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Abstract 

This paper provides a detailed assessment of the real-time forecast accuracy of a wide range of 
vector autoregressive models (VAR) that allow for both structural change and indicators 
sampled at different frequencies. We extend the literature by evaluating a mixed-frequency 
time-varying parameter VAR with stochastic volatility (MF-TVP-SV-VAR). Overall, the MF-
TVP-SV-VAR delivers accurate now- and forecasts and, on average, outperforms its 
competitors. We assess the models’ accuracy relative to expert forecasts and show that the MF-
TVP-SV-VAR delivers better inflation nowcasts in this regard. Using an optimal prediction 
pool, we moreover demonstrate that the MF-TVP-SV-VAR has gained importance since the 
Great Recession. 
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1 Introduction

Macroeconomists and, in particular, macroeconomic forecasters face two major challenges. First,
there are structural changes within an economy. Second, in real time forecasters need to process
unbalanced datasets due to indicators sampled at different frequencies and idiosyncratic pub-
lication lags. Concerning structural change, it is commonly found that particularly modeling
time-varying volatilities enhances VAR-based inference and estimation, while fluctuations in the
VAR coefficients are frequently considered to be less vital (for example, Sims and Zha, 2006;
Chan and Eisenstat, 2017). This finding is confirmed with respect to forecasting by, for example,
D’Agostino, Gambetti, and Giannone (2013). Since the onset of the Great Recession, which
probably caused important structural shifts, modeling time-varying links between variables has
attracted anew interest.1 Concerning unbalanced datasets, a growing literature stresses the mer-
its of mixed-frequency approaches in computing precise now- and forecasts, and tracking the
current state of the economy in real time (for instance, Kuzin, Marcellino, and Schumacher,
2011; Foroni and Marcellino, 2014; Schorfheide and Song, 2015).

However, evidence regarding the forecast performance of models allowing for structural shifts
in a mixed-frequency setting is rather sparse. This study aims at filling this gap by providing a
detailed assessment of the real-time forecast accuracy of a bundle mixed-frequency models that
allow for structural change. To this end, we estimate nonlinear and linear VARs with and with-
out mixed-frequencies, including a fully-fledged model incorporating time-varying parameters,
stochastic volatilities, and mixed-frequencies—a MF-TVP-SV-VAR. This analysis enables us to
trace out the relative impact of the models’ mixed-frequency part and the time-variation in the
models’ coefficients on the forecast accuracy. Our comparison relies on real-time out-of-sample
now- and forecast accuracy of both point and density forecasts for three key US macroeconomic
variables: GDP growth, CPI inflation, and the unemployment rate.

Overall, our forecast comparison provides two major findings. First, modelling structural
change and intra-quarterly dynamics is beneficial for point and density forecasts, notably for
now and short-term forecasts. In particular, the accuracy of inflation and unemployment rate
forecasts can be substantially increased. Second, the MF-TVP-SV-VAR delivers very competitive
point and density forecasts—on average over all variables it outperforms each competitor. Our
results moreover suggest that the combination of mixed-frequencies, stochastic volatility, and
time-varying parameters is particularly beneficial for inflation nowcasts computed with only
little information about the respective quarters. In those cases, the MF-TVP-SV provides the
largest gains in forecast accuracy. Taking a closer look at the mixed-frequency models’ forecasts
during the Great Recession reveals that allowing for time-variation in the VAR coefficients and
stochastic volatility is superior relative to only one of these specifications for inflation and the
unemployment rate.

We put our results to the test along two dimensions. First, since it is commonly found
that a combination of forecasts from several models outperforms individual models, we augment
our analysis with a forecast combination exercise, including equal weighting and an optimal

1See Ng and Wright (2013) for a survey of business cycle facts of the U.S. economy with a focus on the Great
Recession.
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prediction pool á la Geweke and Amisano (2011). We find that when estimating the models’
weights, the mixed-frequency models consistently receive a large share of the entire probability
mass. In particular, the MF-TVP-SV-VAR receives a high weight since the onset of the Great
Recession, indicating the benefits of modelling structural change combined with modelling within-
quarter dynamics in that period. Moreover, this optimal prediction pool provides strong gains
in point and density forecast accuracy across all variables and horizons. It even outperforms the
equal weighting combination scheme in almost each case. Second, since precise forecasts may
stem from an accurate assessment of the current state of the economy (Sims, 2002), we assess
whether the mixed-frequency models’ satisfying forecast performance flows from more precise
nowcasts. We assess this channel, by—in a first step—comparing the MF-VARs’ predictions
with those of the Survey of Professional Forecasters (SPF). SPF predictions are superior for
GDP growth and the unemployment rate, while for inflation, the nonlinear MF-VARs provide
slightly more accurate nowcasts. In a second step, we follow Schorfheide and Song (2015) and
Wolters (2015) by augmenting the quarterly datasets with SPF nowcasts. We find that the gains
in accuracy of the quarterly models are rather small with respect to GDP growth and inflation,
while unemployment rate forecasts can be substantially improved.

Estimation of the models’ TVP-SV part mainly follows Primiceri (2005). However, we treat
those hyperparameters that relate to the amount of time-variation in the parameters as an
additional layer and estimate them using Bayesian methods (Amir-Ahmadi, Matthes, and Wang,
2020).2 Estimation of the models’ MF part is based on the idea that lower-frequency variables can
be expressed as higher-frequency variables with latent observations (Zadrozny, 1988).3 Adopting
this notion, Mariano and Murasawa (2010) derive a state-space representation for VARs with
missing observations, called mixed-frequency VAR (MF-VAR). We follow Schorfheide and Song
(2015) and apply the MF-VAR approach in a Bayesian framework.

On the one hand, this paper contributes to the ongoing discussion on how structural change
affects VAR-based forecast performance. D’Agostino et al. (2013) forecast US inflation, unem-
ployment, and short-term interest rates with TVP-SV-VARs and find that allowing for parameter
instability significantly improves forecast accuracy. Barnett, Mumtaz, and Theodoridis (2014)
and Clark and Ravazzolo (2015) underpin these findings and show that models with time-varying
parameters improve forecast performance, especially regarding inflation forecasts. Focusing on
the period since the Great Recession, Aastveit et al. (2017) provide strong evidence against
constant parameter VARs and document that TVP-SV-VAR tend to perform best with small
models. Banbura and van Vlodrop (2018) illustrate that accounting for time-varying means in a
Bayesian VAR substantially increases long-term forecast accuracy.

On the other hand, this article extends the literature on forecasting with non-linear mixed-
frequency VARs. Foroni, Guérin, and Marcellino (2015) introduce mixed-frequency Markov-
switching VARs and provide evidence that modelling discrete regime shifts in a mixed-frequency
setting is particularly beneficial with regard to nowcasting and short-term forecasting. Closely

2Amir-Ahmadi et al. (2020) show that the magnitude of the hyperparameters changes significantly when
estimated on monthly data compared to quarterly data, which affects the time-variation in the model’s coefficients.

3Alternative approaches are mixed data sampling (MIDAS) provided by Ghysels, Santa-Clara, and Valkanov
(2004) and the mixed frequency VAR in a stacked system introduced by Ghysels (2016). For an assessment of
the stacked approach with regard to forecasting, see McCracken, Owyang, and Sekhposyan (2015).
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related to this analysis is the study by Götz and Hauzenberger (2018) that also uses a mixed-
frequency VAR that allows for continuous parameter change. The latter, however, analyzes
the forecast ability in a pseudo real-time setting of a more parsimonious model, restricting the
parameter change to the intercept terms and employ common stochastic volatility, while we
abstract form these restrictions.

The remainder of the paper is as follows. Section 2 provides a description of the dataset and
outlines the forecast setup. Section 3 depicts the competing models and explains the estimation
methodology. Section 4 describes the measures used for the forecast comparison. Section 5
presents the results. Section 6 concludes.

2 Data and forecast setup

2.1 Dataset

We use an updated version of the dataset used by Clark and Ravazzolo (2015) consisting of
four macroeconomic time series, three of which are sampled at monthly frequency and one
is observed quarterly. The quarterly series is US real GDP; the monthly series are CPI, the
unemployment rate, and the 3-month Treasury bill rate. GDP and CPI enter the models in
log first differences times 100 to obtain real GDP growth and CPI inflation in percentage point
changes, respectively. The unemployment and interest rate remain untransformed. For the
VARs estimated on quarterly frequency, the monthly indicators enter the models as quarterly
averages. We obtain real-time data on inflation, unemployment, and GDP from the Archival
FRED (ALFRED) database of the St. Louis Fed. Since the Treasury bill rate is not revised, we
resort to the last available publication from the FRED database. The sample runs from January
1960 until September 2017. The first 8 years are used as a training sample to specify priors such
that the estimation starts in January 1968.

Generally, macroeconomic variables are released with a publication lag, which implies that
a certain vintage does not include the figures referring to the date of the vintage. The first
release of quarterly GDP has a publication lag of roughly one month, thus, for example, the
first figure for 2011Q4 is released at the end of 2012M1 and is then consecutively revised in the
subsequent months. The value for the unemployment rate (CPI) is published in the first (second)
week of the following month. Hence, following our previous example, at the end of 2012M1 the
unemployment rate and CPI are available until 2011M12. Finally, the 3-month Treasury bill rate
is available without any delay. Thus, we have so-called “ragged-edges” in our real-time dataset.

2.2 Forecast setup

To assess the predictions with regard to the intra-quarterly inflow of information, we follow
Schorfheide and Song (2015) and establish three different information sets. We assume that
the forecasts are generated around the middle of each month, when the current releases for
GDP, CPI, and the unemployment rate are available.4 The first information set, called I1,

4We follow Schorfheide and Song (2015) and replace the missing observations for the T-Bill rate in the last
month of each recursion by the expected monthly average.
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relates to the first month of each quarter such that the forecaster has information up to the
middle of January, April, July, or October. In these months, the researcher has observations
on inflation and unemployment until the end of the respective previous quarter and a first
and preliminary estimate of GDP referring to the previous quarter. The second information
set, called I2 (February, May, August, November), has one additional observation on inflation
and unemployment referring to the current quarter and the first revision of GDP. The last
set, I3 (March, June, September, December), includes one more observation on inflation and
unemployment and the second GDP revision. Each information set is augmented with the
observations of the T-Bill rate. Since the quarterly VARs cannot cope with “ragged-edges” in
the data, we estimate them in each recursion based on the balanced information set I1, which
accounts for new information only in terms of data revisions.

We use an expanding window to evaluate our forecasts for data vintages from January 1990
until September 2017. The predictions are evaluated based on quarterly averages, implying that
for the mixed-frequency approaches we aggregate the predicted monthly time paths to quarterly
frequency. To abstract from benchmark revisions, we evaluate GDP growth forecasts based on
the second available estimate, that is the forecast for period t+h is evaluated with the realization
taken from the vintage published in t+ h+ 2 (see, for example, Faust and Wright, 2009). Since
the remaining variables are revised only rarely and slightly, we evaluate the forecast based on
the latest vintage. The maximum forecast horizon hmax is set to 4 quarters. Thus, the mixed-
frequency models generate forecasts for hm = 1, . . . , 12 months. Forecasts for horizons larger
than one are obtained iteratively. We report results for 1, 2, 3, and 4 quarters ahead forecasts.

3 Models

Our baseline model is a standard VAR with all variables sampled at quarterly frequency. Based on
this model, we evaluate the forecast performance of three extensions, namely, mixed-
frequencies, stochastic volatilities, and time-varying parameters, as well as the forecast perfor-
mance of combinations of these features. For the stochastic volatility models, we use random walk
stochastic volatility, which is a parsimonious and competitive specification (Clark and Ravazzolo,
2015). Throughout the paper, n = nq + nm, where n, nq, and nm denote the number of total,
quarterly, and monthly variables, respectively. Finally, p denotes the lag order.

3.1 Quarterly VAR

Our baseline quarterly VAR (Q-VAR) reads:

yt = B0 +

p∑
i=1

Biyt−i + εt, εt ∼ N(0,Ω), (1)

where yt and B0 denote n× 1 vectors of variables and constants, respectively. Bi for i, . . . , p are
n× n matrices of coefficients and Ω is the time-invariant n× n variance-covariance matrix.
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3.2 Quarterly VAR with stochastic volatility

The quarterly VAR with stochastic volatility (Q-SV-VAR) does not assume constant residual
variances and includes a law of motion for the (log) volatilities. Following Primiceri (2005),
we decompose the time-varying covariance matrix of the reduced-form residuals into a lower-
triangular matrix At and a diagonal matrix Σt according to:

AtΩtA
′
t = ΣtΣ

′
t, (2)

where the diagonal elements of Σt are the stochastic volatilities. At has ones on the main diagonal
and nonzero entries for the remaining lower triangular elements, describing the contemporaneous
relationships between the volatilities. This allows to rewrite the VAR in (1) as:

yt = B0 +

p∑
i=1

Biyt−i +A−1
t Σtut, ut ∼ N(0, In). (3)

The laws of motion are modeled by defining σt as the vector of the diagonal elements of Σt and
at as the vector of nonzero elements stacked by rows of At as follows:

log σt = log σt−1 + et, et = (e1,t, . . . , en,t)
′ ∼ N(0,Ψ), (4)

at = at−1 + υt, υt = (υ′1,t, . . . , υ
′
n,t)
′ ∼ N(0,Φ). (5)

Ψ is diagonal and Φ is block diagonal where the blocks relate to the equations of the VAR in (3).

3.3 Quarterly VAR with time-varying parameter

The quarterly VAR with time-varying parameter is estimated in a homoscedastic specification
(Q-TVP-VAR) and with stochastic volatility (Q-TVP-SV-VAR). The Q-TVP-VAR extends the
baseline Q-VAR for a random walk process governing the evolution of the VAR coefficients:

yt = Z ′tβt + εt, εt ∼ N(0,Ω), (6)

βt = βt−1 + χt, χt ∼ N(0, Q), (7)

where Zt = In ⊗ [1, y′t−1, . . . , y
′
t−p] contains all the right-hand side variables of the VAR, βt is

a kβ × 1 vector of VAR coefficients, and Q = diag(q2
β1
, . . . , q2

βkβ
). For the Q-TVP-SV-VAR, the

stochastic volatility part from (4) and (5) is added to the model.

3.4 Mixed-frequency VAR

Estimation of the mixed-frequency VAR (MF-VAR) follows the Bayesian state-space approach
of Schorfheide and Song (2015), which can be combined with the former VAR specifications. To
this end, we partition our vector of variables yt = [y′q,t, y

′
m,t]
′, where ym,t collects the monthly

variables and yq,t denotes the quarterly variables at monthly frequency. Since the quarterly
variables are observed only in the last month of each quarter, yq,t contains missing observations
for the first and second month of each quarter. To construct the measurement equation, we
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follow Mariano and Murasawa (2003) and assume that quarterly GDP in log levels (log Yq,t) can
be expressed as the geometric mean of an unobserved monthly GDP (log Ỹq,t):

log Yq,t =
1

3
(log Ỹq,t + log Ỹq,t−1 + log Ỹq,t−2). (8)

This expression implies that the quarterly series is a first-order approximation to an arithmetic
mean of the unobserved monthly series. To arrive at an expression for quarterly GDP growth
(yq,t) based on latent monthly GDP growth (ỹq,t), we subtract log Yq,t−3 from (8):

∆3 log Yq,t = yq,t =
1

3
ỹq,t +

2

3
ỹq,t−1 + ỹq,t−2 +

2

3
ỹq,t−3 +

1

3
ỹq,t−4. (9)

Combining the unobserved with the observed monthly variables in ỹt = [ỹ′q,t, y
′
m,t]
′, we define the

state vector by zt = [ỹ′t, . . . , ỹ
′
t−p+1] and write the measurement equation as:

yt = Htzt. (10)

Assuming that GDP growth is ordered first in the model, Ht is given by:

Ht =
[
H1,t H2,t

]′
, (11)

H1,t =
[
1/3 01×n−1 2/3 01×n−1 1 01×n−1 2/3 01×n−1 1/3 01×n−1 01×(p−4)n

]
,

(12)

H2,t =
[
0n−1×1 In−1 0n−1×pn

]
, (13)

where H1,t translates the disaggregation constraint in (9) into the state-space framework. The
missing observations in zt are replaced by estimated states using the Carter and Kohn (1994)
simulation smoother (hereafter CK) with a time-varying dimension of the state-space system
(Durbin and Koopman, 2001).5 If an indicator exhibits a missing observation in t, the corre-
sponding entry in yt and the corresponding row of Ht are deleted. The transition equation of
the MF-VAR in state-space form is given by:

zt = µ+ Fzt−1 + υt, υt ∼ N(0, S), (14)

where µ and F contain the intercepts and AR-coefficients, respectively. S is a pn× pn variance-
covariance matrix where the first n× n elements equal Ω and all remaining entries are zero.

We obtain the MF-SV-VAR by setting the first n× n elements of S to Ωt using the decom-
position in (2) and following the laws of motion in (4) and (5). The MF-TVP-VAR is obtained
by allowing F to change over time according to (7). Including both specifications leads to the
MF-TVP-SV-VAR. To summarize, we have a total of eight competing models:

1. MF-TVP-SV-VAR: Mixed-frequency VAR with time-varying parameters and stochastic
5To increase computational efficiency, we eliminate the monthly series, which are observed in each period of

the balanced part of the sample, from the state vector for t = 1, . . . , TB , where TB denotes the end of the balanced
sample. For a detailed description of this “compact” system we refer to the appendix of Schorfheide and Song
(2015).
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volatility

2. MF-SV-VAR: Mixed-frequency VAR with stochastic volatility

3. MF-TVP-VAR: Mixed-frequency VAR with time-varying parameters

4. MF-VAR: Mixed-frequency VAR

5. Q-TVP-SV-VAR: Quarterly VAR with time-varying parameters and stochastic volatility

6. Q-SV-VAR: Quarterly VAR with stochastic volatility (benchmark)

7. Q-TVP-VAR: Quarterly VAR with time-varying parameters

8. Q-VAR: Quarterly linear VAR

3.5 Estimation procedure and prior specification

All models are estimated with Bayesian estimation techniques, since most models depend on a
large number of parameters and thus make estimation based on frequentist approaches infeasible.
The mixed-frequency models are estimated with 4 lags; the quarterly models are estimated with
2 lags.6 In the following, we provide a brief description of the estimation procedure and the prior
specifications. A detailed description is provided in Appendices A and B.

For the Q-VAR, we impose a Jeffrey’s prior to abstract from shrinkage, since we use a small-
scale VAR with only four variables. For the models’ stochastic volatility part, we apply normal
priors for the diagonal elements of Σt and the lower-triangular elements of At and obtain draws
using the CK algorithm and the mixture sampler of Kim, Shephard, and Chib (1998) (hereafter
KSC). Inverse-Wishart priors are applied for Ψ and Φ, respectively. For the SV-VAR and the
MF-SV-VAR, we use normal priors for the VAR coefficients and obtain draws using the GLS-
based posterior provided by Clark (2011). For the TVP models, we apply the Gibbs sampler
of Del Negro and Primiceri (2015). Specifically, we apply the CK algorithm to draw the VAR
coefficients, using a normal prior for βT and an inverse-Wishart prior for Q.

The amount of time-variation in βt, ait, and log σit depends on the magnitude of the random
walk variances Q, Ψ, and Φ and their corresponding prior distributions, which are—in part—
determined by the hyperparameters kQ, kΨ, and kΦ:

p(Q) ∼ IW (k2
Q × T0 × V (β̂OLS), T0), (15)

p(Ψ) ∼ IW (k2
Ψ × (1 + n)× In, 4), (16)

p(Φi) ∼ IW (k2
Φ × (i+ 1)× V (Âi,OLS), i+ 1), i = 1, . . . , k − 1, (17)

where OLS denotes OLS estimates based on the training sample. The literature commonly
adopts the hyperparameter values proposed by Primiceri (2005). However, these values are

6We set p = 2 for the quarterly model to be consistent with the literature on US data (see, e.g., Primiceri,
2005; D’Agostino et al., 2013; Clark and Ravazzolo, 2015). The monthly models have 4 lags to keep them
computationally feasible. Furthermore, we require at least four lags to disaggregate quarterly GDP into monthly
GDP (see (9)).
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calibrated for a quarterly three-variable TVP-SV-VAR and it is not clear, whether they are
useful in case of monthly data or other model specifications. Therefore, we follow Amir-Ahmadi
et al. (2020) by implementing another layer of priors for those hyperparameters. Moreover,
we split kQ into kQC and kQAR , where kQC relates to intercept coefficients and kQAR to AR-
coefficients, respectively. By this means, we allow for different degrees of time-variation across
these groups of coefficients. The latter is motivated by the observations that time-variation seems
to be more pronounced in the intercepts than in AR-coefficients (see, for example, D’Agostino
et al., 2013). To be agnostic about the coefficients’ degree of time-variation, we use, for each
hyperparameter, an inverse-Gamma prior with scale parameter and degrees of freedom equal to
0.1 and 2, respectively, as recommended by Amir-Ahmadi et al. (2020).

For the mixed-frequency models, we initialize the state vector with a normal prior. The
prior mean is set to the observed values, implying that for GDP the within-quarter figures equal
the quarterly observations. The prior variance is the identity matrix. After having drawn the
latent states, the remaining coefficients are drawn conditional on the drawn states (instead of
conditional on the observed data).

3.6 In-sample analysis

To illustrate the importance of modeling variability in volatility and the VAR-coefficients, as well
as the hyperparameter estimation, this sections provides a brief in-sample analysis based on the
final data vintage. Figure 1 depicts the posterior distributions of the estimated hyperparameters
along with the values proposed by Primiceri (2005) (dashed lines) and the prior distributions
(dotted lines). While a direct comparison between Primiceri’s values and ours is not straightfor-
ward, Figure 1, nevertheless, provides interesting observations.7 Although we impose the same
prior for each hyperparameter, the posterior distributions differ considerably from each other
and, in some cases, Primiceri’s values. The distributions for kQC assign only minor probability
mass to Primiceri’s values, but imply a stronger prior belief on time variation in the intercept
terms. The posterior of kQAR , is (almost) centered around Primiceri’s value with a rather low
variance for the MF-TVP-SV-VAR, while it induces a stronger prior belief on time variation
in the AR coefficients according to the Q-TVP-SV-VAR. Finally, the posteriors of kΨ and kΦ

parameterize—for both models—a stronger prior belief about time-variation in the stochastic
volatilities, but a weaker one for time-variation in the correlations among the residuals. These
results suggest that both estimating the hyperparameters and allowing for heterogeneity among
the hyperparameters might provide a better description of the data generating process and thus,
might increase the forecast performance.

Figure 2 plots the posterior means of the standard deviations of the reduced-form residuals
from the MF-TVP-SV-VAR and Q-TVP-SV-VAR.8 We assume that the volatility estimates from
the Q-TVP-SV-VAR are constant within a quarter to make them comparable across frequencies.

7On the one hand, we employ a different model specification. On the other hand, the remaining parts of the
priors are based on a different training sample. Both can lead to different priors, in spite of identical hyperpa-
rameters, and hence, complicate comparison.

8We also examined the volatilites for different data vintages to investigate the impact of data revisions and
different values for the hyperparameters. Analogous to Clark (2011), we obtain very similar estimates for the
different vintages, and thus we only report results for the latest vintage.
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Figure 1: Posterior distributions of hyperparameters

Notes: Figure shows the posterior distributions of the hyperparameters along with the respective prior distribu-
tions (dotted line) and the values proposed by Primiceri (2005) (dashed line).

The estimates of the Q-TVP-SV-VAR are smoother than those of Primiceri (2005), reflecting the
weaker prior for time-variation in the residuals’ correlations. Until the mid 1980s, the estimated
volatilities are quite high and then fall sharply, indicating the beginning of the Great Moderation.
Except for the increase during the burst of the dot-com bubble in 2000 and the rise during
the Great Recession, they remain roughly at the levels of the mid 1980s. At the end of the
sample, however, there is again a decline in volatility, indicating a time during which the US
was remarkably less exposed to absolute shocks hitting the economy. Thus, as suggested by
Clark (2009), the Great Recession seems to have simply interrupted, but not ended, the Great
Moderation—the latest volatility estimates for GDP growth is the lowest of the entire sample.

The estimates from the MF-TVP-SV-VAR closely track the evolution of its quarterly coun-
terpart. However, they are somewhat smaller, indicating that using monthly information absorbs
part of the fluctuations in the volatility. This finding confirms the results of Carriero, Clark, and
Marcellino (2015), who employ a Bayesian mixed-frequency model without time-variation in the
AR-coefficients.

With regard to the VAR coefficient, we obtain—for both models—the largest variability for
the intercept coefficients; the remaining parameters exhibit only minor time-variation (see Figures
7 and 8 in Appendix D). Overall, the results suggest that modeling variability in both volatility
and the intercepts is more important for achieving precise forecasts than modeling time-varying
autoregressive dynamics. Our results support the modeling strategy of Götz and Hauzenberger
(2018), who specify time-variation only in the intercepts, but treat the hyperparameters as
exogenous values.
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Figure 2: Standard deviations of reduced-form residuals

Notes: Figure depicts the posterior means of the residual standard deviations from the last data vintage at
monthly frequency. Quarterly estimates are assumed to be constant within a quarter. Shaded areas and dotted
lines refer to 68% posterior probability bands.

3.7 Now- and forecasting

The quarterly models are estimated on balanced datasets containing all available information
from the previous quarter. To generate the predictive distributions, we compute sequences of
hmax normally distributed innovations with covariance Φ, Ψ, and Q to produce time paths for
the elements of At, Σt, and βt, respectively. Based on these trajectories, we simulate yt hmax
periods into the future. The first forecast is a nowcast, since it is generated in and refers to the
respective current quarter.

Additional notation is helpful in describing how we obtain the predictive distributions of the
mixed-frequency models. Let TM denote the last month of the indicator that has the shortest
publication lag and let ZTM = [z1, . . . , zTM ] denote the sequence of simulated state vectors. Note
that the CK algorithm provides draws for the latent states until TM . To obtain ZTm+1:Tm+hmax ,
we generate time paths for the elements of At, Σt, and βt and simulate the state vector zt forward
using these time paths. Accordingly, if TM belongs to I3, the CK algorithm provides draws for
the entire last available quarter and by averaging over these draws we obtain the nowcasts.
The forecasts are generated by averaging over the trajectories ZTm+1:Tm+hmax . However, if TM
belongs to I1 or I2, the CK algorithm does not provide draws of the latent states for the entire
quarter since none of the indicators is available for the entire quarter. In this case, we average
over the available CK draws and the simulated trajectories referring to this quarter to get the
nowcast. The forecasts are calculated from the averages of the remaining trajectories.9

9For instance, in February, the T-Bill rate is available until February (TM ), while inflation and unemployment
rate are available until January (TM − 1). Hence, the CK algorithm provides draws for each indicator until TM .
The figures for March (TM + 1) are generated using the time paths for At, Σt, and βt. The forecast for the first
quarter is the average over the figures referring to TM − 1 to TM + 1.
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4 Forecast metrics

We evaluate the models’ forecasts with respect to point and density forecasts. Subsequently, m,
i, and h denote the model, variable, and forecast horizon, respectively, for the forecast sample
t = 1, . . . , N . We measure point forecast accuracy using relative root mean squared errors:

relative RMSEi,mh =

√
1
N

∑(
ŷi,mt+h − yit+h

)2

√
1
N

∑(
ŷi,Bt+h − yit+h

)2
, (18)

where ŷi,Bt+h refers to the forecast of the benchmark Q-SV-VAR.10 We test for statistical differences
in forecast accuracy by applying the Diebold and Mariano (1995) test.

Regarding density forecasts, we apply the continuous ranked probability score (CRPS). To
compute the CRPS, we follow Gneiting and Ranjan (2011) and use the score function:

S(pi,mt , yit, ν(α)) =

∫ 1

0
QSα(Pt(α)−1, yt)ν(α)dα, (19)

where QSα(Pt(α)−1, yit) = 2(I{yit ≤ Pt(α)−1}−α)(Pt(α)−1−yit) is the quantile score for forecast
quantile Pt(α)−1 at level 0 < α < 1. I{yit ≤ Pt(α)−1} is an indicator function taking the value
1 when yit ≤ Pt(α)−1 and 0 otherwise. P−1

t denotes the inverse of the cumulative predictive
density function and ν(α) is a weighting function. Using a uniform weighting scheme (ν(α)=1)
and dividing by the number of generated densities yields the average CRPS:

CRPSi,mh =
1

N

∑
S(pi,mt+h, y

i
t+h, 1). (20)

According to (20), a lower score indicates a better calibrated predictive density. We evaluate the
CRPS as ratios relative to our benchmark:

relative CRPSi,mh =
CRPSi,mh

CRPSi,Bh
. (21)

We obtain approximate inference on whether the scores are significantly different from the
benchmark by regressing the differences between the scores of each model and the benchmark on
a constant. A t-test with Newey-West standard errors on the constant indicates whether these
average differences are significantly different from zero (D’Agostino et al., 2013).

5 Results

In this section, we discuss the results from the forecast experiment. We evaluate both point and
density forecasts. Regarding the point forecasts, we first assess the models’ nowcast accuracy.
Second, we evaluate the accuracy of the point forecasts and predictive densities with respect to

10Since several studies demonstrate that VARs with stochastic volatility outperform constant volatility VARs
(see, for instance, Clark, 2011; Clark and Ravazzolo, 2015; Chiu, Mumtaz, and Pintér, 2017), we do not use the
Q-VAR as our benchmark.
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the subsequent quarters.11 We provide results for the entire recursive sample (1995Q1–2017Q4)
and for a shorter sample period of 2008Q1 until 2017Q4 to assess whether a possible structural
break around the Great Recession affects the forecast performance.

5.1 Nowcast evaluation

Table 1 presents the results for the nowcast exercise taking into account the information sets
I1 to I3. It provides three main takeaways. First, the mixed-frequency models outperform
the quarterly models. On average, over all information sets and variables, the best nowcast
performance is obtained by the MF-TVP-SV-VAR and the MF-SV-VAR, which improve on
the benchmark (Q-SV-VAR) by roughly 35%. Second, most of the time, the nonlinear MF-
models outperform the linear MF-VAR, indicating that—apart from using monthly information—
parameter instability is beneficial also in a mixed-frequency setting. Third, the MF-models’
relative performance improves with more information available, showing that the models are
able to efficiently process the sequential data releases.

For GDP growth, only MF-models significantly outperform the benchmark. The best per-
formance, for both samples, is obtained by the MF-SV-VAR. This result suggests that, from a
nowcasting perspective, it is more important to account for the decline in output growth volatil-
ity than to account for changes in output growth dynamics. For inflation, the MF-TVP-SV-VAR
delivers the best performance for the entire sample; it improves on the benchmark by, on average,
50%. Concerning the shorter sample, the MF-SV-VAR matches up with the MF-TVP-SV-VAR,
suggesting that stochastic volatility has gained importance in the post-Great Recession period.
Regarding both samples, the results indicate that notably with little information about the
current quarter the MF-TVP-SV-VAR provides large gains in forecast accuracy relative to the
competing models. The latter is particularly relevant because expert forecast, for example the
SPF, are usually published in the second month of a quarter. With more information available,
however, the differences towards the remaining MF-models vanish. For the unemployment rate,
the MF-TVP-SV-VAR provides the most accurate nowcasts across all information sets with gains
of about 40%. Though, it appears that non-linearity is not as important as for the remaining
variables—the differences to the linear MF are minor. The latter is maybe not surprising given
that the fluctuations in volatility of the unemployment rate are less pronounced compared to the
remaining variables (see Figure 2).

In total, the nowcast exercise provides strong evidence in favor of nonlinear forecasting mod-
els. In particular, stochastic volatility seems to be a major determinant of precise nowcasts,
which is consistent with, for instance, Carriero et al. (2015). Allowing for time-varying pa-
rameters without stochastic volatility improves accuracy relative to the benchmark but is—in
most cases—inferior to models with stochastic volatility. Inflation nowcasts in turn benefit from
combining both specifications.

11We abstract from evaluating the nowcasts with respect to predictive densities. Depending on the information
sets, the nowcasts of the mixed-frequency models consist of quarterly averages over draws from the CK algorithm
and realizations. Therefore, the nowcast densities of the mixed-frequency models are very narrow compared to
the quarterly models and thus hardly comparable.
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Table 1: Real-time nowcast RMSEs

Model
1990-2017 2008-2017

I1 I2 I3 I1 I2 I3

GDP growth

MF-TVP-SV-VAR 0.91 0.89 0.90 0.83 0.80 0.81
MF-SV-VAR 0.85∗ 0.80∗∗ 0.78∗∗ 0.80∗ 0.74 0.72∗
MF-TVP-VAR 0.88∗ 0.86∗ 0.82∗ 0.92 0.85 0.80
MF-VAR 0.99 0.96∗∗ 0.93 0.94 0.89 0.86
Q-TVP-SV-VAR 1.06 1.08 1.08 1.13 1.16 1.15
Q-TVP-VAR 0.98 0.99 0.99 0.99 1.00 1.01
Q-VAR 1.11∗∗∗ 1.12∗∗∗ 1.11∗∗∗ 1.12∗∗∗ 1.12∗∗∗ 1.12∗∗∗
Q-SV-VAR 0.65 0.65 0.65 0.78 0.77 0.77

Inflation

MF-TVP-SV-VAR 0.77∗ 0.49∗∗ 0.29∗∗ 0.73∗ 0.46∗ 0.21∗
MF-SV-VAR 0.86 0.52∗∗ 0.30∗∗∗ 0.77 0.44 0.21∗
MF-TVP-VAR 0.85∗∗ 0.52∗ 0.29∗∗∗ 0.86∗ 0.50 0.22∗
MF-VAR 0.89 0.53∗ 0.30∗∗∗ 0.80 0.45 0.20∗
Q-TVP-SV-VAR 0.87∗∗ 0.87∗∗ 0.88∗∗ 0.88 0.88 0.89
Q-TVP-VAR 0.93∗∗ 0.93∗∗ 0.93 0.94 0.94 0.95
Q-VAR 1.04∗∗∗ 1.04∗∗∗ 1.04∗∗∗ 1.03 1.03 1.03
Q-SV-VAR 0.56 0.56 0.56 0.76 0.76 0.76

Unemployment rate

MF-TVP-SV-VAR 0.80∗ 0.60∗∗ 0.36∗∗∗ 0.74 0.54∗∗ 0.32∗∗
MF-SV-VAR 0.83∗∗∗ 0.62∗∗∗ 0.38∗∗∗ 0.83∗∗ 0.59∗∗ 0.33∗∗
MF-TVP-VAR 0.90 0.65∗∗ 0.36∗∗∗ 0.86 0.61∗∗ 0.31∗∗
MF-VAR 0.82∗∗∗ 0.61∗∗ 0.37∗∗∗ 0.80∗∗ 0.57∗∗ 0.32∗∗
Q-TVP-SV-VAR 0.95 0.95 0.96 0.93 0.93 0.94
Q-TVP-VAR 1.01 1.01 1.01 1.01 1.01 1.02
Q-VAR 1.04∗ 1.04∗ 1.04 1.05 1.05 1.05
Q-SV-VAR 0.28 0.27 0.27 0.35 0.34 0.34

Notes: RMSEs are reported in absolute terms for the benchmark model (bottom row of each panel) and as ratios
relative to the benchmark for the remaining models. A ratio below unity indicates that the model outperforms the
benchmark. Bold figures indicate the best performance for the variable and information set. ∗, ∗∗, and ∗∗∗ denote
significance at the 10%, 5%, and 1% level, respectively, according to the Diebold-Mariano test with Newey-West
standard errors.

5.2 Forecast evaluation

The results in Table 2 show that mixed-frequency VARs provide competitive forecasts even for
higher horizons and for both samples.12 In the case of the unemployment rate, modeling within-
quarter dynamics is particularly beneficial—at each horizon even the worst performing mixed-
frequency VAR outperforms the best performing quarterly VAR. Moreover, the results reveal
that the models’ forecast performance substantially differs across variables. The best relative
performance, over all variables and horizons, is delivered by the MF-SV-VAR and the MF-TVP-
SV-VAR; the corresponding RMSEs are roughly 10% lower than those of the benchmark.

12Since the marginal impact of an additional month of information becomes less important for forecasts at higher
horizons, the RMSEs for higher horizons become similar across the information sets. For the forecast evaluation,
we therefore compute total RMSEs by averaging over the entire forecast sample. Figure 9 in Appendix D plots
the relative RMSE for each information set.
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Table 2: Real-time forecast RMSEs

Model
1990-2017 2008-2017

h = 2 h = 3 h = 4 h = 2 h = 3 h = 4

GDP growth

MF-TVP-SV-VAR 1.02 1.00 1.02 1.00 1.03 1.04
MF-SV-VAR 1.00 1.01 1.00 0.97 1.01 1.01
MF-TVP-VAR 1.09∗∗∗ 1.13∗∗∗ 1.05 1.08 1.19∗ 1.06
MF-VAR 1.13∗∗∗ 1.18∗∗∗ 1.16∗∗∗ 1.11∗∗∗ 1.18∗∗∗ 1.21∗∗∗
Q-TVP-SV-VAR 1.06 0.98 1.01 1.10 1.03 1.02
Q-TVP-VAR 1.03 0.99 0.97 1.08 1.02 0.97
Q-VAR 1.14∗∗∗ 1.14∗∗∗ 1.13∗∗∗ 1.17∗∗∗ 1.17∗∗∗ 1.18∗∗∗
Q-SV-VAR 0.66 0.66 0.68 0.84 0.86 0.86

Inflation

MF-TVP-SV-VAR 0.81∗∗∗ 0.84∗∗∗ 0.82∗∗∗ 0.80∗∗∗ 0.87∗∗∗ 0.91∗∗∗
MF-SV-VAR 0.90∗∗ 0.89∗∗∗ 0.86∗∗∗ 0.86∗∗ 0.87∗∗∗ 0.87∗∗∗
MF-TVP-VAR 0.93∗∗ 0.96∗∗ 0.93 0.97 1.05 1.11∗∗
MF-VAR 0.98 1.09∗∗∗ 1.15∗∗∗ 0.92 1.02 1.06
Q-TVP-SV-VAR 0.84∗∗∗ 0.83∗∗∗ 0.81∗∗∗ 0.83∗∗∗ 0.84∗∗∗ 0.87∗∗∗
Q-TVP-VAR 0.89∗∗∗ 0.89∗∗∗ 0.86∗∗∗ 0.92∗∗∗ 0.93∗∗∗ 0.94∗∗
Q-VAR 1.08∗∗∗ 1.14∗∗∗ 1.22∗∗∗ 1.05∗∗ 1.10∗∗∗ 1.15∗∗∗
Q-SV-VAR 0.63 0.64 0.64 0.89 0.87 0.78

Unemployment rate

MF-TVP-SV-VAR 0.79∗∗∗ 0.88∗∗ 0.95 0.76∗∗ 0.85 0.95
MF-SV-VAR 0.86∗∗∗ 0.92∗∗ 0.95∗ 0.85∗∗ 0.91∗ 0.94
MF-TVP-VAR 0.83∗∗∗ 0.87∗∗ 0.89∗∗ 0.80∗∗ 0.83∗∗ 0.85∗∗
MF-VAR 0.84∗∗∗ 0.91∗∗ 0.94∗ 0.83∗∗ 0.90∗ 0.93
Q-TVP-SV-VAR 1.00 1.04 1.08 0.98 1.04 1.09
Q-TVP-VAR 1.03 1.05 1.07 1.03 1.05 1.08
Q-VAR 1.03∗∗∗ 1.03∗∗∗ 1.03∗∗∗ 1.04∗∗∗ 1.04∗∗∗ 1.04∗∗∗
Q-SV-VAR 0.48 0.71 0.93 0.65 1.00 1.33

Notes: RMSEs are reported in absolute terms for the benchmark model (bottom row of each panel) and as ratios
to the benchmark model for the remaining models. A ratio below unity indicates that the model outperforms
the benchmark. Bold figures indicate the best performance for the variable and horizon. ∗, ∗∗, and ∗∗∗ denote
significance at the 10%, 5%, and 1% level, respectively, according to the Diebold-Mariano test with Newey-West
standard errors.

For GDP growth, the benchmark is hard to beat. The MF-SV-VAR, the Q-TVP-VAR, and
the Q-TVP-SV-VAR provide a better forecast performance for some horizons, albeit not sta-
tistically significant. For inflation, the Q-TVP-SV-VAR and the MF-TVP-SV-VAR deliver the
best performance on average over all horizon, suggesting that time-variation in each coefficient is
crucial for inflation forecasts. Thus, our results confirm the findings from previous studies based
on quarterly models (see, among others, D’Agostino et al., 2013; Barnett et al., 2014; Faust and
Wright, 2013) by use of mixed-frequency models. Moreover, while the TVP-models’ performance
tends to deteriorate in the shorter sample, the SV-models’ performance enhances, again provid-
ing evidence that stochastic volatility has gained importance in the shorter sample. For the
unemployment rate, the MF-models consistently outperform the benchmark, while the quarterly
models fail to do. Hence, the results provide evidence that both intra-quarterly dynamics and
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time-variation in the VAR-coefficients are particularly important.
In sum, the results are consistent with findings from previous studies, indicating that the

gains in accuracy due to variations in the VAR-coefficients are smaller than the gains induced
by stochastic volatility. However, using models with both features provides, on average over
all variables, the most accurate forecasts. Finally, the results provide evidence that modeling
within-quarter dynamics is beneficial also regarding short-term forecasts.

5.3 Comparison with survey-based forecasts

Since it is commonly found that survey-based forecasts are hard to beat (see, for example, Faust
and Wright, 2013), we further assess the forecast performance of our MF-VARs relative to the
forecasts provided by the SPF. To align the MF-VARs’ information set with those of the SPF
participants, we only resort to the forecasts from I2, providing 90 samples for the evaluation.13

Figure 3 depicts forecast errors of the MF-VARs relative to those of the SPF for the three
variables. For GDP growth (left panel) and the unemployment rate (right panel), the SPF clearly
outperforms each MF-VAR. The latter probably stems from the fact that survey participants
consider a much broader information set than included in our small-scale VARs.14 Regarding
inflation, however, even small-scale MF-VARs provide very competitive nowcasts—each nonlinear
specification slightly improves on the SPF, which itself is found to provide very accurate inflation
nowcasts (Faust and Wright, 2013). For higher horizons, the SPF delivers more accurate inflation
forecasts though. We moreover investigate whether the the quarterly VARs’ forecast performance
can be improved by conditioning the latter on the SPF nowcasts.15 Figure 10 in the Appendix
shows that this procedure indeed improves the Q-VARs’ forecast accuracy. Overall, the gains are,
however, small and die out quickly. In particular the MF-TVP-SV-VAR nevertheless provides
very competitive predictions.

5.4 Predictive density evaluation

The results for the CRPS are displayed in Table 3. Overall, the results point to the usefulness of
within-quarter information in delivering well calibrated predictive densities; the mixed-frequency
models provide better results on average over all variables and horizons than their quarterly
counterparts. The MF-TVP-SV-VAR provides the best performance with a reduction in CRPS
of 19% followed by the MF-SV-VAR with 11% (on average over all variables and horizons). This
emphasizes the importance of stochastic volatility for generating accurate predictive densities.

For GDP growth density forecasts, the benchmark is again difficult to beat—no model sig-
nificantly improves on the benchmark. Only the MF-TVP-SV-VAR provides an (insignificant)

13The SPF participants’ submission deadline for the first (second, third, fourth) quarter is the second to third
week of February (May, August, November).

14For example, Brave, Butters, and Justiniano (2019) show that the forecast accuracy at medium-term horizons
of a MF-VAR with regard to GDP growth tends to improve with more information included in the model.

15Specifically, we estimate the Q-VARs until TB , add the SPF nowcasts for TB+1, and compute forecasts for
TB+2 until TB+hmax/3. Note that we do not update the coefficients given the SPF nowcasts. Alternatively, one
could also use more sophisticated methods for utilizing external forecasts, for example, entropic tilting. For a
comparison of methods to combine external and model-based predictions see Krüger, Clark, and Ravazzolo (2017).
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Figure 3: Comparison of MF-VARs with Survey of Professional Forecasters

Notes: Comparison of MF-VAR forecasts with mean forecasts from the Survey of Professional Forecasters
(SPF). GDP growth and inflation forecasts from MF-VARs are transformed into annualized rates. Figures
below (above) unity indicate that the models provides smaller (larger) forecast errors than the SPF.
Sample: 1990–2017.

improvement, although its points forecast are worse than those of the benchmark. Regarding in-
flation, the results indicate two outcomes. First, the Q-TVP-SV-VAR and the MF-TVP-SV-VAR
deliver the largest (and significant) improvements on the benchmark. Hence, as for point fore-
casts, it is important to model time-variation in both the parameters and the residual variances
to obtain precise predictive densities. Second, including time-variation in the parameters does
play a vital role since both the MF-TVP-VAR and the Q-TVP-VAR offer strong improvements
of roughly 10% over the benchmark.

For the unemployment rate, the results are different from the point forecasts evaluation. In
this case, the MF-TVP-SV-VAR delivers the best performance, improving on the benchmark by
up to 14% followed by the MF-SV-VAR with 11%. The MF-TVP-VAR, which provides very
accurate point forecasts, in turn performs slightly worse with gains of up to 9%. Moreover and
in contrast to inflation, each mixed-frequency model improves both on the benchmark and on its
quarterly counterpart. Thus, it is crucial to include intra-quarterly information and stochastic
volatility to generate precise predictive densities for the unemployment rate.

In summary, the results of the predictive density evaluation support the findings from the
point forecast evaluation. Using mixed-frequency models is beneficial over all variables and
horizons. It significantly improves results for inflation and the unemployment rate. In addition,
we confirm the importance of stochastic volatility in density forecasting by use of mixed-frequency
VARs. We provide evidence that combining stochastic volatility, time-varying parameters, and
mixed-frequencies significantly improves the accuracy of predictive densities. However, for the
inflation rate adding mixed frequency does not pay-off.
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Table 3: Real-time forecast CRPS

Model
1990-2017 2008-2017

h = 2 h = 3 h = 4 h = 2 h = 3 h = 4

GDP growth

MF-TVP-SV-VAR 1.00 0.95 0.97 0.94 0.90 0.90
MF-SV-VAR 1.02 1.02∗∗ 1.01 0.97 1.01 1.02
MF-TVP-VAR 1.18∗∗∗ 1.39∗∗∗ 1.59∗∗∗ 1.21∗∗∗ 1.51∗∗∗ 1.85∗∗∗
MF-VAR 1.15∗∗∗ 1.20∗∗∗ 1.19∗∗∗ 1.14∗∗∗ 1.24∗∗∗ 1.29∗∗∗
Q-TVP-SV-VAR 1.02 0.96 1.00 1.02 0.95 0.96
Q-TVP-VAR 1.02 1.00 1.00 1.02 0.96 0.93
Q-VAR 1.17∗∗∗ 1.17∗∗∗ 1.15∗∗∗ 1.20∗∗∗ 1.22∗∗∗ 1.25∗∗∗
Q-SV-VAR 0.35 0.36 0.37 0.37 0.38 0.39

Inflation

MF-TVP-SV-VAR 0.80∗∗∗ 0.81∗∗∗ 0.77∗∗∗ 0.79∗∗∗ 0.87∗∗ 0.87∗∗
MF-SV-VAR 0.92∗ 0.95∗∗∗ 0.93∗∗∗ 0.81∗∗∗ 0.88∗∗ 0.89∗∗
MF-TVP-VAR 0.88∗∗∗ 0.90∗∗ 0.85∗∗∗ 0.95 1.09 1.10
MF-VAR 0.98 1.12 1.16∗∗ 0.86∗∗ 1.01 1.02
Q-TVP-SV-VAR 0.83∗∗∗ 0.80∗∗∗ 0.76∗∗∗ 0.84∗∗∗ 0.83∗∗∗ 0.83∗∗∗
Q-TVP-VAR 0.88∗∗∗ 0.86∗∗∗ 0.81∗∗∗ 0.91∗∗ 0.92∗∗ 0.88∗∗∗
Q-VAR 1.11∗∗∗ 1.17∗∗∗ 1.23∗∗∗ 1.08∗∗ 1.13∗∗∗ 1.16∗∗∗
Q-SV-VAR 0.31 0.33 0.35 0.40 0.39 0.39

Unemployment rate

MF-TVP-SV-VAR 0.80∗∗∗ 0.86∗ 0.91 0.80∗∗ 0.86 0.92
MF-SV-VAR 0.84∗∗∗ 0.91∗∗∗ 0.94∗∗∗ 0.82∗∗∗ 0.87∗∗ 0.90∗∗
MF-TVP-VAR 0.89∗∗ 0.92 0.94 0.87 0.89 0.90
MF-VAR 0.84∗∗∗ 0.89∗∗∗ 0.92∗∗∗ 0.83∗∗ 0.88∗∗ 0.91∗
Q-TVP-SV-VAR 1.00 1.02 1.02 0.99 1.02 1.04
Q-TVP-VAR 1.06∗∗ 1.06 1.06 1.06 1.06 1.07
Q-VAR 1.03∗∗ 1.02 1.02 1.05 1.05 1.06∗
Q-SV-VAR 0.24 0.36 0.47 0.27 0.41 0.55

Notes: The scores are reported in absolute terms for the benchmark model (the bottom row of each panel) and
as ratios to the benchmark for the remaining models. A ratio below unity indicates that the model outperforms
the benchmark. Bold figures indicate the best performance for the variable and horizon. ∗, ∗∗, and ∗∗∗ denote
significance at the 10%, 5%, and 1% level, respectively, according to a t-test on the average difference in scores
relative to the benchmark model with Newey-West standard errors.

5.5 Forecasting during the Great Recession

So far we have demonstrated that modeling intra-quarterly dynamics, on average, significantly
improves forecast accuracy. Now we take a closer look at the MF-models’ absolute performance
during the Great Recession, which is of great interest, because many structural and nonstructural
models failed to provide accurate forecasts for the steep contraction and the following upswing
in 2008/2009. Figures 4 and 5 depict real-time quarter-on-quarter CPI inflation and the unem-
ployment rate (red lines) along with both the means (black lines) and 60% as well as 90% error
bands (shaded areas) from the predictive distributions, respectively. The figures’ columns refer
to the data vintages of October 2008 until December 2008 and demonstrate how the arrival of
new data points affects the forecasts.

First, we consider the inflation forecasts computed with the vintage of October 2008 (first
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Figure 4: Inflation Forecasts During the Great Recession
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Notes: Rows refer to mixed-frequency models; columns refer to the forecast origins, i.e., the information sets.
Red line indicates quarter-on-quarter real-time CPI inflation; black line is the mean of the predictive distribution.
Shaded areas are 60% and 90% error bands from the predictive distributions.

column). Note that in this month the models do not have any information on the current
quarter except for the T-Bill rate of October. In October 2008, the models’ posterior means are
close to each other for each horizon—for the nowcast, all of them lie at roughly 0.5%, which
is about three percentage points too high compared to the realization. The MF-VAR and the
MF-TVP-VAR deliver narrow intervals, which assign only a small fraction of probability mass
to negative inflation rates. The MF-SV-VAR and the MF-TVP-SV-VAR in turn generate much
wider intervals, clearly including negative inflation rates. However, the realization is not included
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Figure 5: Unemployment rate forecasts during the Great Recession

October 2008 (I1) November 2008 (I2) December 2008 (I3)
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Notes: Rows refer to mixed-frequency models. columns refer to the forecast origins, i.e., the information sets. Red
line indicates quarter-on-quarter real-time unemployment rate; black line is the mean of the predictive distribution.
Shaded areas are 60% and 90% probability bands from the predictive distributions.

in any interval. In November 2008, the posterior means are still similar, but become much more
pessimistic. The models correctly anticipate a negative inflation rate for 2008Q4 (approx. -
1%). Thus, as indicated in Section 5.1, the forecast errors become remarkably smaller due to
the additional monthly observations. Moreover, while the constant coefficient VARs predict a
slow recovery with negative inflation rates until 2009Q3, the TVP-VARs correctly anticipates
the recovery from 2009Q2 onward. In December 2008, the models produce a forecast error of
almost zero for 2008Q4 with a narrow forecast interval. The subsequent recovery, however, is
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best predicted by the MF-TVP-SV-model. Driven by the pessimistic nowcasts, the remaining
models forecast negative inflation rates for the entire forecast horizon. For the unemployment
rate (Figure 5), the MF-TVP-SV-VAR also provides the best performance. While the 90%
intervals do not contain the realizations for 2009Q1 until 2009Q3, only the VARs with time-
varying coefficients predicts a prolonged increase in the unemployment rate. This increase in
turn is more pronounced according to the MF-TVP-SV-VAR.

In summary, these results illustrate that the mixed-frequency models can translate intra-
quarterly information into more precise point and density forecasts. Furthermore, this example
supports the findings from Sections 5.1 and 5.2; it demonstrates the importance of combining
stochastic volatility with time-varying parameters for accurate now- and forecasts.

5.6 Forecast combination

Instead of estimating a model that directly captures parameter instability an obvious alternative
is to estimate several models and generate forecasts using a combination of those. As shown
by, for example, Clark and McCracken (2008), particularly forecasts from small-scale VARs
can substantially benefit from this approach. Subsequently, we combine the forecasts from our
models by applying both an equal-weighted combination scheme and the optimal prediction pool
of Geweke and Amisano (2011). We derive the vector of optimal weights wi,∗

t = [wit,1, . . . , w
i
t,M ]′

for variable i and M different models for each t by recursively minimizing the CRPS function:

wi,∗
t = arg min

wit

t∑
j=τ+1

[∫ 1

0
QSα

(
M∑
m=1

wit,mPj(α)−1, yij

)
ν(α)dα

]
, (22)

s.t.: wit,m ≥ 0, for m = 1, . . . ,M and
M∑
m=1

wit,m = 1 ∀t, (23)

where τ denotes a two-year warm-up sample. On the one hand, time-varying weights are highly
informative regarding shifts in the relative forecast performance among a set of competing models
(Pettenuzzo and Timmermann, 2017). On the other hand, changing weights can reflect important
changes in the underlying economic structure (Del Negro, Hasegawa, and Schorfheide, 2016).

Figure 6 displays the time-varying weights for h=2.16 For GDP growth, a great deal of the
total probability mass is assigned to the Q-SV-VAR and the Q-TVP-SV-VAR until the Great
Recession hits the US economy. Thereafter, the MF-TVP-SV-VAR quickly gains importance
by receiving a weight of roughly 50%, outweighing the Q-SV-VAR. For inflation, the MF-TVP-
VAR obtains the largest weight until the Great Recession. Afterwards, the MF-TVP-SV-VAR
receives the highest weight, confirming the results that parameter instability in each coefficient
is important for inflation forecasts. Regarding the unemployment rate, Figure 6 confirms the
findings from the previous sections; almost the entire probability mass is consistently assigned
to MF-models with the MF-TVP-SV-VAR receiving the largest share the entire sample (about
40%). Thus, for each variable, the model that receives the largest weight at the end of the sample
includes time-variation in both the VAR coefficients and the residual variances. Moreover, the

16The figures for the remaining horizons look qualitatively similar and are available upon request.
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Figure 6: Optimal prediction pools

Notes: Probability weights for different models according to optimal prediction pool for h = 2. The
weights are derived by recursively solving the minimization problem in (22).

MF-models’ share at the end of the sample, is larger than those QF-models, supporting the
importance of modeling intra-quaterly dynamics.

Table 4 depicts the point forecast performance of both combinations schemes relative to the
benchmark model.17 Both combination schemes provide strong gains in forecast accuracy across
all variables and horizons. Notably, the optimal prediction pool outperforms the equal weighted
average in almost each case, providing evidence that the increasing relevance of MF-models
depicted by Figure 6 actually results in more precise forecasts. In the case of GDP growth,
combining the forecast from MF and QF-VARs does not only (significantly) improve on the
benchmark, but also on each individual model (see Table 2). At the one-year ahead horizon, the
RMSE of the combined forecast is, on average 12% lower. For inflation, we find that combining
the individual forecast does provide better results than those of the best performing models. In
fact, the Q-TVP-SV-VAR provides a slightly better performance. Regarding the unemployment
rate, combining forecasts from several VARs reduces the relative RMSEs with respect to the best
performing individual model at each horizon with gains ranging from 4% to 8%.

6 Conclusion

Several studies show that modeling structural change improves forecast accuracy. We contribute
to this discussion by investigating whether allowing for structural change in a mixed-frequency
VAR setup further improves performance.

We conduct a rigorous real-time out-of-sample forecast experiment and generate predictions
for GDP growth, CPI inflation, and the unemployment rate. Our findings show that modeling
monthly dynamics substantially improves forecast accuracy. Nowcasts and short-term forecasts

17The results regarding the density forecasts are qualitatively identical, which is why we do not report them.
See Table 6 in the Appendix C.
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Table 4: Real-time forecast combination RMSEs

Combination scheme
1990-2017 2008-2017

h = 2 h = 3 h = 4 h = 2 h = 3 h = 4

GDP growth

Equal-weighting 0.95∗∗ 0.91∗∗∗ 0.87∗∗∗ 0.96 0.92∗∗ 0.84∗∗∗
Optimal prediction pool 0.93∗∗∗ 0.88∗∗∗ 0.88∗∗∗ 0.94 0.89∗ 0.85∗∗∗

Inflation

Equal-weighting 0.86∗∗∗ 0.90∗∗∗ 0.88∗∗∗ 0.87∗∗∗ 0.91∗∗∗ 0.91∗∗∗
Optimal prediction pool 0.82∗∗∗ 0.84∗∗∗ 0.83∗∗∗ 0.84∗∗∗ 0.88∗∗∗ 0.90∗∗∗

Unemployment rate

Equal-weighting 0.81∗∗∗ 0.83∗∗∗ 0.84∗∗∗ 0.82 0.84∗ 0.85∗∗
Optimal prediction pool 0.75∗∗∗ 0.79∗∗∗ 0.81∗∗∗ 0.74 0.78∗ 0.81∗∗

Notes: RMSEs are reported as ratios to the benchmark. A ratio below unity indicates that the combination
scheme outperforms the benchmark. Bold figures indicate the best performance for the variable and horizon. ∗,
∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% level, respectively, according to the Diebold-Mariano test
with Newey-West standard errors.

especially benefit from within-quarter information, while for longer horizons, the advantages
vanish in most cases. The MF-TVP-SV-VAR provides, on average, the best point and density
forecast performance. Both inflation and unemployment rate forecast benefit considerably from
modeling both monthly dynamics and structural change. With regard to inflation, the MF-TVP-
SV-VAR nowcasts are slightly more precise than those from the SPF. We obtain rather mixed
results for the GDP growth; no model dominates over all horizons, though almost all nonlin-
ear MF-models outperform their linear counterpart as well as the remaining quarterly models.
Furthermore, we assess the forecast performance during the Great Recession and demonstrate
how the inflow of monthly information alters inflation forecasts. We show that the combina-
tion of time-varying parameters and stochastic volatility yields overall the best performance for
the downturn and subsequent recovery. Finally, using optimal prediction pools, we reveal the
increased importance of the MF-VARs, notably the MF-TVP-SV-VAR, with the onset of the
Great Recession, confirming the growing relevancy of modeling intra-quarterly dynamics and
structural change.

Our models are small-scale VARs due to the large number of parameters that have to be
estimated and our variables are rather standard in the literature. However, in the light of
the recent developments regarding the usage of larger dataset for TVP-SV-VARs (Chan, 2019;
Kapetanios, Marcellino, and Venditti, 2019; Petrova, 2019), our results suggest that introducing
mixed-frequencies in these estimation procedures might lead to strong gains in nowcast accuracy.
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Appendix

A Priors

For models with time-varying VAR coefficients, priors are based on a training sample, which
consists of the first 8 years of the entire sample. In the following, variables denoted with OLS
refer to OLS quantities based on the training sample. The length of the training sample is
denoted by T0.

AR-coefficients

For the benchmark VAR, we implement a diffuse Jeffrey’s prior:

p(β,Σ) ∝ |Σ|−(n+1)/2. (A.1)

For the nonlinear models, we use normal priors for the VAR-coefficients. To keep the models
comparable with respect to the VAR coefficients, we choose an uniformative prior. In case of the
Q-SV-VAR and the MF-SV-VAR, we employ the following prior:

p(β) ∼ N
(
0, 1000× Ikβ

)
. (A.2)

For the TVP-models, we draw the VAR coefficients using the CK algorithm and initialize it with
the following prior:

p(β0) ∼ N(0, 4× V (β̂OLS)). (A.3)

The prior for the covariance of the AR-coefficients (Q = diag(q2
β1
, . . . , q2

βkβ
)) follows an

inverse-Wishart distribution:

p(Q) ∼ IW (k2
Q × T0 × V (β̂OLS), T0). (A.4)

Since we assume that Q is diagonal, this is equivalent to an inverse gamma prior for each
element where kQ is split into kQC and kQAR for the intercepts and AR-coefficients, respectively.

Stochastic volatilities

The stochastic volatilities are drawn via the CK algorithm. Thus, additional priors for the
diagonal elements of Σ0 (log σ0), and the lower-triangular elements of A0 (ai,0) are required. We
follow Primiceri (2005) in defining these prior distributions as:

p(log σ0) ∼ N(log σ̂OLS , In), (A.5)

p(A0) ∼ N(ÂOLS , 4× V (ÂOLS)). (A.6)
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The priors for the covariance of log σ0 and A0 are inverse-Wishart distributed:

p(Ψ) ∼ IW (k2
Ψ × (1 + n)× In, 4), (A.7)

p(Φi) ∼ IW (k2
Φ × (i+ 1)× V (Âi,OLS), i+ 1), i = 1, . . . , k − 1, (A.8)

where i denotes the respective VAR-equation that has non-zero and non-one elements in the
lower-triangular matrix At, i.e., for n=4 it is equation 2, 3, and 4.

Latent observations

The missing values of the quarterly series expressed at monthly frequency are replaced with an
estimated latent state by applying a time-dependent CK algorithm. We initialize the unobserved
state variable zt with z0 as actual observations from the monthly variables and constant values
for the quarterly variables in levels from the last observations of our training sample:

p(z0) ∼ N(zL, Inp). (A.9)

Hence, zL = [ỹ′0, . . . , ỹ
′
0−p+1] where ỹi contains actual values, if observed, and constant values in

levels, thus zero growth rates, for missing observations.

Hyperparameters

The variability of βt, at, and log σt depends on Q, Ψ, and Φ, respectively, and thus on the
hyperparameters kQC , kQAR , kΨ, and kΦ. Therefore, we follow Amir-Ahmadi et al. (2020) and
use priors for those hyperparameters. Specifically, we employ an inverse gamma distribution
with scale parameter and degrees of freedom equal to 0.1 and 2, respectively:

p(ki) ∼ IG(2, 0.1), i = QC , QAR,Φ,Ψ. (A.10)

This parameterization implies a loose prior with a mode of 0.05 and an infinite variance.

B Specification of the Gibbs sampler

To estimate the models we employ a Gibbs sampler that consecutively draws from the conditional
distribution. In the following, the general form of the MCMC algorithm according to Del Negro
and Primiceri (2015) is outlined. To include the estimation of the hyperparameters, an additional
Metropolis Hastings step is added to the Gibbs sampler. Denoting any vector of variables x over
the sample T by xT = [x′1, . . . , x

′
T ]′, the Gibbs sampler takes the following form:

1. Initialize βt,ΣT , AT , sT , Q, Ψ, Φ, kQ, kΦ, and kΨ.

2. Draw ỹT from p(ỹT |yT , βT , Q,ΣT , AT ,Ψ,Φ).

3. Draw βT from p(βT |ỹT , Q,ΣT , AT ,Ψ,Φ).
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4. Draw Q from p(Q|ỹT , βT ,ΣT , AT ,Ψ,Φ).

5. Draw AT from p(AT |ỹT , βT , Q,ΣT ,Ψ,Φ).

6. Draw Φ from p(Φ|ỹT , βT , Q,ΣT , AT ,Ψ).

7. Draw Ψ from p(Ψ|ỹT , βT , Q,ΣT , AT ,Φ).

8. Draw sT from p̃(sT |ỹT , βT , Q,ΣT , AT ,Ψ,Φ).

9. Draw ΣT from p̃(ΣT |ỹT , βT , Q,AT , sT ,Ψ,Φ).

10. Draw kQC from p(kQC |QC) = p(QC |kQC )p(kQC ).
Draw kQAR from p(kQAR |QAR) = p(QAR|kQAR)p(kQAR).
Draw kΨ from p(kΨ|Ψ) = p(Ψ|kΨ)p(kΨ).
Draw kφ from

∏k−1
i=1 p(kΦ|Φi) = p(Φi|kΦ)p(kΦ).

The second step of this Gibbs sampler refers to drawing the latent observations. Since
there are no latent observations in the quarterly models, the Gibbs sampler omits Step 2 for
these models. Steps 3 to 8 belong to the block of drawing the joint posterior of p̃(θ, sT |ỹT ,ΣT )

by drawing θ from p(θ|ỹT ,ΣT ) where θ = [βT , AT , Q,Φ,Ψ]. Subsequently, we draw sT from
p̃(sT |Ỹ T ,ΣT , θ), and then Σt from p̃(Σt|sT , θ). p̃ denotes the draws based on the approximate
likelihood due to the KSC step, while p refers to draws based on the true likelihood (for further
detail, see Del Negro and Primiceri, 2015). In Step 10, we include the Metropolis-Hastings within
the Gibbs sampler to draw the hyperparameters.

For ease of exposition, in the following we use ỹT to indicate the data used in each step of the
algorithm. If one considers quarterly models, however, ỹT has to be replaced by yT . We employ
50000 burn-in iterations of the Gibbs sampler for each model and use every 4th draw of 20000
after burn-in draws for posterior inference.

Step 2: Drawing latent states zt
Let zT = [z1, . . . , zT ] denote the sequence of state vectors consisting of the unobserved
monthly states. Draws for zt are obtained by using the CK algorithm, i.e., we run the
Kalman filter until T to obtain zT |T as well as PT |T and draw zT from N(zT |T , PT |T ).
Subsequently, for t = T − 1, . . . , 1 we draw zt from N(zt|t, Pt|t) by recursively updating zt|t
and Pt|t.

Step 3: Drawing the AR-coefficient βT

Conditional on the drawn states or the actual data, sampling the AR-coefficients proceeds
as in Step 2 using the CK algorithm. In order to decrease computation time and efficiently
simulate the draws, we apply the precision sampling approach by Chan and Jeliazkov
(2009).

Step 4: Drawing the covariance of the VAR-coefficients Q
The posterior of the covariance of VAR-coefficients is inverse-Wishart distributed with scale
matrix Q = Q0 + e′te, et = ∆β′t, and degrees of freedom dfQ = T + T0, where Q0 and T0

denote the prior scale for Q and prior degrees of freedom, respectively.
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Step 5: Drawing the elements of AT

To draw the elements of AT , we follow Primiceri (2005) and rewrite the VAR in (6) as
follows:

At(ỹt − Z ′tβt) = ỹ∗t = Σtut, (A.11)

where, taking into account that βT and ỹt are known, y∗t is observable. Due to the lower-
triangular structure of A−1

t , this system can be written as a system of k equations:

ˆ̃y1,t = σ1,tu1,t, (A.12)
ˆ̃yi,t = −ŷ[1,i−1]ai,t + σi,tui,t, i = 2, . . . , k, (A.13)

where ˆ̃y[1,i−1] = [ˆ̃y1,t, . . . , ˆ̃yi−1,t]. σi,t and ui,t refer to the i-th elements of σt and ut. Thus,
under the block diagonal assumption of Φ, the RHS of equation i does not include ŷi,t,
implying that one can recursively obtain draws for ai,t by applying an otherwise ordinary
CK algorithm equation-wise.

Step 6: Drawing the covariance Φi of the elements of AT

Φi has an inverse-ishart posterior with scale matrix Φi = Φ0,i + ε′i,tεi,t, εi,t = ∆a′i,t, and
degrees of freedom dfΦi = T +dfΦi,0 for i = 1, . . . , k. Φ0,i, and dfΦi,0 denote prior scale and
prior degrees of freedom, respectively.

Step 7: Drawing the covariance Ψ of log-volatilities
As in Step 6, Ψ has an inverse-Wishart distributed posterior with scale matrix Ψ = Ψ0 +

ε′tεt, εt = ∆ log σ′t
2, and degrees of freedom dfΨ = T + dfΨ0 , where Ψ0 and dfΨ0 denote the

prior scale and the prior degrees of freedom, respectively.

Step 8: Drawing the states of the mixture distribution sT

Conditional on the volatilities, we independently draw a new value for the indicator matrix
sT from (see Kim et al., 1998):

PR(si,t = j|ỹ∗∗, hi,t) ∝ qjfN (ỹ∗∗|2hi,t +mj − 1.2704, ν2
j ). (A.14)

Step 9: Drawing the volatilities
The elements of Σt are drawn using the KSC algorithm. To this end, we employ the VAR
rewritten as in (A.11). Taking squares and logarithms, we get

ỹ∗∗t = 2ht + νt, (A.15)

and for the volatility process:

ht = ht−1 + εt, (A.16)

where ỹ∗∗i,t = log((ỹ∗i,t)
2 + c), νi,t = log u2

i,t, hi,t = log σi,t, and c is set to a small but
positive number to increase the robustness of the estimation process. To transform this
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non-Gaussian system (νt is distributed according to a χ2-distribution with one degree of
freedom) into a Gaussian system, we resort to Kim et al. (1998) and consider a mixture
of seven normal densities with component probabilities qj , means mj − 1.2704, and vari-
ances ν2

j . The values for {qj ,mj , ν
2
j } are chosen to match the moments of the log χ2(1)

distribution are given by Table 5.

Table 5: Gaussian mixtures for approximating the log-χ2(1)

ω qj mj ν2
j

1 0.0073 -10.1300 5.7960
2 0.1056 -3.9728 2.6137
3 0.0000 -8.5669 5.1795
4 0.0440 2.7779 0.1674
5 0.3400 0.6194 0.6401
6 0.2457 1.7952 0.3402
7 0.2575 -1.0882 1.2626

Kim et al. (1998).

Step 10: Drawing the hyperparameters kQC , kQAR , kΨ, and kΦ

The prior hyperparameters of the scale matrix of the variance covariance matrix Q, Ψ, and
Φ are drawn with a Metropolis within Gibbs step. Amir-Ahmadi et al. (2020) show that
the acceptance probability for each draw i can be simplified to:

αikX = min

(
p(X|k∗X)p(k∗X)q(k∗X |k

i−1
X )

p(X|ki−1
X )p(ki−1

X )q(ki−1
X |k∗X)

, 1

)
, (A.17)

where X = {QC , QAR,Ψ,Φ}. QC and QAR refer to the diagonal elements of Q with respect
to the intercepts and AR-coefficients, respectively. p(X|k∗X) denotes the prior distribution
ofX, while p(k∗X) indicates the prior for the hyperparameter. q(k∗X |k

i−1
X ) labels the proposal

distribution. We apply a random walk chain algorithm:

k∗X = ki−1
X + ξt, ξt ∼ N(0, σ2

kX
). (A.18)

The standard deviation σkX is adjusted according to the method proposed by Garthwaite,
Fan, and Sisson (2016):

σikX = σi−1
kX

+ c(αi−1 − α∗)/(i− 1), (A.19)

where α∗ = 0.4 is the target acceptance rate and c = 1/[α∗(1 − α∗)] is the optimal step
size. We initialize kX with the values used by Primiceri (2005), kQ = 0.01, kΨ = 0.1, and
kΦ = 0.01, and the standard deviation by σkX = 0.01.
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C Additional Results

Table 6: Real-time forecast combination CRPS

Combination scheme
1990-2017 2008-2017

h = 2 h = 3 h = 4 h = 2 h = 3 h = 4

GDP growth

Equal-weighting 1.01 0.93∗ 0.87∗∗∗ 0.95 0.90∗ 0.81∗∗∗
Optimal prediction pool 0.93∗ 0.85∗∗∗ 0.86∗∗∗ 0.93∗∗∗ 0.86∗∗∗ 0.83∗∗∗

Inflation

Equal-weighting 0.89∗∗∗ 0.89∗∗∗ 0.83∗∗∗ 0.92∗∗ 0.87∗∗ 0.77∗∗∗
Optimal prediction pool 0.81∗∗∗ 0.79∗∗∗ 0.74∗∗∗ 0.83∗∗∗ 0.85∗∗∗ 0.84∗∗∗

Unemployment rate

Equal-weighting 0.82∗∗∗ 0.81∗∗∗ 0.80∗∗∗ 0.86∗∗∗ 0.84∗∗∗ 0.83∗∗
Optimal prediction pool 0.76∗∗∗ 0.77∗∗∗ 0.76∗∗∗ 0.77∗∗∗ 0.77∗∗∗ 0.77∗∗∗

Notes: The scores are reported as ratios to the benchmark. A ratio below unity indicates that the combination
scheme outperforms the benchmark. Bold figures indicate the best performance for the variable and horizon. ∗,
∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% level, respectively, according to a t-test on the average
difference in scores relative to the benchmark model with Newey-West standard errors.
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D Additional Figures

Figure 7: Time-Varying Parameters of the Q-TVP-SV-VAR

GDP growth Inflation Unemployment rate Interest rate
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Notes: Figure depicts the time-varying parameters from the Q-TVP-SV-VAR. Columns refer to the variable and
rows to the constant/lagged variable on which the variable is regressed. The dashed lines indicate 68% error
bands. Results are based on the last data vintage
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Figure 8: Time-Varying Parameters of the MF-TVP-SV-VAR
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Notes: Figure depicts the time-varying parameters from the MF-TVP-SV-VAR. Columns refer to the variable
and rows to the constant/lagged variable on which the variable is regressed. The dashed lines indicate 68% error
bands. Results are based on the last data vintage.
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Figure 9: Relative RMSEs
GDP growth Inflation Unemployment rate
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Notes: Figure depicts the relative RMSEs in terms of percentage gains compared to the benchmark model. Red,
blue, and black lines refer to the information sets I1, I2, and I3 as outlined in Section 2.2, respectively. Sample:
1990–2017.
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Figure 10: Comparison of model-based forecast with Survey of Professional Forecasters

GDP growth Inflation Unemployment rate

Notes: Figure depicts the RMSEs of the mixed-frequency VARs (solid lines), the quarterly VARs (dashed lines),
and the quarterly VARs conditional on the SPF nowcasts (dotted lines) for the the four horizons. To match the
information set of SPF participants and models only forecasts from I2 are considered. Rows refer to models,
columns refer to variables. Sample: 1990–2017.
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