an
equilibrium analysis, and report the corresponding results. In Section 4, we
conclude following a discussion on our modeling assumptions, some caveats,
and possible future research questions.

2 The Baseline Model

We present the baseline model without bribing here and derive some results
that will later be utilized in the model with bribing. There are two teams,
denoted respectively by a and b, with equal number of players. They compete
in a sequential team contest with multiple pairwise battles. Each player in
team a is matched with a player in team b, and each pair of players compete
in a component battle indexed by t ∈ N. A player in team i ∈ {a, b} is indexed
by i(t) if she is assigned to battle t. This ordering is exogenously given and
does not change throughout the contest. Player i(t) wins the component
battle t with probability

pi(t) =
ei(t)

ea(t) + eb(t)
(1)

where ei(t) denotes the battle effort exerted by i(t) (see Tullock, 1980). Each
player i(t) is informed about the outcomes of the previous component battles
t′ < t before exerting her effort in battle t. A team wins the contest if its
members accumulate more victories than the members of the other team do.

The six-player version (i.e., teams composed of three players) of a team
contest with multiple pairwise battles can be illustrated as in Figure 1.4 The
index of the component battle, which takes place at node (x, y), where x
and y denote the number of victories team a and b collected until that point,
respectively, is given by: x + y + 1.

Player i(t) receives a prize of Vi(t) > 0 in case team i ∈ {a, b} wins the
contest. The members of the losing team receive 0. Each player i(t) has

4We omit effort choices in this figure for the sake of expositional simplicity.

4



(0, 0)

(0, 1)

(1, 0)

(1, 1)

Team b wins Team b wins

Team a wins

Team a wins

Figure 1: 3-vs-3 multiple pairwise battles

a constant marginal cost of effort: ci(t) > 0. Apart from the asymmetries
in winning prizes we allow here, our baseline model can be thought of as a
special case of the model introduced by Fu, Lu, and Pan (2015).

In the following proposition, we derive the expected payoffs and the ratio
of winning probabilities in any two-player contest with the standard Tullock
contest success function, (1), and linear cost functions. In the corollary
that follows, we then show that the same results are valid for each multiple
pairwise battle of the team contest described above.

Proposition 1. Consider a two-player contest with the standard Tullock
contest success function and linear cost functions with coefficients c1 and c2.
Assume that a victory by player 1 yields the payoff vector (V11,V21) and a
victory by player 2 yields the payoff vector (V12,V22) such that V11 ≥ V12
and V22 ≥ V21. Denoting the winning probabilities of players 1 and 2 in the
equilibrium by p1 and p2, respectively, we have

p1
p2

=
c2(V11 − V12)
c1(V22 − V21)

.

Also the expected payoff vector at the equilibrium is(
p21V11 + (1− p21)V12 , p22V22 + (1− p22)V21

)
.

Proof. See Appendix A.
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Now, consider the team contest with multiple pairwise battles as de-
scribed above. Given that backward induction would yield a unique subgame
perfect Nash equilibrium, the next result follows from Proposition 1.

Corollary 1. In a team contest with multiple pairwise battles, consider a
generic component battle between players a(t) and b(t). Let pi be the prob-
ability of team i winning the contest after player a(t) wins the component
battle; and let qi be the same probability after player b(t) wins. Denoting
the winning probabilities of players a(t) and b(t) in the equilibrium by pa(t)
and pb(t), respectively, we have

pa(t)
pb(t)

=
Va(t)/ca(t)
Vb(t)/cb(t)

Also the expected payoff vector at the equilibrium is(
(qa + p2a(t)(pa − qa))Va(t) , (pb + p2b(t)(qb − pb))Vb(t)

)
.

Proof. Using a notation consistent with Proposition 1, in this generic case, we
write V11 = paVa(t), V12 = qaVa(t), V21 = (1− pa)Vb(t), and V22 = (1− qa)Vb(t).
By Proposition 1, we have

pa(t)
pb(t)

=
cb(t)(pa − qa)Va(t)

ca(t)((1− qa)− (1− pa))Vb(t)

=
Va(t)/ca(t)
Vb(t)/cb(t)

Utilizing Proposition 1, we can similarly write the expected payoff vector.

Corollary 1 reveals that the winning probability of a player at any par-
ticular component battle is independent of the outcomes of past component
battles. This result is similar, in essence, to the history independence obser-
vation made by Fu et al. (2015).

Utilizing the result above, we can evaluate the equilibrium winning prob-
abilities for both teams at each node. From this point onward, for the sake
of simplicity, we assume that there are three players in each team,5 so that
the victory threshold is two, and we set

pi(t) =
Vi(t)/ci(t)

Va(t)/ca(t) + Vb(t)/cb(t)
(2)

5We expect our results to be valid for teams of any finite size. We discuss the costs
and benefits of relaxing this assumption in Section 4.
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for any i ∈ {a, b} and t = 1, 2, 3. Furthermore, for notational simplicity, we
set pt ≡ pb(t), which obviously implies that pa(t) = 1− pt.

The winning probabilities at node (1, 1) can now be written as (1−p3, p3).
At node (1, 0), the winning probabilities are

(1− p2) · (1, 0) + p2 · (1− p3, p3) = (1− p2p3 , p2p3).

Similarly, at node (0, 1), the winning probabilities are

(1− p2) · (1− p3, p3) + p2 · (0, 1) = (1− p2 − p3 + p2p3 , p2 + p3 − p2p3).

Finally, at node (0, 0), the winning probabilities are

(1− p1) · (1− p2p3 , p2p3) + p1 · (1− p2 − p3 + p2p3 , p2 + p3 − p2p3)

= (1− p1p2 − p1p3 − p2p3 + 2p1p2p3 , p1p2 + p1p3 + p2p3 − 2p1p2p3).

The following proposition states that the order of pairwise battles do not
matter as far as players’ expected payoffs are concerned. This result is similar
to the sequence independence observation in Fu et al. (2015).

Proposition 2. The expected payoff of player b(t) from the team contest with
multiple pairwise battles is independent of the order of battles.

Proof. Note that team b’s probability of winning the contest is given by
p1p2 + p1p3 + p2p3 − 2p1p2p3. Note also that if player b(t) is assumed to win
her own component battle, setting pt = 1 yields the updated probability of
winning for team b; and if she is assumed to lose that battle, setting pt = 1
yields the updated probability of winning for team b. We can now write the
expected payoffs of each team b member.

If player b(1) wins, then her team wins the contest with probability
p2 + p3 − p2p3; but if player b(1) loses, then her team wins the contest with
probability p2p3. Then, by Corollary 1, the expected payoff of player b(1) at
node (0, 0) is

(p2p3 + p21(p2 + p3 − 2p2p3))V1.

From the perspective of player b(2), notice that node (0, 1) is reached
with a probability of p1, whereas the same probability is 1 − p1 for node
(1, 0). If player b(2) wins at node (0, 1), then her team definitely wins the
contest; but in case player b(2) loses at node (0, 1), then her team wins the
contest with probability p3. The expected payoff of player b(2) at node (0, 1)
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is (p3 + p22(1 − p3))V2 and at node (1, 0) is (0 + p22(p3 − 0))V2. Accordingly,
the overall expected payoff of player b(2) can be written as

(p1(p3 + p22(1− p3)) + (1− p1)p
2
2p3)V2

= (p1p3 + p22(p1 + p3 − 2p1p3))V2

As for player b(3), notice that the game may end after the first two
component battles, so that she gets a payoff of V3 with a probability of p1p2
and a payoff of 0 with a probability of (1− p1)(1− p2) without even playing
in her component battle. Also, from her perspective, node (1, 1) is reached
with a probability of p1(1−p2) +p2(1−p1); and at this node, player b(3) has
an expected payoff of (0 + p23(1− 0))V3 = p23V3. Thus, her expected payoff as
seen from node (0, 0) can be written as

p1p2V3 + (p1(1− p2) + p2(1− p1))p
2
3V3

= (p1p2 + p23(p1 + p2 − 2p1p2))V3.

The symmetrically-written expected payoffs imply the result.

3 Bribing in Team Contests

In this section, we introduce bribing into the baseline model and analyze its
impact on the equilibrium strategies and winning probabilities. We allow,
without loss of generality, the owner of team a to offer bribe to any player
in team b; and we assume that only one player from team b can be bribed.
The owner of team a receives a prize of V in case her team wins. In order to
increase her expected earnings, by increasing her team’s winning probability,
she offers Bt amount of money to some player b(t) in exchange for b(t) not to
exert any effort in the component battle t. Bribing occurs if the team owner
becomes better off without making the bribed player worse off.

In this paper, we concentrate on a model in which the team owner decides
whom to bribe before the contest starts. This means that player b(t) is bribed
before battle 1 takes place.6

We first recall that pt ≡ pb(t) for every t ∈ {1, 2, 3}, and for the sake of
notational simplicity, we further set Vt ≡ Vb(t).

6For an analysis of an alternative model where we allow the owner of team a to offer
bribe after battle 1 or battle 2 takes place, the interested reader is referred to Appendix
B. The main intuition presented in this paper continues to follow in the alternative model.
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3.1 Equilibrium Analysis

Our first result here is implied by Proposition 2, which states that the order
of battles does not influence the expected payoffs.

Corollary 2. In the team contest with multiple pairwise battles where the
owner of one team has an option to bribe a single player from the opposing
team, the respective conditions for a player to be indifferent between accepting
and not accepting a bribe can be written symmetrically.

Proof. Follows from Proposition 2.

Below we present the conditions for player b(1) to accept a bribe and
provide similar conditions for the other players. Proposition 3 states an
intermediate result where the player to be offered a bribe is fixed. We will
later relax this assumption in proving our main result.

Proposition 3. In the team contest with multiple pairwise battles, suppose
that only player b(1) can be bribed by the owner of team a. In case she accepts
a bribe and forfeits from her component battle, her expected payoff would be
p2p3V1. Thus, the minimum acceptable bribe for player b(1) is

B1 = p21(p2 + p3 − 2p2p3)V1.

Symmetric expressions can be written for players b(2) and b(3) as follows:

B2 = p22(p1 + p3 − 2p1p3)V2 and B3 = p23(p1 + p2 − 2p1p2)V3.

Proof. If player b(1) forfeits from her component battle, the winning prob-
ability of her team would be p2p3. This yields an expected payoff of p2p3V1

to the player. Given that her expected payoff from the baseline model with
no bribing is (p2p3 + p21(p2 + p3 − 2p2p3))V1, the minimum acceptable bribe
for player b(1) can be calculated as the difference between the two expected
payoffs. Symmetric expressions follow for the other players.

In the following, we lay the groundwork for our main result, presented in
Proposition 4, that characterizes the equilibrium conditions for bribing.

Notice that, by the assumption of common knowledge of rationality, a
player can anticipate that her teammates may accept a bribe in case the
player herself is not bribed. Accordingly, without loss of generality, we now
evaluate the expected payoffs of players b(2) and b(3), in case it is known or
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anticipated that player b(1) is bribed. Recall that when there is no bribe,
the expected payoff of player b(2) is (p1p3 + p22(p1 + p3− 2p1p3))V2. The case
of player b(1) taking a bribe would yield the same expected payoff as in the
case when p1 = 0. Therefore, the expected payoff of player b(2) would be
p22p3V2 and the expected payoff of player b(3) would be p2p

2
3V3. Generally,

if it is known or anticipated that player b(t) accepts a bribe of Bt, then her
expected payoff is

p1p2p3
pt

Vt + Bt,

while the expected payoff of a non-bribed player b(t′) where t 6= t′ is

p1p2p3
pt

pt′Vt′ .

Without loss of generality, suppose that the owner of team a decided to
bribe player b(1). We now evaluate whether player b(2) would start accepting
a bribe less than B2 once she anticipates that player b(1) would be bribed if
not her.7 Given that player b(1) is bribed, player b(2) has an expected payoff
of p22p3V2; however, if player b(2) accepts a bribe of B2, then she would end up
with an expected payoff of p1p3V2+B2. Thus, B2 should satisfy the following
condition:

B2 ≥ p3(p
2
2 − p1)V2 ≡ B1

2, (3)

if player b(2) is to accept a bribe in case she anticipates that her outside
option is the case where player b(1) is bribed. Notice that B1

2 < B2, so that
player b(2) indeed has a lower minimum acceptable bribe in such a case.
Notice also that B1

2 may turn out to be non-positive, indicating that player
b(2) would be willing to forfeit from her component battle in return for a
zero bribe.8 We label this phenomenon as the curse of rationality since she
would have been better off if she was naive and as such did not reason about
the other players’ behavior.

Utilizing our observations above, we now define the expected total loss
matrix for the owner of team a, which we will later employ in proving our
main result. To do that, for any t ∈ {1, 2, 3}, let

Wtt =
p1p2p3
pt

V + Bt;

7Similar arguments are valid for player b(3) as well.
8This is true under the restriction that a negative bribe is not allowed.
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and for any t, t′ ∈ {1, 2, 3}, let

Wtt′ =
p1p2p3
pt

V + max{0,Bt′

t }

such that Bt′
t = pt′′(p

2
t − pt′)Vt where b(t′′) is the remaining player. Here, the

expression Wtt represents the amount of total loss suffered by the owner of
team a in case player b(t) is bribed under the condition that no other player
would be bribed if not player b(t). The first part is the expected payoff under
the probable case that team a loses the contest, and the second part is the
minimum bribe amount player b(t) is willing to accept. The expression Wtt′

represents the amount of total loss suffered by the owner of team a in case
player b(t) is bribed under the condition that player b(t′) would be bribed
if not player b(t). The first part is the expected payoff under the probable
case that team a loses the contest, and the second part is the minimum bribe
amount player b(t) is willing to accept. Surely, the second part considers the
possibility that Bt′

t < 0. Now, we define the expected total loss matrix for
the owner of team a:

W =

W11 W12 W13

W21 W22 W23

W31 W32 W33

 .

In the equilibrium, the team owner would choose to bribe the player
through which she would maximize her own expected payoff, or to put it
differently, would minimize her expected total loss summarized in W. In the
following proposition, we characterize all conditions under which player b(1)
would be bribed by the owner of team a. We then argue that symmetric
conditions would follow for the other players in team b.

Proposition 4. In the team contest with multiple pairwise battles where the
owner of team a has an option to bribe a single player from team b, the team
owner intends to bribe player b(1) under the following conditions:

a positive bribe of B1 would be accepted, if

1. W11 < min{W22,W33},
W11 < min{W21,W31};

and for every j, k ∈ {2, 3} with j 6= k: a bribe of max{0,Bj
1} would be

accepted, if

11



2. W11 < min{Wjj,Wkk},
Wj1 < min{W11,Wk1},
W1j < min{Wj1,Wkj}; or

3. W11 < min{Wjj,Wkk},
Wk1 < min{W11,Wj1},
Wjk < min{W1k,Wk1},
W1j < min{Wjk,Wkj}; or

4. Wjj < min{W11,Wkk},
W1j < min{Wjj,Wkj},
W1j < min{Wj1,Wk1}; or

5. Wkk < min{W11,Wjj},
Wjk < min{W1k,Wkk},
W1j < min{Wjk,Wkj},
W1j < min{Wj1,Wk1}; or

6. Wkk < min{W11,Wjj},
W1k < min{Wjk,Wkk},
Wj1 < min{W1k,Wk1},
W1j < min{Wj1,Wkj}.

Furthermore, in case 1, the team owner prefers giving the bribe if W11 is less
than or equal to (p1p2 + p2p3 + p1p3− 2p1p2p3)V ; whereas in the other cases,
the same condition should be written with W1j.

Proof. See Appendix A.

The next result immediately follows.

Corollary 3. In the team contest with multiple pairwise battles where the
owner of team a has an option to bribe a single player from team b, the
corresponding bribing conditions for players b(2) and b(3) can be written as
in Proposition 4.

Proof. Follows from Corollary 2 and Proposition 4.

Below we make an observation to differentiate between the two case types
presented in Proposition 4.
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Remark 1. Case 1 in Proposition 4 specifies a situation where player b(1) is
so strong that she is offered a positive bribe. Note that even when the other
players would accept lower amounts of bribe (even, a zero-bribe) anticipating
that player b(1) would not exert any effort, the owner of team a does not
deviate from her strategy of bribing b(1). In all of the other cases, the team
owner considers bribing player b(j) at first, but then player b(1) anticipates
such a bribe and would be willing to lower her own acceptable bribe, which
would make the team owner deviate to bribing player b(1).

It is worthwhile noting that there is no trivial expression with which
we can ex-ante identify the player that will be offered a bribe and/or the
amount of bribe. Instead we can, more generally, write that the answers to
those questions depend on the comparison of the ratios of winning prize to
marginal cost of effort (within each pair) across three pairs. For instance,
a player with a high winning prize and low marginal cost of effort may not
be offered a bribe if she is facing a strong opponent. Similarly, a player
facing a weak opponent may not be offered a bribe if there is another player
in her team who is relatively much stronger. As Proposition 4 reveals, in
intermediate cases where no player is singled out as being very strong, the
competition for receiving bribe drives the equilibrium bribe amount down, in
some cases to zero. Note that in such cases, it is possible that a zero-bribe is
accepted, since otherwise someone else could accept a bribe and spend zero
effort, such that it would still be very likely that the team loses the contest;
at least a zero-bribe saves the cost of effort for the player who accepts it.
Section 3.2 presents some examples that reveal further insights.

3.2 Illustrative Examples

In this section, we present four different types of examples, varying in the
level of heterogeneity and accompanied by graphical illustrations, to make
our results more transparent.9

9In all graphs reported below, the color matrix is given by

C =

 Yellow Green Brown
Gray Blue Purple

Magenta Orange Red

 ,

which is matched with the entries of W.
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A common observation in the following two figures is that the three re-
gions that specify the bribed player (i.e., the collection of yellow, green, and
brown regions for player b(1); the collection of gray, blue, and purple regions
for player b(2); and the collection of magenta, orange, and red regions for
player b(3)) have a unique intersection point. That intersection point is sur-
rounded by the regions related to cases (2)-(6) in Proposition 4, and as such
the remaining regions that describe situations where the bribed player is too
strong are completely separated.

In Figures 2 and 3, players in team a are assumed to be symmetric, with
a winning prize of Va(t) = 10 and a marginal cost of ca(t) = 2.

Symmetric Costs, Possibly Asymmetric Winning Prizes: In Figure 2,
the marginal costs of team b players are also equal to 2. The central point
on the graph, which corresponds to the case when Vb = (10, 10, 10), repre-
sents the case of complete symmetry. It is also the unique intersection point
mentioned above.

0 5 10 15 20

0

5

10

15

20

Figure 2: (Symmetric case) The regions for different types of bribing equilib-
rium when V = 200, Va = (10, 10, 10), Vb = (·, ·, 10), and ca = cb = (2, 2, 2)

Given that the central point is surrounded by six different regions, a
deviation from the center leads to a dramatic change in the equilibrium type,
depending on the direction of the deviation.
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In case of a deviation towards the lower left, which indicates a decrease in
both Vb(1) and Vb(2), player b(3) would be bribed in the equilibrium. This is
when player b(3) is strong in terms of her Vb(t)/cb(t) ratio. In fact, as we move
towards the origin, player b(3) becomes too strong and guarantees a positive
bribe as specified by the red region. In case of a deviation towards the upper
right, which indicates an increase in both Vb(1) and Vb(2), it is either player
b(1) or b(2) who is bribed, and which one is determined by the asymmetry
between Vb(1) and Vb(2), favoring the player with the higher winning prize.

In case of a deviation towards the lower right, which indicates an increase
in Vb(1) and a decrease in Vb(2), player b(1) is bribed in the equilibrium; and
in case of a deviation towards the upper left, which indicates an increase in
Vb(2) and a decrease in Vb(1), player b(2) is bribed in the equilibrium. If the
increase in Vb(t) for t ∈ {1, 2} is sufficiently high, then the equilibrium ends
up in the yellow or blue regions showing the existence of too strong players.

Finally, one can comment on the effects of gradually changing one pa-
rameter value on the equilibrium type. For instance, in Figure 2, fixing a
high level of V2, say V2 = 15, as V1 increases, we move from 3 → 2, to 2, to
1→ 2, to 2→ 1, and to 1; whereas fixing a low level of V2, say V2 = 5, as V1

increases, we move from 2→ 3, to 3, to 1→ 3, to 3→ 1, and to 1.10

Symmetric Winning Prizes, Possibly Asymmetric Costs: In Figure 3,
the winning prizes of team b players are also equal to 10, but we now allow
the marginal costs of players b(1) and b(2) to differ along the axes. The
central point corresponds to the case of complete symmetry: cb = (2, 2, 2).

Similar to above, the deviation from the center leads to a dramatic change
in the equilibrium type. Though, differently from above, player b(3) is bribed
in the upper right region where the marginal costs of the other players are
high; whereas either player b(1) or b(2) would be bribed in the other parts
of the graph, where at least one of them has a sufficiently low marginal cost.
That is the reason why Figure 3 appears like a mirror image of Figure 2;
locating the mirror in the center and ignoring the shapes of the region bor-
ders. This is intuitive, since a higher value of marginal cost creates an effect
similar to that of a lower winning prize.

We can, again, comment on the effects of gradually changing one param-
eter value on the equilibrium type. In Figure 3, fixing a high level of c2,
say c2 = 3, as c1 increases, we move from 1, to 3 → 1, to 1 → 3, and to 3;

10Here, k → m indicates that player m is bribed, but player k would be bribed if not
player m, whereas a single number represents the bribed player in case she is too strong.
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Figure 3: The regions for different types of bribing equilibrium when V =
200, Va = Vb = (10, 10, 10), ca = (2, 2, 2), and cb = (·, ·, 2)

whereas fixing a low level of c2, say c2 = 1, as c1 increases, we move from 1,
to 2→ 1, to 1→ 2, and to 2.

Asymmetric Winning Prizes and Possibly Asymmetric Costs: Fig-
ure 4 illustrates how the equilibrium types change depending on the winning
prize and marginal cost of a fixed player: b(1).

Although we intend to preserve the symmetric parameter values as in
the previous two figures; here, for the sake of argument, we assume that
Vb(2) = 20 and Vb(2) = 10, because in case those winning prizes are assumed
to be equal, there would be regions where the owner of team a is indifferent
between bribing players b(2) and b(3). In Figure 4, player b(2) is always
stronger than player b(3), and accordingly, changing the parameter values
for player b(1) does not change the fact that bribing player b(2) is preferred
to bribing player b(3). Apparently, such a partial asymmetry leads to a
five-region graph.

We observe that under the 45-degree line, the owner of team a prefers
to bribe player b(1). This observation is related to the Vb(t)/cb(t) ratio for
players b(1) and b(2). Simply, whichever player’s ratio is greater than the
other’s, that player would be bribed in the equilibrium, given that they are
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Figure 4: The regions for different types of bribing equilibrium when V =
100, Va = (10, 10, 10), Vb = (·, 20, 10), ca = (2, 2, 2), and cb = (·, 2, 2)

matched with symmetric players. Moreover, it seems that player b(1) is too
strong in regions where cb(1) is sufficiently low and Vb(1) is sufficiently high;
and interestingly, for sufficiently low values of Vb(1), it is player b(3) who
is about to be bribed, but anticipating that outcome, player b(2) accepts a
lower amount of bribe such that the team owner deviates.

Asymmetric Winning Prizes and Costs: Finally, in Figure 5, we con-
sider an asymmetric case. There are now two separate points at which four
different regions intersect.
In this graph, player b(3) is matched with a weak player in terms of the
Va(t)/ca(t) ratio. This makes player b(3) relatively stronger, so that she is
bribed for a large set of (Vb(1), Vb(2)) values, even for some cases where the
other players have relatively higher winning prizes: (Vb(1), Vb(2)) > (30, 40).
As much higher values of Vb(1) or Vb(2) are realized, player b(3)’s advantage
disappears and the team owner starts to bribe one of the other players.

Comparing players b(1) and b(2), we see that player b(1) is strong as she
has a lower marginal cost and player b(2) is strong as she is matched with a
weaker opponent in terms of the Va(t)/ca(t) ratio. When both players have a
winning prize of 60, player b(1) is bribed, which indicates that player b(1)’s
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Figure 5: The regions for different types of bribing equilibrium when V =
500, Va = (30, 40, 20), Vb = (·, ·, 20), ca = (2, 3, 2), and cb = (3, 4, 2)

advantage in marginal cost dominates player b(2)’s advantage in opponent
strength. On the other hand, if one considers the upper right corner, which
is when (Vb(1), Vb(2)) = (80, 60), where player b(1)’s advantage disappears due
to a higher winning prize for player b(2), one would see that player b(2) is
bribed. The interpretations and other observations are similar to those for
Figure 2, given that both graphs allow for the the changes in Vb(1) and Vb(2).

4 Concluding Remarks

We presented the first theoretical analysis of bribing in team contests and
analytically solved for the subgame perfect Nash equilibrium of the corre-
sponding game. We allowed for heterogeneity at two levels (the winning
prizes and marginal costs of players), since the presence and amount of brib-
ing naturally depend on such heterogeneity.

Our results reveal an economically intuitive link between the choice of a
player to be bribed (as well as the amount of bribe) and the ratios of the
players’ winning prizes and marginal costs of efforts. More precisely, the
team owner who can offer a bribe takes into account the trade-off between
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the winning prize and marginal cost of effort for each player in the opponent
team, and she chooses (also by taking into account the power balances in
each pair) the one that maximizes her expected payoff. We also show that
the competition between players and the negative externality that a bribe-
receiving player imposes on her teammates can drive down equilibrium bribe
amount, even to zero in some cases.

A few issues regarding our modeling assumptions are worthwhile dis-
cussing here. As we mentioned in the Introduction section, we kept the
model simple for tractability, a clean and completely analytical equilibrium
analysis, and transparent results. For instance, we allowed only the owner of
team a to offer a bribe. A more general model could be considered in which
a bribing strategy is available also to the owner of team b. As it is revealed
in the equilibrium analysis, in such a model, similar bribing conditions could
be derived for the owner of team b, but this would possibly not bring any sig-
nificantly new insight. Obviously, allowing both team owners to offer bribes
would introduce a meta-game (of bribing), and given that we have six cases
for each player to be studied in the equilibrium analysis we conducted (see
Proposition 4), we expect the analysis to be much more complicated since
one would need to analyze too many cases in that more general model.

We assumed that the owner of team a can offer bribe to only one player
in team b. Hence, another generalization could allow the owner of team a
to bribe multiple players. However, given that each team has three players
and that bribing two players would suffice for team a to guarantee winning
the contest, the owner of team a would bribe two players if it is in her best
interest to do so; and accordingly, generalizing the model in that dimension
would not return new insights.

We assumed that the player who accepts a bribe does not exert any effort.
Although this is a standard assumption in the literature, an alternative model
may introduce the risk of getting caught by the owner of her team (for the
player who accepted a bribe) with material consequences, in which case one
may obtain a non-zero effort in equilibrium for the player who accepted a
bribe (given that the probability of getting caught is a decreasing function
of effort exerted). This more realistic feature would just add another layer of
expectation in calculating the players’ payoffs. If the probabilities of getting
caught are symmetric for all players (after controlling for their winning prizes
and marginal costs of effort), then our results would qualitatively not change.
If there are asymmetries, however, then the equilibrium conditions we derived
for the owner of team a regarding whom and how much to bribe would
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likely depend on the individual probabilities of getting caught in addition to
winning prizes and marginal costs of effort. In that case, a lower probability
of getting caught (compared to teammates) would be another factor that
makes a player strong.

Future research may deal with questions related to (i) endogenous/strategic
pairing of players in team contests where bribing is possible, (ii) optimal prize
allocation within a team, or more generally, optimal contest design to pre-
vent bribing, and (iii) the presence of honest players or whistleblowers.
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Appendix A

Proof of Proposition 1:
Let e1 and e2 denote the contest efforts exerted by players 1 and 2, respec-
tively. Then the expected payoff of player 1 is

e1
e1 + e2

V11 +
e2

e1 + e2
V12 − c1e1. (4)

The first order condition with respect to e1 is

e2
(e1 + e2)2

V11 −
e2

(e1 + e2)2
V12 − c1 = 0.

From here we obtain

e2(V11 − V12)
c1

= (e1 + e2)
2.

We can get a similar equation for player 2, so that

e2(V11 − V12)
c1

= (e1 + e2)
2 =

e1(V22 − V21)
c2

.

Noting that the equilibrium is unique, we have

e1
e2

=
c2(V11 − V12)
c1(V22 − V21)

.

Then

p1 =
e1

e1 + e2
=

c2(V11 − V12)
c1(V22 − V21) + c2(V11 − V12)

and

p2 =
e2

e1 + e2
=

c1(V22 − V21)
c1(V22 − V21) + c2(V11 − V12)

.

By substituting these values into the first order conditions, we obtain

e1 =
c2(V11 − V12)2(V22 − V21)

(c1(V22 − V21) + c2(V11 − V12))2

We can now see that c1e1 = p1p2(V11 − V12). Thus the expected payoff of
player 1, given by equation (4), can be rewritten as

p1V11 + p2V12 − p1p2(V11 − V12).
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By substituting p2 = 1− p1, we have

p1V11 + (1− p1)V12 − p1(1− p1)(V11 − V12) = p21V11 + (1− p21)V12

for the expected payoff of player 1. A similar result follows for player 2.

Proof of Proposition 4:
Without loss of generality, suppose that the owner of team a decided to bribe
player b(1). We know that player b(2)’s minimum acceptable bribe reduces
from B2 to B1

2 after she anticipates that player b(1) will be bribed.
There are three cases to consider: (i) p1 > p2; (ii) p2 > p1 > p22; and

(iii) p22 > p1. In case (i), there is a critical value p such that if p1 < p, then
B1
2 is not sufficiently low such that deviating to offer a bribe of B1

2 to player
b(2) is not beneficial for the owner of team a. If p1 > p, however, then the
team owner would deviate to bribe player b(2). In case (ii), the team owner
would deviate to offer a zero bribe to player b(2), which is now acceptable
since B1

2 < 0. Also in case (iii), the acceptable bribe is 0. However, there is
now another critical value p̃. Accordingly, if p1 < p̃, then it is as in case (ii).
If not, this would mean that player b(1) is too strong in the sense that she
has a very high winning probability, such that deviating to bribe player b(2)
can never be beneficial although b(1) is asking for a positive bribe whereas
b(2) would accept a zero bribe. Put differently, if the team owner will give
up her right to bribe the other players by bribing player b(2), then the team
owner should be the one to be paid (which we do not allow in our model).

The analysis above considered a first deviation only. However, further
deviations are possible following a similar reasoning. All information that
would help us understand who would be the one to be bribed and by how
much can be summarized by a 3 × 3 matrix. The same matrix is denoted
by W above:[

p2p3V + p21(p2 + p3 − 2p2p3)V1 p2p3V +max{0, p3(p21 − p2)V1} p2p3V +max{0, p2(p21 − p3)V1}
p1p3V +max{0, p3(p22 − p1)V2} p1p3V + p22(p1 + p3 − 2p1p3)V2 p1p3V +max{0, p1(p22 − p3)V2}
p1p2V +max{0, p2(p23 − p1)V3} p1p2V +max{0, p1(p23 − p2)V3} p1p2V + p23(p1 + p2 − 2p1p2)V3

]
At first, the team owner aims to minimize over the diagonal. Whichever

entry is the minimum, the corresponding player is bribed in the amount of
the second part of that entry. Given that player b(t) is bribed, the entries
in the column t are compared. The team owner minimizes over this column.
Suppose that the entry (t, t) is the minimum. Then the team owner chooses
not to deviate from bribing player b(t). And the process stops there. If
otherwise, given that the entry (t′, t) for t 6= t′ is the minimum, the team
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owner would deviate to bribe player b(t′) in the amount of the second part
of the respective entry. Now, we can control for further deviations. The
team owner compares the entry (t′, t) with the non-diagonal entries in the
column t′. Notice that this is a comparison between the cost in (t′, t) where
the team owner is currently at and the other cost levels the team owner can
choose to incur. Once again, the team owner would choose the minimum and
continue this process until there is no deviation.

The inequalities specified in the proposition statement keep track of such
possible deviations. For instance, in case 1, since W11 is lower than other
entries in Row 1 and Column 1, the owner of team a decides to bribe player
b(1) and does not deviate to bribing other players. Similarly, consider case 2
where j = 2 and k = 3. Once again, the owner of team a decides to bribe
player b(1), in the amount of B1, but now, since W21 < W11 and W21 < W31,
the team owner would deviate to bribing player b(2). Though, the team owner
does not stop deviating: given that W12 < W21, she would further deviate
to bribing player b(1). Notice that the bribe amount decreases to B2

1. Since
W12 is lower than the other cost levels the team owner can choose to incur,
there is no further deviation. Finally, consider case 5 where j = 2 and k = 3.
Under these conditions, the owner of team a decides to bribe player b(3) at
first. When the other players anticipate such a bribe, they lower the amounts
of bribe they are willing to accept, and the team owner deviates to bribing
player b(2), in the amount of B3

2. But then, since such an action can also be
anticipated, the team owner further deviates to bribing player b(1), in the
amount of B2

1. The process stops here. The other cases follow similarly.
Finally, there is another condition to be checked. The minimum expected

total loss found by the above-described procedure should be less than or equal
to (p1p2 + p2p3 + p1p3− 2p1p2p3)V in order for the owner of team a to prefer
offering the respective amount to player b(1). That expression is the expected
loss of the team owner in case of no bribe, including team a’s probability of
losing the contest in parenthesis. If such an inequality is not satisfied, then
the best bribing option for the team owner does not have a sufficiently high
return, so that bribe does not occur. This completes the proof.
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Appendix B

In this Appendix, we analyze an alternative model where we allow the owner
of team a to offer bribe after battle 1 or battle 2 takes place, i.e., the team
owner can intervene at any period t after observing the state. For this analy-
sis, we first modify the original game tree provided in Figure 1, by extending
an additional branch out of every node. These additional nodes are drawn
in red as seen in Figure 6.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Team b wins Team b wins

Team a wins

Team a wins

Figure 6: The alternative model of multiple pairwise battles with bribing

The red branch coming out of (x, y) directly leads to (x, y+1), but rather
with different future expected payoffs. Performing backward induction, we
can also find that the vectors of winning probabilities attached to the red
branch coming out of (1,1) and (1,0) are both (1,0); the vector of winning
probabilities attached to the red branch coming out of (0,1) is (1 − p3, p3);
and the vector of winning probabilities attached to the red branch coming
out of (0,0) is (1− p2p3, p2p3).

We now solve for a generic case summarized in Figure 7. In case of no
bribe, if the generic battle t is won by a(t), the game proceeds rightwards,
and if otherwise, it proceeds upwards. If there occurs bribe, however, then
the red line is followed. Each possible future state is represented by a triple.
The first two components of a triple is the winning probabilities for team a
and team b starting from that node, respectively; and the third component
is the expected bribe to be given from that node onwards.
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(1− p, p,Bp)

(1− q, q, Bq)

(1− x, x, 0)

Figure 7: A generic case in the alternative model with bribing

Proposition 5. Consider the battle at the generic node given by Figure 7.
(i) Player b(t) is bribed if

pt ≥
(x− q)V −Bq

(p− q)V + Bp −Bq

. (5)

(ii) The bribe is non-negative, i.e., Bt ≥ 0, if

p2t ≥
x− q

p− q
. (6)

(iii) If there occurs bribe, then the winning probabilities and the expected
bribe at this node is

(1− x, x,max{0,Bt}).
In case there is no bribe, the same vector becomes

pt(1− p, p, Bp) + (1− pt)(1− q, q, Bq).

Proof. The expected payoff for player b(t) is (q + p2t (p− q))Vb(t) if there is no
bribe in this generic case. On the other hand, if she takes a bribe of B, then
her expected payoff would be xVb(t) + B. Thus, if she is to accept a bribe,
the following must hold:

(q + p2t (p− q))Vb(t) ≤ xVb(t) + B

(p2t (p− q) + q − x)Vb(t) ≤ B

Let Bt = (p2t (p − q) + q − x)Vb(t) be the minimal acceptable bribe for this
player. For the owner of team a, the expected payoff is

pt((1− p)V −Bp) + (1− pt)((1− q)V −Bq)
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if there is no bribe in this generic case. On the other hand, if she gives a
bribe of B in this case, then her expected payoff would be (1 − x)V − B.
Thus, if she is to offer bribe, the following must hold:

pt((1− p)V −Bp) + (1− pt)((1− q)V −Bq) ≤ (1− x)V −B

B ≤ pt((p− q)V + Bp −Bq)− ((x− q)V −Bq)

Let B̄ = pt((p− q)V +Bp−Bq)− ((x− q)V −Bq) be the maximum bribe the
team owner is willing to offer. Two conditions should be satisfied: Bt ≤ B̄
and 0 ≤ B̄. Thus, the bribing condition turns out to be

pt((p− q)V + Bp −Bq)− ((x− q)V −Bq) ≥ 0

which can also be written as

pt ≥
(x− q)V −Bq

(p− q)V + Bp −Bq

.

Moreover, if Bt ≤ 0, then b(t) would accept a bribe of 0; and otherwise, she
would accept a bribe of Bt. Thus the positivity condition is

Bt = (p2t (p− q) + q − x)V3 ≥ 0

which reduces to

p2t ≥
x− q

p− q
.

Finally, if there is no bribe at this generic node, then the winning probabilities
and the expected bribe at this node are given by

pt(1− p, p, Bp) + (1− pt)(1− q, q, Bq).

On the other hand, if some bribe occurs, then the same vector would be
(1− x, x,max{0,Bt}).

The following proposition completes the equilibrium analysis for the al-
ternative model of multiple pairwise battles with bribing.

Proposition 6. Consider the alternative model of multiple pairwise battles
with bribing given by Figure 6. In the equilibrium, depending on the model
parameters, any player in team b can be bribed by the owner of team a. If the
game arrives at node (1, 1) without any bribing, then player b(3) is definitely
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bribed an amount of V3p
2
3. If the game arrives at node (1, 0) without any

bribing, then player b(2) would definitely accept a bribe of 0. If node (0, 1) is
reached, however, there are three possibilities: (i) positive bribe: V2(p

2
2 − p3);

(ii) zero bribe; and (iii) no bribe. Finally, also at the starting node (0, 0),
there are three possibilities; though, in case player b(1) is bribed some positive
amount, it is now either V1p2(p

2
1 − p3) or V1p3(p

2
1 − p2).

Proof. The proof consists of characterizations of the equilibrium strategies
for all players in team b as well as the owner of team a. Simply put, we
perform backward induction and apply the observations in Proposition 5 to
each node in the alternative model of multiple pairwise battles with bribing.

⇒ At (1,1): Since the game definitely ends after this node, we know
that p = 1, q = 0, x = 0, and Bp = Bq = 0. The bribing condition is

p3 ≥ 0

i.e., the bribe is given for sure. We also find that B3 = V3p
2
3. Then, the

respective equilibrium values are (1, 0, V3p
2
3).

⇒ At (1,0): If the bribe will be given at node (1,1), team a wins the
contest independent of who wins the battle at this node (without bribe).
Accordingly, we know that p = 0, q = 0, x = 0, Bp = V3p

2
3, and Bq = 0. The

bribing condition is now
p2 ≥ 0

i.e., the bribe is given for sure. We also find that B2 = 0. Then, the respective
equilibrium values are (1, 0, 0).

⇒ At (0,1): The contest is won by team b if player b(2) wins at this node;
and it proceeds to node (1,1) if player a(2) wins at this node. Accordingly,
we know that p = 1, q = 0, x = p3, Bp = 0, and Bq = V3p

2
3. The bribing

condition is

p2 ≥
p3V − V3p

2
3

V − V3p23

and the bribe is positive only if

p22 ≥ p3.

Thus we have three separate cases:
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(i) If p2 ≥ p3V−V3p23
V−V3p23

and p22 ≥ p3, then bribe occurs in the amount of

V2(p
2
2 − p3) > 0. The respective equilibrium values are

(1− p3, p3, V2(p
2
2 − p3)).

(ii) If p2 ≥ p3V−V3p23
V−V3p23

and p22 < p3, then bribe occurs in the amount of 0.

The respective equilibrium values are

(1− p3, p3, 0).

(iii) If p2 <
p3V−V3p23
V−V3p23

, then there occurs no bribe. The respective equilib-

rium values are
(1− p2, p2, (1− p2)p

2
3V3).

⇒ At (0,0): For any of the three cases (i), (ii), and (iii) analyzed above,
we have x = p2p3 and (1− q, q, Bq) = (0, 1, 0). On the other hand, as shown
above, the triple (1− p, p, Bp) differs in each case.

(i) Suppose that (1− p, p, Bp) = (1− p3, p3, V2(p
2
2 − p3)). We know that

bribe occurs if

p1 ≥
V p2p3

V p3 + V2(p22 − p3)
,

and it would be positive only if p21 ≥ p2. Thus ...

(i.a) if p1 ≥ V p2p3
V p3+V2(p22−p3)

and p21 ≥ p2, then bribe occurs in the

amount of V1p3(p
2
1 − p2) > 0. The respective equilibrium values are

(1− p2p3, p2p3, V1p3(p
2
1 − p2)).

(i.b) if p1 ≥ V p2p3
V p3+V2(p22−p3)

and p21 < p2, then bribe occurs in the

amount of 0. The respective equilibrium values are

(1− p2p3, p2p3, 0).

(i.c) if p1 <
V p2p3

V p3+V2(p22−p3)
, then there occurs no bribe. The respective

equilibrium values are

(1− p1p3, p1p3, V2p1(p
2
2 − p3)).
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(ii) Suppose that (1 − p, p, Bp) = (1 − p3, p3, 0). We know that bribe
occurs if

p1 ≥
V p2p3
V p3

= p2,

and it would be positive only if p21 ≥ p2. Thus ...

(ii.a) if p1 ≥ p2 and p21 ≥ p2, then bribe occurs in the amount of
V1p3(p

2
1 − p2) > 0. The respective equilibrium values are

(1− p2p3, p2p3, V1p3(p
2
1 − p2)).

(ii.b) if p1 ≥ p2 and p21 < p2, then bribe occurs in the amount of 0.
The respective equilibrium values are

(1− p2p3, p2p3, 0).

(ii.c) if p1 < p2, then there occurs no bribe. The respective equilib-
rium values are

(1− p1p3, p1p3, 0).

(iii) Suppose that (1−p, p, Bp) = (1−p2, p2, (1−p2)p
2
3V3). We know that

bribe occurs if

p1 ≥
V p2p3

V p2 + (1− p2)p23V3

,

and it would be positive only if p21 ≥ p3. Thus ...

(iii.a) if p1 ≥ V p2p3
V p2+(1−p2)p23V3

and p21 ≥ p3, then bribe occurs in the

amount of V1p2(p
2
1 − p3) > 0. The respective equilibrium values are

(1− p2p3, p2p3, V1p2(p
2
1 − p3)).

(iii.b) if p1 ≥ V p2p3
V p2+(1−p2)p23V3

and p21 < p3, then bribe occurs in the

amount of 0. The respective equilibrium values are

(1− p2p3, p2p3, 0).

(iii.c) if p1 <
V p2p3

V p2+(1−p2)p23V3
, then there occurs no bribe. The respec-

tive equilibrium values are

(1− p1p2, p1p2, p1p
2
3(1− p2)V3).

The equilibrium analysis above verifies the results summarized in the
proposition statement. This completes the proof.
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