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Abstract 
 
Limiting global warming in line with the goals in the Paris Agreement will require substantial 
technological and behavioural transformations. This challenge drives many of the current 
modelling trends. This paper undertakes a review of 17 state-of-the-art recursive-dynamic 
computable general equilibrium (CGE) models and assesses the key methodologies and applied 
modules they use for representing sectoral energy and emission characteristics and dynamics. 
The purpose is to provide technical insight into recent advances in the modelling of current and 
future energy and abatement technologies and how they can be used to make baseline 
projections and scenarios 20-80 years ahead. In order to represent likely energy system 
transitions in the decades to come, modern CGE tools have learned from bottom-up studies. We 
distinguish between three different approaches to baseline quantification: (a) exploiting bottom-
up model characteristics to endogenize responses of technology investment and utilization, (b) 
relying on external information sources to feed the exogenous parameters and variables of the 
model, and (c) linking the model with more technology-rich, partial models to obtain bottom-up- 
and pathway-consistent parameters. 

JEL-Codes: C680, O130, O140, O180, Q430, Q540. 

Keywords: computable general equilibrium models, long-term economic projections, energy, 
technology change, emissions, greenhouse gases. 
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1. Introduction and background 

The world’s production, handling and use of energy have a strong bearing on 
the environment. Especially greenhouse gas (GHG) emissions, but also other 
polluting compounds, are regarded as major concerns on global, regional and 
local scales, as environmental impacts feed back on economic activity and well-
being. Limiting global warming to below 2°C, or even 1.5°C, compared with pre-
industrial level, in line with the goals in the Paris Agreement, will require 
substantial technological and behavioural transformations (International Panel 
on Climate Change, IPCC, 2018). By 2020, all parties are requested to prepare and 
submit mid-century strategies, in which these transformations should be 
reflected.1  

One important motivation for many of the recent developments in 
computable general equilibrium (CGE) models and projections has been to 
understand emissions, particularly GHG emissions, and to sketch possible 
transition pathways that can limit climate change. Abating energy-related GHG 
emissions also has potential environmental co-benefits in terms of limiting local 
and regional pollution. Among early CGE models adapted for these purposes 
was the GREEN model (Lee et al., 1994), developed and maintained by the 
Organisation for Economic Co-operation and Development (OECD).2 Since the 
1990s, the demand for CGE models as analytical tools has increased. Many of the 
modern CGE models are based on the core model structure from GREEN. 

The long time horizon for climate change impacts and technological change 
makes long-term projections and scenario studies of energy and emissions 
necessary. For that purpose, the main virtue of using global CGE models is that 
the interaction of energy supply, energy demand and emissions in various 
economic sectors and regions are placed in an economy-wide context. This 
enables the accounting of the indirect effects and interactions of policies and 
other economically relevant drivers across markets and across borders. An 
obvious example is that electrification taking place in several sectors with the 
aim of reducing GHG emissions from the combustion of fossil fuels will not have 
the desired abatement impact if the increase in power generation is based on 
fossil fuels. Another example is expansion of bioenergy, where the net GHG-
mitigating effects of replacing fossil fuels with bioenergy depend heavily on the 
specific feedstock used, regional productivity and production practices, as well 
as resulting land use change. Agriculture, forestry, and land use have become 
increasingly important components of energy and environment-focused CGE 
models as the expansion of bioenergy and other policies has tightened their 
linkages to the energy sector. CGE-based analysis is also able to identify emission 
                                                           
1 https://unfccc.int/process/the-paris-agreement/long-term-strategies 
2 For explanations of all the model names mentioned in this paper, please see Appendix 
B.  
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leakages and other transboundary impacts of domestic or regional mitigation 
efforts or other market trends.  

This paper provides an assessment of best practices in CGE modelling when it 
comes to methodologies and applied modules for representing emissions and 
their projected dynamics over time. We focus on recent developments in the 
modelling of the main energy-related sectors: fossil fuel extraction, power 
generation, transportation, energy-intensive manufacturing industry and 
buildings as well as the agriculture and forestry sectors. The review includes not 
only carbon dioxide (CO2) from combustion, but also other major sources of CO2 
and non-CO2 GHGs. As can be seen from Figure 1, which shows the 2010 
allocation of global GHG emissions by sector, agriculture and land use constitute 
significant shares. The majority of emissions from these sectors are not directly 
energy-related; they consist of methane (CH4) and nitrous oxide (N2O) emissions 
as well as changes in carbon sequestration in agricultural land and forestry. This 
paper covers these large GHG sources in a separate section, as they are linked to 
developments in the energy sector through their provision of feedstocks for 
bioenergy production.  

 
 

 

Figure 1. Global greenhouse gas emissions by sector, 2010 

Source: Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) 
http://www.fao.org/faostat/en/#data/EM 
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We undertake a review of 17 established recursive-dynamic CGE models.3 
The intention is to provide technical insight into recent modelling and 
quantification advances, assess their potential and shortcomings and explain 
trade-offs in the choice of methods. For instance, the approaches have different 
ambition levels for reconciling bottom-up and top-down, for representing 
physical energy characteristics and technological detail and for depicting 
transitional pathways.  

The review serves two main purposes. The first is to make the knowledge 
frontier of energy technology and emission projections more visible and 
available for modellers in the research and analysis communities. Sharing 
knowledge about state-of-the-art options helps modellers to make better choices 
in their modelling activities by learning from each other. Second, our assessment 
informs decision-makers and the interested audiences about the advantages and 
limitations of CGE-based analyses and current tools. CGE models and results are 
often perceived as black boxes, and there is a need for contributions like ours to 
document, explain and evaluate their features. 

Since the trends and options for behavioural and technological adjustments in 
the coming decades will tend to be sector-specific (though with feedback and 
indirect effects to other sectors), the challenges and practices of modelling and 
projecting developments look quite different from sector to sector. Therefore, 
after an sector-overarching overview in Section 2 that consolidates the main 
common findings across sectors, we go into sectoral detail in the subsequent 
sections: Sections 3 and 4 report on the main energy-supplying sectors (fossil fuel 
extraction and power generation), Sections 5, 6, and 7 address the main energy-
consuming sectors (transport, manufacturing industries and buildings), while 
projection methods for agriculture and forestry are reviewed in Section 8.  

For each of the sectors, we start by surveying general current and future 
trends in energy technologies, behaviour and abatement options that state-of-the-
art models should capture for use in projections. After introducing the current 
default characteristics of the specific sector, we visit the most advanced 
approaches. Baseline projections need to represent plausible energy-system and 
technological transitions in the decades to come. Hence, for each sector, this 
assessment starts by examining recent model modifications aimed at improving 
the description of plausible energy and emission developments. It then proceeds 
by discussing challenges involved in using the models for projecting long-run 
baselines and other scenarios. Baselines in this sense are business-as-usual (BAU) 
projections, i.e., assuming policies already decided upon but allowing for other 
structural changes in the economic system. We discuss the implications for base 

                                                           
3 The models included are ADAGE, AIM/CGE, DART, DART-BIO, EC-MSMR, EC-PRO, 
ENVISAGE, ENV-LINKAGES, EPPA, GEM-E3, IMACLIM-R, MAGNET, REMIND, 
SNOW, TEA, WEGDYN, WEGDYN_AT; see also Appendix B and Acknowledgements.  
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year calibration and the need for and availability of data for parameter 
quantifications along baselines stretching 20 to 100 years forward in time.  

Many current and future energy- and/or emission-relevant trends, topics and 
challenges that are not within the scope of this assessment will be briefly visited 
in Section 9. Section 10.  

2. Overview of main findings 

2.1 State of the art  

Recent advances in modelling, computerization, linking and quantification 
procedures have facilitated more effective baselining routines in the CGE 
community. They have ensured a better informed and more consistent 
understanding of how energy markets, land use and emissions can plausibly 
change in response to political and economic conditions ahead. The observed 
trends within energy markets and land use are to a large extent driven by climate 
policies and novel technological solutions in the fields of abatement and energy 
efficiency as well as in more generic technologies like artificial intelligence and 
digitization. 

Introducing technological detail has improved CGE modelling. Krey et al. 
(2018) highlight the importance of transparency for techno-economic parameters 
and technology representation. A move towards hybrid modelling (Böhringer, 
1998; Hourcade et al., 2006) brings CGE models one step closer to more detailed, 
engineering-based, bottom-up models, enabling modellers to use the best of both 
modelling worlds:  the comprehensiveness of CGE models, and the technological 
detail of bottom-up models. This approach is well on its way to becoming the 
mainstream option.  

Basically, baseline projections rely on three different methodologies – 
typically in combination – for representing and quantifying energy and 
emissions developments: (a) exploiting novel model characteristics designed for 
integrating technological bottom-up features and endogenizing the responses of 
investment and utilization of technologies to costs, prices and restrictions, (b) 
relying on external information sources to feed the exogenous parameters and 
variables of the model and (c) linking the model to more technology-rich, partial 
equilibrium (PE) models in order to provide pathway-consistent values for the 
parameters and variables.    

Best practices will, generally, depend on the purpose of the projections and 
what input and output are regarded as most important for a given application. 
CGE baseline projections are used to present consistent information about the 
future impacts of policies that are currently in place or that have been approved 
and will come into effect during the projection in interplay with expected trends. 
In a macroeconomic overview of long-term trends, the level of abstraction can be 
relatively high and energy goods and technologies fairly aggregated. If sectoral 
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energy and emissions information are sought, more specific representations are 
needed. In particular, the purpose of constructing baselines is often that they 
serve as reference paths for analysis of alternative assumptions about energy and 
emissions policies and emerging technologies. This will call for more refined and 
detailed representations of technological mechanisms and how emissions 
respond endogenously to the altered drivers. The reference path must then 
reflect details accordingly. In the most advanced models used for such analysis, 
specific technologies are modelled directly to mimic bottom-up information from 
PE models or other expert knowledge. Linking procedures between CGE and PE 
models will also benefit from comparable levels of detail.   

When constructing the baseline, it often proves challenging to rely solely on 
the model’s own mechanisms. This requires well-tuned endogenous price and 
cost movements which, in their turn, drive energy- and emission-related 
activities. It is a complex task to feed in combinations of inputs capable of 
reproducing outcomes consistent with the bottom-up information on which they 
are based. A common and pragmatic solution is to rely less on endogenous 
model mechanisms in baseline construction and more on exogenous inputs, 
while full use of endogenous, bottom-up-informed emulations is left for policy 
shift analysis.  

2.2 Modelling technology and behaviour 

When projecting technological and behavioural change, the default practice 
includes a mixture of endogenous substitution of other production factors and 
consumer goods for energy, induced changes in the energy mix, as well as 
assumed autonomous total factor productivity (TFP) growth and factor-specific 
productivity progress, including autonomous energy efficiency improvement 
(AEEI). These autonomous parameters are typically calibrated to target some of 
the main expected trends in the production, trade and use of energy indicated by 
existing bottom-up projections. 

Typically, the technological representation of production in CGE models takes 
the form of a multi-level constant elasticity of substitution (CES) function (or 
Leontief functions without substitutability); see example in Figure 2. Default 
modelling of household behaviour often relies on the linear expenditure system 
(LES) or CES; see Figure 7 for a typical structure. Other options are the extended 
linear expenditure system (ELES) and constant-differences-in-elasticities (CDE), 
which give the possibility to depart from an income elasticity of 1, an assumption 
that does not match well with the evidence (Lanz and Rutherford, 2016).  

CO2 from combustion is represented in all models used for climate policy 
studies and emission projections. CO2 is linked in fixed proportions to the use of 
fossil fuels. If other Kyoto energy-related GHGs are included, they are also 
linked with base-year coefficients of energy use. Kyoto GHGs include CH4, N2O, 
sulphur hexafluoride (SF6), perfluorinated compounds (PFCs), hydrofluoro-
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carbons (HFCs) and nitrious fluoride (NF3). Representations of emissions from 
non-energy-related processes are scarcer. When included, they are typically 
linked to output, resources or capital use.  

The recent progress within modelling differs from sector to sector, but some 
common features are evident. First and foremost, the technology representations 
have become more detailed. Extraction processes for fossil fuels and novel 
renewable, intermittent sources of electricity generation have driven this 
progress. More recently, emerging transportation options have been included 
and some models have refined the details of manufacturing processes. 

Such disaggregation lightens the task of linking CGE models with bottom-up 
models like energy system models, land use models and transport models. With 
a view to using bottom-up information or linking CGE and PE models, physical 
accounts have been harmonized with monetary accounts and included in the 
CGE models. This also facilitates a better link between energy/resources, energy 
services and resource and emission flows.  

In order to capture endogenous technological growth other than energy 
efficiency or energy mix changes, a few models have included induced 
technological change, usually in the form of learning-by-doing curves. Another 
“semi-endogenous” solution is to split capital use into industry-specific extant 
capital and new capital. In contrast to the default approach, where investment in 
current and new technologies takes place smoothly, such vintage modelling 
captures a more realistic transition where it takes time to build and phase out 
technologies. Capital that is implemented contemporaneously is new and may be 
more productive and/or flexible than already installed capital. While new capital 
is fully malleable across sectors, and derived from an economy-wide investment 
function, old capital is assumed to be only partially mobile across sectors, 
reflecting differences in the marketability of capital goods across sectors.  

Finally, some models represent technological progress within emission 
abatement by including marginal abatement cost (MAC) curves that allow for 
endogenous emission coefficients and investment costs. By adding realistic 
future abatement options and their associated economic costs to the model, 
agents will have a wider range of possibilities than traditional CGE models 
permit. This method can be applied on a sectoral basis and is particularly 
suitable for process emissions, for instance in manufacturing industries, fossil 
fuel extraction and agriculture. Harmsen et al. (2019), for example, provide a 
systematic review of sources of non-CO2 emissions and the methodological steps 
involved in constructing source-specific, non-CO2 MAC curves. Their estimates 
reflect baseline correction and barriers to implementation extending beyond the 
technical feasibility of adopting abatement technologies. This review is a 
valuable novel tool for including non-CO2 emissions and abatement options in 
CGE models. Complementing these methodological advances, recent work 
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illustrates how detailed bottom-up information on discrete abatement options 
can be integrated and preserved in a CGE model (Weitzel et al., 2019a). 

2.3 Calibration in the base year and the baseline 

The social accounts matrices (SAM) provide the basic structure of 
technologies in the form of base-year cost shares. Lately, emerging energy 
technologies and goods have inspired the formation and launching of more 
detailed input-output databases, with the Global Trade Analysis Project, GTAP-
Power Data Base (Peters, 2016) as a clear example. Elasticities of substitution are 
also available in the GTAP Data Base (Aguiar et al., 2016; Aguiar et al., 2019) at 
sectoral and regional levels. At even more detailed levels, data may need to be 
collected from various sources. Frequent sources are bottom-up models, other 
detailed bottom-up studies or stakeholder and expert knowledge. Along with the 
emergence of new trends and markets, the increasing possibilities offered by 
data processing and sharing are promising. 

As mentioned above, linking procedures call for keeping track not only of 
monetary flows, but also of physical flows in the CGE model. One challenge is 
that the commonly used CES or constant elasticity of transformation (CET) 
functions do not preserve additivity, which implies that the sum of physical 
quantities (e.g. kilowatt hours generated by specific technologies) may not match 
the total as given by the partial equilibrium energy model. Van der Mensbrugghe 
and Peters (2016) propose a solution for using CES or CET functions that 
preserves volumes but acknowledge that more work needs to be done to assess 
the implications of these alternative specifications on model outcomes under a 
variety of policies.  

Input-output data on physical energy pave the way for assigning physical 
emission units to combustion of energy. Data on energy prices and on fuel 
qualities are needed for good physical calibration. Another data-related 
challenge is that monetary input-output values in SAMs provide information 
only on marketed energy transactions. Emission data often come from national 
emission inventories, which may include emissions other than those accruing 
from fuel consumption according to SAMs. The GTAP Data Base has made the 
alignment task significantly easier by including energy balances in physical units 
(million tonnes of oil equivalent, Mtoe).  

Emissions of energy-related CO2 are accessible in several databases and also 
linked to energy use by means of the physical carbon content of fuels, e.g., in the 
GTAP Data Base. An alternative is to use the ratio of base-year emissions to base-
year energy. This provides average emission coefficients, i.e., less specific 
information.  

Emission Database for Global Atmospheric Research (EDGAR) is a rich source 
of emission data. Currently, the GTAP Data Base is also incorporating local air 
pollutants as well as non-CO2 GHGs and how they are linked to economic 
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activity. Once the data alignment and calibration of the model for the base year 
are complete, forward projection of the model is performed for the next 2 to 10 
decades (typically). Usually, a mixed approach is used that partly relies on the 
model mechanisms (approach (a) – see section 2.1) and partly calibrates 
productivity parameters to target certain output values (approach (b)). These 
values are chosen from other bottom-up projections, typically from the 
International Energy Agency (IEA)’s World Energy Outlooks (WEO) the OECD’s 
Economic Outlooks, the Joint Research Centre (JRC)’s GHG and energy balances in 
Global Energy and Climate Outlooks (GECO) of and Annual Energy Outlooks from 
the Energy Information Administration (EIA), or from common scenarios such as 
the Shared Socioeconomic Pathways (SSPs); see O’Neill et al. (2014).4  

One example of a baseline calibration is documented in the recently published 
OECD (2019). It includes projections to 2060 of GHG emissions with a focus on 
environmental impacts of materials use in the coming decades. The exercise 
relies on the ENV-LINKAGES model (see Appendix B).  

The model has been carefully calibrated to reflect plausible developments of 
macroeconomic drivers, industrial patterns and technological changes up to 
2060. The model reproduces several trends and information from different other 
Directorates at the OECD (including IEA) as well as from other projections. For 
instance, the GDP projections are based on the official projections of the OECD’s 
Economics Department. Efforts are undertaken also to calibrate the changes that 
take place over time in the structure of the economy. Electricity power generation 
is split into different technologies in the model, including three using fossil fuels, 
four renewable sectors including hydropower, and nuclear power. Anticipated 
trends in power technologies and demand are reproduced by adapting the CES 
coefficients of the power-bundle nest. Electricity and other energy demand are 
calibrated in line with the IEA’s Current policies scenario in the World Energy 
Outlook (WEO, 2017) by means of TFP adjustments.  

The calibration to the WEO’s energy trends, means that the ENV-LINKAGES 
baseline accounts, inter alia, for expected trends in energy efficiency 
improvements, investment in electrification infrastructures particularly 
anticipated in emerging economies, and demand impacts from anticipated deep 
structural changes in the economies. 

The baseline projections are available on a dedicated online data visualization 
website: http://www.icio.oecd.org:3838/GMRO2018/. This website includes 
projections of economic variables (GDP, consumption, employment), as well as 
projections of greenhouse gas emissions. It also includes projections of fossil 
fuels and outputs of key sectors (including agriculture, services, energy, 

                                                           
4 See https://www.iea.org/weo/; http://www.oecd.org/eco/outlook/economic-
outlook/  ; https://ec.europa.eu/jrc/en/geco; https://www.eia.gov/outlooks/aeo/. 

http://www.icio.oecd.org:3838/GMRO2018/
https://www.iea.org/weo/
http://www.oecd.org/eco/outlook/economic-outlook/
http://www.oecd.org/eco/outlook/economic-outlook/
https://ec.europa.eu/jrc/en/geco
https://www.eia.gov/outlooks/aeo/
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construction and utilities). These results are available at the global and regional 
level. 

Preference features like substitution and income elasticities are customarily 
perceived as fundamental and stable. However, sometimes behavioural 
parameters are also calibrated along the baseline, if they are expected to change 
over time along with technological options and societal norms. In such cases, 
estimations based on past observations may be less reliable than subjective 
estimates given by experts in the field/sector. Since such information is by 
nature subjective and scarce, this approach calls for caution and should be 
accompanied with sensitivity testing.  

There are some caveats related to targeting external output values and 
calibrating model parameters that fit exogenous data. First, we often aim to 
target many output values, at the macro, sector and specific technology levels. 
Adjusting several parameters affecting many output variables can be a 
demanding task. Some technical solutions have been developed to facilitate this 
process. Jin et al. (2019), for instance, formalize the calibration procedure by 
using the maximum a posteriori probability estimation from Bayesian statistics. 
Another approach is described by Weitzel et al. (2019b), building on an iterative 
procedure with good convergence properties towards the exogenous targeted 
energy quantities. 

An additional, and related, calibration challenge arises from the fact that some 
of the specified activities have very small shares in the base year. Functional 
forms like CES will not be able to endogenously produce plausibly large quantity 
changes by adjusting technological parameters and market trends. The cost 
shares in the base year, along with the nesting structure and elasticities of factor 
demand, dictate the main patterns of households’ and firms’ consumption 
choices even for future periods. It is even more challenging if the technologies 
that are expected to appear are absent in the base year. One approach to 
representing changes in technologies and preferences is to manipulate the base 
year shares to be higher than factual data suggest. A difficulty is then how to 
sum up the input-output matrices, i.e. where to reduce resource use elsewhere in 
order to inflate the shares of still insignificant but emerging technologies. A 
second approach would be to include new technologies at higher costs than 
conventional technologies in the model in a mixed complementarity formulation. 
This solution is proposed by Böhringer (1998) to integrate a detailed bottom-up 
representation of energy sectors and applied for instance by Weitzel et al. (2019a) 
to include bottom-up information on (the marginal costs of) abatement 
technologies. The advantage is that the technologies are not necessarily 
operational in the base year, but they can be deployed endogenously when prices 
change. 

There are also techniques for updating input-output tables for future periods, 
flexibly inserting expected technological changes. Calibrating a CGE model to a 
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projected time series of input-output tables is an approach that is pioneered by 
the GEM-E3 model, as described in Wojtowicz et al. (2019). The advantage of the 
procedure is that internally consistent futures based on transparent assumptions 
can be obtained. Furthermore, the resulting input-output database can be 
utilized across models and scrutinized by others. This approach, named 
PIRAMID, operates as a platform for integrating data and projections. As with all 
projection approaches, the data can come from various sources.5  

Linking the CGE model with bottom-up models, i.e., resorting to the approach 
(c) described above, is a well-proven procedure for strengthening consistency 
across projected data and parameters. Table 1 shows the procedure exemplified 
by linking the CGE model TEA with the energy model COFFEE. Both models 
rely on the same exogenous population and GDP projections. After its first run, 
TEA key outputs on sectoral production and private consumption (blue bold 
text) serve as key inputs to COFFEE – in terms of generated energy service 
demands (blue bold text). In the second step, COFFEE runs and sends TEA 
information about the power generation mix and energy supply, which is 
translated into exogenous trends on energy efficiency, emissions and technical 
progress for the TEA model (black bold text) in its next run. For details, see 
Delzeit et al. (2020). 

Table 1. Linking procedure for the TEA and COFFEE models. 

 
TEA (CGE model) COFFEE (Energy model) 

Focus on Monetary flows 
(values and indices) 

Physical flows 
(quantities and prices) 

Common 
driversa 

Population projection 
GDP projection 

Key inputsb 
Energy efficiency 
Emissions trends 

Technical progress 

Energy service demands 
Mobility demands 
Materials demands 

Technology costs and efficiencies 

Key outputsb 

Sectoral production 
Private consumption 

Relative prices 
Indexes: trade, investments 

Energy supply 
Power generation mix 

Energy investment profile 

Notes: a For instance, SSP2 – Middle of the Road or other narratives and macroeconomic projection 
sources. b Information flows from COFFEE to TEA (in black bold text) and from TEA to COFFEE (in 
blue bold text). 

Source: Authors’ own elaboration. 

  

 

                                                           
5 PIRAMID = Platform to Integrate, Reconcile and Align Model-based Input-output Data 
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The following sections go more into detail on the different practices and 
approaches at sector level.  

 

3. Fossil fuel extraction  

3.1 General trends in the sector’s energy and emission characteristics 

The fossil fuel sector relies on natural resources, of which there is a fixed 
supply. The cost of extracting fossil fuels, namely coal oil and gas, rises as they 
become depleted. The extraction processes in this sector have been undergoing 
massive technological innovation over the past few decades. For example, the 
development of hydraulic fracturing (fracking) and horizontal drilling 
technologies has increased access to tight oil and shale gas resources and led to 
increased supplies of these fuels, not least in the U.S., in recent years. Similarly, 
in Canada the development of oil sands has escalated in pace with commercially 
viable technologies and high oil prices. In Brazil, the pre-salt belt has some of the 
highest drilling success rates globally and, if effectively exploited, could double 
Brazil’s oil reserves (Empresa de Pesquisa Energética, 2017).  

However, despite a North American oil boom, non-OPEC crude oil 
production is approximately constant because new production roughly balances 
existing oil field decline, which allows OPEC to control the overall global oil 
supply, and hence oil pricing, owing to their spare production capacity (Cavallo, 
2016). Arezki et al. (2017) find that tight oil production is more responsive to 
prices than conventional oil. WEO 2018 reveals that while there is a historic shift 
in energy consumption to Asia, there are mixed signals on the pace and direction 
of change. Demand for natural gas continues to rise due to a period of renewed 
uncertainty and volatility in oil markets, halting talk of a glut as China emerges 
as a giant consumer. Coal demand is projected to decline globally over the next 
few decades as a result of increased competition from gas and renewables. 

The future of this sector will be significantly affected by the climate change 
policies expected by various nations as well as by technological innovations that 
will take place within extraction and alternative technologies. The application of 
artificial intelligence and digital data in this sector is expected to help reduce 
costs and thus offer good future prospects (Slav, 2018). Although most countries 
have committed to increasing the share of renewable energy generation, the 
production of fossil fuels will continue to increase for decades (see WEO 2018 
and GECO 2018). The pace of energy efficiency improvements and of 
electrification in end-uses like heating, transportation and production processes, 
the energy mix in the power industry, and the extraction sector’s own innovation 
and adaptation of abatement technologies, will be decisive for the future outlook 
of the fossil fuel industry. Negative emission technologies such as direct air 
capture could bring good prospects for this sector even in a carbon-constrained 
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world.6 In general, however, it is expected that energy consumption will undergo 
fundamental changes: consumption of fossil fuel, coal in particular, will be 
dramatically reduced.  

3.2 Modelling technology and behaviour 

In CGE models, the extraction sectors are, typically, represented as a multi-
level nested Leontief or CES function with very low elasticity of substitution 
(Figure 2). The functional form at different nest levels may vary slightly across 
models. In contrast to other sectors, a sector-specific resource (RES) is usually 
represented at the top level; see Figure 2. It trades off with a composite consisting 
of labour, capital, energy and other material inputs. At the lowest level, a 
composite energy bundle is usually represented as a Leontief function of coal, oil 
and natural gas used to produce energy to extract natural resources. Emissions 
are usually linked to the use of coal, oil and gas at this level. 
 

 

                                                           
6 For a review of literature on negative emission technologies, see Minx et al. (2018). 
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Figure 2. Typical representation of coal, crude oil or natural gas extraction sector 

This modelling of a fixed proven resource implies resource depletion over 
time. This aspect is well represented in the EPPA model. In a recursive-dynamic 
structure, resource owners do not have perfect foresight. Production in any 
period is subject to dynamic processes that add reserves from resources and 
deplete reserves and resources. These features allocate the available resource 
over time while creating resource rents. The model has estimates of the current 
rents that are conventionally attributed to three sources: Hotelling, Ricardian, 
and monopoly (Babiker et al., 2008). The model does not explicitly identify the 
underlying reason for the rents. The reserve-proving and energy production 
processes in the model restrict the rate of development and thus create persistent 
rents.  

The resource grade structure with varying quality is reflected by the elasticity 
of substitution between the resource and the capital-labour-materials bundle in 
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the production function. Elasticities of substitution were chosen that would 
generate elasticities of supply that matched the fitted value in the respective 
supply curves. Production in any one period is limited by substitution and the 
value share of the resource, i.e., the technical coefficient of the fixed factor in the 
energy sector production functions.  Over time, energy resources R in sector e are 
subject to depletion due to physical production of fuel F in the previous period.  
In period t: 

             Re,t = Re, t-1 -  Fe, t-1                                            (3.1) 

This specification implies that fluctuations in market prices are 
accommodated by sector-specific resource rents. In the longer run, the effect is to 
squeeze out rents and if any production remains it is still priced at long-run 
marginal cost. The price drop is therefore limited by the resource rents, and with 
gradual exhaustion of high rent and low-cost fuels, the underlying marginal cost 
tends to rise. The importance of resource rents can be illustrated by examining 
the effects of rents on oil and coal prices. Since oil has significant resource rents, 
and coal has relatively low rents, coal production falls more than oil production 
in response to a drop in market prices. A description of modelling of these 
mechanisms in the EPPA model is provided in Babiker et al. (2001), Chan et al. 
(2012), Paltsev et al. (2011), Paltsev (2012) and Chen et al. (2016). 

 

3.2.1 Multiple technologies 

While most models do not distinguish between different production 
technologies within fossil fuel extraction, a few models incorporate more detailed 
technology structures. In Figure 3 we represent crude oil production by 
technology as in the EC-PRO model of Environment and Climate Change 
Canada (ECCC).7 The crude oil production is disaggregated into seven 
technologies. First, crude-oil subsectors produce conventional, synthetic or 
bitumen crude. Conventional and synthetic crude are treated as imperfect 
substitutes in the domestic market. Supply response by each technology is 
controlled by a specific resource (lmin, hmin and fmin for conventional and sagd, 
csss, snds and pnds for non-conventional; see explanation in Figure 3).  The 
value share and substitution elasticity with variable inputs determine the price 
elasticity of supply. The oil refining sector and the coal and natural gas 
processing sectors use the same nesting structure as manufacturing sectors, i.e., 
they do not have resource factors.  
 

                                                           
7 ECCC also operates a global CGE model (EC-MSMR) with a similar structure.  
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Figure 3. Crude oil production extraction and exports in EC-PRO model 

Note: lmin = light oil mining, hmin = heavy oil mining, fmin = frontier oil mining, sagd = steam 
assisted gravity drainage, csss = cyclic steam stimulation oil sands, snds = oil sands mining 
(surface), psnd = primary oil sands (in situ), sndu = oil sands upgraders, etrn= elasticity of 
transformation, esub_cru = elasticity of substitution across crude oil types, esubx = elasticity of 
substitution (supply response).  

The EPPA model represents conventional and backstop fuel production, such 
as coal gasification and shale (tight) oil, separately. In addition, renewable 
biomass liquids are included as a backstop technology; see 3.2.2. Other models 
with detailed technology representations are ADAGE, AIM/CGE, MAGNET, 
TEA and IMACLIM-R.  

The novelty of the IMACLIM-R model is that, along with bottom-up details, it 
explicitly includes depletion and monopolistic behaviour (in the Middle East). 
Also unlike the previously mentioned models, CES structures are not used. 
Inputs are required in fixed proportions irrespective of changes in the relative 
prices of factors. The model endogenously determines relative prices, physical 
outputs, demand and the amount of savings in a consistent way and also allows 
for short-term constraints.  

The price is determined by a Leontief function for each region with fixed 
intermediate inputs and labour intensity. Equilibrium prices are influenced by a 
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fixed mark-up and decreasing marginal returns on production for each unit of 
installed productive capital. Based on price signals, the oil and gas bottom-up 
modules move the technical frontier between two annual equilibria by adjusting 
the mark-up and production capacities. 

The oil bottom-up modules of IMACLIM-R feature seven categories of 
conventional and five categories of non-conventional oil resources for each 
region, and specify threshold selling prices at which investments in production 
units are made. The maximum rate of increase in production capacity for an oil 
category reflects prices as well as geological constraints and has a bell-shaped 
profile, depending on the endogenous amount of oil remaining in the field. The 
function describing this maximum growth rate is calibrated as in Rehrl and 
Friedrich (2006).8 

The production capacity at date t is given by the sum over all oil categories 
and regions. Non-Middle East producers are seen as price takers who do not act 
strategically on oil markets. Each time an oil category is profitable, they invest in 
new production capacity given the specific constraint described above. Middle 
Eastern producers are ’swing producers’, meaning they adjust their production 
level so as to apply their market power, owing to their low production costs and 
fluctuation in the rest of the world’s conventional discoveries (Gülen, 1996). As 
long as they have not reached depletion, they strategically determine their level 
of investment in order to control oil prices through the payload of their 
production capacities (Kaufmann et al., 2004). This specific representation allows 
studies of different market power strategies by the Middle East (see, for example, 
Waisman et al., 2012b and Waisman et al., 2013b). 

The gas bottom-up module in IMACLIM-R ensures that the evolution of 
worldwide natural gas production capacities keeps pace with growing demand 
until available reserves enter a depletion period. The distribution of regional 
production capacities in the ‘gas supply’ dynamic module is represented by a 
logit function which captures both reserve availability and the capacity of 
regional production facilities, using exogenous weights calibrated on the output 
of the POLES-JRC energy model (LEPII-EPE and ENERDATA s.a.s., 2009). Gas 
markets follow oil markets with an elasticity of 0.68 of gas price to oil price. This 
phenomenon is calibrated on the World Energy Model (see WEO 2007) and holds 
as long as oil prices remain lower than a threshold poil/gas.  

 

 

 
                                                           
8 Rehrl and Friedrich (2006) combine the discovery processes (Uhler, 1976) and the 
“mineral economy” of Reynolds (1999) to model oil production with an endogenous bell-
shaped profile. 
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3.2.2 Inclusion of renewable fuels  

As already mentioned, one component of the backstop fuels in EPPA consists 
of biomass liquids (together with coal gasification and shale (tight) oil). ADAGE 
introduces eight types of first-generation biofuels and five types of second-
generation biofuels. EC-MSMR features backstop representation of hydrogen, 
biofuels and renewable natural gas. ENVISAGE endogenously brings in new 
energy commodities such as biofuels that could penetrate under policy scenarios, 
but this is not allowed for in the baseline scenario. In most models the bottom-
up-informed emulations are left for policy shift analysis, particularly where 
changes in surrounding conditions are usually more limited.  An interesting 
contribution is found in the MAGNET model, which represents endogenous 
research and development (R&D) in biofuels (ethanol, biodiesel, 1st and 2nd 
generation) thereby implying reduced costs along with profit-induced R&D 
activity (Philippidis et al., 2018).   

 

3.2.3 Emissions and abatement modelling 

Extraction of oil and gas and mining activities are major sources of CO2 
emissions as well as significant producers of non-CO2 emissions. As is the case 
for other sectors, most models represent the combustion-related emissions in 
fixed proportions of energy use, and abatement takes place by means of energy 
efficiency improvements and changes in the energy mix. For process related 
emissions in the sector, particularly of non-CO2 GHGs, EC-MSMR adapts a 
simple procedure whereby estimates of abatement potentials of non-CO2 
emissions at various technological costs are directly integrated into the model by 
means of an activity analysis approach which is similar to that described in 
Böhringer and Rutherford (2009). See also Harmsen et al. (2019) for a systematic, 
empirical review of non-CO2 MAC curve estimations and Ghosh et al. (2012) for 
the EC-MSMR procedures. Sector-level MAC curve at county/regional level are 
available from the United States’ Environmental Protection Agency, US EPA 
(2006, 2013).  

A related procedure is used for including abatement costs in the extraction 
sector in the model version of SNOW calibrated to the Norwegian economy.9 The 
lion’s share of emissions from Norwegian offshore petroleum extraction is 
modelled as process emissions from a variety of activities, the most important 
being flaring and leakage under transportation and combustion. Abatement 
options include the use of carbon capture and storage (CCS), energy-saving and 
leakage-reducing investment and electrification. These are inserted into the 
SNOW model by quantifying a marginal abatement cost function linking the 
                                                           
9 The original module was introduced in SNOW’s predecessor MSG-TECH (Fæhn and 
Isaksen, 2016). 
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costs of marginal abatement measures to accumulated abatement potentials. The 
emission intensity is endogenized as a function of the installation and 
deployment of abatement technologies. To account for the abatement costs, TFP 
is also endogenized. The higher the abatement costs, the more resources in terms 
of production factors are needed per output, i.e., the lower TFP is. This 
modelling ensures that the actual resource costs of technological abatement are 
captured, while avoiding the need to insert a new activity in the input-output 
system. The latter would require recalibration of the model, which complicates 
updating to new base years, the inclusion of more abatement industries, or novel 
technological information. Note, however, that the solution implies that 
abatement costs implicitly assume the same factor mix as output.  

 

3.3 Calibration in the base year and the baseline 

3.3.1 Base year calibration 

The detailed representation of fossil fuel extraction in the models EC-PRO, 
ADAGE, AIM/CGE, MAGNET, TEA, EPPA and IMACLIM-R require data 
additional to those typically included in national SAMs. Some make use of more 
detailed, energy models; e.g. AIM/CGE and TEA (see Section 2). The sources of 
elasticity values are typically available empirical studies, and some are available 
in the GTAP Data Base. For EPPA, for example, supply curves for natural gas 
were updated as reported in Paltsev et al. (2011), while supply curves for oil 
were updated as reported in Chan et al. (2012). Another approach is chosen in 
ECCC’s EC-PRO model, where substitution elasticities are estimated from 
simulations of a detailed energy technology model called E3MC. Simulations are 
undertaken for large number of energy price scenarios (for coal, oil, gas, 
electricity) scenarios and the results are used to estimate the elasticities. The 
advantage of this approach is that foreseeable technological progress that is 
usually captured well in energy models is fed into the CGE model through the 
values of the elasticity parameters. 

While the input-output tables provide data on basic technology, the 
characteristics of production (and consumption), technology are usually 
described in terms of the values of marketed transactions (inputs and outputs) in 
money-metric terms. These often deviate from emission data from countries’ 
emission inventory systems, which may contain emissions from non-marketed 
energy consumption. Unless these inconsistences in emissions and energy data 
are addressed, the computed impacts of market interventions such as carbon 
pricing may be misleading. This inconsistency applies to all energy-consuming 
and combusting sectors, including the extraction sector. See also Section 2.3.  
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3.3.2 Baseline projections  

The usual procedure for projecting technological change in CGE models is to 
augment total factor productivity and/or individual factor productivity 
parameters – cf. Section 2.3 for more details. To illustrate the effect on demand 
for fossil fuels of adjusting productivity parameters, Figure 4 shows the results of 
comparing two simulated baselines by means of the ENV-LINKAGES model – 
one naïve baseline with no adjustments and one ordinary baseline, which is 
expert-based, i.e., demand for energy is fully calibrated in line with the IEA’s 
Current policies scenario in the WEO 2017 report – see also Section 2.3.  

 
Figure 4. Primary Energy demand (Mtoe) 

Source: OECD ENV-LINKAGES model; OECD (2019) 

 

In both OECD and non-OECD countries, by 2050 the naïve baseline reveals 
much higher demand for energy, in general, and fossil fuels, in particular, than 
the WEO-based baseline. The latter accounts, inter alia, for expected trends in 
energy efficiency improvements, investment in infrastructures and structural 
changes towards higher shares of service sectors.  

CGE models are often unable to provide further levels of disaggregation in 
terms of fuel- and technology-specific energy demand. Only models including 
hybrid modules, as described in Section 3.2, can project technology 
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developments more explicitly. At this level of detail, expert knowledge is 
commonly used to track expected trends. One of the used solutions is to link 
with PE models.  

For example, the EC-PRO model for Canada soft-links with the E3MC model 
for projecting oil and gas supply by technology characteristics. The E3MC 
projection incorporates the potential impacts of existing policies and measures 
already implemented by federal, provincial and territorial governments. It is also 
aligned with Canada’s historical emissions. The TEA model links its energy 
intensity to simulated values from the COFFEE energy model in a way that does 
not modify the general equilibrium effects. In each time-step, the energy 
efficiency parameter in the oil and gas sectors changes endogenously until the 
ratio between total energy consumption (in physical units) and total production 
(in monetary units) is equal in both models. In this manner, parameters that are 
normally exogenous now become endogenous, introducing energy efficiency, 
technical improvement and/or behavioural change into the model. In both 
models, fossil fuel quantities are also developed in physical units, as are natural 
fossil fuel endowments, by taking account of efficiency improvements and 
resource depletion. 

4 Power generation  

4.1 General trends in the sector’s energy and emission characteristics 

Emissions from the electricity generation sector are a key source of global 
warming and air pollution worldwide. Over the last decade, however, the cost of 
renewables, particularly solar energy, has fallen substantially. Similarly, global 
investment in the power system is transitioning from fossil fuels to renewables. 
While total investment in fossil fuels and renewables was at comparable levels 
about ten years ago, global investment in renewables has recently reached a level 
that is more than double the investment in fossil fuel-based electricity generation 
(WEO, 2018). 

Based on recent trends, three important evolutions can be anticipated for the 
decades ahead. Figure 5 illustrates the evolution of electricity consumption and 
technology mix over the course of the century, according to the baseline 
projections in the IPCC's Fifth Assessment Report Database 
(https://tntcat.iiasa.ac.at/AR5DB). First, rising incomes and improved access to 
energy will contribute to an increase in electricity consumption per capita of 
roughly 50-75% (25th-75th percentile) in the course of the period 2020-2050, with 
levels in 2100 that are twice or three times those in 2020. Second, the share of 
electricity in the overall energy mix is expected to increase. Third, these baseline 
projections indicate that electricity generation will imply approximately 8-24% 
less CO2 emissions in 2050 (12-51% in 2100) compared to 2020, consistent with 
further penetration of renewables. 

https://tntcat.iiasa.ac.at/AR5DB
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Figure 5. Future electricity consumption and technology mix in BAU baseline 

Notes: The figure presents the evolution of electricity consumption per capita (n = 240), the share 
of electricity in the final energy consumption mix (n = 244) and the CO2 intensity of electricity 
generation (n = 215) on a global level in the baselines used in the IPCC's Fifth Assessment 
Report.  

Source:  https://tntcat.iiasa.ac.at/AR5DB 

4.2 Modelling technology and behaviour  

CGE models with a focus other than energy and climate would typically not 
cover electricity generation technologies in a disaggregated way, but rather 
include an aggregate representation of the electricity sector that covers all 
production technologies combined with the distribution sector. In this type of 
setting, the composition of power generation technologies is inflexible and can 
only be changed through substitutability of production factors. Emissions from 
each fossil fuel input (usually split into gas, oil and coal) are linked to demand by 
means of exogenous coefficients which do not respond to policies or other 
developments. The options to decarbonize the power system are limited to 
stylized changes such as a shift from energy to capital inputs. In order to provide 
more detail on the implications of the transformation of the power sector, CGE 
models in the climate and energy field have introduced various improvements, 
on which we elaborate in the following paragraphs. 

 

4.2 1 Technology disaggregation  

Several models have moved toward a hybrid formulation by disaggregating 
power generation technologies, for instance, the GEM-E3, IMACLIM-R, EPPA, 
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ENV-LINKAGES, TEA, AIM/CGE, ADAGE and WEGDYN models. This 
approach enables a closer connection between energy or power system models 
and CGE models. The quantification issues of this modelling option are 
discussed in the context of base-year calibration and baseline building in section 
2.3. 

With respect to the evolution of costs, we can distinguish models that assume 
exogenous and endogenous technological progress. The REMIND model 
provides one example of the latter, including global learning-by-doing curves 
and internalized spillovers. The DART model provides another example, where 
cost reductions through learning-by-doing apply only to new capital, tracking 
vintages over time (see 4.2.3 on vintage modelling). 

 

4.2.2 Intermittency of renewables  

Going beyond a disaggregated representation of technologies, some models 
represent additional features of real-world electricity generation, related in 
particular to the integration of intermittency of renewable energy sources 
(Pietzcker et al., 2017). The EPPA model introduces imperfect substitution 
between intermittent and non-intermittent electricity generation technologies to 
reflect the cost of intermittency, or it models renewables with fixed back-up 
requirements as perfect substitutes for other sources of electricity (Morris et al., 
2010). A similar approach is followed in the USREP model (Tapia-Ahumada et 
al., 2015). Bachner et al. (2019a) include the integration costs of intermittent 
renewables in the form of higher capital costs for wind and solar (grid 
integration), but also for non-intermittent sources of electricity generation 
(modified utilization of existing dispatchable power plants). In the AIM/CGE 
model, storage and curtailment of variable renewable energy are considered 
explicitly. Multinomial logit functions determine the shares of power generation 
sources, depending on the respective costs which are determined by 
intermediate and primary factor inputs. The share 𝑆𝑆𝑟𝑟 of storage or curtailment in 
a region 𝑟𝑟 is expressed as a function of the penetration of wind and solar into the 
electricity generation mix (𝑆𝑆ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑆𝑆ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟): 
𝑆𝑆𝑟𝑟 = 𝛼𝛼𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑆𝑆ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)𝛽𝛽𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛼𝛼𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟(𝑆𝑆ℎ𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟)𝛽𝛽𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟    (4.1) 

where the parameters 𝛼𝛼 and 𝛽𝛽 are estimated for storage and curtailment 
separately based on data from a dispatch model using a least squares method. 
Storage services are then included explicitly as an intermediate input, such that 
the costs related to intermittency are covered by the model. 

Improving interconnections is another way to cope with increasing shares of 
intermittent renewables in the power mix. Nevertheless, cross-border electricity 
trade is usually represented by standard Armington functions. Although studies 
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point out the potential importance of electricity trade and interconnection 
capacity (Abrell and Rausch, 2016; Timilsina and Toman, 2016), particularly with 
high penetration of intermittent renewable energy sources, a detailed treatment 
has not (yet) become the mainstream modelling approach.  

 

4.2.3 Capacity investments and vintage capital 

In the model approaches described above, investment in current and new 
technologies proceeds smoothly. A realistic assessment of the power system 
transition could include the time lag for building power plants and their working 
life. Including these details could be facilitated by modelling a vintage capital 
structure. In the ENV-LINKAGES model, electricity is produced by different 
production streams, differentiated by capital vintage (old and new). Each 
production stream has an identical production structure, but with different 
technological parameters and substitution elasticities. Production firms can 
choose to use old or new capital. The distinction between vintages drives the 
results of emissions in ENV-LINKAGES as the two types of capital rely 
differently on fossil fuel resources and production inputs. In particular, the 
elasticities of substitution for new and old capital reflect the difference in the ease 
with which the two types of capital can substitute away from fossil resources 
towards cleaner inputs.  

4.3 Calibration in the base year and the baseline 

4.3.1 Base-year calibration 

To calibrate parameters in the base year, many models use supplementary 
accounts with physical energy flows, e.g. as provided by the GTAP Data Base. In 
the EPPA and ADAGE models the economic values in energy demand and 
supply are augmented by accounts in physical terms for energy (exajoules) and 
emissions (tonnes). The TEA model follows a linking procedure with the bottom-
up model COFFEE that is based on physical flows. The EC-PRO and GEM-E3 
models also connect physical flows of energy and emissions with energy 
technology-based information. The GEM-E3 model extends the conventional 
approach by calibrating the model's parameters not only in the base year, but 
also in future years according to projections of partial equilibrium models. The 
procedure, described in Wojtowicz et al. (2019), projects input-output tables in a 
first step, and calibrates the model correspondingly only in a second, subsequent 
step. This approach implies that technology parameters evolve over time instead 
of being fixed at the values of some historic base year. 
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4.3.2 Baseline projections 

The refinements of the power supply modelling described in 4.2. facilitate an 
emulation of what goes on in more detailed bottom-up models. When exogenous 
variables like resource constraints, productivity growth and policy interventions 
are projected, the resulting price and cost impacts, along with the model's 
endogenous features as discussed in Section 4.2, will drive changes in 
technological progress and power mix.  

There are some concerns associated with relying only on the model’s 
endogenous mechanisms. First, a large variety of assumptions must be 
consistently implemented, including policies. A variety of policy measures affect 
the electricity markets in the base year already, and more changes might have 
been passed in political processes since the data were collected and would need 
to be included in a 'current policies' baseline. Another challenge is the small-
shares problem pointed out in Section 2.3. It implies that profound penetration of 
known and feasible technologies that are not yet implemented (or to only a very 
minor extent) in the base year will not take place in a CES structure, which 
induces relative changes.  

A similar challenge applies to trade/transmission volumes if transmission 
infrastructures that do not yet exist are expected in the future, and trade is based 
on Armington functions with (nested) CES characteristics. The approach in the 
AIM/CGE model given in section 4.2 could be considered a case where certain 
aspects of the detailed dispatch model – storage and curtailment – are emulated 
in a top-down CGE model. 

For these reasons, baseline projections rely mostly on external data and on 
controlling the model determinants of the power system, including the energy 
mix in demand and the technology mix in the power sector. To understand the 
importance of such procedures, we compare two different simulated baselines 
run using the ENV-LINKAGES model.10 The naïve baseline relies merely on 
macro-economic drivers and no energy-specific assumptions. The expert-based 
baseline is constructed to correspond with the IEA’s Current policies scenario from 
WEO 2017.  

As seen in Figure 6, the WEO-based baseline shows a moderate increase in 
energy use by 2050 as well as a change in the mix towards more wind power, 
and a shift in fossil-fuel power from coal to gas power. Conversely, no such 
adjustments are imposed in the naïve baseline. As a result, the electricity mix 
shows a large share of nuclear power and coal in overall power generation. 
Whereas it makes sense from an economic perspective, since both these two 
sources of energy are actually cheap, in the long run it does not reflect the 

                                                           
10 See also Sections 2.3 and 3.3 for information about this simulation exercise.  
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European countries’ energy road maps and is therefore not a plausible baseline 
for climate change analysis. 

 
Figure 6. Electricity mix for OECD Europe (TWh) 

Source: OECD ENV-LINKAGES model; OECD (2019) 

Similar approaches, relying on external data sources, are used in projections 
made using the ADAGE model, (Ross, 2007). Projections of electricity generation 
by technology are calibrated to align with the IEA's WEO. In addition, because 
the model base year of 2010 is extrapolated from a GTAP Data Base 
characterizing 2004, the base year power sector data are adjusted to capture 
structural changes taking place between those years. In particular, the energy 
mix share is recalibrated to capture the rapid switch of power generation from 
coal to natural gas in the United States in the period 2004-2010 with the 
development of lower-cost horizontal fracturing (fracking) technology for oil and 
gas extraction (see also section 3). For future periods in the model projection, a 
further switch towards natural gas in the U.S. power sector is captured by the 
CES model structure, as continued positive supply shocks for natural gas reduce 
its cost relative to other energy sources. 

A comparable approach that can extend slightly beyond the use of external 
data is to link CGE models with partial equilibrium energy or power system 
models. The advantage of connecting to a technology-rich bottom-up model is 
that more information, in addition to the power mix, can be taken on board in the 
calibration of the CGE model, such as the evolution of costs and the cost 
structure of particular technologies. We can also be more confident that the 
inputs are consistent. The established links between the POLES-JRC and GEM-E3 
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models (Vandyck et al., 2016), as well as between the COFFEE and TEA models 
(Garaffa et al., 2018), are good examples of this approach.  

To enable input from the detailed PE models (POLES-JRC and COFFEE) to be 
fed into the associated CGE models (GEM-E3 and TEA), the latter have 
implemented disaggregated electricity generation technologies that are 
combined through a Leontief function. The electricity generation shares are 
determined by the PE models. Thus, relevant economic (overnight costs, fixed 
and variable operating and maintenance costs, contingency factors, etc.) and 
technological (discrete investment size, lead time, efficiency, availability, etc.) 
features of detailed bottom-up models can be taken into account in the CGE 
models. In addition, the level, evolution, and structure of technology costs feed 
into the CGE model calibration, and the CGE models incorporate electricity 
generation in physical units from the PE models. With respect to electricity 
consumption, the linkage between the COFFEE and TEA models is based on 
energy intensity as a common variable that takes the same values in both models. 
Thus, in each time-step, the energy intensity parameter changes endogenously in 
TEA until the ratio between total energy use (in physical units) and total 
production (in monetary units) is the same in both models. 

Linking procedures can be more ambitious. As discussed by Delzeit et al. 
(2020), a two-way link will improve consistency between the bottom-up and top-
down model baselines in terms of sectoral output or value-added-linking 
procedures (Helgesen, 2013; Krook-Riekkola et al., 2017). If necessary, the two-
way procedure can be iterated to improve the match across the models. Both the 
POLES-JRC/GEM-E3 team and the COFFEE/TEA team are in the process of 
exploring a two-way, iterative approach. When the baseline is used as a starting 
point for a policy study, accuracy can be improved further by simulating the 
same shift within both models and taking account of the induced output changes 
in the iterations.  

5 Transportation  

5.1 General trends in the sector’s energy and emission characteristics 

The transportation sector covers various economic activities and is usually 
split into passenger and freight transportation activities. The demand for 
passenger transportation services is expected to grow with population and GDP 
and income per capita, but the relation between transport volume and per capita 
income level varies. Historically, the demand for freight transportation services 
has been correlated with economic growth and industry and agriculture 
production levels, but recent trends in Europe for example prove to show that a 
decoupling between GDP and freight can operate when a certain level of 
development is reached (IEA, 2009). 
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When it comes to energy and environmental issues (whether pollution or 
climate change), transport is a key sector. It accounted for 24% of the total global 
CO2 emissions from fuel combustion in 2017 (IEA, 2018a). The determinants of 
carbon emissions in the transportation sector are either (i) technological relating 
to the carbon intensity of the fuels and the energy intensity of operating the 
vehicles, or (ii) behavioural relating to the modal structure of the mobility and its 
volume (Chapman, 2007; Schafer, 2012). For full accounting of all life-cycle 
emissions from transport activities, indirect emission would also need to be 
included. Indirect emissions refer to emissions that do not occur in the sector in 
focus but arise elsewhere in the economy. For example, energy for operating 
vehicles is produced in energy supply sectors that typically have emissions of 
pollutants and/or greenhouse gases. For a full life-cycle accounting, the 
emissions from vehicle and infrastructure production that arise in relevant 
manufacturing and constructing sectors would also need to be included. 

The energy and CO2 efficiency of vehicles is increasing fast, especially due to 
new standards for light duty vehicles, and efficiency is expected to continue 
improving in the future. At the global level, the energy efficiency of passenger 
transport has improved by an annual rate of 0.5% between 2000 and 2016, while 
the annual efficiency improvement rate of trucks in the same period was less 
than 0.1%. Past trends in aviation and shipping are much stronger, with annual 
improvements in efficiency over the same 16 years of about 3.6% and 2.1%, 
respectively (IEA, 2018b).  

In addition to these global efficiency improvements, electrification and 
biofuels contributed substantially to the slowdown in growth of global transport 
emissions. We observed growth in these global sectoral emissions of 0.6% in 
2017, whereas they used to grow at an annual rate of 1.7% during the previous 
decade. However, despite this positive picture, the IEA estimates that far more 
extensive mitigation efforts are needed to reach the “well below 2°C” target (IEA, 
2018c).  

Globally, no major changes are expected in the modal structure of a BAU 
baseline (i.e., when no new policy is implemented) and road transportation is 
expected to remain the first mode of both passenger and freight transportation in 
the decades to come (Sims et al., 2014). The evolution of mobility volumes and of 
modal choices going forward will be closely linked to infrastructure availability, 
urban forms, and the logistic organisation of production and distribution 
processes (Waisman et al., 2013a). 

However, it is worth noting that a shift is expected in road transportation for 
light duty vehicles, given the increasing market penetration of electrically 
powered vehicles (EVs). Globally, total EV sales increased from less than 0.5 
million units per year in 2013 to over 3 million units per year in 2017 (IEA, 
2018d). In the United States, although EV adoption rates are still low, production 
has been increasing over time and the country represented the largest share of 
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the global EV stock until 2015 (IEA, 2017). In 2016, the production shares of 
hybrid, plug-in hybrid and electric vehicles in the U.S. were 1.8%, 0.3% and 0.5% 
respectively.  Preliminary data for 2017 suggests that these production shares 
increased to 3.3% hybrid, 0.9% plug-in and 1.0% electric vehicles (US EPA, 2018). 
That same year China had become the country with the largest stock of EVs, with 
more than 30% of the global stock.  China still heads the field with respect to the 
electrification of modes of transportation other than private cars, with more than 
200 million two-wheeled electric vehicles, almost 4 million low-speed electric 
vehicles and more than 300000 electric buses (IEA, 2018d). Nevertheless, 
although the market share of EVs is close to 50% in Norway, the country with the 
biggest EV market share, this market remains quite small in all other countries.  
China, which occupies the 4th position, sees its EV market share amounting to 
2.2% in 2017 and that of the United-States to 1.2%. Finally, it is noteworthy that 
EVs are anticipated in many scenarios to represent the bulk of the vehicle fleet by 
2050, as a response to environmental challenges. Needless to say, this 
electrification of the transport sector – we noted earlier that electricity generation 
emissions are accounted for outside the transport sector – will only reduce 
overall emissions if low-emission electricity is available. 

In addition to electrification of transport, many countries have expanded their 
use of biofuels in recent years.  Globally, the IEA estimates that biofuel 
consumption for transportation increased by over 33% between 2010 and 2016, 
from 59 Mtoe to 79 Mtoe (IEA, 2018e).  

5.2 Modelling technology and behaviour  

The default representation of transport activities in CGE models follows the 
rules of national accounts. Households primarily demand passenger 
transportation. This is accounted for in final consumption, where transport 
services are usually distinguished as a separate activity in the top bundle of the 
utility function. Typically, household demand for transport is split between 
services purchased from commercial firms and those supplied by own vehicles in 
combination with demand for energy (petrol and diesel). Only rarely is this same 
demand structure used for firms (e.g., Heide et al., 2004). It is more common to 
retain vehicles as part of a capital aggregate, petrol and diesel as part of 
aggregate fossil fuel demand and purchased transport services as part of 
intermediates. The utility functions in CGE models have traditionally been of the 
LES or CES type, though other functional forms that allow for income elasticities 
other than unity are becoming more common. Purchased transport services are 
supplied by firms in production sectors. The supply of passenger and freight 
transport services is usually merged. A default solution is that commercial 
transportation sectors are split into the segments water, air and other, the latter 
covering all land transportation. Production inputs are CES combinations of 
labour, capital, non-energy intermediates (including commercial transport 
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services) and energy (without specified purposes). This aggregation level is 
available in the GTAP Data Base. In all specifications, AEEI parameters are used 
to implement exogenous, factor augmenting energy efficiency improvement for 
both private transportation in utility functions and suppliers of transport services 
in productive sectors in their production functions. The following subsections 
outline refinements to the modelling of both behavioural and technological 
determinants.   

 

5.2.1 Disaggregating the transportation sector  

In the transportation industry, technological improvements, represented by 
decreased energy consumption per unit of output, varies significantly with 
transportation mode. Disaggregation of the transportation sector may improve 
the representation of energy substitution possibilities among and across 
transportation modes. Many national accounts distinguish between rail and road 
transportation, as well as domestic and international air and water transport, and 
these categories can be exploited to capture substitutability and emission impacts 
at more detailed levels. However, only some models disaggregate road transport 
into different vehicle and energy modes. Water transportation is not usually 
disaggregated.    

In the ADAGE model, the transportation sector is disaggregated into eight 
types (light-duty passenger, road freight, road passenger, rail freight, rail 
passenger, air, water, and all other transportation) (Cai et al., 2018). 
Transportation service, the monetary value for passenger-miles travelled for 
passenger transportation and tonne-miles travelled for freight transportation, is 
produced within nested CES functions using energy, capital, labour, and 
materials as inputs. The bottom-up approach used in ADAGE links the physical 
accounts and monetary accounts together, allowing tracking of fuel economy, 
vehicle-miles travelled as well as price of passenger-miles travelled for passenger 
transportation or ton-miles travelled for freight transportation.    

In the WEGDYN_AT single-country model for Austria, special emphasis is 
placed on the disaggregation of the land transport sector, which is composed of 
nine different sub-sectors, each of them explicitly modelled by different 
production functions. The model responds to three main drawbacks of 
traditional representations: first, by identifying passenger and freight 
transportation; second, by distinguishing long from short-distance transport; and 
third, by explicitly modelling infrastructure provision.  

As described in Bachner (2017), the WEGDYN_AT model represents three 
groups: First, motorized individual transport is isolated from the generic final 
demand vector and treated as a separate Leontief type production function that 
produces output which is only absorbed as the final demand of the 
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representative private household (i.e. individual transport). Second, there are 
five land transport service sectors (rail freight, rail passenger long-range, road 
freight, short range public transport, other transport services (i.e. postal services, 
warehousing etc.), each one of them modelled as nested CES functions. Third, 
land transport infrastructure providers comprise separate sectors responsible for 
road infrastructure provision, rail infrastructure provision and other land 
transport infrastructure provision (pipelines), again modelled as nested CES 
functions. In addition, the model includes a water transport and an air transport 
sector. All transport sectors are interlinked with the rest of the economy via 
input-output structures, and each economic sector needs transport service as an 
intermediate input in order to operate. The transport service sectors, in turn, 
additionally rely on transport infrastructure for their operation - see 
supplementary materials of Bachner (2017) for details on the nesting structures 
and elasticities.  

The AIM model system adopts a hybrid modelling approach, in which the 
results from a separate AIM/Transport model are fed into the AIM/CGE model 
and the information exchange between them is iterated (Zhang et al., 2018a and 
2018b). The AIM/Transport model selects among several modes and 
technologies endogenously, which allows the AIM/CGE model to reflect 
detailed behavioural choices. 

 

5.2.2 Modelling alternative fuel vehicles 

Because of environmental concerns, high oil prices and prospects of falling oil 
production, developing cleaner alternative fuel vehicle technologies (AFVs) with 
higher fuel economy has become a top priority for many governments and 
vehicle manufacturers around the world in recent years. Therefore, these 
technological options are represented in some of the models. 

The EPPA model represents the penetration of AFVs (electric, hydrogen, 
compressed natural gas) endogenously (Chen et al., 2016; Paltsev et al., 2018). 
When initially adopted, an advanced vehicle technology faces increasing returns 
to scale to capture the intuition that development and early deployment are more 
costly per unit produced until large-scale production volumes have been 
reached, which also affects the cost of the technology relative to the internal 
combustion engine (ICE) vehicle. As ever larger volumes of advanced technology 
vehicles are introduced, the cost of further upscaling production will fall 
accordingly (Karplus et al., 2013; Morris et al., 2014). The model captures the 
intuition that the cost and pace of deployment should depend on when these 
vehicles become economically viable, the stringency of fuel economy standards 
(if applicable), and the rate at which costs decrease as production is scaled up. 
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ADAGE includes four categories of AFVs (natural gas, electric battery, oil-
electric hybrid - such as plug-in hybrids -, and hydrogen fuel cell drivetrains) for 
all types of road transportation vehicles in the model (light-duty vehicles as well 
as heavy-duty vehicles such as trucks and buses). The production and 
consumption of AFVs are defined within the context of the market for 
transportation services, in terms of passenger-miles travelled for passenger 
vehicles and ton-miles travelled for freight vehicles. Both EPPA and ADAGE 
introduce a fixed factor input and an elasticity of substitution between the fixed 
factor and the rest of the bundle to the top nest of CES production function. In 
ADAGE, biofuels can substitute for refined oil in both conventional technologies 
and AFVs. The transportation services produced by AFVs are modelled as 
perfect substitutes for ICE vehicles. The entry of these AFVs is endogenously 
determined and takes place only when they become economically competitive 
relative to their conventional transportation counterparts. 

In the SNOW model, the distinction between the technologies of EVs and ICE 
vehicles is made in the household utility function, depicted in Figure 7. Both 
vehicle technologies include the inputs operation and maintenance (O&M), car 
and energy (electricity and fuel, respectively). The model also allows for 
substitutability of fossil fuels and biofuels and separates rail from road transport. 
 

 
Figure 7: The consumption CES structure in the SNOW model 
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5.2.3 Capital vintage modelling 

Vintage modelling has become a common solution in transportation modules 
for capturing the fact that technological change takes time, since old vintages are 
assumed to be unable to leave the sector. Figure 7 illustrates how old and new 
cars are separated in the SNOW model. The use of old cars is given from 
previous investments in EVs and ICE vehicles and aligned to their expected 
lifetimes. Similar distinctions are made in the IMACLIM-R and ADAGE models, 
as well as in the ECCC models (both the global EC-MSMR and the country 
model for Canada EC-PRO). Vintage modelling allows different AEEI 
parameters for energy to be assigned to old and new capital, respectively. 

Given that the fuel efficiency and CO2 standards apply only to new model-
year vehicles, differentiating between the new and used vehicle fleets is essential. 
The EPPA model includes a parameterization of total miles travelled in both new 
(0 to 5-year-old) and older (6 years and older) vehicles, tracking changes in travel 
demand in response to income and cost-per-kilometre changes. The EPPA model 
also represents the ability to substitute between new and used vehicles as 
another way consumers may respond to changes in relative vehicle and fuel 
prices as affected by the introduction of vehicle standards, fuel prices, or carbon 
prices (reflected in fuel prices). Details of the representation of fuel and emission 
standards in the EPPA model are provided in Karplus et al. (2015).  

 

5.2.4 Behavioural aspects: mobility demand and travel time 

In the dynamic, recursive and hybrid IMACLIM-R model, the standard 
representation of transport technologies is supplemented by an explicit 
representation of the “behavioural” determinants of mobility (Waisman et al., 
2013a). Each representative household maximizes its utility through a trade-off 
between consumption goods and mobility services. The model uses a Stone-
Geary utility function in which the consumption of each good must meet or 
exceed a certain level. For mobility services, these basic needs measure 
constrained mobility (i.e. the minimum level that households have to satisfy, 
mainly for commuting and shopping). To provide the mobility service, four 
transportation modes are considered: terrestrial public transport, air transport, 
road transport (private vehicles) and non-motorized transport (walking and 
biking) 11.  

                                                           
11 In the personal vehicles market, three types of technology are represented: those with 
standard internal combustion engines (ICE), those with efficient internal combustion 
engines, and EVs, which implicitly represent all types of vehicles that use electricity as an 
energy provider, including fuel cells and hydrogen vehicles) 
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Households maximize utility under a twofold constraint that affects 
transportation decisions. On the one hand, the standard budget constraint 
captures the fact that transport-related expenditures are involved in a trade-off 
with the consumption of other goods. On the other hand, demand for each 
modal of transportation service is constrained by a time-budget constraint to 
represent the stability of the travel-time budget across time and space on a 
regional or national scale. This constraint allows congestion effects to be taken 
into account. Travel time, congested traffic, and trip purpose are typical elements 
that receive more attention in spatial CGE models. Vandyck and Rutherford 
(2018), for instance, study dynamic road pricing for commuters with a regional 
CGE model that includes congestion and agglomeration externalities. Although 
they do not look into the environmental implications of the studied tolling 
schemes, reducing traffic congestion can reduce both time lost in traffic and 
emissions. 

The described IMACLIM-R representation, combined with the dialogue 
between the top-down structure and the bottom-up modules, makes it possible to 
represent (i) the rebound effect of energy efficiency improvements on mobility, 
(ii) endogenous mode choices in relation to infrastructure availability, (iii) the 
impact of investment in infrastructure capacity on the amount of travel, and (iv) 
the constraints imposed on mobility needs by firm and household location 
(urban forms).  

Still in IMACLIM-R, the production functions of all sectors take the form of 
Leontief specifications, with fixed equipment stocks and fixed intensity of labour, 
energy and other intermediary inputs in the short-term12. This means in 
particular that, at a given point in time, the freight transportation intensity of 
production is measured by input-outputs coefficients which define a linear 
dependence of freight mobility in a given mode to production volumes of a given 
sector. The higher the production volumes, the higher the freight mobility 
demand. Three freight transportation modes are considered: air, water and 
terrestrial transport. This input-output representation of freight mobility makes it 
possible to capture changes in (i) the energy efficiency of freight vehicles, (ii) the 
logistic organization of the production/distribution processes, and (iii) the modal 
breakdown. 

 

5.2.5 Introducing new transport business models 

One crucial element for reducing transport emissions is behavioural change, 
possibly induced by the availability of new organization forms for transport. In 
passenger transport, this includes sharing concepts such as car sharing 

                                                           
12 These Leontief specifications (with fixed inputs per production unit) are nevertheless 
characterized by flexible utilization rates for installed production capacities. 
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(Prettenthaler and Steininger, 1999). New business models lend themselves 
particularly well to being analysed by CGE transport models or modules. As a 
prerequisite, the modeller needs to combine a demand structure similar to that 
given in Figure 7 with a detailed production structure (and the embodied energy 
intensity) of vehicles (both the ones used in the new system and the ones 
substituted for in the new system).  

As exemplified by Steininger and Bachner (2014), a car-sharing system 
introduced for commuters, with the vehicle fleet used by the commuters to reach 
the closest train station and in the course of the day by a standard all-day user 
such as the postal service or mobile health care, can then be analysed with 
respect to its economic and environmental implications. Based on such BAU 
modelling and the experience acquired from a field experiment involving a set of 
commuter and daytime users, a roll out to the entire nation was simulated by 
means of the WEGDYN_AT model. With the CGE approach taking account of 
the indirect and aggregate market effects, these simulations allow quantification 
of the emission reductions due to both (i) the commuters’ mode shift to electric 
trains for the major portion of their trip and (ii) the reduction in the car fleet. 

 

5.3 Calibration in the base year and the baseline 

The disaggregate representations of consumption shares, production shares, 
trade shares, and production cost shares in many of the models (see 5.2.1) exploit 
different data sources. In the case of the ADAGE model, for instance, input-
output data from the GCAM model, national input-output accounts data, GTAP 
Data Base data and the six transportation sectors (road, rail, air, water, pipeline, 
and other) in the WEO database are used. 

The penetration and technological features of future AFVs are likely deviate 
significantly from the current status. This renders the quantification of the 
substitutability across vehicle technologies in the decades to come challenging. 
The SNOW model relies on expert-based projections from the Norwegian 
Environment Agency, NEA (2016), which has calculated the costs of phasing in 
EVs to meet different targets for the share of EVs in the fleet in 2030 (and 
subsequent CO2 emissions levels). 13 In the EPPA and ADAGE models, historical 
observations form the basis for the elasticity of substitution. In ADAGE an 
econometrically estimated elasticity is combined with a mark up factor, defined 
as the relative cost ratio between AFVs and ICE vehicles, which measures the 
dynamic technological advance.  
                                                           
13 The other relevant substitution elasticities are estimated on historical data (Aurland-
Bredesen (2017); Aasness and Holtsmark (1993); Elkadi (2017). The substitutability 
between fossil and bio fuels is not activated (elasticity set to 0). A reason for this is that 
bio fuel in Norway is promoted by blending mandates, implying fixed shares. 



37 
 

6 Manufacturing industries  

6.1 General trends in the sector’s energy and emission characteristics 

Manufacturing industries are often large consumers of fossil fuels for 
combustion. In addition, several manufacturing processes generate emissions, 
so-called process emissions. Indirect emissions from manufacturing industries 
are also prominent, since they tend to be energy intensive and lead to emissions 
from energy production, including power generation. In 2010, global GHG 
emissions related to manufacturing industries accounted for 15.4 GtCO2 eq., 
representing 30% of total global GHG emissions. There was an increasing trend 
from 2005 to 2010 of 3.5% p.a. Two thirds (10.2 GtCO2eq.) of these GHG 
emissions are emitted by the industrial sectors themselves, while the remaining 
third (5.3 GtCO2eq.) arises indirectly via demand for electricity and heat. Taking 
a closer look at the within-industry emissions, 75% (7.6 GtCO2eq.) are emitted via 
the combustion of fossil fuels, whereas 25% (2.6 GtCO2eq.)  are attributable to 
non-energy-related industrial processes, such as the chemical processes in 
cement or steel production (Fischedick et al., 2014).  

Across all manufacturing sectors, 50% of total direct GHG emissions result 
from three sectors: the production of ferrous metals (22%), chemicals (15%) and 
cement (13%). The rest are emitted by landfills and waste incineration (7%), 
water treatment (8%) and other industries (36%), including pulp and paper 
manufacturing, food processing, manufacture of textiles and leather as well as of 
non-ferrous metals (e.g. aluminium). 85% of the GHG emissions (including 
indirect emissions) are CO2, followed by CH4 (9%), HFCs (3%), N2O (2%), SF6 
(0,5%) and PFCs (0.5%). In total, non-CO2 GHG emissions from industry add up 
to 2.3 GtCO2eq. (Fischedick et al., 2014). As a share of global non-CO2 GHG 
emissions, the manufacturing industries account for 13% (in 2005). This share is 
expected to increase, as industrial emissions tend to rise faster than emissions 
from other sectors (US EPA, 2012). Key non-CO2 GHG emission processes are the 
production of chemicals such as chlorodifluoromethane (which emits HFC-23), 
adipic and nitric acid (which emits N2O), aluminium (which emits PFCs) and the 
manufacture of fertilizers (Harmsen et al., 2019; Fischedick et al., 2014). 

GHG emission abatement options in the manufacturing industries are very 
diverse. The standard approach for economic assessments uses MAC curves, 
which are often product, region and/or country specific, as there or no “one-size-
fits-all”-solutions. In the literature there is a clear focus on CO2 emissions from 
the production of basic materials  such as cement (e.g. Dai et al., 2017; Kajaste 
and Hurme, 2016; Talaei et al., 2019; Yang et al., 2013; Zhang et al., 2015) and iron 
and steel (e.g. Mayer et al., 2019; Milford et al., 2013; Zhang et al., 2014). Some 
studies cover aluminium production and the associated emissions of PFCs (e.g. 
Kermeli et al., 2015; Mahadevan, 2001). Abatement options and MAC curves for 
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non-CO2 industrial GHG emissions are partly covered by Harmsen et al. (2019), 
who include chemicals and fertilizers, and Ragnauth et al. (2015).  

Abatement options for industry can be summarized under six types of 
efficiency (see Fischedick et al., 2014, p. 746): “(1) Energy efficiency (e.g. through 
furnace insulation, process coupling, or increased material recycling); (2) Emissions 
efficiency (e.g. from switching to non-fossil fuel electricity supply, or applying CCS to 
cement kilns); (3a) Material efficiency in manufacturing (e.g. through reducing yield 
losses in blanking and stamping sheet metal or re-using old structural steel without 
melting); (3b) Material efficiency in product design (e.g. through extended product life, 
light-weight design, or de-materialization); (4) Product-Service efficiency (e.g. through 
car sharing, or higher building occupancy) and (5) Service demand reduction (e.g. 
switching from private to public transport).” 

In many cases, abatement options in the manufacturing industries can also be 
summarized under the term “electrification”. As electricity is very versatile, such 
electrification can cover the demand for energy, but also for heat and feedstock 
(mainly via renewable hydrogen). Other specific abatement options for the iron 
and steel industry are electrowinning, the replacement of coke by gas, hydrogen 
or bio-char and higher material efficiency. For cement production, replacing 
current clinker with other materials would reduce GHG emissions, and heat 
could be supplied via plasma technologies. Fuel switching can also reduce GHG 
emissions in cement production. Emissions from aluminium production can be 
reduced via energy efficiency measures and renewable electricity (more than 
80% of emissions are indirect emissions), increased recycling rates as well as 
reduced anode consumption (Fischedick et al., 2014; Lechtenböhmer et al., 2016). 

Industrial process emissions present a major challenge to the deep 
decarbonization of the basic material industries. These emissions are not 
produced by the combustion of fossil fuels, but stem from other chemical 
processes. In the EU-28, the most important manufacturing sectors with process-
generated emissions, in absolute terms, are the production sectors for metals 
(including iron and steel), minerals (including cement) and basic chemicals 
(Lechtenböhmer et al., 2016). Reducing industrial process emissions is 
particularly challenging, because emission reduction is limited by stoichiometry. 
This means, for example, that for each tonne of steel that is produced there is a 
fixed amount of CO2 released, which is a product of the chemical reaction of 
oxygen and carbon when the iron ore is de-oxygenated. Efficiency measures can 
help to some extent, but for deep decarbonization, only three basic means of 
abatement are available: first, reducing sectoral output and replacing emission-
intensive materials (e.g. substituting bio-based polymers for steel in car 
production); second, changing the whole production process to maintain output 
(e.g. by switching to electrowinning in steel production, thereby replacing 
carbon-based processes with renewable electricity) and third, using end-of-pipe 
technologies (CCS or carbon capture and utilisation (CCU); see Lechtenböhmer 
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et al., 2016).14 Another issue that complicates the reduction of process emissions 
on a global scale is the fact that process emission-intensive sectors are heavily 
involved in international trade and thus carbon leakage prone (Bednar-Friedl et 
al., 2012; Schinko et al., 2014). 

When looking at recent developments in the steel and cement sectors, the 
importance of tackling process emissions from these sectors becomes even more 
evident. Between 1980 and 2010, emissions from these two sectors increased 
sharply, with annual growth rates of 2-4%. Driven by a strong increase in 
demand, global steel production doubled and cement production more than 
tripled, within the same period. The corresponding annual CO2 emissions in 2010 
from the steel and cement sectors amounted to 3.3 Gt and 3.0 Gt, respectively 
(van Ruijven et al., 2016), with at least half of that attributable to process 
emissions. Turning to the basic chemical industries, we see a similar picture, with 
growth in physical output (measured in tonnes) exceeding that of steel since 
1989. Global CO2 emissions from chemical industries amounted to 1.7 Gt in 2010 
(Broeren et al., 2014). 

Other topics related to reducing process emission reductions are recycling, or 
more generally, the “circular economy”, as well as new materials research, aimed 
at replacing process-emission-intensive products. We will return to these subjects 
in Section 9. 

6. 2 Modelling technology and behaviour  

The combustion-induced emissions from industries, including manufacturing, 
are adequately taken into account in most models. The default in abatement 
modelling in energy-intensive industries is to include the usual endogenous 
substitutability of other factors for energy and across energy forms, with AEEIs, 
substitution elasticities and emission coefficients being exogenous. The 
modelling of industrial process emissions in CGE models is less well developed. 
If process emissions are taken into account, they are typically modelled in fixed 
proportion to sectoral output at the top level of the nested production functions. 
Examples of this default inclusion are the ENV-Linkages, EPPA and SNOW 
models. Among models that take account of process emissions, the default is 
thus exogenous emission factors that can be adjusted in projections to account for 
anticipated abatement options. 

 

6.2.1 Specifying technologies to reduce emissions 

A few models specify endogenous process emission reduction. In SNOW and 
GEM-E3, MAC curves are included for selected process-emitting sectors (see 
Fæhn and Isaksen, 2016 and Capros et al., 2013, respectively). The WEGDYN 

                                                           
14 In Fischedick et al. (2014)’s six efficiency types this is covered by “emission efficiency.” 



40 
 

model allows for new production technology options based on (renewable) 
electrification for iron and steel (Mayer et al., 2019; Bachner et al., 2019b; Schinko 
et al., 2014). A similar approach is used in the MAP-CGE model for cement (Jun 
et al., 2014). 

Inserting MACs implies that changing emission costs can endogenously alter 
process emissions through the deployment of abatement technologies. Potential 
technology options are exogenously specified, but endogenously chosen by 
firms. In SNOW, the abatement and related costs in the industries producing 
cement, chemicals, metals and pulp and paper are modelled analogously to what 
is described for the oil and gas sector in section 2.2.4. Price-induced abatement 
changes the parameters of existing technologies via i) changes in emission 
intensity and ii) changes in total factor productivity, to account for the additional 
costs of abatement. Note that since abatement technologies are not modelled 
explicitly, the cost structures of abatement measures have the same cost structure 
as the sectors that implement these abatement measures. Thus, unit cost 
structures do not change due to abatement. 

GEM-E3 also models non-combustion CO2 and non-CO2 emissions as 
proportional to output, with abatement following a MAC curve. The approach 
used in GEM-E3 is comparable to the activity analysis described in Kiuila and 
Rutherford (2013). Abatement in GEM-E3 requires additional intermediate 
inputs, delivered by other sectors (such as construction), thereby capturing the 
general equilibrium mechanisms of changed unit cost structures (as opposed to 
the approach in SNOW).  

In the WEGDYN model, the approach of modelling abatement of process 
emissions is different Abatement is not based on a MAC curve, which alters 
existing technologies, but is modelled by the introduction of a new production 
technology (activity). This approach is closer to actual technological 
developments in process emission abatement than the MAC curve approach, as 
it explicitly models a completely new technology. In WEGDYN, firms in the iron 
and steel sector, for example, can switch from the current conventional process-
emission-intensive technology (blast furnace-basic oxygen furnace, BF-BOF) to a 
hydrogen-based process-emission-free technology, which is calibrated to bottom-
up cost information provided by steel industry stakeholders (Bachner et al., 
2019b; Mayer et al., 2019). This switch is introduced exogenously and represents 
a more fundamental change in production technology, rather than merely 
marginal improvements, as is the case with MAC-curve-based approaches. Note 
that the approach used in the WEGDYN model deals with the issue that in 
process industries the emissions reduction of existing technologies is limited by 
chemistry and stoichiometric principles. This implies that when following a 
MAC curve approach, a modeller should take care when moving to very high 
abatement levels in these industries, as the MAC curve must show a discreet 
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change at the point where chemistry limits further marginal improvements, 
requiring a sudden switch in production processes.  

6.3 Calibration in the base year and the baseline 

By default, process emissions, if represented, are calibrated on the basis of 
national accounts and emission inventory data (e.g. UNFCCC, 2017) in the base 
year, and the emission coefficients are exogenously projected into the future. To 
represent changes over time, the GEM-E3 model uses baseline emission 
coefficients calculated in the bottom-up model GAINS of the International 
Institute for Applied Systems Analysis (IIASA), where process emissions are 
abatable by end-of-pipe options. That is, although GEM-E3 has modelled MAC 
curves that endogenize abatement of manufacturing process emissions, only the 
policy scenarios, not the baseline projections, rely on these mechanisms. The 
emissions are available for different GAINS scenarios that reflect three different 
policy stringency levels for the GEM-E3 baselines. Similarly, WEGDYN prolongs 
base-year emission coefficients in the baseline, with the switch to new process-
emission-free alternatives only taking place in the policy scenarios. Whether the 
alternative technology is active already in the baseline is up to the modeller, 
however, and depends on the scenario framework. 

In SNOW, two options are available for baseline construction: either 
exogenous emission coefficients, as in GEM-E3, or using the endogenous MAC 
curve to endogenize the coefficient and the related costs. The bottom-up 
information used to estimate the MACs involves various bio substitutions in 
processes (e.g. bioanodes instead of carbon anodes, bio-blended composites in 
ferro-silicon and silicon production), as well as CCS/CCU. See Fæhn and Isaksen 
(2016) for details and data sources. 

7 Buildings  

7.1 General trends in the sector’s energy and emission characteristics 

The building sector, as defined in the energy research field, usually includes 
two kinds of sectors, namely residential and commercial sectors. Energy 
consumption in the building sector accounted for 32% (32.4 PWh) of final energy 
consumption in 2010 (Lucon et al., 2014). Energy consumption in the residential 
sector is about three times higher than that in the commercial sector. Space 
heating represented 32-34% of energy consumption in these sectors. Developed 
countries consume more residential energy per capita than developing countries. 
Globally, energy consumption in the commercial sector has increased while that 
in the residential sector has been almost stable for the past few decades. Energy 
carrier composition has changed, particularly in developing countries, where we 
have seen a shift from traditional biomass and coal to cleaner energy such as gas 
and electricity. 
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Globally, the sum of direct and indirect GHG emissions from the building 
sectors was 9.18 GtCO2eq in 2010, accounting for around 19% of world’s GHG 
emissions (Lucon et al., 2014). The sectors’ emissions have doubled since 1970, 
even if direct emissions have stayed fairly constant. Indirect emissions accounts 
for around two thirds, and the rise is first of all explained by increased emissions 
from the electricity sector.  

Consistent with the historical trend, energy consumption in the building 
sector of developing countries is often projected to increase dramatically, 
particularly in South Asia; see, e.g., Lucon et al. (2014). A main driver is income 
growth, which will enable many people currently with limited access to energy 
to access modern energy options.  

7.2 Modelling technology and behaviour  

Residential energy consumption is included in household energy 
consumption activities in the CGE models. Energy for cooling, heating, water, 
lighting and use of other electric appliances usually corresponds to the 
residential energy consumption in energy system accounting, such as energy 
balance tables. The energy consumption associated with private car use is not 
included in this category (see Section 5). The commercial sector includes various 
kinds of so-called tertiary industrial activities (retail, education, hospital, private 
and public services and so on) which have similar energy service and 
consumption patterns. The representations in the current CGEs or even energy 
system models rarely distinguish between these individual commercial sector 
energy uses.  

Almost all models use the CES production function for the commercial sector 
with a slight variation in the nesting structure, substitution elasticity parameters 
and assumptions for future technological parameters.15 A typical CES structure 
would resemble the one depicted for the oil and gas sector in Figure 2, except for 
the reliance on resource input (RES). Typically, energy use in buildings is not 
explicitly separated from other energy use by firms, and buildings are part of 
capital input. As regards future technological assumptions, most models assume 
non-price-induced technological progress in energy consumption represented as 
exogenous AEEIs.  

Various functional forms are used for the household sector, see Section 2.2. 
Each has its advantages and disadvantages. LES and CES functions are relatively 
simple structures with a limited number of parameters. They have the advantage 
of ease of implementation, but they do not always match historical observations 
well. Other functional forms have more flexibility to specify income, own-price 

                                                           
15 One exception is the IGEM model which uses translog cost function for the commercial 
sector’s production function. 
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or cross-price elasticities, but more data is required to calibrate the parameters 
(for more detail see Ho et al. 2020).  

  

7.2.1 More detailed representation of energy use in buildings 

Many models use multi-nesting CES structures that are more complex than 
those mentioned above. A version of the AIM/CGE model explicitly represents 
individual energy services (e.g. space cooling, lighting and so on) with 
alternative technological options (e.g., high efficiency air conditioner, traditional 
biomass cooking device and so on). The demand for energy services are, inter 
alia, determined by the output level of the sector (or income level for 
households). Logit functions are used for the technological selections. The details 
are described in Fujimori et al. (2014). This rich technological representation 
provides more detailed and realistic insights into studies both of emission 
mitigation analysis and climate change impacts, the latter in terms of capturing 
energy demand changes associated with space cooling and warming (Hasegawa 
et al., 2016 and Park et al., 2018). 

 

7.2.2 Linking energy efficiency to physical characteristics of buildings  

The IMACLIM-R model couples an energy submodule with the CGE model. 
Energy consumption in households is driven and constrained by the number of 
square meters of housing owned (depending on the price of housing capital).  

7.3 Calibration in the base year and the baseline 

In order to quantify substitutability between building capital and energy use, 
SNOW’s CES substitution parameter between building capital and energy use in 
projections is based on bottom-up information provided by a TIMES energy 
system model (Institute for Energy Technology, 2013). The motivation for using 
this approach rather than ex-post estimations is that energy efficiency 
improvements are subject to increasing political and societal attention, arguably 
rendering historical evidence less relevant. See Bye et al. (2018) for the calibration 
procedure. 

8 Agriculture and forestry  

8.1 General trends in the sector’s emissions and sequestration characteristics 

Agriculture, forestry, and other land use are a major source of net GHG 
emissions. Emissions net of carbon sequestration accounted for about 17% in 
2019 (see Figure 1). From 1990-2010, total net emissions from these sectors 
increased by about 8% (Tubiello et al., 2014). Global GHG emissions from 
agriculture have generally trended slightly upward over time, with these 



44 
 

increases heavily concentrated in less developed countries. Net emissions from 
forestry and other land use also rose over this time period but underwent a shift 
between the 1990s and 2000s. While there was a reduction in emissions from net 
forest conversion over this time period, reflecting lower rates of deforestation, 
there was an even larger reduction in the average annual net increase in carbon 
sequestration provided by forests (Tubiello, et al., 2014).   

Key sources of agricultural emissions include enteric fermentation (CH4), 
manure management (CH4 and N2O), rice cultivation (primarily CH4, but also 
N2O and changes in soil carbon), and management of agricultural soils 
(primarily N2O but also changes in soil carbon and small effects on CH4 for crops 
other than rice). CO2 and non-CO2 emissions associated with agricultural energy 
use account for a relatively small share. An important difference from emission 
in many other sectors is that relationships between levels of economic activity 
and non-CO2 emissions in the agricultural sector typically are non-linear with 
complex relationships between the quantity and quality of inputs and emissions 
associated with production of outputs.  

US EPA (2019) estimates that agriculture accounted for 48% of global non-CO2 
emissions in 2015 (in terms of CO2eq) and projects continuing increases in 
agricultural emissions in coming decades as rising global populations and higher 
incomes raise global demand for agricultural commodities. Demand for livestock 
products has been rising faster than overall demand for agricultural products, 
especially in less developed countries. The use of nitrogen fertilizer (an 
important contributor to N2O emissions from agricultural soils) has also been 
trending upwards in many regions that have historically used relatively little 
synthetic fertilizer. Overall, agricultural emissions are projected to be relatively 
constant in more developed countries, while rising in less developed countries. 
Projections of forestry and other land use emissions are more uncertain given the 
complex dynamics of forest growth and lack of detailed data on the 
characteristics of global forest stands that will influence the rates at which their 
sequestration of carbon will change over time. Baker et al. (2019) provide an 
overview of alternative methods for projecting forest carbon stocks and 
implications.  

In addition to its contribution to global GHG emissions, Klimont et al. (2017) 
estimate that agriculture accounted for 10.5% of global anthropogenic emissions 
of particulate matter (PM) less than or equal to 10 micrometers in diameter 
(PM10), 8.0% of PM2.5, 4.6% of black carbon, and 9.7% of organic carbon in 2010. 
While not included in global anthropogenic emissions, burning of forest and 
savannah generate very large quantities of these emissions, accounting for 43.5%, 
40.8%, 23.8%, and 59.0% of total global emissions from all sources of PM10, PM2.5, 
black carbon and organic carbon, respectively, in 2010. Thus, it is important to 
account for non-GHG air pollutants from the agriculture and forestry sectors in 
studies focused on impacts of such emissions on air quality, water quality, 
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ecosystems, human health, or other systems potentially impacted by particulate 
emissions.  

Agricultural and bioenergy policies as well as climate change impacts are 
expected to have an important influence on both baseline and policy scenarios. A 
major expansion in global bioenergy production in recent decades has tightened 
the linkages between the energy sector and the agriculture and forestry sectors 
supplying bioenergy feedstocks. Bioenergy policy is an important driver of 
demand for agricultural commodities and land resources globally and will 
continue to play an important role in the future development of the agriculture 
and forestry sectors. Key factors to reflect within models capturing the impacts of 
bioenergy expansion include conversion rates of alternative feedstocks to 
bioenergy outputs and production of coproducts (e.g., dried distillers’ grains, oil 
meals). The agriculture and forestry sectors are also expected to be among the 
most impacted by projected climate change, though productivity impacts are 
likely to vary substantially between commodities and across space and time. The 
importance of these interactions with energy and environmental policies as well 
as susceptibility to environmental change have led to many CGE models 
enhancing their characterization of these sectors in recent years.   

 

8.2 Modelling technology and behaviour  

In general, these sectors are quite heterogeneous spatially and temporally as 
well as between subsectors.16 However, many CGE models that are not focused 
specifically on agriculture and forestry include these sectors at a highly 
aggregated level. Such characterization may miss important drivers of land use 
and emissions. CGE models focused on the agricultural sector often supplement 
characterization of the sector in value terms as available from a SAM with data 
on areas, yields, number of head of livestock, and other measures provided in 
biophysical terms, using sources such as FAOSTAT and a variety of other global 
and national data sources.17 Studies focusing on the agriculture and forest sectors 
may also be good potential candidates for linking of CGE models with partial 
equilibrium or biophysical models to better reflect sectoral characteristics and 
generate key outputs in physical units; see Delzeit et al. (2020). Some of the 
important innovations being captured in advanced CGE models being applied to 
analyses of the agriculture and forestry sectors are summarized below.  

 

                                                           
16 For instance, flooded rice paddies have substantially different emission characteristics 
than dryland crops and there are large variations in livestock emissions between 
ruminants and non-ruminants (as well as across species within those broader categories). 
17 The FAOSTAT Database is available at http://www.fao.org/faostat/en/#home. 

http://www.fao.org/faostat/en/#home
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8.2.1 Sectoral disaggregation  

As noted above, not only are the agriculture and forestry sectors quite 
heterogenous across time and space, but the subsectors that comprise these 
sectors also vary significantly in terms of expected productivity improvements, 
input use, and emissions per unit of output. Thus, disaggregation of this sector is 
important to meet the needs of analyses where agriculture and forestry responses 
play a key role. For instance, ADAGE and DART-BIO maintain disaggregation of 
individual crops most important for biofuels production (e.g., maize, wheat, 
sugarcane, sugarbeets, and soybeans) along with categories for rest of cereal 
grains, rest of oilseeds, and rest of crops in order to track agricultural market and 
land use responses to alternative biofuels scenarios. Coproducts such as distillers 
grains with solubles from ethanol production are also incorporated in multiple 
models focused on bioenergy. Many coproducts of biofuels production can be 
used as livestock feed, which will at least partially offset the reduction in feed 
availability associated with feed crops being used to produce ethanol. Thus, it is 
important to capture the effects of these coproducts on feed markets and 
associated land use change.  

 

8.2.2 Additional technologies 

Under policy scenarios reflecting incentives for reducing emissions or other 
activities, one would expect adjustments among inputs in response, but there 
may also be switching between production technologies. Examples of 
technologies that could be included for certain crops or livestock include 
alternative practices for manure management, tillage, or irrigation (e.g., 
Teheripour et al., 2013). Haqiqi et al. (2016) divide crop sectors from the GTAP 
Data Base Version 9 into irrigated and rainfed categories and explicitly include 
water for irrigation into the production function of irrigated crops. Ledvina et al. 
(2018) further advance the development of the irrigated land framework in the 
GTAP Data Base and provide irrigable land supply curves for 126 global water 
regions. Winchester et al. (2018) incorporate these irrigable land supply curves 
into the EPPA model to explore the implications of explicitly incorporating a 
disaggregated characterization of irrigation technology when modelling carbon 
policy. The study finds relatively small differences at the global level, but 
important regional differences when explicitly reflecting irrigated land and water 
scarcity within a CGE model.   

As in other sectors, there are technologies that may not have been present in 
the base year in a given region (or in any region), but that are expected to enter 
the market in the future. For instance, while second-generation biofuels are often 
identified as an important future technology for energy security and GHG 
mitigation, there is little to no historical use of these fuels in most regions. In 
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models that incorporate second generation biofuels, there may be no production 
or consumption in the base year database, but production technologies are 
specified within the model such that they can enter the market in future years as 
they become competitive. ADAGE includes crop production technologies 
characterizing switchgrass and miscanthus as well as technologies for converting 
cellulosic feedstocks into ethanol. As noted elsewhere, bioenergy with CCS is an 
important backstop technology in many models and application of this 
technology has important impacts on agriculture, forestry, and land use.  

8.2.3 Incorporation of endogenous land use  

Land use change in the CGE models that track land use endogenously is 
typically modelled using one of three general approaches: a nested CET function, 
represented by the GTAP family of models (e.g., Corong et al., 2017; Ahmed et 
al., 2008; Golub et al., 2008; Hertel, 1997); a nested CES function, evident in the 
EPPA models (e.g., Gurgel et al., 2016; Gurgel et al., 2007); or a nested logit 
specification (e.g., Fujimori et al., 2014). In the CET approach, land is distributed 
to different land types (e.g., cropland, pastureland, and forestland) on the top 
nest. At the next nest, land type is allocated to different production uses (e.g., 
cropland for corn, wheat, soybean production). The CET approach is useful for 
short-term analysis but has been criticized when used for long-term analysis 
because of its share-preserving feature (Gurgel et al., 2016).   

The substitution parameters define the ease of shifting between land types, 
but the CET approach does not explicitly account for conversion costs. In 
contrast, under the CES approach, each land type has its own endowment, land 
rent, and usage. In equilibrium, the conversion cost between two land types is 
equal to the difference in land rent between them. Thus, land is not converted 
from a land type with a lower land rent to one with a higher land rent unless 
there is sufficient additional benefit to make up for this conversion cost. The 
returns to a given land use are a combination of market and non-market good for 
which they receive compensation (e.g., U.S. Conversation Reserve Program 
provides payments to farmers that voluntarily remove environmentally sensitive 
land from agricultural production).  

While CET and CES approaches are generally easier to implement within 
modelling tools, the typical model structure does not necessarily constrain 
physical area used for agriculture, whereas the logit approach has the advantage 
of maintaining constant total land area. Fujimori et al. (2014) compared CET and 
logit specifications and found that agricultural land use and production were 
similar, but CET produced large and heterogeneous violations of area balances 
across regions. They concluded that a logit approach was preferred in cases 
where there were large changes from base year assumptions or when the focus 
was on regional rather than global outcomes. However, they did not consider 
CET specifications that incorporate an additional constraint to maintain constant 
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area. Both the EPPA and ADAGE models maintain constant total land area. This 
is implemented by including inputs of another land type in a top-level Leontief 
nest, e.g. such that land is a given category that can only be increased if there is 
an equivalent decrease in the area allocated to other land types.   

8.2.4 Characterization of forestry dynamics  

Accurately depicting dynamics of the forestry sector is challenging within 
CGE models and the use of CGE models for analysing forestry issues in still in 
the early stages although relevant global databases have become more available 
in recent years. One of the key pieces of information that has been difficult to 
access is information to inform the potential conversion of unmanaged land into 
land that is managed for economic outputs. In addition, decisions regarding 
forestry are inherently forward-looking because there are often decades between 
the time when costs are incurred and revenues are received, which complicates 
characterization. Golub et al. (2009) modelled forestry within a recursive-
dynamic framework, incorporating an iterative linkage to the PE Global Timber 
Model to improve characterization of the forestry sector. There have been 
subsequent applications introducing alternative specifications of competition 
between certain types of land, cost functions to access new lands, 
characterization of dynamic forest carbon pools, and other innovations but most 
models continue to characterize forestry in a simplistic manner.   

8.2.5 Emissions and abatement modelling  

Modelling emissions and abatement from the agriculture and forestry sectors 
is complex because emissions depend on non-linear relationships with activities 
or specific production practices. For instance, higher levels of nitrogen fertilizer 
will tend to improve yields, increase soil carbon sequestration, and increase N2O 
emissions, but the magnitude of these impacts all depend on crop, region, and 
quantity of fertilizer being applied. As the level of fertilizer gets higher, the same 
increase in quantity of fertilizer provides smaller incremental yield and soil 
carbon benefits, but larger N2O emissions. Nonetheless, many CGE models used 
for energy and environmental applications now incorporate non-CO2 emissions 
as a function of sectoral activity. Some models incorporate non-CO2 emissions 
into the production nest with substitution between emissions and use of 
additional inputs, representing the potential for using more labour, capital, or 
other inputs to reduce emissions analogous to an end-of-pipe option for 
emissions control. Models such as GEM-E3 incorporate bottom-up marginal 
abatement cost curves from US EPA (2013) or other sources to characterize 
relationship between mitigation costs and mitigation achieved by sector. 
Emissions associated with changes in carbon sequestration due to land use 
change are captured in ADAGE, AIM/CGE and EPPA models (Cai et al., 2018; 
Fujimori et al., 2014; Gurgel et al., 2016).  
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8.3 Calibration in the base year and the baseline 

8.3.1 Base year calibration  

As for the energy sector, there is a great deal of interest in tracking not only 
monetary flows, but also biophysical flows for agriculture, forestry, and land use. 
Many end users of the information generated require outputs in physical units 
(e.g., land use areas, yields, number of livestock, carbon sequestration). Similar to 
the calibration procedures often conducted for the energy sectors, CGE models 
focusing on these sectors typically rely on external information sources to 
supplement the data on market values available from sources such as the GTAP 
Data Base. Values are recalibrated to align with physical data. Common sources 
of information for agricultural activity include FAOSTAT, the Terrestrial 
Ecosystem Model, and other national and regional estimates of agricultural 
activity and land use/land cover.  

Calibration of GHG emissions and carbon sequestration often rely on data 
from the EDGAR model, US EPA (2013, 2019), or regional and national data on 
GHG emissions by sector. Vegetation and soil carbon data are available from 
GCAM with estimates provided for 18 agro-ecological zones (AEZs) for 14 
regions of the world. Timilsina and Mevel (2013) provide land use emissions 
factors for aboveground and belowground biomass and soil carbon by AEZ. 
These data can be incorporated to calibrate base year emissions from agriculture, 
forestry, and land use to exogenous sources.   

8.3.2 Baseline projections  

GHG emissions per unit of agricultural output tends to decrease over time 
through improvement of emissions reduction technologies. The implementation 
of these emissions reduction technologies over time plays an important role in 
GHG emissions mitigation. Rather than staying constant, the emissions factors 
for agriculture decline over time with development as more farmers adopt 
improved practices and as more emissions reduction technology becomes 
available. It is a challenging task to estimate the dynamic growth path of GHG 
emissions factors because sector-specific output projections by country are rarely 
available. The rate at which baseline emissions are projected to change over time 
can be informed by exogenous projections such as US EPA (2013, 2019).  

9 Remaining challenges and research questions  

Recent modelling improvements have given us extensive insight into 
mechanisms of technological change, abatement options, and linking economic 
activities to emissions of GHGs. However, there are still challenges ahead. In 
particular, improvements can be made within three main issues: (i) emission data 
and modelling; (iii) scenario assumptions; and (iii) a richer context for policy 
analysis.  
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9.1 Emission data and modelling 

As shown in the previous sections, most major emission sources for CO2 and 
non-CO2 GHG are currently covered in state-of-the-art CGE models. There are, 
however, emission sources that are more rarely included, such as emissions from 
venting and flaring, resource extraction, and forest fires. These require a large 
effort to be incorporated properly in models and sometimes, such as in the case 
of forest fires, it is challenging to robustly project how emissions will develop in 
the future, as they vary substantially year by year (though they are generally 
expected to follow an upward trend as temperatures rise due to climate change). 
In addition, while it has become more common to include non-combustion GHG 
emissions, characterization of the complex and non-linear relationships between 
economic activity and these emissions varies widely. Moving forward, additional 
attention to these sources of emissions remains an important area of exploration.  

The modelling of emission sources and abatement options in transportation 
also need further improvement, especially as transport is one of the main sources 
of GHGs, in addition to air pollution. In the existing literature, CGE models have 
been developed recently to include the emergence of low-carbon technologies, 
either by including/emulating bottom-up information or by linking with 
technology-rich models. Low- and zero-GHG technology options for passenger 
transport on land, including EVs, are represented in some models. Nonetheless, 
in key areas of technological and behavioural abatement the potential options are 
still insufficiently explored. Aviation emissions should be better modelled, 
because they are projected to increase in the absence of further policy action and 
because they are often regulated only for certain types of airplanes and certain 
distances, as in the case of the EU emission trading scheme. Global shipping is 
another very large and rising source of GHG emissions that is not necessarily 
well captured in many models. Emissions from national ferries and fishing boats 
are also rarely treated in detail, despite being relevant for climate change as well 
as having local health impacts and having abatement options that should be 
accounted for in scenarios.  

One recurring challenge in modelling emissions is the mismatch between the 
aggregate nature of CGE models and the local nature of air-pollution-related 
emissions and the environmental and health consequences they have. One 
solution to approaching this may be to split the household sector in the urban-
rural dimension as in Beck et al. (2016). A more ambitious approach for the 
future would be to improve the modelling of spatial issues, possibly matching 
CGE models and their aggregate databases with more detailed, grid-based 
spatial databases and models. This has already been done by different teams 
when assessing, for instance, the economic consequences of climate change or air 
pollution in CGE models (see OECD, 2016 and Vandyck et al., 2018). In these 
reports the emissions from the GEM-E3 and ENV-LINKAGES were matched to 
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the TM5-FASST biophysical model to calculate concentration of air pollutants at 
the local level, taking into consideration GHG emissions and climate change. 
Another similar example is to split the aggregated emissions obtained from a 
CGE model (Fujimori et al., 2018) by means of spatially detailed outputs of an air 
quality model CMAQ, eventually translated into the CGE model as labour loss 
(Xie et al., 2018). 

Similar approaches could be undertaken in the future to better take into 
consideration land use changes, ecosystem services as well as the consequences 
of demographic trends and urbanization on emissions and energy use. The 
ADAGE, AIM/CGE and EPPA models take into consideration land-use change 
emissions. Nonetheless, most models do not endogenize land use changes but 
rely on separate partial analysis or link up with other external land use models 
(e.g. AIM/Spatial land use model; Hasegawa et al. 2016). Better matching 
between spatial and CGE models would also make it possible to study the 
development of urban infrastructures and emission reductions in cities, which 
are central in policy discussions, given the large contribution of cities to overall 
emission reductions.   

9.2 Scenario assumptions 

CGE model projections of energy use and emissions are heavily dependent on 
baseline assumptions. Policy assumptions and developments in a baseline setting 
are important, as they could potentially have large impacts on GHG emissions 
and other environmental and economic variables. Most teams will include in 
their baselines existing climate policies, such as the EU carbon pricing system 
and CO2 taxes. However, policies in other relevant domains can also affect GHG 
emissions. Air pollution is one of the main examples, as emission sources of 
GHGs and key air pollutants overlap. Another example is the emerging interest 
by governments in improving resource efficiency and facilitating the transition to 
a circular economy, which may lead to more policies being enacted. A circular 
economy transition will mean a higher share of secondary materials instead of 
primary ones, the re-use, extended lifetime and repair of products, which will 
lower production in some sectors as well as use of resources in general. All these 
changes will affect production processes, energy use and emissions and will, 
thus, be important to take into account.  

Similarly, in the coming decades new economic trends may affect energy use 
and emissions. The servitization of the economy projected to take place in most 
countries will likely lead to lower emissions, as services are less emission-
intensive. But it remains unclear how the emergence of certain types of services, 
such as those linked to the sharing economy, will affect emissions. Car sharing is 
a clear example. In principle it should reduce car use by those needing to travel, 
but the lower price of its service compared to other means of transport may 
instead increase demand and finally lead to higher emissions. Similarly, 
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digitization will imply a reduction of some emission sources (e.g. production of 
paper, commuting and travelling for work, which can be replaced by telework). 
But it would also mean an increase of other emission sources (e.g. digital storage 
needs, use of electric appliances). Self-driving cars are also emerging, which may 
affect mobility and emissions in indefinite ways.   

Changes in mind-sets and preferences may also affect energy use and 
emissions in both households and firms. Even in the absence of new price or 
policy incentives, a higher awareness of external environmental consequences 
may lead to a lower use of energy by households. Another key area is the 
greening of food consumption and the impacts of agriculture and transportation 
on GHG emissions. On the production side, there is increasing interest in using 
greener inputs, for instance using substitutes for plastic, and choosing products 
with low carbon footprints. This can be seen as self-regulation and a shift in 
attitudes towards greater corporate social responsibility (CSR).  

Several models allow substitution elasticities to adjust along a baseline and 
even across scenarios to capture new ways of relating to options. However, it is 
not obvious how to empirically distinguish between changes in attitudes to 
options and changes in the scope and costs of technological options. More 
empirical evidence is crucial for calibrating or endogenizing such changes in 
CGE models. There is an emerging literature on empirical and experimental 
studies of how attitudes and preferences are affected, including what role 
policies like promoting education, awareness campaigns, nudging and also price 
signals, can play. The still premature empirical literature on CSR shows 
ambiguous results on whether greening signals are accompanied by real 
behavioural adjustments, and whether action reflects more than profitability 
considerations that account for anticipated future regulation or demand shifts 
(see, e.g., Schmidt and Schrader, 2015; Servaes and Tamayo, 2017).   

Most CGE models used for energy and climate policy analysis have the 
limited ambition of endogenously modelling impacts of the economy on GHG 
emissions but exclude the impact of emissions on the economy via climate 
change. iIntegrated assessment models (IAMs) (see Nordhaus, 1991 and 
Nordhaus and Yang, 1996 for seminal work on the first IAMs) include climate 
modelling in order to form a full loop between economic development, the 
climate change impacts, and their costs on the economy. IAMs are generally very 
aggregated and consider a much more stylized representation of the economy 
than CGEs. However, some CGE models have been expanded into IAMs and to 
include the full climate loop. There is an increasing empirical literature on the 
consequences of climate change for energy use, which may be useful for 
calibrating climate change consequences in CGE models (OECD, 2015; Bosello et 
al., 2012; Roson and van der Mensbrugghe, 2012). These assessments include the 
impact of climate change on energy demand. Energy supply is also likely 
affected by climate change. Wind, solar and hydropower plants are vulnerable to 
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weather conditions (e.g., Lucena et al., 2018 explore the implications for 
hydropower in Brazil). Fossil fuel and nuclear power plants need cooling and 
will therefore become less efficient in the case of warming. Biomass and biofuel 
energy are dependent on crop yields, while extreme weather events can damage 
extraction facilities, power plants and transmission lines. Numerical information 
at the global level is still not sufficient to allow CGE models to include energy 
supply as one of the climate damage categories. 

As highlighted throughout this paper, technology assumptions are 
fundamental to the setting up of a baseline scenario. Current CGE models often 
fail to provide robust modelling of low-carbon technologies, such as CCS/CCU 
and emission changes through land use, land-use change and forestry 
(LULUCF). Geoengineering technologies, which could also help limit climate 
change through large-scale projects, could also change GHG projections. 
However, it is difficult to create future projections of technologies that are not yet 
well developed, and for which the emission reduction potentials and costs are 
not yet clear. 

In the context of baseline projections, the need to represent future 
uncertainties is particularly strong. The modelling community has greatly 
improved in this subject, moving from presenting a single baseline projection, to 
better highlighting future economic uncertainties in the context of the SSPs 
scenarios (O’Neill et al., 2014, Dellink et al., 2016). The SSPs work could be 
further enhanced by developing Monte-Carlo analysis on scenario explorations. 
Further improvements in highlighting the role of uncertainty can also be made 
by mapping the sensitivity of emission projections to key parameters and 
modelling assumptions. Modelling comparison exercises, such as those of the 
Energy Modelling Forum (EMF), are also useful for understanding the role of 
modelling assumptions in creating emission projections.18 Finally, hindcasting 
could be used more frequently to investigate the robustness of modelling 
projections (Fujimori et al., 2016; Snyder et al., 2017). Unfortunately, this is a 
time-consuming process and for baseline projections not very validating if 
technologies, sectoral patterns or preferences are very different from history, as 
may be expected. 

9.3 A richer context for policy analysis 

CGE models have been the workhorse for assessing the economic costs and 
benefits of carbon markets and emission taxation since the first works on 
including GHG emissions in CGE models (see e.g. Lee et al., 1994; Burniaux and 
Troung, 2002). The effects of carbon taxes and emission caps are well understood 
thanks to a large literature using CGE models. However, with the shift of the 
policy discussion from climate policy towards green growth and a circular 

                                                           
18 See https://emf.stanford.edu/. 

https://emf.stanford.edu/
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economy, there is a strong need to model other types of policy instruments. For 
instance, in the recent POLFREE project in the EU’s 7th Framework Programme, 
different modelling teams used various instruments to develop a policy package 
designed to achieve a circular economy, including recycling, re-use, and energy 
efficiency. (see e.g. Hu et al., 2015). More work is needed to robustly model the 
consequences of policy instruments other than carbon taxes and markets, 
especially through modelling comparison exercises that can help clarify the role 
of modelling assumptions.  

Similarly, CGE models can be used to understand the interlinkages between 
different environmental issues and the consequences of policies on various 
indicators, clarifying the interplay between climate, air pollution, resource use, 
sustainability and equity, with reference to the UN Sustainable Development 
Goals. The OECD (2016) contributed to the discussion on interconnections 
among scarce resources by highlighting the nexus between land, water and 
energy. The multi-model CD-Link project addressed the interlinkages between 
climate change goals and sustainable development (see e.g. McCollum et al., 
2018). This literature is likely to gain increasing attention and can be further 
developed by improving the modelling of equality, labour markets and beyond-
GDP economic indicators.  

Under stringent climate policies such as aiming at well below 2 °C or 1.5°C, 
global CO2 emissions likely need to be zero or negative by the middle of this 
century (Rogelj et al., 2018). Some negative emissions will inevitably be necessary 
to attain these conditions, since some emission sources are difficult to completely 
decarbonize. Afforestation and bioenergy combined with CCS (BECCS) are 
considered possible efforts for large-scale negative emissions. These technologies 
are obviously related to land-use, in general, and agriculture, in particular. 
Bioenergy crops also interact with forestry activity, including reforestation and 
afforestation. As mentioned above, modelling advances are needed for good 
representations of such scenarios.  

The development of new technologies, especially linked to policy supports 
such as R&D subsidies, would also help to improve deep de-carbonization 
pathways aimed at limiting the rise of global temperature due to global warming 
to 2 °C or less. Some CGE models approach induced productivity change in 
energy and abatement technologies by means of learning curves. Another source 
of productivity growth is the role of profit-driven R&D policy. The topic has 
mainly been addressed in aggregate general equilibrium settings (reviewed in 
Löschel, 2004; see early contributions by e.g., Goulder and Schneider, 1999; and 
more recently by e.g., Acemoglu et al., 2012). While some sector-disaggregated, 
country models address endogenous R&D impacts (e.g., Bretschger et al., 2011; 
Popp, 2004, Bye and Jacobsen, 2011), regionalized global models with knowledge 
spillovers are rare (see Bretschger et al., 2017 for an example). The MAGNET 
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model includes endogenous R&D in biofuels; see also the ICES model (Parrado 
and De Cian, 2014).  

Other issues that would need further modelling in order to be addressed 
adequately concern the design of climate policies introduced in the presence of 
alternative behavioural models or market imperfections. The evolution of 
behavioural economics has shed light on aspects of consumption that also affect 
the optimal choice of policy instruments in the energy and climate nexus. People 
may not behave as traditionally assumed when searching for information, 
responding to social networks and situations or planning for the future. 

Types of market imperfections that can hamper transition to low-carbon 
options are network externalities that require a certain market penetration level for 
demand to take off, lack of infrastructural public goods, commitment problems that 
impede responses to announced policies, credit market imperfections that hamper 
optimal investment behaviour, and market power. While the market power of the 
Organization of the Petroleum Exporting Countries (OPEC) in the oil market is 
described in some models, CGE-based analyses that include barriers to free entry 
of firms into the electricity market remain scarce, although substantial market 
power may exist in some countries, and may be relevant for assessing electricity 
market design reforms (Akkemik and Oğuz, 2011).  

Progress in the fields of modelling various kinds of policy instruments and 
their efficiency impacts would greatly contribute to a better understanding of 
baseline emission projections and of the interplay across policy instruments in 
different environmental fields, as for example between GHG and air pollution 
mitigation policies.    

10 Concluding remarks 

CGE modelling provides an important contribution to emissions and energy 
scenario analysis and policy development. Structural relationships among 
different economic sectors in an economy-wide setting make CGE models a 
unique tool for investigating regional and global energy markets, technological 
compositions in different sectors and different scenarios, as well as their 
implications for the resulting GHG and air pollution emissions. For given 
external surroundings, CGE models provide economy-wide, consistent 
projections of induced investment in different sectors and technologies, the 
speed of technology adoption and the resulting changes in inputs, outputs and 
their prices. By introducing different policy assumptions, the economic costs, 
benefits and trade-offs of different strategic choices can be obtained. These 
outputs are useful for government and industry decision makers. 

This paper provides an assessment of the best practices in CGE modelling of 
baselines and alternative scenarios. While CGE models provide many advanced 
features for decision-making, creating and maintaining large-scale numerical 
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models is costly, and the need for elaborations and detailed data should be 
carefully considered. Sharing knowledge about the state-of-the-art options helps 
provide the modelling community with better and less costly choices. The 
present assessment offers low-hanging fruit for better practices in research and 
analysis. Enhanced understanding of the mechanisms by which energy and 
emissions are incorporated in CGE models and projected into the future, and the 
pros and cons of different solutions, should help academic researchers and 
decision-makers to interpret modelling results adequately and to conduct better 
research and make more informed policies.  

Research activities in the fields of CGE modelling and projections in the field 
of energy and climate have advanced rapidly. Modern approaches to modelling 
and quantifying power generation, fossil fuel production, transportation, 
manufacturing industries, buildings, agriculture and land use offer valuable 
tools for projection and analysis. This assessment concludes that to be reliable, 
CGE modelling needs to reflect major technological and behavioural 
mechanisms, well-estimated empirical relationships and plausible future 
scenarios. 

In order to understand the pathways for low-carbon energy development, it 
has become increasingly important to represent the energy-producing sectors in 
more detail, because fossil fuels are subject to progressively stronger competition 
from low-carbon and carbon-free options. Both fossil fuel and the supply of low-
carbon energy are subject to technological improvements that are represented in 
the modelling. Recent modelling advances include vintaging structures (i.e., 
tracking power generation fleets of different ages and their corresponding capital 
costs), backup requirements for intermittent generation from wind and solar 
resources, transmission constraints, and endogenous cost reductions due to 
learning-by-doing and other technological advances.  

Passenger and freight transportation are significant energy-consuming 
sectors. State-of-the-art CGE models offer descriptions of current and future 
vehicle technology, such as improved efficiency of internal combustion engine-
based vehicles, adoption of plug-in hybrids, battery electric and hydrogen fuel 
cell vehicles. The models also incorporate different fuel choices, such as biofuels, 
natural gas, electricity, and hydrogen. Modelling of marine and air transport is 
also advancing. An increasing number of CGE models incorporate consumer 
preference changes towards different modes of transportation. These choices are 
particularly important with respect to the future evolution of car and ride 
sharing and the impact of such sharing on demand for transportation services. 

Other major energy-intensive sectors are the manufacturing industries. In 
addition to considerable GHG emissions from combustion, many manufacturing 
industries emit CO2 and other GHG gases from other processes. These emissions 
require different approaches to modelling in a CGE setting because they are tied 
to sectoral outputs rather than fuel use. Modelling process-related abatement 
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opportunities involves representing abatement costs and/or creating emission-
free technologies that are perfect substitutes for the existing production 
processes. Advanced CGE models offer explicit options for several sectors 
including cement, metals, chemicals, fertilizers, pulp and paper. 

Modelling energy consumption in buildings creates certain challenges, 
because the underlying input data to CGE models do not distinguish buildings 
as a separate category: instead, they are allocated to the corresponding economic 
sectors (retail, education, services, industrial, etc.). Energy use in residential 
buildings is taken into account in household consumption as part of the input 
data. Advanced CGE models represent energy use for heating and cooling needs, 
and their evolution under different income growth scenarios and energy 
efficiency improvement patterns.   

Agriculture and forestry are important contributors to global GHG emissions 
as well as playing an important part in many other environmental and natural 
resource issues. These sectors are uniquely dependent on land resources, are 
extremely heterogeneous across time and space, and have become increasingly 
linked to the energy sector in recent years in connection with the major global 
expansion in bioenergy production. Unlike other economic sectors, most 
emissions from the agriculture and forestry sectors are not due to combustion, 
but are non-CO2 GHGs associated with agricultural production and changes in 
the carbon sequestration provided by forestry and other land use. To adequately 
capture the dynamics, changes in land use, and non-linear changes in sectoral 
emissions, CGE models have been further disaggregating these sectors: refining 
demand for agricultural and forest commodities; adding bioenergy modules; 
calibrating their baselines against biophysical data on yields, area, number of 
livestock, and other information; building in more detailed characterization of 
land use and land use change; adding new technologies to mitigate 
environmental impacts; incorporating external data on marginal abatement cost 
curves for GHG mitigation; and otherwise adding detail to better characterize 
this sector. 

This paper also assesses approaches to constructing long-term baseline 
scenarios from a calibrated base year. Sophisticated modules of energy supply, 
demand and market features, such as those summed up above, are prerequisites 
for the projections to be reliable and explicit with respect to the technological 
setting. Model characteristics have implications for base year calibration and the 
need for and availability of data for parameter quantifications along baselines 
stretching 20 to 100 years forward in time.  

We distinguish between three different approaches to baseline quantification. 
A first approach is to feed in plausible values on exogenous variables and 
simulate the model forward. The richer and more accurate the model is in its 
technological refinement, the greater is its potential for emulating bottom-up 
expert opinion or model results. However, these details require a substantial 
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amount of exogenous information. This additional information may be of 
questionable quality for a number of world regions, or information from 
different sources may be inconsistent. Moreover, incorrect parameterization may 
produce non-intuitive impacts on model results.  

Another approach is often combined with the first, namely to track key 
outputs by calibrating the values of parameters and exogenous variables to 
match some aspects of the baselines to specific projections from reputable 
sources. For example, projections of energy and electricity mixes from IEA, 
macroeconomic projections from the World Bank and International Monetary 
Fund and population projections from the United Nations Population Division 
can be used for these purposes.  

The third approach is to use bottom-up sectoral models, like PE models of the 
energy markets, in tandem with the CGE model by establishing linking 
procedures and adapting the models to each other. This means that the PE model 
results replace external data sources such as those mentioned above. For 
example, significant progress has been demonstrated in attempts to link CGE 
models with more detailed electricity sector models that can provide finer 
temporal and technological resolution, including a better representation of 
intermittency constraints that are especially important for an analysis of low-
carbon options. For consistency across data sources, linking monetary flows with 
physical flows of energy makes it possible to assess of production, consumption 
and international energy trade flows in both monetary and physical units.  

Though the three approaches can be combined for certain studies, the risk of 
double-counting should be borne in mind, for example by including forward-
looking trends as both parameter values (e.g., productivity parameter) and 
endogenous emulating mechanisms (e.g., learning-by-doing). 

The last part of this assessment is devoted to several challenges related to the 
need for better, more disaggregated data, baseline creation, and more concise 
representation of policy instruments and advanced technologies related to 
energy, industrial processes and land use. The resulting emissions and energy 
use in CGE model projections are heavily dependent on baseline assumptions. 
The present paper has concentrated on BAU scenarios that usually take into 
consideration only policies that are already in place. Although, these scenarios 
have less policy uncertainties by construction, assumptions about long-term 
characteristics, such as technological progress, population growth, market 
structure etc. lead to large variations in potential outcomes. Disruptive 
technologies may emerge and businesses that we do not know today may 
appear. Our discussion touches upon many alternative assumptions and points 
to the need for addressing such uncertainties by means of sensitivity analysis, 
scenario approaches such as those facilitated by the SSP initiative, or hindcasting.  

This assessment also sets the stage for additional areas of research and policy 
analysis that are relevant to and likely to influence the energy and climate nexus, 
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including study of the circular economy, sustainability, induced environmental 
R&D, behavioural economics and spatial modelling. The CGE modelling 
community is making steady progress in addressing these and other novel 
challenges.  This survey provides an opportunity for a better understanding of 
the current successes of CGE and the efforts needed to make CGE modelling 
even more relevant for robust decision making. 
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Appendix A: Acronyms  
Table A.1. Acronyms 

AEEI Autonomous energy efficiency improvement  
AEZs Agro-ecological zones 
AFVs Alternative fuel vehicle technologies  
BAU Business-as-usual  
BECCS Bioenergy with carbon capture and storage 
BF-BOF Blast furnace-basic oxygen furnace 
CCS Carbon capture and storage 
CCU Carbon capture and utilisation 
CDE Constant-differences-in-elasticities 
CES Constant elasticity of substitution  
CET Constant elasticity of transformation  
CGE Computable general equilibrium 

CH4 Methane  

CO2 Carbon dioxide  

CO2eq Carbon diocide equivalents 
CSR Corporate social responsibility  
EDGAR  Emission Database for Global Atmospheric Research 
EIA Energy Information Administration 
ELES Extended linear expenditure system 
EMF Energy Modelling Forum 
EVs Electric-powered vehicles 
FAOSTAT Food and Agriculture Organization Corporate Statistical Database 
GDP Gross domestic product  
GECO Global Energy and Climate Outlook 
GHG Greenhouse gas  
Gt Gigatonnes 
GTAP Global Trade Analysis Project  

HFCs Hydrofluorocarbons  

IAMs Integrated assessment models  
ICE Internal combustion engine 
IEA International Energy Agency  
IIASA International Institute for Applied Systems Analysis 
IPCC International Panel on Climate Change 
JRC Joint Research Centre  

 

https://www.gtap.agecon.purdue.edu/
https://en.wikipedia.org/wiki/Hydrofluorocarbon
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Table A1. Acronyms (cont.) 

LES Linear expenditure system 
LULUCF Land use, land-use change and forestry 
MAC Marginal abatement cost 
Mtoe  Million tonnes of oil equivalents 

N2O Nitrous oxide 
NEA Norwegian Environment Agency 

NF3 Nitriousflouride 
O&M Operation and maintenance 
OECD Organisation for Economic Co-operation and Development 
OPEC Organization of the Petroleum Exporting Countries 
PE Partial equilibrium   
PFCs Perfluorinated compound  

PIRAMID 
Platform to Integrate, Reconcile and Align Model-based Input-output 

Data 
PM Particulate matter 
R&D Research and development 
SAM Social accounts matrices  

SF6 Sulfur hexafluoride 
SSPs Shared Socioeconomic Pathways 
TFP Total factor productivity  
UNFCCC United Nations Framework Convention on Climate Change  
US EPA  United States' Environmental Protection Agency 
WEO World Energy Outlook 
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Appendix B: Models 

Models referred to in the paper are explained here. Models in bold are CGE 
models included in the present survey paper. For the latter, references to 
documentations are given. 

Table B.1. Model names and documentations 
Name Explanation Documentation 
ADAGE Applied Dynamic Analysis of the Global Economy Cai et al. (2018) 
AIM/CGE Asia-Pacific Integrated Model/Computable General Equilibrium  Fujimori et al (2017) 
AIM/Spatial land use model Asia-Pacific Integrated Model/Spatial  
AIM/Transport  Asia-Pacific Integrated Model/Transport  
CMAQ The Community Multiscale Air Quality Model  
COFFEE COmputable Framework For Energy and the Environment  
DART Dynamic Applied Regional CGE model  Springer (1998) 
DART-BIO Dynamic Applied Regional CGE model -Bio Calzadilla et al. (2014) 
E3MC Energy, Emissions and Economy Model for Canada  
EC-MSMR Environment Canada - Multi-System Model of Resilience Zhu et al. (2018) 
EC-PRO   Environment Canada – PROvincial Böhringer et al. (2016) 
ENGAGE ENvironmental Global Applied General Equilibrium  
ENVISAGE ENVironmental Impact and Sustainability Applied Gen. Equil. Model van der Mensbrugghe (2010) 
ENV-LINKAGES  ENVironment – LINKAGES Chateau et al. (2014) 
EPPA Emissions Prediction and Policy Analysis Chen et al. (2016) 
GAINS Greenhouse Gas - Air Pollution Interactions and Synergies  
GCAM Global Change Assessment Model   
GEM-E3   General Equilibrium Model for Economy-Energy-Environment Capros et al. (2013) 
GREEN  The GeneRal Equilibrium ENvironmental model  
ICES Intertemporal Computable Equilibrium System   
IGEM Intertemporal General Equilibrium Model  
IMACLIM-R Integrated Modeling Approach Climate Waisman et al. (2012a) 
MAGNET Modular Applied GeNeral Equilibrium Tool  Woltjer and Kuiper (2014) 
MSG-TECH  Multi-Sector Growth – Technologies  
POLES-JRC  Prospective Outlook on Long-term Energy Systems - Joint Research Centre  
REMIND Regional Model of Investments and Development Luderer et al. (2015) 
SNOW Statistics Norway’s World model Bye et al. (2018) 
TEA  Total Economy Assessment Rochedo (2016 
TIMES The Integrated MARKAL-EFOM System  
TM5-FASST  TM5-FAst Scenario Screening Tool   
USREP  U.S. Regional Energy Policy   
WEGDYN  WEG-Centre Dynamic model  Mayer et al. (2019) 
WEGDYN_AT WEG-Centre Dynamic model – Austria Bachner et al. (2019b) 
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