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Abstract 

 
A large literature in behavioral economics has emphasized in the last decades the role of 
individual differences in social preferences (such as trust and altruism) and in influencing 
behavior in strategic environments. Here we emphasize the role of attention and working 
memory, and show that social interactions among heterogeneous groups are likely to be 
mediated by differences in cognitive skills. Our design uses a Repeated Prisoner’s Dilemma, and 
we compare rates of cooperation in groups of subjects grouped according to their IQ, with those 
in combined groups. While in combined groups we observe higher cooperation rates and profits 
than in separated groups (with consistent gains among lower IQ subjects and relatively smaller 
losses for higher IQ subjects), higher IQ subjects become less lenient when they are matched 
with lower IQ subjects than when they play separately. We argue that this is an instance of a 
general phenomenon, which we demonstrate in an evolutionary game theory model, where 
higher IQ among subjects determines - through better working memory - a lower frequency of 
errors in strategy implementation. In our data, we show that players indeed choose less lenient 
strategies in environments where subjects have higher error rates. The estimations of errors and 
strategies from the experimental data are consistent with the hypothesis and the predictions of 
the model. 
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1 Introduction

How do people with different cognitive skills strategically interact in a non-competitive environ-

ment? Intelligence is an important characteristic affecting strategic behaviour (e.g. Jones, 2008;

Gill and Prowse, 2016; Alaoui and Penta, 2015). Accordingly, in repeated games of cooperation

the level of intelligence of players is a crucial factor, Proto et al. (2019) find that when subjects

are allocated into two groups on the base of their intelligence, only the higher intelligence groups

converge to full cooperation in complex non-zero sum games like the repeated prisoners’ dilemma.

However, such separation of individuals in distinct classes of intelligence does not occur in everyday

life and the question how a group interacts and influences the other is left open.

To tackle this we adopt an experimental design where such intelligence separation does not

occur. We find strong evidence that less intelligent people profitably cooperate more when mixed

with the more intelligent. Cooperation rates in the combined treatment increases for the less in-

telligent players, and slightly decreases for the more intelligent. Specifically, the cooperation rate

is substantially higher for lower IQ players (those with IQ in the range 76-106) in the combined

treatment than in the split treatment. Instead, the cooperation rate is slightly lower for the higher

IQ players (range IQ 102-127), again compared to the split treatment. We identify a critical differ-

ence in the frequency of strategies in the combined treatment as compared to the split treatment

with higher IQ players. We observe a shift towards the direction of less lenient strategies.

We argue that this is an instance of a general phenomenon: if the fraction of players with limited

cognitive skills increases, and thus the average probability of errors also increases, players will be,

broadly speaking, led to adopt stricter strategies. In order to understand this complex mechanism

of learning and teaching, we analyze a model, where differences among players or among groups are

modeled as differences in the working memory. A lower working memory entails a larger probability

of error in implementing a strategy. We focus here not on the errors in the choice of action, but

on errors in the management of the strategy, i.e. errors in transition. We model the strategy as

an automaton where the essential part of the management of the strategy is to correctly choose

the next state in the automaton, given the current state and the observed action profile. We

assume that a lower working memory ability produces more frequent errors in this management.

We study the effect on the frequency of strategies in the population at the evolutionary equilibria

of two different benchmark models (the proportional imitation model and the best response Schlag

(1998); Gilboa and Matsui (1991)). The cognitive skills distribution determines the error rates

which in turn determine the strategy; high error rates lead subjects to shift towards always defect,

the least lenient strategy, which leads to the least efficient outcome.

Furthermore, strictly following the hypothesis of model, we estimate the error rates and the

equilibrium strategy and we find a pattern consistent with the predictions of the model, i.e. in

environments where subjects commit more errors stricter strategies are observed.

A large literature in behavioral economics has emphasized in the last decades the role of individ-

ual differences in attitudes towards others as in theories of social preferences like trust and altruism

(facets of Agreeableness of the Big Five) as determining behavior in strategic environments (see
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e.g. Fehr and Schmidt, 2006, for a survey). Here we explore a completely different mechanism and,

to the best of our knowledge, this is the first model in the literature analyzing the relationship

between error rates and strategic choices. Error rates are determined by individual cognitive skills,

specifically working memory. Bordalo et al. (2017) emphasize the centrality of working memory

even in simple economic choices in a recent contribution.

Experimental evidence (e.g. Dal Bó, 2005; Dreber et al., 2008; Duffy and Ochs, 2009; Dal Bó

and Fréchette, 2011; Blonski et al., 2011) show how subjects, when gains from cooperation are suffi-

ciently large, tend to choose efficient strategies leading to cooperation under repeated interactions.

Fudenberg et al. (2012) analyse the effect of exogenously induced uncertainty in the implementation

of different strategies in games of cooperation under repeated interactions and show how subjects

factor in this noise when playing and become more lenient and forgiving. A key difference with

respect to our setting is that the subjects know that their action can be implemented with an

exogenously induced error.

There is evidence of teaching in social experimental environments. Subjects actively teach other

subjects how to play efficiently in the laboratory (e.g. Camerer et al., 2002; Hyndman et al., 2012;

Cason et al., 2013). In our setting there is no active teaching, individuals update their beliefs

by observing partners’ choices which affect their behaviour in the next interaction. Some recent

findings indicate that lower intelligence is associated with more reliance on social learning through

imitation (e.g. Vostroknutov et al., 2018). In this literature individuals are generally aware of their

difference, while in our design they are not directly observable.

The paper is organized as follows: In section 2 we present the experimental design. In section

3, we show the experimental evidence. In section 4 we describe the main results of a model of

evolutionary game theory that we analyze in detail in section 5. In section 6, we estimate the main

parameters and variables of the model using our experimental data where we find support for its

main predictions. In section 7, we discuss some of the assumptions made in the model and we

conclude in section 8. Technical analysis of the model and details about its estimation, robustness

checks, further details of the experimental design and descriptive statistics are in the appendix.

2 Experiment

Our design involves a two-part experiment administered over two different days separated by one

day in between. Participants are allocated into two groups according to cognitive ability that is

measured during the first part, and they are asked to return to a specific session to play several

repetitions of a repeated game. Each repeated game is played with a new randomly determined

partner. We have two treatments: one where participants are separated according to cognitive

ability and one where participants are allocated into sessions where cognitive ability is similar

across sessions. We call the former the IQ-split treatment and the latter the Combined treatment.

The subjects were not informed about the basis upon which the split was made.1

1During the de-briefing stage we asked the participants if they understood the basis upon which the allocation
to sessions was made. Only one participant mentioned intelligence as the possible determining characteristic.
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2.1 Experimental design

Day One

On the first day of the experiment, participants are asked to complete a Raven Advanced Progressive

Matrices (APM) test consisting of a of sequence of 36 questions. They have a maximum of 30

minutes for the entire test. For each item a 3 × 3 matrix of images is displayed on the subjects’

screen; the image in the bottom right corner is missing. The subjects are then asked to complete

the pattern choosing one out of 8 possible choices presented on the screen. Before initiating the

test, the subjects are shown an example of a matrix with the correct answer provided below for

30 seconds. The 36 questions are presented in order of progressive difficulty as they are sequenced

in Set II of the APM. Participants are allowed to switch back and forth through the 36 questions

during the 30 minutes, and are allowed to change their answers.

The Raven test is a non-verbal test commonly used to measure reasoning ability and general

intelligence. Matrices from Set II of the APM are appropriate for adults and adolescents of higher

average intelligence. The test is able to elicit stable and sizeable differences in performances among

this pool of individuals. This test was among others implemented in Gill and Prowse (2016) and

Proto et al. (2019) and has been found to be relevant in determining behaviour in cooperative or

coordinating games.

In psychometric, and also experimental economics research, subjects are usually not rewarded

for completing IQ tests such as the Raven. However, it has been reported that Raven scores slightly

increase after a monetary reward is offered to higher than average intelligence subjects (e.g. Larson

et al., 1994). With the aim of measuring intelligence with minimum confounding with motivation,

we decided to reward our subjects with 1 Euro per correct answer from a random choice of three

out of the total of 36 matrices. During the session we never mention that this is a test of intelligence

or cognitive abilities.

Following the administration of the Raven test, participants complete an incentivised Holt-Laury

task (Holt and Laury, 2002) to measure risk attitudes. Finally, participants are asked to respond

to a standard Big Five personality questionnaire together with some demographic questions, a

subjective well-being question and a question on previous experience with a Raven’s test. No

monetary payment is offered for this section of the session and the subjects are informed about

this. We use the Big Five Inventory (BFI); the inventory is based on 44 questions with answers

coded on a Likert scale. The version we use was developed by John et al. (1991) and has been

recently investigated by John et al. (2008).

All the instructions given on the first day are included in the supplementary material.2

Day Two

On the second day, the participants are asked to come back to the lab and are allocated to two

separate experimental sessions. The basis of allocation depends on the treatment. In the IQ-split

2This is available online at https://drive.google.com/open?id=13wL3CwP1nqZ3b84om81OfzAFyJ0z-1Py
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treatment, participants are invited back according to their Raven scores: subjects with a score

higher than the median are gathered in one session, and the remaining subjects in the other. We

will refer to the two sessions as high-IQ and low-IQ sessions.3,4 In the combined treatment, we make

sure to create groups of similar Raven scores across sessions. To allocate participants to second

day sessions, we rank them by their Raven scores and split by median. Instead of having high- and

low-IQ groups though, we alternate in allocating participants in one session or the other.5

The task they are asked to perform is to play an induced infinitely repeated Prisoner’s Dilemma

(PD) game. Table 1 reports the stage game that is implemented.

We induce infinite repetition of the stage game using a random continuation rule: after each

round the computer decided whether to finish the repeated game or to have an additional round

depending on the realization of a random number. The continuation probability is δ = 0.75. We use

a pre-drawn realisation of the random numbers; this ensures that all sessions across both treatments

are faced with the same experience in terms of length of play at each decision point. As usual,

we define as a supergame each repeated game played; period refers to the round within a specific

supergame; and, finally, round refers to an overall count of number of times the stage game has

been played across supergames during the session. The length of play of the repeated game during

the second day is either 45 minutes or until the 151st round is played depending on which comes

first.

The game parameters are identical to the ones used by Dal Bó and Fréchette (2011) and Proto

et al. (2019). The payoffs and continuation probability chosen entail an infinitely repeated Prisoner’s

Dilemma game where the cooperation equilibrium is both subgame perfect and risk dominant.6

The matching of partners is done within each session under an anonymous and random re-

matching protocol. Partipicants play as partners for as long as the random continuation rule

determines that the particular partnership is to continue. Once each match is terminated, the

subjects are again randomly and anonymously matched and start playing the game again according

to the respective continuation probability. Each decision round for the game is complete when every

participant has made their decision. After all participants make their decisions, a screen appears

that reminds them of their own decision, indicates their partner’s decision while also indicating the

units they earned for that particular round. The group size of different sessions varies depending

on the numbers recruited in each week.7 The participants are paid the full sum of points they earn

through all rounds of the game. Payoffs reported in table 1 are in terms of experimental units; each

experimental unit corresponds to 0.003 Euros.

Upon completing the PD game, the participants are asked to respond to a short questionnaire

3The attrition rate was small, and is documented in table A.1.
4In cases where there were participants with equal scores at the cutoff, two tie rules were used based on whether

they reported previous experience of the Raven task and high school grades. Participants who had done the task
before (and were tied with others who had not) were allocated to the low-IQ session, while if there were still ties,
participants with higher high school grades were put in the high-IQ session.

5Again, the attrition rate was small, and is documented in table A.2.
6See Dal Bó and Fréchette (2011), p. 415 for more details
7The bottom panels of tables A.1 and A.2 in the appendix list the sample size of each session across both

treatments.
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about any knowledge they have of the PD game, some questions about their attitudes towards

cooperative behaviour and some strategy-eliciting questions.

Implementation

The recruitment was conducted through the Alfred-Weber-Institute (AWI) Experimental Lab sub-

ject pool based on the Hroot recruitment software (Bock et al., 2014). All sessions were administered

at the AWI Experimental Lab in the Economics Department of the University of Heidelberg. A

total of 214 subjects participated in the experimental sessions. They earned on average around 23

Euros each; the show-up fee was 4 Euros. The software used for the entire experiment was Z-Tree

(Fischbacher, 2007).

We conducted a total of 8 sessions for the IQ-split treatment; four-high IQ and four low-IQ

sessions. There were a total of 108 participants, with 54 in the high-IQ and 54 in the low-IQ

sessions. For the combined treatment we conducted a total of 8 sessions with a total of 106

participants. The dates of the sessions and the number of participants per session, are reported

in tables A.1 and A.2 in the appendix. The recruitment letter circulated is in the supplementary

material online.8

3 Experimental Evidence

3.1 Cooperation rates and payoffs

We start by comparing cooperation rates and payoffs across the two treatments for the two in-

telligence groups. Figure 1 shows that subjects increasingly choose cooperation as their choice of

first move across all treatments. Subjects in the high-IQ sessions converge faster to almost total

cooperation rates, while in the low-IQ sessions this pattern is slower; subjects in this group converge

to a cooperation rate smaller than 100 per cent (left panel). This result replicates the findings in

Proto et al. (2019) by using a different subject pool in a different country. Subjects in the combined

session have higher cooperation rates than in the low-IQ sessions and lower than the ones in the

high-IQ sessions (right panel).9 Table 2 shows that in the high-IQ sessions subjects earn about 2.5

units and cooperate about 10% more than in the combined sessions in the first 20 supergames, while

in low-IQ sessions they cooperate about 22% and earn about 5.6 units less than in the combined

sessions. After the 20th supergame, there is no longer a significant difference between high-IQ and

combined sessions. This suggests that the less intelligent learn to play as efficiently as the more

intelligent in the second part of the session in the combined treatment. Meanwhile in the low-IQ

sessions the difference in both cooperation and payoffs remains constant. In accordance to the

findings in Proto et al. (2019), table 3 shows that IQ is not significant in determining cooperation

in the first round in either of the two treatments, which suggests that the difference in coopera-

8See note 2.
9In figure A.2 of the appendix we present the cooperation rates by session.
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tion between individuals of different cognitive skills is only due to some learning effect during the

session.10

Figure 2 shows that the average payoff per interaction is consistently higher in the combined

sessions than in the high-IQ and low-IQ split sessions, indicating that in the combined treatment

subjects play on average more efficiently than in the split treatments.11

Finally, we can summarize the findings in this section by explicitly stating that cooperation

rates and aggregate payoffs are higher when high and low IQ subjects are combined together than

when they play separately

3.2 Learning

Table 4 shows that – in the first 20 supergames– subjects in the high-IQ sessions increasingly

open with cooperation earlier than in the combined treatment, while in the low-IQ session the

cooperation increase is later than in the combined sessions (columns 1 and 2); subjects in the

low-IQ sessions tend to catch-up with the others in the in the second part (column 3 and 4). This

represents evidence that the less intelligent learn to play more cooperative strategies when mixed

with the more intelligent faster than when they play together.

Why does this earlier increase in first periods cooperation in the session with a larger number

of high IQ subjects occur? The increase in cooperation seems, at least in part, to be driven by an

increase of subjects’ beliefs about the way the other subjects open with. In columns 2 and 4 of

table 4 we can observe that the coefficients of the partners’ past cooperation in the 1st periods are

positive and significant. In other words, subjects whose partners opened with cooperation in the

past supergames are more likely to open with cooperation in the present.

3.3 Choice of strategies in the different environments

There is widespread evidence that subjects overwhelmingly play memory one strategies in the

repeated prisoners’ dilemma game (e.g. Dal Bó and Fréchette, 2018; Proto et al., 2019). Accordingly,

the choices in every round of a supergame are determined by the past outcome (hence by both own

and partner’s choice in the previous period of the supergame). Let then chi,t represent the subjects’

choice (1 for cooperate and 0 for defect), Partn.Chi,t represent partner’s choice and pi,t represent

the probability of chi,t = 1 (conditioned on the set of independent variables), we then have the

following model:

pi,t = Λ(αi + β[Chi,t−1;Partn.Chi,t−1] + εi,t); (1)

where [Chi,t−1;Partn.Chi,t−1] is a 3-dimensional vector of dummy variables representing the differ-

ent outcomes, where (1,0,0) represents Chi,t−1 = 0;Partn.Chi,t−1 = 1, (0,1,0) represents Chi,t−1 =

1;Partn.Chi,t−1 = 0 and (0,0,1) represents Chi,t−1 = 0;Partn.Chi,t−1 = 0; with mutual coop-

eration, Chi,t−1 = 1;Partn.Chi,t−1 = 1, being the baseline category. αi are the time-invariant

10Interestingly, risk aversion is the only significant determinant of cooperation at the beginning of each session.
11This is also seen in table A.3 in the appendix where total earnings as well as average payoff per round are

significantly higher in the combined sessions than in the split sessions.
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individual fixed-effects (taking into account time-invariant characteristics of both individuals and

sessions); finally εi,t is the error term. We estimate model 1 separately for the first 20 and the

second 20 supergames by using a logit estimator.

In table 5, we present the estimates of model 1 for the 1st and the 2nd block of supergames.

Results are reported in odds ratios and taking the outcome (C,C)t−1 as baseline. In panel A, we

note that the odds of cooperating at time t by high-IQ are higher when they play among themselves

than when they play in the combined treatment conditional on deviation from mutual cooperation

(i.e. after (D,D)t−1 (D,C)t−1 (C,D)t−1). This difference is, if anything, even larger in the second

part of the session as seen in panel B of table 5.12 This suggests that high-IQ revert to cooperation

less frequently, hence that they adopt less lenient strategies when playing in the combined sessions

than in the split sessions. In table 6 we report a direct test on whether high-IQ are more forgiving

when they interact amongst each other than when they are in the combined treatment. We note

that the high IQ are significantly less likely to cooperate whenever the other subject unilaterally

defects. The low-IQ do not seem to play significantly differently whether they play with with other

low-IQ or in the combined treatment after an unilateral defection, but the sign of the coefficient is

positive. Hence we can summarise this section by saying that high-IQ are significantly less likely to

cooperate after a unilateral deviation of the partner when they interact in the combined treatment

than when are in the split treatment.

This preliminary evidence shows that subjects in general learn to cooperate and choose their

strategies on the basis of their cognitive skills, but also on the distribution of the cognitive skills

within the group. The high-IQ seem to be more forgiving when they play with other high-IQ players

than when they play in the combined treatment. Therefore, a complex mechanism is in place and

the following model allows to analyze this in detail.

4 Errors and Strategy Evolution: Summary

We model differences among players or among groups as differences in working memory. A lower

working memory entails a larger probability of error in implementing a strategy. We focus here not

on the errors in choice of action, but on errors in the management of the strategy, and define this

as error in transition, (for more details see section 5). We model the strategy as an automaton,

and the essential part of the management of the strategy is to correctly choose the next state in the

automaton, given the current state and the observed action profile. We assume that a lower working

memory ability will result in more frequent errors in this management. We study the effect on the

frequency of strategies in the population at the evolutionary equilibria of two different benchmark

models: the proportional imitation model (Schlag, 1998) and the best response (Gilboa and Matsui,

1991). We assume that subjects only play Always Defect, Tit For Tat and Grim Trigger strategies,

following Dal Bó and Fréchette (2019), who show that subjects mostly utilise these strategies. To

lighten notation, in the current and next section we denote these strategies as {A,G, T}, where A

12for example, considering (D,C)t−1, 0.03468− 0.01485 > 0.01039− 0.01450 .
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stands for Always Defect strategy, G for Grim Trigger and T for Tit-for-Tat.13

The main results of the analysis (developed in detail in section 5) are the following:

First, the limit behavior of the fraction of strategies is determinate (that is, the steady states

are locally unique), if, and only if, there are errors. When players have perfect working memory,

and there are no errors, neither of action or of transition, equilibria of the strategy choice game,

and steady states of the learning process and the evolutionary model are not locally unique (with

the exception of the (A,A) equilibrium, which is locally unique for all values of the parameters).

Instead, when errors occur, even of arbitrarily small size, then there are three locally unique, and

locally stable steady states corresponding to the pure strategies of the game in which players choose

strategies in the repeated game. There are overall seven steady states, three stable, one unstable,

and three saddle points.

Second, thanks to the previous result, when errors are positive (however small) we can define

basins of attraction for each of the strategies, thus providing a theoretical basis to predict relative

frequency of strategies as a function of the error rate. The size of these basins changes with the

size of the errors in a natural way. As ε becomes larger (that is, as more error prone the group of

players is), the basin of attraction of stricter strategies become larger: the size of the basin of the

A strategy becomes larger than that of G and T combined, and that of G becomes larger than that

of T .

Third, which strategies survive in the long run depends on δ; in all cases, for low rates of errors

all strategies may survive depending on the initial condition. For high rates of error only defection

survives. For intermediate rates, the two surviving strategies are defect and grim trigger for low

δ, and defection and Tit-for-Tat for high δ (the details are in Conclusion 5.13 of section 5). As δ

tends to 1, keeping error rates fixed, the opposite happens: the basin of attraction of the G and T

strategies becomes larger; and when strategies are limited to {G,T}, that of T increases to cover

the entire interval.

The results described so far are independent of the specific model of evolution we adopt. In the

following we compare the evolutionary dynamics with two different models, Proportional Imitation

or Best Response, and find that they are qualitatively similar. In section (G) of the appendix we

develop a model of learning in a population of players with heterogeneous beliefs, who hold and

update beliefs as in the model underlying our data analysis, and show that the resulting dynamics is

close to that described by one of the evolutionary models, specifically the best response dynamics.

4.1 A Simple Illustration

A first intuitive understanding of the way in which the error rate affects the basins of attraction of

the three strategies can be obtained by considering figure 3. This figure reports the phase portrait

of the vector field for the Best Response dynamics, at different error rates, ranging from 0 (no error,

top left panel) to 0.25 (bottom right panel). The top right panel shows the case with a very small

13Dal Bó and Fréchette (2011) and Proto et al. (2019) find evidence that these are found to be between 66% and
90% in likelihood of being played by their participants.
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error rate (0.0001). The two top panels of the figure illustrate the sudden change of the dynamic

as soon as the error becomes positive but very small. Payoffs in the stage game are set as in our

experimental design in table 1. The discount factor (or equivalently, the continuation probability)

is the same as in our experimental design, namely 0.75.

The triangle in each panel of the figure is the two-dimensional projection of the simplex, and

each point in the triangle represents points (pG, pT ) such that pG+ pT ≤ 1. Thus, the frequency

of the strategy (A,G, T ) is equal to (1 − pG − pT, pG, pT ). The lines in the triangular regions

represent the isoclines, namely the set of points at which the time derivatives of the two variables

is equal to zero.14 The red line indicates the set of points where dpT
dt = 0, the blue dpG

dt = 0. These

lines split the triangular region into three subsets, each one containing the point corresponding to

a pure strategy. In each of these regions the fraction of the attracting strategy increases over time,

the fraction of the other two decreases. The interior of each of these three subsets consists entirely

of points that are attracted to the pure strategy that is contained in the boundary of the subset.

For example, the basin of attraction of A is the smaller region (also triangular) at the bottom left.

The fact that the boundaries of the regions are straight-lines follows from the special nature of

the Best Response dynamics. For comparison, the reader can compare this figure with figure A.9,

reporting the same results for the Replicator Dynamic (or Proportional Imitation).

Several points that appear clearly in Figure 3 are worth pointing out. First, for all error rates,

each of the three strategies has a basin of attraction in the interior of the triangular region: in other

words, all strategies survive in the range of error rate we are considering in this example. Second,

the size of the region attracted to A increases monotonically with the error rate. Finally, if we

consider the complementary region of points that are not attracted to A, but to G or T , we note

that the relative fraction that goes to G (the second most strict strategy) is increasing as the error

rate is increasing. Note that as a result, whereas at the lowest error rate (top left) the T region

is the largest, at the highest (bottom left) it is the smallest. In few simple words, as the error

rate increases strategies become more frequent precisely in strictness order, with stricter strategies

becoming more frequent.

4.2 Why stricter strategies thrive with larger errors

The intuitive reason for the results is the following: When no error is possible, the strategies G and

T produce the same outcome when matched with A and when matched with each other. So with

no error both equilibria and dynamic behavior are indeterminate.

When errors are possible, the first crucial fact is that the A strategy is for every error probability

the unique best response to itself (see Lemma 5.5). Hence, no matter what the error is, the profile

(A,A) stays a Nash equilibrium and a locally stable steady state. If some strategy is eliminated,

that is not going to be A. The second crucial fact is that at ε = 1/2 under some condition on

14More precisely, since we later define the Best Response dynamics as a differential inclusion, the set of points at
which zero is the set of derivatives; in the discretization used to produce figure (3), the distinction between differential
inclusion and differential equation is irrelevant.
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payoffs (which is satisfied by the payoffs in the experimental design we adopt) the (A,A) is the

unique Nash (see Lemma 5.6). These two facts together with the continuity of the value function

in ε (see Lemma 5.3) imply that the set of strategies that survive in a learning-selection model

change from the entire set to the strict strategy A. What is left to study is what happens during

the transition.

When a small error is rate is made possible, the value for (say) player 1 of using G with G (call

it V (GG)) compared to the similarly defined values V (TG), V (GT ), V (TT ) are no longer equal.

Small changes of the values are sufficient to break the indeterminacy, and in fact we will see that

locally unique, locally stable equilibria emerge.

Two forces are now in place. To clarify them we consider as example how the share of the

frequency (the relative size of the basin of attraction) between G and T changes. As we mentioned

already, in the model with with no errors there is no meaning for basin of attraction of G and T .

For infinitesimally small errors, the value of the steady state that splits the unit interval into the

two regions of attraction is determined by the ratio of the derivatives of the gains in values for the

strategy profiles (see section 5). However the gains (coming from small changes in error) for T are

larger than those for G, hence the basin of attraction of T is larger for small errors. This is the first

force, that pins down the relative fraction of the two strategies, and establishes (in the limit) the

benchmark for the “almost no error” model. However, there is a second force: as the error becomes

larger, the difference in gains becomes smaller, and thus the fraction of T declines. If we consider

the limit case of a fifty-fifty probability of error, one can see that the only surviving strategy is the

strictest strategy, A.

4.3 The Role of the Discount Factor

The effect of the discount factor on the basin of attraction follows naturally from the effects of

δ on payoffs. Let us consider first the case of large δ, close to 1. Consider players starting from

mutual cooperation. A small transition error can lead one to defect. In this case the long run loss

induced by a small error in the transition of the G strategy is large: with grim trigger, the state

can go back to a cooperative state only by another mistake. Instead, the effects of such an error

with Tit-for-Tat are not as durable. Hence T increases fitness, and its basin of attraction is larger.

The increase in the error rate (modelled by an error probability ε) reduces the comparative

advantage of the lenient strategy. In the limit case of an equal probability of error and correct

choice, the difference between the two strategies disappears. Thus, as the error probability increases,

the basin of attraction of Tit-for-Tat decreases as compared to that of grim trigger (the stricter

strategy). For a graphical illustration of the role of the discount factor, compare Figure 3 (where

δ = 0.75) with Figure A.8 (where δ = 0.6); in both cases payoffs are the same as in our experimental

design.
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4.4 Evolution and Learning

The intuitive arguments we have provided so far to explain the reason for our main result that a

higher probability of error leads to a wider use of strict strategies are independent of the specific

evolutionary model adopted. The reason for this is that what dictates the relative fitness of strate-

gies is of course ultimately their relative profitability, and so the effect of the frequency of errors is

its effect on the payoff structure. We will use two different models to argue this point: one is the

replicator dynamics, or (if we want to emphasize the social learning model behind the specific func-

tional form of the change in frequency), the Proportional Imitation Dynamics model (PID); the

other is the Best Response Dynamics model (BRD). We describe both models in section 5 below.

We will then describe the best response dynamics in detail and simulate the resulting evolution of

cooperation among individuals belonging to different intelligence groups and treatments following

Dal Bó and Fréchette (2011) in the section G of the appendix. The simulation approximates quite

well the dynamics of cooperation observed in our data (figure A.12 in the appendix), the estima-

tion also emphasises some interesting differences in the beliefs updating according to IQ and the

treatment a subject is within.

5 Errors and Strategy Evolution: Technical Details

In this section we present a more detailed exposition of the model of strategy evolution when

players can make errors. Readers who are satisfied with the summary presented in section 4 can

omit reading this section with no substantial loss.

Subjects can make two types of errors when implementing their strategies. Firstly, errors in

the complex process of observing the action of the others, recalling the rules of the game and their

plan of action, and deciding what to do in the future. We represent this here (through modelling

subjects’ plans as choice of automata) by a choice of the next period state in their automaton. In

line with this modeling, we can consider the possibility that they also make an error in their choice

of action when they are at a state in the automaton.

We focus in this section on the simple case of only transition errors. In section F of the appendix

we consider the general case in which both errors in action choice and in transition are possible.

The reduction to transition error considerably simplifies the exposition, and the results in section F

show that this case contains all the essential features. Our data analysis testing the model estimates

the complete model with both types of errors. The method of the estimation is presented in section

H of the appendix. Finally in section G of the appendix we present a model of population learning

which allows us to establish a link with social learning models as the one used in Dal Bó and

Fréchette (2011).

In the study of the model we will investigate the effect of error rates on the frequency of

strategies. It is useful to have in mind the order of magnitude of error rates that is actually

observed in our data. A summary estimate of the frequency of error rates is provided in section 6.1.

In figures A.4 and A.5 we report the average error rates in transition and action. The dispersion

12



of transition error rates across individuals is reported in figures A.6 (for the early supergames) and

A.7. The range of error rates, in the experimental groups we consider, is for almost all participants

within the range of 0 to 0.3. The mean is between 0.2 and 0.01, but figure 3 shows that in earlier

supergames the mean can be much higher, around 0.15 to 0.25. Overall, it seems reasonable to

focus our attention conservatively (to consider all possible relevant cases) to the range 0 to 0.25.

Setup

The stage game is a Repeated Prisoner’s Dilemma game with payoff:

C2 D2

C1 c, c s, t
D1 t, s d, d

where

t > c, d > s, t+ s ≤ 2c. (2)

These conditions are satisfied by the payoffs in our experimental design, with a strict inequality for

the last. We focus on the set of the most commonly used repeated game strategies. We consider

in the following an automaton representation of these three strategies for each player (not for the

pair of players), with states DA for A, CG and DG for G, and CT and DT for T . An automaton

M is a tuple (X,x0, f, P ) where X is the set of states of the automaton, x0 the initial state, f is

a function X → Ai, where Ai is the set of actions of player i. When we refer to an automaton

we may omit the index of the player who is using that automaton, relying on the symmetry of the

game. Finally, P defines the transition probability where

P (·;x, (a1, a2)) ∈ ∆(X) (3)

We adopt the notation in terms of transition probability rather than functions (in spite of the

fact that transitions are deterministic) to allow a smooth transition to the later case in which we

introduce errors.

In the analysis that follows, when we introduce errors in transition, we will consider the au-

tomata GC and GD as having the same transition and same action choice function as G, but having

C and D as initial state. So GD will be different from A because the state of the automaton GD

may transit back to C by mistake, whereas the state of A can never transit to a state where C is

chosen. TC and TD are defined similarly.

5.1 Equilibrium and Evolutionary Dynamics with No Errors

We consider the normal form game where the strategy set for each player is the set

M ≡ {A,G, T} (4)
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Players choose simultaneously an element in M , and the payoff is the one induced in the repeated

game by the pair of strategies or automata, reported here:

A G T

A d, d (1− δ)t+ δd, (1− δ)s+ δd (1− δ)t+ δd, (1− δ)s+ δd
G (1− δ)s+ δd, (1− δ)t+ δd c, c c, c
T (1− δ)s+ δd, (1− δ)t+ δd c, c c, c

We call this normal form game induced by the choice of strategies the strategy choice (SC)

game. This game is special, in that the two “actions” G and T are interchangeable. The analysis

of the game with three actions can be reduced to the analysis of the reduced game with two actions

{A,GT} with payoffs:

A GT

A d, d (1− δ)t+ δd, (1− δ)s+ δd
GT (1− δ)s+ δd, (1− δ)t+ δd c, c

We denote by µR the strategies in the reduced game.

By assumption (2), d > (1− δ)s+ δd. When c < (1− δ)t+ δd then A is a dominant strategy, so

there is a unique equilibrium of the reduced game (and thus of the original strategy choice game)

at (A,A). Multiple equilibria are possible when δ is larger than the critical value

δ∗ ≡ t− c
t− d

. (5)

We consider in the following only the case in which

δ > δ∗ (6)

in this case there are three equilibria, with the mixed strategy equilibrium assigning a probability

to A given by:

µR(A, δ)∗ ≡ µ∗ =
c− (1− δ)t− δd

c− (1− δ)t− (1− δ)s− δd+ (1− δ)d
(7)

Proposition 5.1. When (6) holds, the reduced game has two equilibria in pure strategies (A,A)

and (GT,GT )) and a mixed strategy equilibrium, with µR(A, δ)∗ the probability of A. For any such

equilibrium there is a corresponding continuum of equilibria in the strategy choice game, where the

probability µR(GT, δ)∗ is assigned arbitrarily to the strategies G and T .

Corresponding to these equilibria there is a set of steady states in the evolutionary dynamics we

consider now. We let µ ∈ ∆(M) denote a mixed strategy and also a frequency of choice of strategy

in the population (Sandholm (2007), Weibull (1997)). When we consider the evolution over time

of the frequency, we let µ(t, ·) denote the vale of the frequency in the population at t. We denote

the payoff to a player adopting m when the frequency in the population is µ as U(m,µ), and for
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any τ ∈ ∆(M),

U(τ, µ) ≡
∑
m∈M

τ(m)U(m,µ)

The time evolution of the frequency under proportional imitation is

∀m ∈M,
dµ(t,m)

dt
= µ(t,m) (U(m,µ)− U(µ, µ)) (8)

The best response correspondence is defined as taking values in mixed strategies:

BR(µ) ≡ {τ ∈ ∆(M) : ∀m ∈M,U(τ, µ) ≥ U(m,µ)} (9)

The time evolution of the frequency under best response dynamics is described by the differential

inclusion:

∀m ∈M :
dµ(t,m)

dt
∈ BR(µ(t, ·))(m)− µ(t,m). (10)

To clarify the notation, we note that µ(t, ·) is a probability measure, BR is the best response

correspondence applied to µ, and BR(µ(t, ·))(m) is the probability assigned by the best response

to m; so BR(µ(t, ·))(m) is a set. We indicate mixed strategies or frequencies in the following as a

vector (µ(A), µ(G), µ(T )).

The justification of (8) is standard (Sandholm (2007)). A justification of the equation (10) within

a population model is provided in appendix G.1.1. In this version of the model, players in a large

population know exactly, and at every point in time, the frequency of strategies in the population,

but, by assumption, only a fraction have the opportunity to revise their current strategy. When

they do, they adopt the best response to the current distribution. The best response dynamics

is one step closer to a model of rational learning, so it is a useful intermediate step to build our

intuition regarding it. It differs from the rational learning model because it requires that all players

have the same belief and the belief is correct. In addition, as we are going to see (proposition 5.2),

the qualitative behavior of the strategy frequency is close to that predicted by the proportional

imitation model; so the study of the best response dynamics shows the robustness of the results to

changes in the detail of the dynamic model.

The dynamic behavior under proportional imitation has a natural long run behavior: when the

proportion of players choosing A is large enough, only A survives in the long run; conversely when

the initial fraction of A is sufficiently low, only cooperative strategies (G and T ) survive. In this

second case, however, the long run relative weight of G and T is entirely determined by the initial

conditions, and a small change in the initial conditions alters the long run behavior. More precisely:

Proposition 5.2. Under both proportional imitation and best response dynamics the following hold:

1. the set of steady states consists of the singleton (1, 0, 0); the interval

{(µ∗, µ∗p, µ∗(1− p)) : p ∈ [0, 1]} (11)
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and the interval

{(0, p, (1− p)) : p ∈ [0, 1]}; (12)

2. the path with initial condition µ(0, A) > µ∗ converge to the steady state (1, 0, 0); the paths

with initial conditions where µ(0, A) < µ∗ converge to a steady state in the set (12) above;

3. The steady states in (11) are all unstable.

In the proportional imitation dynamic, paths with initial condition (µ(0, A), µ(0, G), µ(0, T )) are

straight-lines where for every time t:

µ(t, G)

µ(t, T )
=
µ(0, G)

µ(0, T )
.

Thus a path with initial condition µ(0, A) < µ∗ converges to the steady state(
0,

µ(0, G)

µ(0, G) + µ(0, T )
,

µ(0, T )

µ(0, G) + µ(0, T )

)
In conclusion, evolutionary dynamics in the case we are considering (automata with no memory

error) cannot select among possible relative frequencies of G and T , thus cannot address the issue

of whether a more lenient strategy (such as T ) is more or less frequent in the long run than the

stricter strategy G. The long run relative frequency is whatever frequency happened to be there in

the initial condition. We will show in the analysis below that the frequency is precisely determined

in the long run when an error of arbitrarily small size is possible. Figure (5) below illustrates the

dynamic behavior of the proportional imitation model when no errors occur. The dynamic behavior

with Best Response dynamics is very similar (see figure 3), but in such degenerate cases (in which

the payoffs for the strategies G and T are the same) there is a large multiplicity of solutions of the

differential inclusion, and the dynamic is very sensitive to the tie-breaking rule.

The dynamics are drawn on the projection of the simplex representing the frequency of the

three strategies A, G and T on the triangular region (µ(G), µ(T )), so that the vertex denoted by

the letters correspond to the pure strategy denoted by that letter. The vertex A indicates the

only locally unique, locally stable equilibrium, with basin of attraction the entire triangular region

below the shorter segment (labelled U) in the interior of the triangular region. Any point on the

line joining G and T is an equilibrium of the strategy choice game and a steady state. Similarly all

the points on U are unstable states.

5.2 Value Function with Transition Errors

We now consider the case which is relevant for our experimental data. Subject can choose a

strategy, that we have described as an automaton (a set of rules they have to follow), but they

have to implement the transition relying on their memory of the relevant bits of information: the

current state, the action profile, the transition rules. In implementing the rule they may transit to
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the wrong state. We allow them to forget some element that determines the next state, (e.g. they

may forget what the other did, or what the state was), but they do not forget what automaton they

were using. In our case, the set of states for each automaton consists of two elements, so the error

can only take the form of choosing the other, wrong, state. The probability of this error is ε > 0.

The link with our experimental data is provided by this parameter, which describes an individual

characteristic: the higher the intelligence, the lower the ε.

To compute the payoff from the choice of the strategy when transition errors are possible we

need to extend the state space to include explicitly the automata that are produced by errors,

distinguishing two automata on the basis of their internal state. These sets were only appearing

implicitly in our previous analysis. The extended strategy set, S, is:

S ≡ {A,Gc, Gd, Tc, Td} (13)

where Gc is the G (Grim Trigger) automaton with c as initial state, (d for Gd). There is a unique

action determined by an automaton s ∈ S, and will be denoted by a(s).

The payoff from a pair of choices of initial automata made by the two players is determined by

a simple recursive equation on functions defined on the product space Ω:

Ω ≡ S × S (14)

with generic element ω = (s1, s2).

Note that with this notation we can write the transition for the automaton G in state C to the

same automaton in state D as the transition from Gc to Gd. So we can define the transition on the

set S (keeping the notation P ) with P (s′; s, a1, a2) the probability of transiting to s′ if the current

state is s and the action profile is (a1, a2).15

We now turn to the definition of the transition function with errors. We let Q be the set of

stochastic matrices on Ω. First, we let the transition with no errors to be denoted by Q, where

∀ω = (s1, s2), ω′ = (r1, r2), if a(ω) ≡ (a1(s1), a2(s2)),

Q(ω′;ω) ≡ P (r1; s1, a(ω))P (r2; s2, a(ω)) (15)

We then define the error transition as the stochastic matrix E : S → ∆(S) sending each automaton

of a type to the same type automaton, but choosing the state with 1/2 probability.16 We denote

15More precisely, we can write this transition for player 1’s automaton:

1. ∀a ∈ A1 ×A2 : P (A;A, a) = 1

2. P (Gc;Gc, (C
1, C2) = 1, ∀(a1,a2)6=(C1,C2)P (Gd;Gc, (a

1, a2)) = 1

3. ∀a1 ∈ A1 and t ∈ {Tc, Td}: P (Tc; t, (a
1, C2)) = 1;P (Td; t, (a1, D2)) = 1

16More precisely,

1. ∀a,∀X ∈ {G,T}, ∀i ∈ {c, d} : E(Xc;Xi, a) = E(Xd;Xi, a) = 1/2

2. ∀a : E(A;A, a) = 1.
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by qi(ω) the state in S for player i to which player i transits given the current pair ω. Finally, we

let Qε ∈ Q to be:

Qε((r
1, r2), (s1, s2)) = (1− ε)2 if ∀i : ri = qi(s1, s2)

= ε(1− ε) if for exactly one i : ri = qi(s1, s2)

= ε2 if ∀i : ri 6= qi(s1, s2)

If we let the payoff in the stage game at action profile a ≡ (a1, a2) by R(a) then we can define

a payoff function u : Ω→ R as

u(ω) = u(s1, s2) = R(a1(s1), a2(s2)) (16)

5.3 Value Function

Players choose an element in the set {A,G, T}, but the value function is defined for all elements in

the set of pairs of extended states, Ω. The payoff to a player for each such ω ∈ Ω is given by the

value function V : Ω→ R.

Lemma 5.3. The function (ε, δ) −→ V (·; ε, δ) is analytic, hence continuous and differentiable.

Proof. The function V is the unique solution of the functional equation:

V = (1− δ)u+ δQεV (17)

We may V (ω; δ, ε, u) when we want to emphasize the dependence of V on these parameters.

The inverse matrix (I − δQε)−1 exists and therefore:

V (·; δ, ε, u) = (I − δQε)−1(1− δ)u

=
+∞∑
k=0

(δQε)
k(1− δ)u

The derivative of V with respect to the error parameter is

dV

dε
= −(I − δQε)−1δ

dQε
dε

(I − δQε)−1(1− δ)u

= −(I − δQε)−1δ
dQε
dε

V
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The analysis of the function V is considerably simplified if we observe that Ω is partitioned into

invariant sets under the transition Qε, as we do in the next section.

It is clear that some subsets of the set Ω are invariant under the transition Pε. For example

the set ΩAG ≡ {(A,Gc), (A,Gd)} is invariant. The other eight sets are similarly naturally denoted.

Overall we have a partition of Ω into

P(Ω) ≡ {ΩAG,ΩAA,ΩAT ,ΩGA,ΩGG,ΩGT ,ΩTA,ΩTG,ΩTT }. (18)

each of which is invariant. Note that the cardinality of every element in this partition is either

2 or 4. Correspondingly, the vector V is partitioned into component Vi : i ∈ P(Ω), and each

satisfies equation (17) with (u,Qε) replaced by (ui, Qε,i); these equations can be solved and analyzed

independently.

Lemma 5.4. The value function equation can be decomposed into nine independent equations, one

for each of the invariant sets of the set Ω.

1. V (AA) = d

2. V (AG) = V (AT ) = t(1− δ(1− ε)) + dδ(1− ε)

3. V (GA) = V (TA) = s(1− δ(1− ε)) + dδ(1− ε)

Proof. The value of V (AA) follows from the fact that the singleton {AA} is invariant. The values

of V (AG) and V (AT ) follow as in the proof of lemma (5.5) below.

The next lemma tells us that no matter what the probability of error, the profile (A,A) in the

strategy choice game is an equilibrium:

Lemma 5.5. For all ε > 0, (A,A) is a strict Nash equilibrium of the strategy choice game, hence

a locally stable equilibrium of the PI and BR dynamics.

Proof. The transition matrix restricted to the set ΩAG is

GcA GdA
GcA ε 1− ε
GdA ε 1− ε

Using equation (17), we can solve for V (GcA) and find:

V (GcA) = (1− δ(1− ε))u(GcA) + δ(1− ε)u(GdA)

= (1− δ(1− ε))s+ δ(1− ε)d

Therefore for all ε > 0,

V (GcA) < d = V (AA). (19)
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Since the transition matrix restricted to ΩAT is the same as the one we reported for ΩAG, we

conclude:

V (TcA) < V (AA). (20)

5.3.1 Uniform Errors

Using invariant sets allows us to compute the payoff on the case of uniform error, that is when

ε = 1/2. This case gives us a boundary condition for the study of the dynamic behavior: in

particular for example it will tell us when it is impossible that (G,G) is an equilibrium profile in

the strategy choice game.17

Lemma 5.6. When ε = 1/2 the payoff in the strategy choice game (with M ×M action set) is:

A G T

A d, d mt,ms mt,ms

G ms,mt mc,mc mc,mc

T ms,mt mc,mc mc,mc

where

ms ≡ (1− δ)s+ δ
s+ d

2
,mt ≡ (1− δ)t+ δ

t+ d

2
, (21)

mc ≡ (1− δ)c+ δ

(
c+ s+ t+ d

4

)
.

Thus at ε = 1/2 the game has a unique Nash equilibrium, (A,A).

Proof. For any element i ∈ P(Ω) (this set is defined in (18)), we have that the transition restricted

to the point in i is:

Q(1/2),i =
1

#i
Ui (22)

where Ui is a square matrix of 1’s of dimension #i (the cardinality of i). We denote Mix ≡
1

#i

∑#i
k=1 xk. The value function equation restricted to states in i is:

Vi = (1− δ)ui + δMiVi (23)

Equation (23) implies

MiVi = Miui (24)

Now (23) and (24) give the formula for the value in terms of the payoffs:

Vi = (1− δ)ui + δMiui (25)

17We consider here the case in which no transition error is possible when no transition has occurred yet, that is at
the first round of the game. The case in which an automaton is chosen and an error in the choice of the initial state
is made (which may be considered as a transition error) the conclusion of the lemma (5.6) is even easier to reach.
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The rest follows from simple algebra.

For the last statement, from our assumption (2) on the stage game payoffs we conclude that

mt > mc. We already know from lemma (5.5) that d > ms holds for any δ. Thus A is a dominant

action.

5.3.2 Small Errors

We know that for “large” errors (ε = 1/2) the strategy choice game has a unique equilibrium,

defection in every round irrespective of history for both players ((A,A)). The dynamic behavior for

small ε on the sides µ(T ) = 0 and µ(G) = 0 is similar to that of the no error model, with a unique

steady state the changes continuously in ε around ε = 0. Instead, in the portion of the interior

of the simplex where A is not the attractor, and on the line µ(A) = 0 the behavior is radically

different, because the only stable states are either T or G. Consequently in this case we have well

defined basins of attraction for the two strategies G and T and we can compare the two basins for

the lenient strategy T and the strict strategy G.

“Small ε” means in our analysis smaller than a critical value (which may not be numerically

small), that we introduce now. We let:

ε ≡ sup{ε : V (GG) > max{V (TG)), V (AG)} (26)

&V (TT ) > max{V (AT )), V (GT )}}

Lemma 5.7. For any payoff of the stage game, ε > 0. If it is finite, then the value is achieved.

There are payoffs satisfying the standing assumption on stage game payoffs (2) for which ε is finite.

Proof. Note that at ε = 0,

V (GG) = V (TG)

= c

> V (AG)

= t(1− δ) + dδ

where the strict inequality follows from our assumption (6). Thus we conclude that ε > 0 from

lemma (5.3). The second claim also follows from lemma (5.3). From last claim follows from lemma

(5.6), which gives as simple sufficient condition for ε to be finite.

In particular ε is finite for the stage game with payoffs as in our experimental design.

Lemma 5.8. We consider either the proportional imitation or the best response model. For 0 <

ε < ε:

1. the sides of the simplex are invariant;
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2. on the side µ(G) = 0 (and, respectively, µ(T ) = 0) there is a unique steady state corresponding

to the mixed strategy equilibrium of the game when strategies are restricted to {A, T} for both

players (and respectively to {A,G});

3. there is a unique steady state on the side µ(A) = 0, and this is determined in the limit ε→ 0

by the ratio:

µ(G)∗ =
Vε(TT )− Vε(GT )

Vε(TT )− Vε(GT ) + Vε(GG)− Vε(TG)
(27)

where Vε is the derivative with respect to ε.

Proof. For point (3), note first that for ε > 0 then the steady state is determined by a frequency

of the strategy G, µ(G)∗ such that

µ(G)∗ =
V (TT )− V (GT )

V (TT )− V (GT ) + V (GG)− V (TG)
(28)

As ε → 0 both numerator and denominator in the right hand side of (28) tend to zero. Now the

conclusion follows from l’Hôpital rule.

With small errors, there are seven steady states. The three corresponding to the pure strategy

profiles are locally stable. The basin of attractions, indicated as BA(G) (Basin of attraction of G)

and so on), are delimited by the curved lines describing the manifolds departing from the unique

steady state in the interior of the triangular region and the sides. The other four steady states are

unstable.

5.4 Errors and frequency of strategies

We now turn to the main question we posed, namely the relationship between the probability of

error (modeled by the ε parameter) and the frequency of strict and lenient strategies. We consider

the natural strictness order:

A � G � T (29)

We denote the steady states (when they exist) on the sides of the simplex {A, T}, {A,G} and

{G,T}, as sAT , sAG and sGT respectively. For illustration we refer to figures 5 and 3. These are

real numbers in the unit interval, equal to the size of the basin of attraction of the stricter strategy

in the subset. When we want to emphasize the dependence of the parameters, we write sij(ε, δ, u).

Some very elementary but useful concepts are needed here. Consider a symmetric game with

action set {A,B} where each action is a best response to itself, that is, the gains G(A) ≡ u(A,A)−
u(B,A) and G(B) ≡ u(B,B)− u(A,B) satisfy G(A) > 0 and G(B) > 0. This game has two pure

strategy Nash equilibria and a mixed strategy one; the mixed strategy equilibrium has

µ(A) =
G(B)

G(A) +G(B)
. (30)
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In this simple two-actions game the basin of attraction of A is the set {(p, 1− p) : 1 ≥ p > µ(A)},
so the size of the basin of attraction (SBA) of A is:

SBA(A) =
G(A)

G(A) +G(B)
. (31)

that is, as intuitive: the size of the basin of attraction of a strategy is proportional to the relative

gain of one action over the gain of the other.

5.5 Proportional Imitation Dynamics

An increase in the values of sAT , sAG corresponds to an increase in the basin of attraction of A

at the expense of those of G and T ; an increase in the value of sGT leaves the relative share of A

unchanged, but it increases that of G at the expense of T .

The following proposition summarizes what we know for the two extreme value of ε = 0 and

ε = 1/2:

Proposition 5.9. Under proportional imitation,

sAG(0, δ, u) = sAT (0, δ, u) =
(1− δ)d− (1− δ)s

c− (1− δ)t− (1− δ)s− δd+ (1− δ)d
(32)

sAG(1/2, δ, u) = sAT (1/2, δ, u) = sGT (1/2, δ, u) = 1 (33)

So at ε = 0 the basin of A is the triangular region below the straight-line segment joining sAG

and sAT . As ε reaches the value 1/2 the entire simplex (except the side between G and T ) converges

to A. The strategy A may become the only strategy surviving for values of the error probability

smaller than 1/2, as we are going to see immediately.

5.6 Payoffs in the Experiment

We now analyze the basin of attraction for the specific numerical values of the payoffs used in the

experiment. In section D of the Appendix we report numerical values of the payoff matrix with

errors and figures portraying the basin of attraction. To see how the size of the basin of attraction

changes when the stage game payoffs are those we used in the experiment (c = 48, s = 12, t = 50,

d = 25), we can use the lemmas (5.3) and (5.4) to compute the value function and analyze equilibria

and dynamic behavior.

We refer to figure 4, which describes the change for different values of ε (moving along the x-axis

in each panel) and δ.

The first conclusion is:

Conclusion 5.10. With sufficiently high continuation probability and small error, the basin of

attraction of defection (A) is arbitrarily small.

The values sAG and sAT are monotonically increasing in ε, the values sGT is increasing for most

of the range.
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Note that for all values of δ the last value to reach the upper range of one is sAT . The

intermediate value of δ = 0.82 marks the boundary of an interesting division of the set of δ’s.

Conclusion 5.11. For any value of the continuation probability, as the error becomes larger, the

basin of attraction of lenient strategies (G and T ) vanishes. Within the more lenient strategies, the

relative weight of T declines compared to that of G as the error probability increases.

For lower values (δ < δ̂) the basin of attraction of T disappears entirely as sGT collapses into

the vertex T . That is, with interactions repeating with lower continuation probability (lower δ’s)

but high probability of errors the strategy T does not survive. For higher values (δ > 0.82) both

G and T survive, but lose frequency at the expense of A. In conclusion,

Conclusion 5.12. The lenient strategy T can survive only with low errors or with high probability

of continuation.

Figures (6) illustrates the dynamics of the proportional imitation for values above and below

the threshold, and payoffs equal to those used in the experiment. By “first transition” we refer here

to the first disappearance of a steady state on the sides of the simplex. We denote δ̂ the value of δ

at which sGT and sAT disappear at the same value of ε; with the payoffs used in the experimental

design, δ̂ = 0.82.

Conclusion 5.13. There is a δ̂ such that

1. if δ > δ̂ then as ε increases the interior of the simplex is split first into three regions (with

attractors A, G and T respectively); then two (with attractors A and T ) and finally only one

region (with attractors A);

2. if δ < δ̂ basins of attraction are the same for small and high ε; in the intermediate region the

attractors are A and G.

With small errors, an appropriately modified Poincare-Hopf index can be calculated. The index

of the three stable pure strategies are all 1; the others (the two mixed strategies on the sides {A, T}
and {A,G}), with an overall index 1. Note that the pure strategy profile (T, T ) is a steady state of

the proportional imitation, and a Nash equilibrium of the game restricted to {A, T} but it is not a

Nash equilibrium of the complete game.

Also with higher errors all the steady states are isolated, and thus an appropriately modified

Poincare-Hopf index can be calculated. The index of the two stable pure strategies (A and T ) are

1; the mixed strategy in the interior of the simplex has index 1. The index of the two steady states

on the sides (sAT and sGT ) is −1. The index of G is 0.

5.7 Best Response Dynamics

We now consider the dynamic evolution when the evolution follows the best response dynamics.

To understand the difference between this and the proportional imitation dynamics, it is useful to
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keep in mind that there may be steady states on the boundary of the simplex for the PID that

are not Nash equilibria of the entire game. To be precise, let NE({A,G, T}) be the set of Nash

equilibria of the strategy choice game and, for any two-strategy subset {r, s} of the set {A,G, T},
let N({r, s}) the Nash equilibria of the reduced game where players can only choose from {r, s}.
It may occur that a steady state at the boundary for the PID is not a Nash, although it may be

a Nash equilibrium of the game restricted to the strategies that have positive probability at that

steady state.

For example, in the game induced by ε = 0.35 (δ = 0.9) (values are reported in table A.16) the

strategy T is weakly dominated by G and V (GT ) > V (TT ) so the steady state sAT of the PID is

not Nash. The same is true for pure strategies: for example, the strategy G is a steady state in the

game induced by ε = 0.3 (δ = 0.9) in table A.16, the pure strategy G is a steady state of the PID,

but is not a Nash equilibrium of the complete game, because V (AG) > V (GG).

Proposition 5.14. With best response dynamics,

1. for ε < ε, all three strategies have a basin of attraction; the intersection of the boundaries

of the regions with the sides of the simplex are the same as in the proportional imitation

dynamics

2. The conclusions (5.10), (5.11), (5.12) and (5.13) hold in the case of BRD as well; in par-

ticular, for ε > ε only two strategies survive in the long run (that is, they have a basin of

attraction): they are {A,G} for low delta (δ < δ̂), and {A, T} for high δ (δ > δ̂).

Note that the lines marking the boundary of the basins of attraction in the BRD and PID may

be different (those in BRD are straight lines) but the end points are common, hence qualitatively

the basins are similar. The best response dynamic allows us to identify clearly the basin of attraction

of the three strategies by simple inspection of the phase portrait. This is done in figure 3 that we

have already discussed in our introductory discussion in section 4 and we refer the reader to that

section.

6 Errors and strategic choices in our data

In the two sections above we saw that, as error rates increase, subjects play more often stricter

strategies. If we assume that error probability (in particular the probability of transition error

associated with working memory) is negatively correlated with cognitive abilities, we should observe

stricter strategies among the subjects in the low-IQ split treatment if compared to the combined

treatment, and in the combined treatment when compared to the high-IQ split treatment. In this

section we show that our experimental data fit the assumption and the implied predictions of the

model.

In the section H of the appendix we describe in detail the algorithm we use to identify errors and

the strategy played (from the three strategies we restrict in the model). Table A.20 in the appendix

shows that the error in transition individual rate is significantly higher in the low-IQ group in the
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split treatment, and in the combined treatment, when we compare them to the high-IQ group in

the split treatment. The error in transition rate is also negatively correlated with individual IQs.

The correlation between errors in action and IQ seem less clear, as we would expect according to

the hypothesis that errors in transition are working memory errors.

6.1 Error Rates and Strategy Frequency

In table 7 we present a summary of the results of these estimations: the frequency of the strategies

played in the different treatments and within groups in the combined treatment, the error in

transition and error in action rates. Error frequencies – estimating the error rates ε and η in the

model – are higher, the lower is the proportion of high IQ subjects in the treatment. As predicted

in our model the strategies become stricter in environments with higher error rates. The frequency

of A is higher in the low-IQ group, split treatment, than in the combined and it is the lowest in

the high-IQ split treatment. The same is true for the ratios A/T and A/G.

The ratio G/T does not seem to follow the same pattern of strictly increasing with the errors:

in fact it changes very little across the three treatments. Note that for the range of errors we are

considering (i.e. less or equal to 0.01) the proportion of the basins of attraction between Grim

Trigger and Tit for Tat do not change much in the model. This can be already observed from the

two top panels of figure 3 comparing the size of the two basins of attractions of the two strategies.

From figure 4 – where we can directly observe the ratios of the size the basins of attraction of the

strict strategies– it is clear that the ratio of the basin of G over the basin of T is non monotonic

when errors are small.

Figures A.4 and A.5 in the appendix report the average error rates in transition and action.

Information on the dispersion of error rates across individuals is provided in figures A.6 (for the

early supergames) and A.7. The range of the error rates in the four groups for the most part is

within the range 0 to 0.30.

7 Learning Error Avoidance

The model described in the two previous sections assumes that the probability of both errors, ε and

η, are fixed during each entire session. In our data, the error rates decrease as the subjects gain

experience (as suggested by the regression reported in table A.20 in the appendix). In table 8 we

analyze the first and the last 10 supergames of each treatment separately. Both ε and η decrease

in the last part of all treatments compared to the first part. We can observe between periods a

similar pattern to the one we observe across treatments: the frequency of A and the ratios A/T

and A/G decrease with the errors. Similarly as before, the ratio G/T does not follow this pattern,

but –as we already argued– this can be explained by figure 4, where we can observe that the ratio

of the basins of G and T is not monotonic especially within the range of errors we are considering

(i.e. between 0.007 and 0.005). We discuss below (in section 7.1) the implications of the fact that

errors are declining. Finally, note that we observe the same pattern in terms of strategies by using
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the estimation method of Dal Bó and Fréchette (2011), presented in table A.21 of the appendix.

The estimation of errors and strategies in the section above shows that our data follows the

predictions of the model, but also reveal more complexity in the evolutions and the structure of

the errors. We will now argue that this complexity does not change the qualitative prediction of

the model.

In table 8 we see that error rates towards the end of the session are lower than in the beginning,

for each group; so participants during the session learn to play the game. In figure A.3 in the

appendix we can observe this pattern in more detail. Both transition and action error rates decline

for everyone. They all converge to nearly zero. In the low-IQ split treatment the convergence is

slower than in the combined treatment which in turn it is slower than in the high-IQ split treatment,

this suggests a process of learning by doing where all subjects adapt to their respective environment.

The errors are relatively low at the beginning of the low IQ split treatment, this is probably due to

the fact that in the first 10 supergames the share of subjects choosing the always defect strategy is

quite high – as we can observe in table 8– and the errors in transition are by definition not possible

while playing the always defect strategy, while committing error in action for this strategy is in

reality probably less likely.

7.1 Evolution with Learning Error Avoidance

In our model, for simplicity, we assume that the probability of errors, η and ε, are fixed. Considering

their decline as exogenous processes of learning by doing will not qualitatively change the model’s

conclusions. Therefore, to get a complete picture of the evolution of strategy frequencies when we

apply the analysis to our experimental data, one has to adjust the conclusions to the more general

case in which the error rates change over time. The analysis in sections 4 and 5 provides a general

guidance.

Consider the entire range of error rates that we observe in our data. The average change is in

the range of 0.03 to 0 (see figures A.4 and A.5). Consider first the region in the simplex obtained

as intersection of the basins of attraction for a strategy, say always defect, A, over the error rates

in that range. Do then the same for the two other strategies. When we take the collection of these

subsets of the simplex, we obtain all together a (likely strict) subset of the simplex. On this subset

we can make precise predictions: when the initial condition is in one of these sub-regions (say the

one for A), then the time path of frequencies will converge to A even if the error rates change.

When an initial condition is not in any of the sub-regions obtained in this way, then the analysis

depends on the two speeds of adjustment, one of the strategy frequency and the other of the error

rates. In summary, the long run behavior is ultimately determined by the limit values of the error

rates, which in our data are very low. However, starting with a higher error rate can make the set

of initial conditions on the fraction of strategies, that eventually converge to A, larger, because of

the initial movement in the direction of A.

Figure 7 reports the evolution of frequency of strategies over time in the different treatments:

high-IQ split, low-IQ split and combined. The frequency of A declines in all treatments. The total
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frequency of grim trigger, G, and tit for tat, T , converges to almost 100 per cent in the high IQ-split

treatment, and in the combined treatment. The fraction of A in the low IQ-split treatment seems

to stabilize to around a level of 0.20 in the long run. However in the low-IQ group, A is on a higher

level (around 0.40) after 5 supergames. As we argued in the preceding paragraph, the initial and

transitory levels of error frequency can affect the long-run trajectory. In fact, an initial high level

of error can bring the fraction of strategies in the early part of the session in a region close to high

values of A, thus in the basin of attraction of A. The ensuing decline of error rates may not be

able to revert this initial shift in the direction of the defect strategy

8 Conclusions

In spite of the many forces operating in the direction of segregation of individuals along similarity of

individual characteristics, a large part of social interaction occurs across very diverse individuals.

This occurs in particular across different levels of intelligence. So once it is clear that higher

cognitive skills may favor a higher rate of cooperation, a natural question arises: what are the

outcomes of strategic interactions among heterogeneous individuals? We have presented three

main results.

The first is that cooperation rates in heterogeneous groups are closer to the higher cooperation

rates that occur within segregated groups of high intelligence, although the more intelligent make a

small loss. The entire aggregated surplus is higher when heterogeneous groups play together than

when they play separately, but the interaction in heterogeneous pooling is more advantageous to

lower intelligence players.

The second result is that the higher cooperation rates of lower intelligence players in combined

groups is due to the influence of the choices of higher intelligence players, who are more consistent

in playing optimal strategies, hence commit less errors.

The third and final result concerns the observed shift, in groups of lower intelligence and so with

higher error rates, towards the direction of harsher strategies. We argue that this is an instance of

a general phenomenon which can be explained by models of social learning. To analyze the relation

between error rates and distribution of strategies we proposed an evolutionary game theory model

where a population of players who play a sequence of repeated games and choose at the beginning

of every supergame a repeated game strategy, in the set of always defect (A), grim trigger (G)

and tit-for-tat (T ). Populations may differ in the error rate of the implementation of a strategy,

either error in the choice of action or in the transition among states of the corresponding automata.

Studying the long run distribution of strategies and size of their basins of attraction, we show

that players choose more lenient strategies in environments where subjects commit few mistakes

(the basin of attraction includes in the limit of small errors only T ), and instead shift to stricter

strategies when the error rates increase, until only the equilibrium where the entire population plays

A survives. We show that the same results, and a similar intuition, operate in different evolutionary

models and dynamics, for example replicator or best response dynamics. The analysis of the data,
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testing the model, supports the main assumption (that error rates are negatively correlated with

intelligence) and the main predictions on how the distribution of strategies depends on the error

rate.

These results provide a useful guidance for policies generating social interactions among groups

heterogeneous in income or education level such as the one fostered by Moving to Opportunity

(MTO) policies. In particular, we show that social interactions are likely to be mediated by

differences in cognitive skills. Hence, our design can be considered a controlled MTO, where we

can compare rates of cooperation and differences in strategies in groups segregated according to

cognitive skills with those in mixed groups.

An important extension of these results should examine whether and how these results extend

(in experiments and in theory) to general games, and not just in the Repeated Prisoner’s Dilemma

(RPD), and for more comprehensive sets of repeated game strategies. In the RPD, the association

between smaller error rates and more lenient strategies follows from the way in which the value

function, which associates payoffs to strategies, changes with the error rate. For example, T and

G give the same payoff (and so are equivalent) in an evolutionary model with no errors. For

a similar reason these two strategies are equivalent in a rational learning model with no active

experimentation. This conclusion changes dramatically even for very small errors, because the loss

of payoff for G is higher than the loss for T , hence the result that the basin of attraction of T is

larger. With stage games in the repeated game different from the Prisoner’s dilemma the value

function associating payoffs to errors is easy to determine. But how this affects the relative fitness

properties, and thus the predicted frequency of different strategies in evolutionary models, is an

open problem. The same is true for models of rational learning with experimentation and errors.

This seems to be an important question if we want to understand how game theoretic predictions

extend to a world where players make mistakes, perhaps with a frequency associated with the level

of their cognitive skills.

Another important progress might be provided by a direct test of the evolutionary or rational

model. This could be accomplished with an experimental design providing appropriate measure-

ment and control of the belief process. Such a study would require belief elicitation from participants

along the session, either by direct observation (for example using eye-tracking measurements) or by

surveys. Also, initial conditions on beliefs could be manipulated, to insure some control over the

initial condition on beliefs. This could be accomplished for instance by providing subjects at the

begging of the session with some information on the behavior of participants in a previous sessions,

and checking with belief elicitation whether and how much this manipulation has been effective.

This is topic for current and future research.
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9 Figures and Tables

Figure 1: Period 1 Cooperation for each supergame in all the Split and Combined sessions. Average
cooperation over each supergame and session. High and low IQ split sessions are the the black and grey lines
respectively in the left panel. Combined treatment sessions correspond to the middle grey lines in the right panel.
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Figure 2: Average payoffs per interaction in the Split and Combined sessions. The average is computed
over observations in successive blocks of five supergames, of all Split and Combined sessions, aggregated separately.
Bands represent 95% confidence intervals.
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Figure 3: Basin of attraction of A, G and T , with transition error and Best Response
dynamics. The probability of error in transition is as displayed at the top of each panel, and is
ranging from 0 to 0.25. Payoff and discount factor (δ = 0.75) are as in our experimental design.
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Figure 4: Size of basin of attraction of strict strategies. Top to bottom panel: values of δ
equal to 0.75, 0.82, 0.9 respectively.
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Figure 5: Proportional Imitation dynamics with no error. All points on the segment joining
sAG and sAT (denoted by U) are unstable steady states. All points in the segment joining G and T
are stable steady states. All lines joining A with points on the latter segment are invariant. Only
few are illustrated here.
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Figure 6: Flow after the first transition: Low δ. Here ε > ε, but the two values are close. Also
δ < δ̂, hence the steady state sGT disappears first. There are only two sub-regions of the interior
of the projection of the simplex, with attractors A and G.
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Figure 7: Frequency of Strategies over Time.
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Table 1: Prisoner’s Dilemma. C: Cooperate, D: Defect.

C D

C 48,48 12,50

D 50,12 25,25

Table 2: Effect of high IQ and low IQ session on choice of cooperation and payoffs.
The dependent variables are average cooperation and average payoff across all interactions. The
baseline are the combined sessions. OLS estimator. Robust standard errors clustered at the session
levels in brackets; ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01

Supergame ≤ 20 Supergame > 20
Cooperate Payoff Cooperate Payoff

b/se b/se b/se b/se

High IQ Session 0.0990** 2.5238** 0.0691 1.7259
(0.0354) (0.9217) (0.0542) (1.4115)

Low IQ Session –0.2180*** –5.5977*** –0.2152*** –5.7067***
(0.0524) (1.3339) (0.0612) (1.5712)

# Subjects –0.0112 –0.3063 –0.0062 –0.1812
(0.0071) (0.1815) (0.0107) (0.2766)

r2 0.203 0.407 0.152 0.320
N 214 214 214 214
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Table 3: Effects of IQ and other characteristics on the cooperative choice in round 1 of
each session. The dependent variable is the choice of cooperation in round 1. Logit estimator.
Note that coefficients are expressed in odds ratios. Robust standard errors clustered at the
session level; p− values in brackets; ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Round 1 Round 1 Round 1 Round 1
Cooperate Cooperate Cooperate Cooperate

b/p b/p b/p b/p

choice
IQ 1.00889 1.00942

(0.6444) (0.6396)
High IQ Group 1.76893 1.80835

(0.1401) (0.1358)
Extraversion 0.87817 0.91292

(0.5544) (0.6628)
Agreeableness 0.66879* 0.67223*

(0.0681) (0.0851)
Conscientiousness 1.21574 1.22401

(0.4599) (0.4356)
Neuroticism 0.75337 0.76481

(0.3709) (0.4035)
Openness 1.32202 1.32145

(0.4504) (0.4562)
Risk Aversion 0.79190*** 0.79326***

(0.0063) (0.0095)
Age 0.99517 0.99802

(0.9051) (0.9605)
Female 1.04458 0.99468

(0.8941) (0.9872)
Combined Treatment 1.17291 1.16746

(0.6737) (0.6560)
Size Session 1.03245 1.02862

(0.6398) (0.6375)

N 214 214 214 214

37



Table 4: Effects of split treatment on the evolution of cooperative choice in the first
periods of supergames The dependent variable is the choice of cooperation in the first periods
of all repeated games. The baseline are the combined sessions. Logit with individual fixed effects
estimator. Note that in the second part of each session many subjects made the same choices
throughout, and for this reason their observations needed to be excluded from the estimations
of the model in columns 3 and 4. Similar regressions with random effects (which does not need
variability of choices at the individual levels avoiding this loss of observations) would deliver similar
results. Std errors in brackets; ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Superg. ≤ 20 Superg. > 20
Cooperate Cooperate Cooperate Cooperate

b/se b/se b/se b/se

choice
High IQ Sessions*Supergame 0.14861*** 0.15670*** –0.03499 0.01662

(0.0502) (0.0521) (0.0666) (0.0679)
Low IQ Sessions*Supergame –0.06502** –0.04342 0.08965** 0.09945**

(0.0277) (0.0285) (0.0428) (0.0456)
Supergame 0.12697*** 0.09194*** –0.00911 –0.05359

(0.0249) (0.0257) (0.0298) (0.0372)
1st Per. Partners’ Coop. at s-1 0.22917 1.16616***

(0.1713) (0.3479)
1st Per. Part. Coop. Rates until s-1 3.13168*** 5.96293

(0.5400) (6.1902)
Partner Coop Rates until t-1 –0.24866 12.10323**

(0.3303) (5.0114)
Average lenght Supergame 0.69441*** 0.78908*** 1.74103** 1.79204**

(0.1199) (0.1312) (0.8026) (0.8556)

N 2280 2280 654 654
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Table 5: Outcomes at period t − 1 as determinants of cooperative choice at period
t. The dependent variable is the cooperative choice at time t; the baseline outcome is mutual
cooperation at t− 1, (C,C)t−1. Panel A relates to the first 20 supergames, panel B to the last 22
supergames. Logit with individual fixed effect estimator. Coefficients are expressed in odds
ratios; p− values in brackets; ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Panel A: #Supergame ≤ 20
Low IQ High IQ Low IQ High IQ

Split Split Combined Combined
b/p b/p b/p b/p

choice
(C,D)t−1 0.00860*** 0.01038*** 0.00885*** 0.00533***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,C)t−1 0.01069*** 0.01485*** 0.00731*** 0.01039***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,D)t−1 0.00353*** 0.00339*** 0.00397*** 0.00172***

(0.0000) (0.0000) (0.0000) (0.0000)
N 2499 2448 2499 2448

Panel B: #Supergame > 20
Low IQ High IQ Low IQ High IQ

Split Split Combined Combined
b/p b/p b/p b/p

choice
(C,D)t−1 0.00301*** 0.00527*** 0.00426*** 0.00153***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,C)t−1 0.00402*** 0.03468*** 0.00270*** 0.01450***

(0.0000) (0.0000) (0.0000) (0.0000)
(D,D)t−1 0.00121*** 0.00318*** 0.00157*** 0.00044***

(0.0000) (0.0000) (0.0000) (0.0000)

N 1718 1201 1771 1379
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Table 6: Outcomes at period t − 1 as determinants of cooperative choices at period
t. The dependent variable is the cooperative choice at time t; the baseline outcome is mutual
cooperation at t − 1, that is (C,C) at t − 1. Combined is a dummy for the combined treatments.
Logit with individual random effect estimator. Robust standard errors clustered at the session
levels in brackets ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

High IQ Low IQ
All All

b/se b/se

choice
Combined*(C,C)t−1 0.30868 0.39098

(0.5137) (0.3606)
Combined*(D,D)t−1 –0.55593 0.32614

(0.3414) (0.4283)
Combined*(D,C)t−1 –0.21615 –0.03074

(0.2557) (0.3078)
Combined*(C,D)t−1 –0.52167** 0.38201

(0.2580) (0.3406)
(D,D)t−1 –6.56678*** –6.41848***

(0.4456) (0.4022)
(D,C)t−1 –4.69152*** –5.21715***

(0.4560) (0.2068)
(C,D)t−1 –5.15376*** –5.27280***

(0.2549) (0.3545)

N 10343 10003

Table 7: Individual strategies and errors in the different treatments.

Treatment IQ Split Combined

IQ Session/Group High Low All High Low
Strategy
A 0.073 0.331 0.130 0.100 0.160
G 0.461 0.325 0.433 0.448 0.419
T 0.465 0.343 0.437 0.452 0.422

Ratio G/T 0.991 0.947 0.992 0.991 0.993
Ratio A/T 0.158 0.965 0.297 0.221 0.379
Ratio A/G 0.159 1.019 0.299 0.223 0.381

Error in transition (ε) 0.005 0.011 0.007 0.007 0.008
Error in action rates (η) 0.010 0.020 0.010 0.009 0.012
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Table 8: Individual strategies and errors in the different treatments.

Supergames First 10 Last 10

Treatment IQ Split Combined IQ Split Combined
IQ Session/Group High Low All High Low All
Strategy
A 0.170 0.445 0.248 0.038 0.297 0.080
G 0.409 0.261 0.370 0.479 0.350 0.458
T 0.421 0.294 0.382 0.483 0.353 0.461

Ratio A/T 0.405 1.512 0.648 0.078 0.841 0.174
Ratio A/G 0.416 1.702 0.669 0.078 0.850 0.175
Ratio G/T 0.972 0.889 0.968 0.991 0.990 0.993

Error in transition rates (ε) 0.008 0.015 0.013 0.005 0.004 0.005
Error in action rates (η) 0.018 0.028 0.021 0.008 0.010 0.006
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Dal Bó, P. and Fréchette, G. R. (2018). On the determinants of cooperation in infinitely repeated

games: A survey, Journal of Economic Literature 56(1): 60–114.
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Appendices

A Details on Design and Implementation

Table A.9 summarises the statistics about the Raven scores for each session in the IQ-split treatment

and table A.10 for the Combined treatment. In the IQ-split treatment, the cutoff Raven score was

24 and 25. In sessions 7 and 8 the cutoff was 23 because the participants in these sessions scored

lower on average than the rest of the participants in all the other sessions. Top-left panel of

figure A.1 presents the overall distribution of IQ scores across both treatments. The bottom row

of figure A.1 presents the distribution of the IQ scores across low- and high-IQ sessions for the

IQ-split sessions, while top-right panel presents the distribution of the IQ scores for the Combined

treatment sessions. Tables A.11 until A.13 present a description of the main data in the low- and

high-IQ sessions in the IQ-split treatment and the Combined treatment sessions. Table A.14 shows

the correlations among individual characteristics.

Table A.3 compares participant characteristics across the two treatments. Only the proportion

of German participants is found to be significantly different across the two treatments, but as is

obvious from tables A.4 and A.5 this is not significantly different across intelligence groups. Overall

subjects are similiar across the two treatments. In table A.4 participant characteristics across

intelligence groups in the IQ-split treatment are contrasted where only differences in the IQ scores

are statistically different. Finally, table A.5 contrasts participant characteristics across intelligence

groups across both treatments. As in table A.4 the only statistically significant difference is for

IQ. Extraversion is found to be significantly different across intelligence groups but that cannot be

reasonably seen as a driver of the results.

A timeline of the experiment is detailed below and all the instructions and any other pertinent

documents are available online in the supplementary material.18

A.1 Timeline of the Experiment

Day One

1. Participants were assigned a number indicating session number and specific ID number. The

specific ID number corresponded to a computer terminal in the lab. For example, the partic-

ipant on computer number 13 in session 4 received the number: 4.13.

2. Participants sat at their corresponding computer terminals, which were in individual cubicles.

3. Instructions about the Raven task were read together with an explanation on how the task

would be paid.

4. The Raven test was administered (36 matrices with a total of 30 minutes allowed). Three

randomly chosen matrices out of 36 tables were paid at the rate of 1 Euro per correct answer.

18See note 2.
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5. The Holt-Laury task was explained verbally.

6. The Holt-Laury choice task was completed by the participants (10 lottery choices). One

randomly chosen lottery out of 10 played out and paid

7. The questionnaire was presented and filled out by the participants.

Between Day One and Two

1. Allocation to second day sessions made. An email was sent out to all participants listing their

allocation according to the number they received before starting Day One.

Day Two

1. Participants arrived and were given a new ID corresponding to the ID they received in Day

One. The new ID indicated their new computer terminal number at which they were sat.

2. The game that would be played was explained using en example screen on each participant’s

screen, as was the way the matching between partners, the continuation probability and how

the payment would be made.

3. The infinitely repeated game was played. Each experimental unit earned corresponded to

0.003 Euro.

4. A de-briefing questionnaire was administered.

5. Calculation of payment was made and subjects were paid accordingly.
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B Session Dates, Sizes and Characteristics

Tables A.1 and A.2 below illustrate the dates and timings of each session across both treatments.

Table A.1: Dates and details for IQ-split

Day 1: Group Allocation
Date Time Subjects

1 23/04/2018 10:00 17
2 23/04/2018 11:00 19

Total 36

3 07/05/2018 14:45 15
4 07/05/2018 16:00 11

Total 26

5 12/06/2018 09:45 14
6 12/06/2018 11:30 19

Total 33

7 20/11/2018 14:00 17
8 20/11/2018 15:15 19

Total 36

Day 2: Cooperation Task
Date Time Subjects Group

Session 1 25/04/2018 10:00 16 High IQ
Session 2 25/04/2018 11:30 14 Low IQ

Total Returned 30

Session 3 09/05/2018 14:00 10 High IQ
Session 4 09/05/2018 15:30 10 Low IQ

Total Returned 20

Session 5 14/06/2018 10:00 12 High IQ
Session 6 14/06/2018 11:30 14 Low IQ

Total Returned 26

Session 7 22/11/2018 14:00 16 High IQ
Session 8 22/11/2018 15:30 16 Low IQ

Total Returned 32

Total Participants 108
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Table A.2: Dates and details for Combined

Day 1: Group Allocation
Date Time Subjects

1 30/04/2018 09:45 7
2 30/04/2018 11:00 13

Total 20

3 15/05/2018 10:00 6
4 15/05/2018 11:30 16

Total 22

5 18/06/2018 14:45 17
6 18/06/2018 16:00 9

Total 26

7 10/07/2018 09:45 7
8 10/07/2018 11:00 13

Total 20

9 02/10/2018 09:45 7
10 02/10/2018 11:00 11

Total 18

11 15/10/2018 09:45 6
12 15/10/2018 11:00 6

Total 12

Day 2: Cooperation Task
Date Time Subjects

Session 1 02/05/2018 10:00 14
Session 2 17/05/2018 14:00 10
Session 3 17/05/2018 15:30 12
Session 4 20/06/2018 14:00 12
Session 5 20/06/2018 15:30 12
Session 6 12/07/2018 10:00 18
Session 7 04/10/2018 11:30 16
Session 8 17/10/2018 11:30 12

Total Participants 106
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Table A.3: Comparing Variables across the IQ-Split and the Combined Sessions

Variable Split Combined Differences Std. Dev. N

IQ 103.4069 103.1394 .2674614 1.349413 214

Age 23.84259 23.06604 .7765549 .6392821 214
Female .4907407 .5 -.0092593 .0686773 214
Openness 3.767593 3.678302 .0892907 .0730968 214
Conscientiousness 3.358025 3.431866 -.0738411 .0883303 214
Extraversion 3.228009 3.371462 -.143453 .1024118 214
Agreeableness 3.591564 3.612159 -.0205955 .0850711 214
Neuroticism 3.016204 2.879717 .1364867 .0995567 214
Risk Aversion 5.536082 5.382979 .1531038 .251421 191
German .6481481 .754717 -.1065688 .0624657** 214

Total Profit 5167.87 5957.415 -789.5447 141.8649*** 214
Rounds Played 126.8519 139.8302 -12.97834 2.591088*** 214
Payoff per Round 40.19059 41.89426 -1.703675 .6099137*** 214

Total Profit (Equal SGs Played) 3858.296 4021.849 -163.5528 57.84501** 214
Payoff per Round (Equal SGs Played) 40.19059 41.89426 -1.703675 .6025522** 214

Note: ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01

Table A.4: Comparing Variables across IQ-split Sessions

Variable Low IQ High IQ Differences Std. Dev. N

IQ 95.94193 110.8718 -14.92987 1.232502*** 108

Age 24.14815 23.53704 .6111111 1.142875 108
Female .462963 .5185185 -.0555556 .0969619 108
Openness 3.824074 3.711111 .112963 .0975451 108
Conscientiousness 3.376543 3.339506 .037037 .1160422 108
Extraversion 3.386574 3.069444 .3171296 .1456155** 108
Agreeableness 3.609054 3.574074 .0349794 .1201571 108
Neuroticism 2.949074 3.083333 -.1342593 .1357823 108
Risk Aversion 5.652174 5.431373 .2208014 .394149 97
German .6111111 .6851852 -.0740741 .0924877 108

Final Profit 4481.481 5854.259 -1372.778 184.8242*** 108
Rounds Played 122.4815 131.2222 -8.740741 4.266736** 108
Payoff per Round 36.68508 44.50096 -7.815882 .5747042*** 108

Total Profit (Equal SGs Played) 3480.667 4235.926 -755.2593 55.6599*** 108
Payoff per Round (Equal SGs Played) 36.25694 44.12423 -7.867284 .5797906*** 108

Note: ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01

A-5



Table A.5: Comparing Variables across IQ-split Groups Across both Treatment Sessions

Variable Low IQ High IQ Differences Std. Dev. N

IQ 95.68959 110.8592 -15.1696 .8576931*** 214

Age 23.83178 23.08411 .7476636 .6394164 214
Female .4672897 .5233645 -.0560748 .0685692 214
Openness 3.741122 3.705607 .035514 .0733099 214
Conscientiousness 3.425753 3.363448 .0623053 .0883684 214
Extraversion 3.398364 3.199766 .1985981 .1019719** 214
Agreeableness 3.613707 3.589823 .0238837 .0850633 214
Neuroticism 2.925234 2.971963 -.046729 .0999411 214
Risk Aversion 5.451613 5.469388 -.0177749 .2517194 191
German .7102804 .6915888 .0186916 .0628772 214

Final Profit 5177.28 5940.626 -763.3458 142.5326*** 214
Rounds Played 131.0748 135.486 -4.411215 2.723199* 214
Payoff per Round 39.30087 43.82866 -4.527786 .5416761*** 214

Total Profit (Equal SGs Played) 3729.673 4148.944 -419.271 51.40749*** 214
Payoff per Round (Equal SGs Played) 38.85076 43.21817 -4.367407 .5354947*** 214

Note: ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01
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Figure A.1: Distribution of IQ Scores. Top-left panel shows IQ distribution for all participants
across both treatments, top-right shows IQ distribution in Combined treatment and bottom panels
show IQ distribution in low- and high-IQ sessions from IQ-split treatment.
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Table A.6: Countries of Origin of Participants

Country Number Percentage

Albania 2 0.93
Belarus 1 0.47
Bulgaria 2 0.93
Canada 1 0.47
China 9 4.21
Denmark 1 0.47
Egypt 3 1.40
France 1 0.47
Germany 150 70.09
Hungary 1 0.47
India 3 1.40
Indonesia 1 0.47
Italy 4 1.87
Japan 1 0.47
Kazhakhstan 1 0.47
Kosovo 1 0.47
Moldova 2 0.93
Peru 1 0.47
Poland 1 0.47
Romania 1 0.47
Russia 7 3.27
Serbia 1 0.47
Spain 3 1.40
Switzerland 2 0.93
Syria 1 0.47
Taiwan 1 0.47
Turkey 4 1.87
UK 1 0.47
USA 2 0.93
Ukraine 4 1.87
Vietnam 1 0.47

Total 214 100.00
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Table A.7: SGs and Rounds Played by Session in IQ-Split

Session SGs Rounds

1 37 123
2 29 96
3 42 151
4 42 151
5 40 146
6 29 96
7 34 116
8 42 151

Table A.8: SGs and Rounds Played by Session in Combined

Session SGs Rounds

1 42 151
2 42 151
3 42 151
4 37 123
5 42 151
6 42 151
7 36 119
8 37 123

Table A.9: Raven Scores by Sessions in IQ-split Treatment

Variable Mean Std. Dev. Min. Max. N

High IQ - Session 1 28.063 2.886 25 35 16
Low IQ - Session 2 20.214 3.725 11 24 14
High IQ - Session 3 28 2.539 25 33 10
Low IQ - Session 4 22 2.539 18 25 10
High IQ - Session 5 27.917 3.147 24 34 12
Low IQ - Session 6 19.357 3.671 11 23 14
High IQ - Session 7 25.875 2.029 23 31 16
Low IQ - Session 8 20.5 2.394 15 23 16
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Table A.10: Raven Scores by Sessions in Combined Treatment

Variable Mean Std. Dev. Min. Max. N

Session 1 23.214 5.754 11 31 14
Session 2 22 6.532 8 31 10
Session 3 22.833 4.859 13 31 12
Session 4 25.333 3.339 20 32 12
Session 5 24.917 2.466 20 29 12
Session 6 24.833 4.19 16 32 18
Session 7 23.375 4.674 16 30 16
Session 8 23 4.533 16 34 12

Table A.11: IQ-split: Low IQ Sessions, Main Variables

Variable Mean Std. Dev. Min. Max. N

Choice 0.561 0.496 0 1 6614
Partner Choice 0.561 0.496 0 1 6614
Age 23.983 7.876 17 65 6614
Female 0.454 0.498 0 1 6614
Round 64.824 40.281 1 151 6614
Openness 3.85 0.518 2.5 5 6614
Conscientiousness 3.37 0.559 2.333 4.667 6614
Extraversion 3.408 0.683 1.875 4.75 6614
Agreableness 3.585 0.680 1.667 4.889 6614
Neuroticism 2.969 0.696 1.125 5 6614
Raven 20.552 3.04 11 25 6614
Risk Aversion 5.639 2.016 0 10 6614
Final Profit 4695.723 1037.735 3168 6337 6614
Profit x Period 36.685 3.179 28.669 42.875 54
Total Periods 122.481 27.739 96 151 54
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Table A.12: IQ-split: High IQ Sessions, Main Variables

Variable Mean Std. Dev. Min. Max. N

Choice 0.875 0.331 0 1 7086
Partner Choice 0.875 0.331 0 1 7086
Age 23.518 3.28 18 33 7086
Female 0.523 0.5 0 1 7086
Round 66.91 39.264 1 151 7086
Openness 3.723 0.497 2.6 4.8 7086
Conscientiousness 3.322 0.64 1.444 4.556 7086
Extraversion 3.073 0.816 1.25 4.625 7086
Agreableness 3.578 0.563 2 5 7086
Neuroticism 3.081 0.707 1.375 4.375 7086
Raven 27.44 2.745 23 35 7086
Risk Aversion 5.386 1.63 2 9 7086
Final Profit 5941.262 864.996 4312 7248 7086
Profit x Period 44.501 2.78 36.382 48 54
Total Periods 131.222 14.615 116 151 54

Table A.13: Combined, Main Variables

Variable Mean Std. Dev. Min. Max. N

Choice 0.795 0.404 0 1 14822
Partner Choice 0.795 0.404 0 1 14822
Age 23.048 2.906 18 33 14822
Female 0.496 0.5 0 1 14822
Round 71.156 41.578 1 151 14822
Openness 3.683 0.553 2.4 5 14822
Conscientiousness 3.432 0.684 1.556 4.778 14822
Extraversion 3.378 0.73 1.625 4.625 14822
Agreableness 3.614 0.61 2.111 4.889 14822
Neuroticism 2.872 0.743 1.375 4.625 14822
Raven 23.759 4.621 8 34 14822
Risk Aversion 5.407 1.508 2 9 14822
Final Profit 6026.931 851.060 3984 7212 14822
Profit x Period 42.555 3.933 30.417 47.762 106
Total Periods 139.83 14.467 119 151 106
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C Supplementary Data Analysis

Figure A.2: Average cooperation per supergame in all different sessions. The grey lines
in each panel represent the average cooperation per period among all subjects of the corresponding
low-IQ groups and the black lines represent the average cooperation per supergame among all
subjects of the corresponding high-IQ groups. The dashed lines represent the combined sessions,
the bold lines the split sessions, and the dotted straight lines the linear trends.

Panel A: Split Treatment

0
.2

.4
.6

.8
1

0 10 20 30 40
 sessions 1 and 2 

0
.2

.4
.6

.8
1

0 10 20 30 40
 sessions 3 and 4 

0
.2

.4
.6

.8
1

0 10 20 30 40
 sessions 5 and 6 

0
.2

.4
.6

.8
1

0 10 20 30 40
 sessions 7 and 8 

Panel B: Combined Treatment

0
.2

.4
.6

.8
1

0 10 20 30 40
session 1

0
.2

.4
.6

.8
1

0 10 20 30 40
session 2

0
.2

.4
.6

.8
1

0 10 20 30 40
session 3

0
.2

.4
.6

.8
1

0 10 20 30 40
session 4

0
.2

.4
.6

.8
1

0 10 20 30 40
session 5

0
.2

.4
.6

.8
1

0 10 20 30 40
session 6

0
.2

.4
.6

.8
1

0 10 20 30 40
session 7

0
.2

.4
.6

.8
1

0 10 20 30 40
session 8

A-13



Figure A.3: Errors in transition and action, Error rates across different treatments and groups.
The average is computed over observations in successive blocks of five supergames. The grey solid
line represent the low-IQ split treatment, the black solid lines the high-IQ split treatment, the
dashed lines the combined treatment: grey is the low-IQ group, black is the high-IQ group.
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Figure A.4: Frequency of Transition Errors. Top panel: all supergames; bottom panel: early
supergames (first half).
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Figure A.5: Frequency of Action Errors. Top panel: all supergames; bottom panel: early
supergames (first half).
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Figure A.6: Frequency of Transition Errors: Histogram. Early supergames, common x and
y-scale
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Figure A.7: Frequency of Transition Errors: Histogram. All supergames, common x and
y-scale.
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D Payoff Tables with Transition Errors

We report the value of the matrix V for the values of δ relative to Figure (4), top and bottom

panel, for various values of ε. The entries illustrate the transition along different types of equilibria

and attractors.

In Table (A.15), with δ = 0.75, as ε crosses the first threshold between 0.25 and 0.3, action T

becomes dominated by G, so sGT disappears. Figure (6) illustrates the dynamics in this situation.

After the second threshold, V (A,G) > V (G,G) and thus sAG disappears. After the last, A becomes

dominant.

Table A.15: V matrix, δ = 0.75, ε = 0.25, 0.30, 0.35, 0.40.

A G T

A 25.0000 35.9375 35.9375
G 19.3125 37.6125 39.1168
T 19.3125 37.2846 39.1962

A G T
A 25.0000 36.8750 36.8750
G 18.8250 37.3221 38.6771
T 18.8250 37.0298 38.6384

A G T
A 25.0000 37.8125 37.8125
G 18.3375 37.1935 38.3034
T 18.3375 36.9510 38.1969

A G T
A 25.0000 38.7500 38.7500
G 17.8500 37.1718 37.9620
T 17.8500 36.9941 37.8411
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In Table (A.16), after the first threshold, V (A,G) > V (G,G) and thus sAG disappears first.

After the second threshold, G dominates T and thus sGT disappears at this point.

Table A.16: V matrix, δ = 0.9, ε = 0.25, 0.30, 0.35, 0.40.

A G T
A 25.0000 33.1250 33.1250
G 20.7750 33.5591 35.7744
T 20.7750 33.1806 36.1957

A G T
A 25.0000 34.2500 34.2500
G 20.1900 33.7727 35.7489
T 20.1900 33.4154 35.8681

A G T
A 25.0000 35.3750 35.3750
G 19.6050 34.0813 35.6889
T 19.6050 33.7695 35.6246

A G T
A 25.0000 36.5000 36.5000
G 19.0200 34.4359 35.5754
T 19.0200 34.1972 35.4377
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Figure A.8: Basin of attraction of A, G and T , with transition error and Best Response
dynamics. The probability of error in transition is as displayed at the top of each panel, and is
ranging from 0 to 0.25. Payoffs are as in our experimental design; discount factor is δ = 0.6.
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E Vector Field with Replicator Dynamics

Figure A.9: Basin of attraction of A, G and T , with transition error and Proportional
Imitation dynamics. The probability of error in transition is as displayed at the top of each
panel, and is ranging from 1 per cent to 25 per cent. Payoff and discount factor (δ = 0.75) are as
in our experimental design.
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F Errors in Action and Transition

In this section we analyze the more complete (and more complex) model in which errors of both

types (in action choice and in transition) are possible.

The main innovation with respect to the analysis in the main text is the introduction of the

error in action transition matrix. We denote (just as ε was the probability of an independent error

in the transition to the new state of the automaton) by η the probability of an error in the choice

of the action at a state in the automaton. The set of action profiles is as usual A ≡ A1 × A2.

Let Pr(a;ω, η) denote the probability of choice of the action profile a by the two players when the

current state is ω and the probability of an error in action choice is η. The action choice with errors

at a state is a stochastic matrix Aη : Ω→ ∆(Ω×A) defined by

Aη(ω)(ω′, a) ≡ δω(ω′)Pr(a;ω, η) (A-1)

Note that the ω coordinate in the image space of A is only required as a placeholder. This role

turns out to be essential in the next step, the definition of Qε,η in equation (A-2). To illustrate the

definition of Aη consider for example:

Aη(Gc, Gd)(Gc, Gd, C
1, D1) = (1− η)2

The transition with errors Tε : Ω × A → ∆(Ω) is defined by taking Tε(ω, a)(ω′) as the probability

that the next period state is ω′ given that the current state is ω and current action profile is a.

Overall the stochastic matrix Qε,η ∈ S(Ω,Ω) is the composition of the two transitions:

Qε,η(ω
′;ω) ≡

∑
a∈A

Aη(ω)(ω, a)Tε(ω, a)(ω′) (A-2)

We denote by uη(a) the one period payoff when the intended action profile is a but errors

in action choice are possible and occur independently for the two players with probability η. To

illustrate, if the intended action profile is (C1, D2) then uη(C
1, D2) = (1−η)2s+η(1−η)(d+c)+η2t.

We also let Vε,η(ω) the value function at the state ω

Vε,η = (1− δ)uη + δQε,ηVε,η (A-3)

F.1 The Nash Equilibrium Set

The analysis of the properties of the value function presented in the main text holds with little

adjustments in the current case where errors in actions and transition are possible. The following

lemma holds:

Lemma F.1. The function (ε, η, δ) −→ V (·; ε, η, δ) is analytic, hence continuous and differentiable.

The decomposition of the state space described in the main text into invariant sets holds in the

current case as well. Similarly, with easy computations, one gets:
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Lemma F.2. The value function equation can be decomposed into nine independent equations, one

for each of the invariant sets of the set Ω.

1. Vε,η(AA) = uη(DD)

2. Vε,η(GA) = (1− δ(1− ε))uηu(CD) + δ(1− ε)uη(DD)

3. Vε,η(AG) = (1− δ(1− ε))uηu(DC) + δ(1− ε)uη(DD)

Note that

uη(DD) = (1− η)2d+ η(1− η)(s+ t) + η2c

uη(CD) = (1− η)2s+ η(1− η)(d+ c) + η2t

uη(DC) = (1− η)2t+ η(1− η)(d+ c) + η2s

In the case of the two errors the best response to A is A for the interesting values of the

parameter η:

Lemma F.3. For all ε > 0 and η < 1/2, (A,A) is a strict Nash equilibrium of the strategy choice

game, hence a locally stable equilibrium of the PI and BR dynamics.

Proof. An easy computation gives:

Vε,η(AA)− Vε,η(GA) = (1− 2η)(1− η)(d+ t− s− c).

Hence, also in the case of the two errors A survives for all values of the parameters.

F.2 Basin of Attraction and Error Rates

From our analysis it is clear that the behavior of the basin of attraction as function of the two error

rates will broadly follow a behavior similar to that already observed in the case of the simple error

in transition, examined in the main text. Figures (A.10) and (A.11) report the sizes of the basin

as function of the two error rates. These are the three dimensional versions of the figure (4).

One can consider also the exact analogue of figure (4), but for the error in action choice, by

setting the transition probability to zero. This makes clear that the basin of attractions of the strict

strategies in the sides of the simplex (analyzing the size of the basin when players are playing only

{G,T}, {A, T} and {A, T}) is strictly increasing in the probability of the error in action choice.

An important difference between the effect of error in transition and error in action is the

following. Even with no error in action a large enough error probability in transition will reduce
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the strategy surviving to A: this is clear considering the projection on the zero error in action

plane. Instead, with no error in transition only the

In the case of the subset {A, T}, at zero transition error the effect of the error in action is still

strictly increasing, but of limited size: at δ = 0.75 the largest size of the basin of attraction of A is

approximately 25 per cent; at δ = 0.9 the maximum is smaller than 10 per cent.

Figure A.10: Size of basin of attraction of strict strategies with two types of error.
Probability of error in transition and action choice as displayed. δ = 0.75. Top to bottom panel:
values of the basin of attraction in the indicated subsets of strategies (basin of G in GT , A in AG,
A in AT , respectively).
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Figure A.11: Size of basin of attraction of strict strategies with two types of error.
Probability of error in transition and action choice as displayed; δ = 0.9. Top to bottom panel:
values of the basin of attraction in the indicated subsets of strategies (basin of G in GT , A in AG,
A in AT , respectively).

A-24



G Learning Model

G.1 A Population Model

We consider a model in which a population of players; each player is indexed by an index i ∈ [0, 1],

and has at every point in time a strategy profile he adopts, call it si(t). Such assignment of strategy

to each player induces a probability distribution on strategies, where we call as in the main text

µ(s, t) the frequency of the strategy s (that is, the fraction of the i players who have adopted s at

t). Players know the distribution µ and can compute the best response, but for some reason they

cannot adopt the best response when they like.

G.1.1 Best Response

We apply this setup to provide a justification of the Best Response dynamic (see for example

Sandholm (2007)), that we described in the main text as:

∀s ∈ S :
dµ(s, t)

dt
∈ λ (BR(µ(·, t))(s)− µ(s, t)) . (A-4)

we have added a minor modification, a λ ∈ R+; the reason will become clear in a moment. In the

time interval dt (dt small) a fraction λdt of the population can revise their strategy; the complement

1 − λdt cannot. Those who can, adopt the best response to the current µ(·, t); each player does

so taking the current µ as given, and ignoring (correctly, since he is negligible) his effect on the

frequency of strategies. If we denote by BR the set of optimal mixed strategies, for every m we

have

µ(s, t+ dt) ∈ (1− λdt)µ(s, t) + λdtBR(µ(·, t))(s) (A-5)

which in the limit gives the differential inclusion (A-4).

We now apply the population model to a learning model.

G.2 The learning model

Each player has a belief on the distribution of strategies in the population. The belief has the same

form for all players, and is a Dirichelet distribution of the three dimensional simplex, ∆({A,G, T});
player i has a concentration parameter αi ∈ N3; so the density of the belief of that player is:

D(µ, αi) =
1

B(αi)
µ(A)α

i
A−1µ(G)α

i
G−1µ(T )α

i
T−1 (A-6)

where B is the beta function.

The assignment of the belief described by αi to each player induces a population distribution

over belief of players on the strategy of others, described by a probability distribution on the

countable set N3; with generic term π.
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G.2.1 Matching and Playing the Game

At time t, a fraction λdt of the population is randomly selected to play the game. This sub-

population is representative of the total population, so the distribution on N3 in it is the same

as in the total population. For convenience, we will consider in the following the extension of the

measure π to a measure on Z3, set equal to 0 on all three dimensional vectors of integers that have

a negative value in some coordinate; we keep the same symbol:

π ∈ ∆(Z3) (A-7)

G.2.2 Players’ best response

We now consider players in the selected sub-population. Given the distribution on the strategy of

the other selected players, each player computes and chooses with no limitation a mixed strategy

in the set of his best responses, given his belief indexed by α:

BR(α) = argmaxσ∈∆(S)ED(·,α)u(σ, ·). (A-8)

By the property of the Dirichelet distribution with parameter α , the mean of µs, s ∈ S is

ED(·,α)µ(s) =
αs∑
r∈S αr

.

≡M(s;α) (A-9)

When convenient write M(·, α) simply as M(α). The best response set of a player with belief

indexed by α is:

BR(α) = argmaxσ∈∆(S)

∑
s∈S

M(s;α)u(σ, s). (A-10)

When we add over N3 with weights given by π, the best response of each player we get an

element φ(·;π) ∈ ∆(S) which is the true distribution in the population of the strategies. Note that

the function φ depends on the value function of the repeated game at the corresponding error rate.

We will make this dependence explicit later on when we need to study its effects, but we ignore it

for the moment for clarity of notation. 19

19We assume that when the best response of a player with belief α is not a pure strategy, then players choose
according to the uniform distribution over the best response set, so when we aggregate over the sub-population of
such players we get the expected value of the strategy choice. In detail, we define:

φ(s;π) ≡ π({α : BR(α) = {s}) +
∑
r 6=s

1

2
π({α : BR(α) = {s, r})+ (A-11)

1

3
π({α : BR(α) = ∆(S))
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G.2.3 Discrete Time Evolution of Belief Distribution

We consider first the evolution in discrete time. In each period, all players are randomly matched

with probability corresponding to the frequency.

Proposition G.1. The fraction of each α belief in the model described in section (G.2) follows the

difference equation:

π(α, k + 1) = Sπ(·, k), k = 0, 1, . . . . (A-12)

where S defined in (A-14).

Proof. Let 1s denote the three dimensional vector equal to 1 at the sth coordinate, and 0 otherwise.

Given a π ∈ ∆(N3), a players hold a belief α next period if and only if in the current period he

holds a belief α − 1s and meets an opponent playing s, which happens with probability φ(s, π).

Each player then updates his belief; since priors are Dirichelet, he changes the αi to the new value:

αi,′s = αis + δs(b
i) (A-13)

where δs is the indicator function. 20 Define:

(Sπ)(α) ≡
∑
s∈S

π(α− 1s)φ(s, π) (A-14)

Recall our discussion before (A-7), so the definition (A-14) is meaningful even when, in αs = 0.

Equation (A-12) follows.

G.2.4 Continuous Time Evolution of Belief Distribution

We now show that the time evolution of the fraction of beliefs in the population follows a dynamic

very similar to the one described by the best response presented in section (G.1.1), with the

distribution on beliefs π replacing the distribution on strategies µ:

Proposition G.2. The time derivative of the fraction of each α belief in the model described in

section (G.2) follows the equation:

dπ(α, t)

dt
= λ

(∑
s∈S

π(α− 1s)φ(s, π(·, t))− π(α, t)

)
(A-15)

Proof. The players who are matched to play observe a strategy bi of the opponent with probability

φ(bi;π). Each player in the sub-population updates his belief according to (A-13). The new

population after the time interval dt is a combination of the population of players that did not

play, that is a fraction 1−λdt, with frequency π(·, t) unchanged; and the sub-population of selected

20That is, δs(bi) = 1 if s = bi and = 0 otherwise.
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players, a fraction λdt, with frequency Sπ(·, t). Thus, the frequency next period is

π(α, t+ dt) = (1− λdt)π(α, t+ dt) + λdtSπ(·, t),

and therefore (A-15) follows.

The analysis of the evolution over time is more difficult to visualize than it is in the simple two

dimensional case of the best response dynamic, but the logic is the same. In particular consider the

best response function φ as depending on the value function V for a given vector of parameters,

(ε, η, δ, u). As the error in action becomes large, the best response assigns for the same π(·, t) a

larger weight to the strategy A, until the frequency converges to the consensus on A.

G.3 Estimation of beliefs’ updating under best response

We now estimate the evolutions of the beliefs under best response dynamics described above for

each strategy, s, at the beginning of each supergame t, αis,t. For simplicity we limit ourselves to the

case of no errors in the implementation of strategies (transition or action), where G and T have the

same expected utility and for this reason we refer to this strategy as sophisticated cooperation or

SC. Therefore, we assume that subjects in the first repeated game hold beliefs that other players

either use A or a cooperative strategy that we already defined SC. Let the probability of player i in

supergame s to play A be αiA,t/(α
i
A,t + αiSC,t). In the first supergame, t = 1, subjects have beliefs

charaterized by αiA,1 and αiSC,1, from the second supergame onward, t > 1. Following Dal Bó and

Fréchette (2011), we assume that they update their beliefs as follows:

αik,t+1 = θiα
i
k,t + 1(ajk), (A-16)

where k is the action (A or SC) and 1(akj ) takes the value 1 if the action of the partner j is k. The

discounting factor of past belief, θi, equals 0 in the so-calleld Cournot Dynamics and is 1 in the

fictitious play. Therefore the closer is θ to 1 the slower will player update their beliefs. Since we

assume that subjects chose a strategy at the beginning of the supergame, they will play cooperation,

C, in period 1 of supergame if they expect that the partner plays SC, defect, D, otherwise. The

expected utility each player obtains for each action, a, is

U ia,t =
αiA,t

αiA,t + αiSC,t
ua(a

j
A) +

αiSC,t
αiA,t + αiSC,t

ua(a
j
SC) + λisε

s
a,t (A-17)

where ua(a
j
k) is the payoff from taking action a when j takes the action k. The estimation of

the model above generates choices of the first period of each supergame that in average fits well

our data as it is shown in figure A.12. We now analyse the two parameters we are interested: θi,

measuring the inverse of the speed by which subjects update their beliefs and λis, measuring the
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inverse of the capacity of best responding given the beliefs.21

In table A.19, we show the correlation between IQ and the parameters of interest. IQ signifi-

cantly negatively correlated with θi, implying that higher IQ subjects update faster their beliefs.

While do not affect the capacity of best responding, λs. In the top panels of figure A.13 we can

compare the cumulative distribution of the θi in the different treatments. θi seem to be smaller

for high IQ than for low IQ, confirming that low IQ update they beliefs slower than high IQ (top

left panel). When combined the differences seem to be drastically reduced (top right panel). From

panel A of table A.18 , we note that the differences between high IQ and low IQ in the split treat-

ment is statistically significant, while the same difference in the combined treatment is only weakly

significant at the best. The bottom left panel of figure A.13 shows that low IQ improve their speed

(i.e. θi is lower) when combined with the high IQ, while there is no much difference among high IQ

subjects in the different treatments. Panel B of A.18 confirm that the differences among the low

IQ in the combined and in the split treatments are statistically significant. We can summarise this

discussion saying Less intelligent learn to update their beliefs faster when they are mixed with more

intelligent, while the way the subjects best respond to their beliefs is not depended on their IQs. A

possible explanation of why lower IQ subjects update their first period beliefs faster when mixed

with the higher IQ might be that in the latter environment they receive a clearer signal from the

other players playing more consistent strategies of cooperation.

21We omit the details on how the model is estimated, they can be found in in the online appendix of Dal Bó and
Fréchette (2011) at page 6-8.
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Figure A.12: Simulated Evolution of Cooperation Implied by the Learning Estimates
Solid lines represent experimental data, dashed lines the average simulated data, and dotted lines
the 90 percent interval of simulated data.

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
C

oo
pe

ra
tio

n

0 10 20 30 40
Supergame

High-IQ: Split

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
C

oo
pe

ra
tio

n

0 10 20 30 40
Supergame

Low-IQ: Split

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
C

oo
pe

ra
tio

n

0 10 20 30 40
Supergame

Combined

Figure A.13: Distribution of the beliefs’ updating speed within the different groups and
treatments. Distribution of the parameter θi as defined in equation A-16, where 1 correspond to
slowest speed (fictitious play) and 0 to the fasted speed (Cournot dynamics)
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Table A.17: IQ and Simulated Parameters

Variable Mean Std. Dev. Min. Max. N

IQ 103.516 10.203 69.338 127.231 182
θi 0.58 0.357 0 1 129
λ0 5.67 11.683 0 93.275 129
λ20 7.28 12.941 0.154 93.275 128
λ40 6.846 12.913 0.141 93.275 128

Table A.18: Differences in the beliefs’ updating speed within the different groups and
treatments. Tests of the differences of the estimated parameter θi as defined in equation A-16,
where 1 correspond to slowest speed (fictitious play) and 0 to the fasted speed (Cournot dynamics)
∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Panel A: Tests between IQ groups

Treatment Split Combined
θLowIQ - θHighIQ θLowIQ - θHighIQ

t test t −2.9623∗∗∗ −1.3777∗

Mann-Witney z −2.488∗∗ -1.411

Panel B: Tests between treatments

Treatment Split vs Combined Split vs Combined
θLowIQ θHighIQ

t-test t 1.9647∗∗ −0.3909
Mann-Witney z 1.849∗ −0.350

Table A.19: Correlation between IQ, beliefs updating and capacity of best responding
to own beliefs Correlations between IQ, updating speed, θi, capacity of best responding to beliefs
in supergame s, λs. p− values in brackets

Variables IQ θi λ0 λ20 λ40

IQ 1.000

θi -0.345 1.000
(0.000)

λ0 -0.032 -0.242 1.000
(0.746) (0.006)

λ20 -0.047 -0.196 0.887 1.000
(0.635) (0.026) (0.000)

λ40 0.001 -0.205 0.899 0.988 1.000
(0.992) (0.020) (0.000) (0.000)

A-31



H Estimation of the error rates

Let s denote the strategy in a given set of strategies (to be determined later), ε the probability

of an error in action choice and η the probability of an errors in transition among states of the

automaton.

Take a history of the supergame of length T , h ≡ (a1
1, a

2
1, . . . , a

1
T , a

2
T ). We are interested in

determining the parameter (s, ε, η) ∈ S × [0, 0.5]2 that maximizes the probability of observing the

choices of subject 1 given the history of the others’ actions. The restriction to errors less than

chance is natural. The model we have described in the earlier section provides a statistical model

which we now describe.

H.1 Recursive Computation of Errors

There is a simple recursive algorithm to compute the set of all possible error histories that explain

the observed choices for a given strategy. The algorithm goes through the sequence of observations,

in the order of occurrence, and produces at every step a set of partial records which are triples

(n1, n2, ω) ∈ N2 × Ω, where n1 is the number of errors in action, n2 is the number of errors in

transition, ω is the internal states of the automaton. So the interpretation of the triple (n1, n2, ω)

is:

There exists a sequence of errors with a total of n1 errors in action and n2 errors in

transition explains the observations up to the current observation; according to this

sequence, the current internal state of the automaton representing the strategy is ω.

We first illustrate this algorithm in the case of the observations (A-18), considering s = G, with

internal states {c, d}.

(C1C2;D1C2;C1C2) (A-18)

1. Consider the first period. For each record we have we do the following:

(a) (Prediction of action and comparison of observation and prediction.) The

initial record is (0, 0, c). This predicts an action C1, which is what we observe, so the

record is unchanged

(b) (Updating of the state given the history) Since the action of the opponent is C2,

the state at the beginning of the second period should be c according to this partial

record (the only one we have), and the action produced C1. At this final step for period

1 there is only one partial record, (0, 0, c)

(c) (Go to next.) Go to the next observation.

2. Consider the second period. For each record we have we do the following:
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(a) (Prediction of action and comparison of observation and prediction.) The only

record we have predicts an action C1. If we did observe C1 we would proceed to the

step of transiting to the new state After observing D1 instead, the algorithm produces

two records: (1, 0, c) (an error in action and the internal state unchanged, as it should

because both players cooperated in the first period), and (0, 1, d) (an error in transition

and the state changed to d). Note that c and d in the two partial records respectively

refer to what the state was at the end of period 1. In the case of record (0, 1, d) for

example we are considering the following explanation: upon observing C1C2 at the end

of the first period the state should have transited to (that is, remained at) c; instead it

transited to d.

(b) (Updating of the state given the history) Now we perform on each partial record

the updating of the state: given that the observed action profile is D1C2 the two records

(1, 0, c) and (0, 1, d) should change to (1, 0, d) and (0, 1, d) respectively.

(c) (Go to next.) Go to the next observation.

We then proceed with the next observation, and execute the same procedure for each possible

partial record. Each of them may produce a set of possible “offsprings”, and this occurs if and only

if an error (according to the prediction of the partial record) is observed. If no error is observed,

the state should be updated at the strategy requires, depending on the action profile. Note that

whether an action is an error or not depends on the partial record.

1. (Prediction of action and comparison of observation and prediction.)

(a) The record (1, 0, d) produces two new records, (1, 1, c) and (2, 0, d).

(b) The record (0, 1, d) produces two new records, (1, 1, d) and (0, 2, c).

2. (Updating of the state given the history): This step is now irrelevant, because we have

reached the final period. If this was not the final period, we would have for the next period:

(a) The two records (1, 1, c) and (2, 0, d) should produce (1, 1, c) and (2, 0, d).

(b) The two records (1, 1, d) and (0, 2, c) should produce (1, 1, d) and (0, 2, c).

and we would continue the process for these

H.2 General Algorithm

In summary the algorithm for player 1 is:

1. We have a data set (a1b1, a2b2, . . . , atbt, . . . , aT bT ) (denoting a the action of the first player,

b of the second);

2. We consider each possible automaton m in some candidate set M ; here for simplicity of

exposition we consider the case of automata with only two states;
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3. For each of these strategies, for the period t we have a set of partial records (nk1, n
k
2, ω

k) : k =

1, . . . ,Kt;

4. For each k record and each period t:

(a) (Prediction-comparison): Given the state ωk in the kth record and the strategy m,

predict the action ãt+1, and check whether at+1 = ãt+1:

i. if at+1 = ãt+1, keep the records and proceed to the updating step below;

ii. if at+1 6= ãt+1, produce two new records:

(nk1 + 1, nk2, ω
k)

corresponding to an error in action, and

(nk1, n
k
2 + 1, (ωk)′)

corresponding to an error in transition; here (ωk)′ is the opposite than state ωk.

Delete the record (nk1, n
k
2, ω

k). Recall that ωk and (ωk)′ and should be interpreted

as our guess at what the state at the beginning of period t+ 1 must have been.

(b) (Updating): For each new record, update the state according to the observed actions

(at+1bt+1) and the transition rule of m.

(c) (Go to next.) Go to the next record and then to the next period.

H.2.1 Remark

The algorithm applied to the T strategy produces records that have the sum of errors in action

and transition equal for all records. This fact follows because the transition in the automaton only

depends on the action of the other. By induction consider a record (nk1, n
k
2, ω

k). If the observed

action is different from the predicted one, then at the next step the algorithm produces two new

records (nk1 + 1, nk2, ω
k) and (nk1, n

k
2 + 1, ωk,′). The difference in state of the automaton is erased by

the subsequent updating that only depends on the action of the other player, hence it is the same

for the two records we are considering. Thus the two new records have the same sum of errors.

H.3 Simultaneous Errors

In the estimate of the error rates ε and η we want to assume that the two errors are independent;

so the possibility that two errors occur in the same period is small, εη, but positive. We note in

this subsection that if we are interested in the maximum likelihood estimation, we can ignore this

possibility.

The algorithm we described only considers the possibility of a single error in each period. We

need to examine the possibility that an algorithm which allows two errors in the same period.

Although it produces a strictly larger number of errors in the current period for at least on type of
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error, this algorithm might produce a better report in the final stage. The next proposition shows

that this is not the case.

Proposition H.1. For any history and any final report obtained allowing two errors (one in action

and one in transition) there is a report that can be obtained allowing only one error in each stage

that has a weakly smaller number for each action and transition.

Proof. Fix the strategy, and its automaton, that we are considering; and fix a history of the

supergame of length T , h ≡ (a1
1, a

2
1, . . . , a

1
T , a

2
T ). Let

(n1
t , n

2
t , st) ≡ rt

indicate a report at t, after updating the state of the automaton (that is after the Updating step of

section H.2 is concluded). We define a continuation set at report r = (n1, n2, st) and partial history

ht+1 ≡ (a1
t+1, a

2
t+1, . . . , a

1
T , a

2
T ),

denoted C(r, ht+1), as the set of final reports that can be generated with that history and initial

report by the algorithm which allows a single error in every period. We will refer to the two

algorithms as single error and double error for short. It is clear that the continuation set only

depends on the state in the report, not on the recorded number of errors. So if we prove that the

single error report generates in every t the same set of states with a weakly smaller (for each type

of error) number of errors, then our claim will follow. We indicate by T the transition function of

the strategy we are considering.

We consider two cases:

1. a1
t+1 6= st. In this case the single error algorithm produces two continuations reports,

(n1, n2, T (st, a
1
t+1, a

2
t+1)) and (n1, n2, T (s′t, a

1
t+1, a

2
t+1)), where the prime indicates the other

state, that is st 6= s′t. So before the updating both states are reached; so the set of states that

are reached after the updating in the single error algorithm contains the set of states that

can be reached with the double error algorithm, with a weakly smaller error vector.

2. a1
t+1 = st. In this case the single error algorithm produces a single report:

(n1, n2, T (st, a
1
t+1, a

2
t+1)) ≡ rt+1,

whereas the double error algorithm produces a report

(n1 + 1, n2 + 1, T (s′t, a
1
t+1, a

2
t+1)) ≡ r′t+1,

which might not be produced by the single error algorithm, at the cost of one additional error

of each type. There is however no error to explain at t. Suppose that an error arises at any

later period according to the report following rt+1 and the intervening history, and instead no
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error arises according to the report that follows from r′t+1 and the intervening history. That

error can be explained in the single error algorithm adjusting the the report following rt+1

(if needed, because the state is different from the one producing the observed action) with a

single error in transition.

H.4 Estimate of Error rates

We can now proceed to the estimation of the error rates. This step is standard maximum likelihood

estimation over the set (s, ε, η) ∈ S × [0, 0.5]2 of strategies and error rates. The final reports (if

we ignore the state of the automaton, which is irrelevant in the final step) have the form (n1, n2),

the number of each type of error, for a subgame of length T and for each strategy; so we may

write the total allocation of periods to different types of errors (possibly none) (nZ , nA, nT , nAT ),

for no-error, error in action, errors in transition, double error. Since there are no double errors,

and the total sum is T , the log-likelihood of the (ε, η) pair at (T − nA − nT , nA, nT , 0), assuming

independence of the errors, is

(T − nT )log(1− ε) + nT log(ε) + (T − nA)log(1− η) + nAlog(η)

so the ML estimated parameters are the relative frequencies:

ε̂ =
nT

T
, η̂ =

nA

T
. (A-19)

We then choose the maximum over the strategies. If the maximum likelihood procedure at-

tributes the same probability to two different strategies, we assume that both can be chosen with

equal probability.22

22This is irrelevant in the computation of the individual error rates since when two strategy have the same likelihood
in a supergame the two records will have the same error rates by construction.
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Table A.20: Determinants of error rates across individuals. Dependent variables are the
error rates standardized. High IQ split is the baseline treatment indicator in columns 1 and 3.
Tit for tat is the baseline strategy. GLS estimator with random-effect. Errors are clustered at the
individual levels; ∗ p− value < 0.1, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01.

Transition Transition Action Action
Error rates Error rates Error rates Error rates

b/se b/se b/se b/se

Low IQ split 0.1987*** 0.0655
(0.0564) (0.0778)

Combined 0.0795** –0.0252
(0.0325) (0.0510)

IQ –0.0044** –0.0046*
(0.0019) (0.0025)

Always Defect 0.0668 0.0661
(0.1878) (0.1857)

Grim Trigger 0.2908* 0.2644 –0.9384*** –0.9409***
(0.1655) (0.1647) (0.3475) (0.3478)

Supergame –0.0075*** –0.0075*** –0.0051*** –0.0052***
(0.0012) (0.0012) (0.0013) (0.0013)

N 7492 7492 7492 7492

Table A.21: Individual strategies in the different treatments using Dal Bo and Frechette
ML estimation. The details on how this table is estimated are in the online appendix of Dal Bó
and Fréchette (2011).

Supergames First 10 Last 10

Treatment IQ Split Combined IQ Split Combined
IQ Session/Group High Low All High Low All
Strategy
A 0.100 0.365 0.168 0.037 0.228 0.076
G 0.423 0.310 0.404 0.295 0.340 0.444
T 0.476 0.324 0.427 0.669 0.438 0.480

Proportion A/T 0.210 1.127 0.393 0.055 0.521 0.157
Proportion A/G 0.236 1.177 0.416 0.126 0.671 0.170
Proportion G/T 0.889 0.957 0.946 0.441 0.776 0.925
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