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Abstract 
 
Government investment in university research results in greater output and impact. To better 
capture economic benefits stemming from university research, governments have developed 
funding programs specifically targeting university-industry collaboration. However, little is 
known about the success of university-industry targeted (U-I targeted) grants. In this study we 
evaluate the effect of one such scheme, the Australian Research Council (ARC) Linkage Project 
scheme, by comparing it to its non-targeted sister scheme, the ARC Discovery Project scheme. 
Having in common selection criteria, grant assessors, awardees, magnitude of funding and 
duration, the schemes differ in the requirement for an industry partner. We measure capture of 
economic benefit by patent applications filed and granted. Interrogating the effect of targeted 
funding at a university level we find award of U-I targeted grants coincides with increased 
patent activity compared to non-targeted grants. Exploring the dynamics of the relationship, we 
observe the effect of U-I targeted grants on patent activity is short lived at an inventor level. 
Further, the propensity for patent activity is influenced by the ratio of U-I targeted to non-
targeted grants held at a university level, but not at an inventor level. 
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1. Introduction 

The importance of innovation as a key factor for sustainable growth has long been 

acknowledged, with numerous studies linking investment in R&D to increased productivity 

(Hall, 2011). Recognizing the role of universities in the innovation cycle, governments tailor 

funding schemes designed to expedite discovery and innovation in specific technologies, and 

encourage engagement with the innovation process through collaboration with industry 

(Etzkowitz & Leydesdorff, 2000). Although targeted investment in emerging fields of 

technology, such as nanotechnology (Beaudry & Allaoui, 2012; Chen et al., 2013; 

Ponomariov, 2013) and biotechnology (Furman, Murray & Stern, 2012), has been shown to 

hasten development in these fields, less is known about the effect of schemes targeting 

university-industry collaboration on innovation output. Examining the effect of a university-

industry targeted (U-I targeted) scheme, we investigate its correlation with university patent 

activity, an indicator of innovation output, and compare it to that of a similar non-targeted 

scheme. We further explore whether the award of a U-I targeted grant precedes patent 

activity, isolating the award of a single grant at the level of an individual inventor. This study 

is undertaken in the context of the Australian Research Council (ARC) comparing the effect 

of the U-I targeted Linkage Project (LP) scheme and the non-targeted Discovery Project (DP) 

scheme on patent activity. 

Research policy has evolved world-wide to stress the importance of connecting 

academia and industry (Etzkowitz & Leydesdorff, 2000). Underlining the importance placed 

on university-industry collaboration and knowledge transfer, many countries run multiple 

funding schemes, in some cases administered by independent government departments, all 

purposed with a similar objective. However, evidence of the effectiveness of these schemes is 

lacking, and as a result there is little scientific basis on which policy makers can decide how 

to apportion funds between schemes, which should be continued and which should be 

terminated (Jaffe, 2008, 2015).  

Arguably, competition for funding between government agencies is as fierce as it is 

between researchers. In the United States, for example, research funding is spread across 

various appropriation bills which are enacted annually, with two of the major government 

providers of university funding, the National Institutes of Health (NIH) and the National 

Science Foundation (NSF), receiving funding under separate appropriation bills (Blume-

Kohout, Kumar & Sood, 2015). Within a single funding agency various schemes designed to 

achieve a similar purpose may co-exist, such as the NSF’s Industry-University Cooperative 
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Research Centers (IUCRC) Program and the Grant Opportunities for Academic Liaison with 

Industry (GOALI) Proposals, both designed to stimulate collaboration between academic 

research and industry (Martin-Vega, Seiford & Senich, 2002).  

Similarly, in Australia there are numerous funding agencies administering multiple 

programs, the ARC being the main funder of university research. The ARC is unique in its 

administration of two sister schemes, the LP and DP schemes. The ARC LP scheme is an 

example of a scheme specifically purposed with promoting university-industry collaboration 

and the capture of economic benefit (Australian Research Council, 2001). In contrast, the 

non-targeted DP is focused on knowledge advancement as an outcome. Supporting discrete 

research projects, the two schemes have in common the term and quanta of funding awarded, 

and the academics who apply for and peer review the submissions. The main difference 

between schemes is the U-I targeted LP scheme requirement to have an industry partner. 

Overall, at a university level there is a positive relationship between the number of U-I 

targeted LP grants awarded to a university, and patent activity. Efficiency of universities in 

capturing economic value through patent filings with additional U-I targeted grants is 

illustrated in Figure 1.  

 

Fig. 1. Relationship between U-I targeted grants awarded and patent applications by university 
between 2001 and 2012. Universities are grouped into four categories based on affiliation: Group of 
Eight (Go8), Australian Technology Network of Universities (ATN), Innovative Research 
Universities (IRU) and non-affiliated (listed in Table A1 in the Appendix). Number of patent 
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applications and U-I targeted grants are summed over 2001-04, 2005-08, and 2009-12. Both axis are 
in log scale. Pearson’s correlation (ρ) is 0.7.  

Numerous studies link university research output with the award of funding from 

particular grant schemes. Overall, and unsurprisingly, there is a positive correlation between 

recipients of grant funding and research output, as gauged by research publications and 

citations (Arora & Gambardella, 2005; Averch, 1987; Beaudry & Allaoui, 2012; Bozeman & 

Gaughan, 2007; Zhou et al., 2016). In an attempt to move beyond research output and 

demonstrate impact, patent data has been used to gauge the capture of economic outcomes 

(Cheah, 2016). However, these studies do not isolate the effect of government investment in 

university-industry collaboration on university innovation output above and beyond generic, 

non-targeted, government support of university research.  

Taking advantage of similarities between the ARC LP and DP schemes, this study is 

novel in differentiating the effect of U-I targeted funding from non-targeted funding on 

innovation output. Specifically, we will seek to address the question of whether there is a 

relationship between the award of U-I targeted LP grants and the specified objective of the 

LP scheme to capture the economic benefits of innovative research (Australian Research 

Council, 2001), using patents filed by, and granted to, universities as a measure of value 

capture. Comparing the coincidence of U-I targeted LPs and non-targeted DPs with patent 

activity, we will determine whether the U-I targeted scheme serves a function that is distinct 

from that of the non-targeted scheme. Further exploring the dynamics of the relationship 

between U-I targeted grants and patent activity, we will seek to isolate the effect of being 

awarded an LP grant on the likelihood of a university inventor filing a patent.  

The remainder of this paper is organized as follows: Section 2 provides a review of the 

literature on research funding and measuring its impact. In Section 3 the context of the study, 

the ARC, is described and hypotheses developed. Turning to the study proper, Section 4 

explains the data and descriptive findings. The model specification is set out in Section 5, 

followed by a presentation of the results in Section 6 and discussion in Section 7. Overall 

findings of the study and concluding comments are summarized in Section 8.  

2. Literature  

2.1. Return on investment of government funded research 

Although investment in R&D, both private and government, is used as a barometer of 

national prosperity by organizations such as the OECD (OECD, 2017), the struggle to isolate 
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the independent effects of R&D expenditure on productivity prevails. Issues in relation to the 

measurement of both input and output, what is measured and how, exasperate the difficulty 

of gauging the impact of R&D intensity on productivity. Extrapolating on the Cobb-Douglas 

production function Zvi Griliches (Griliches, 1979) introduced a further input, knowledge 

capital, determined in part by current and past R&D expenditure, in addition to the 

conventional inputs of labour and capital.  

Subsequent studies have deconstructed the knowledge function and the process by 

which it influences productivity. Accounting for the fact that it is innovation output, as 

opposed to innovation input, that drives productivity, Crepon et al (Crepon, Duguet & 

Mairessec, 1998) developed a model (CDM) that relates (i) productivity to innovation output, 

(ii) innovation output to research intensity, and (iii) research to its determinants. Applying the 

model, they showed that innovation output of French firms, as measured by patent numbers, 

increased with research efforts, and productivity positively correlated with higher innovation 

output. With variations of the CDM model being adopted in many subsequent studies (Bartz-

Zuccala, Mohnen & Schweiger, 2018; Hall, 2011), it is efficiency of the middle phase of the 

model, research intensity to innovation output, that is pursued in the present study. 

2.2. Government funding and innovation output 

Patents are one of the most important indicators for the output of technology-oriented 

innovation (Grupp, 1998), with the act of filing a patent application a signal of both 

innovation and intention to capture economic value (James, Leiblein & Lu, 2013). Although 

it does not capture all forms of innovation, with some industries favouring keeping trade 

secrets as a means for protecting of intellectual property, and with many innovations not 

being patentable inventions, patent behaviour of both firms (Altuzarra, 2019; B. Crepon et 

al., 1998) and countries (Frietsch, Neuhäusler, Jung &  Van Looy, 2014) has been shown to 

correlate with economic success. Indeed patenting has been described as one of the most 

noteworthy indicators of academic commercial activity (Bozeman, 2000). 

Overall, most studies investigating the impact of government investment on university 

research report an uplift in research output subsequent to funding, however the extent is 

dependent on the characteristics of the specific funding scheme and its environment. Results 

from an overall study of US federal research funding suggested a $1million increase in 

funding would lead to 0.2 more patents (Payne, 2003), with studies linking funding from both 

the NIH (Azoulay, 2015) and NSF (Averch, 1987) to increased innovation output. However, 
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attributes of both the academic and the organization influence the extent of the increase in 

output (Averch, 1987). As many studies compare funded with non-funded researchers, it is 

not surprising that the funded researchers have a greater output, as supposedly it is the more 

talented researchers that are funded (Arora & Gambardella, 2005).  

2.3. University-industry collaboration and innovation output 

Despite the ubiquitous nature of collaboration in science, its benefits are more often 

assumed than investigated (Lee, 2005). Substantial theory and empirical evidence links 

collaboration with productivity and innovation (Bercovitz, 2011). This is based on the 

premise that innovation is a novel recombination of existing ideas and collaboration increases 

the library of existing ideas (Burt, 2005; Fleming, 2007). Although most studies examining 

the effect of collaboration on research output find a positive effect (Bercovitz, 2011; Burt, 

2005; Fleming, 2007), others have suggested the impact of collaboration on research output is 

not so clear (Lee, 2005).  

Various explanations have been proposed as to why investment in university-industry 

collaboration may not reap the expected returns in innovation output. Whilst the benefit to 

firms of collaborating with universities on subsequent innovation may be varied (Mingji & 

Ping, 2014), geographical proximity (Maietta, 2015), social networks and efficient 

communication channels (Mingji & Ping, 2014), the nature of the engagement (Hohberger, 

Almeida & Parada, 2015), academic policy (Maietta, 2015), and the quality of the 

collaborating academic institution (Szücs, 2018) do influence innovation output and 

direction. At a university level it has been suggested the strong positive effect on productivity 

associated with funding of collaboration may be due to access to additional research 

resources rather than collaboration per se (Lee, 2005); an alternate motivation for academics 

engaging with industry being to further their research rather than commercialize their 

knowledge (D’Este & Perkmann, 2010). The dynamic nature of the innovation process and 

the relationship compound the challenge of measuring the association between collaboration 

incentives and innovation output. For example, uplift in research productivity not observed 

during the funding cycle may be observed in the long run for collaborations that persist 

(Defazio, 2009), whilst the role of an industry partner in managing intellectual property may 

result in decreased patent activity for collaborating academics compared to their non-

collaborating colleagues (Bikard, Vakili & Teodoridis, 2018).  

2.4. The seeding effect of government funding 
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In considering the temporal relationship between R&D investment and innovation 

output, the knowledge production function model of Griliches, and subsequent variations 

thereof, place research funding on the input side of the ledger with products of innovations 

such as patents on the output side, assuming a causal relationship. However, in his seminal 

work Griliches acknowledged this may be an over simplification, noting that R&D 

investments are themselves affected by the level of output, and by past profits and 

productivity (Griliches, 1979). Although patents are generally considered a product of R&D 

activity (Griliches, 1990), instances of contemporaneous relationships (Stoneman, 1983), 

bidirectional relationships (Altuzarra, 2019; Brouwer, 2001) and reverse unidirectional 

relationships between past success in innovation and future R&D efficiency (Arora, 

Ceccagnoli & Cohen, 2008; Baraldi, Cantabene & Perani, 2014; Crepon & Duguet, 1997) 

have been reported. Suggested explanation for these observations include - as intellectual 

property protection is secured early during the R&D stage, significant investment occurs post 

patenting (Baraldi et al., 2014), and the reinvestment of revenue from patents into R&D 

(Baraldi et al., 2014; Hall & Ziednonis, 2001; Stoneman, 1983).  

The majority of studies linking investment in university research with output only look 

for a positive correlation between funding and output, finding positive though varying 

relationship at an organization (Adams, 1998; Payne, 2003), project team (Carayol, 2017) 

and individual (Arora & Gambardella, 2005; Bornmann, Wallon & Ledin, 2008; Jacob & 

Lefgren, 2011; Zhou et al., 2016) level. As opposed to industry which is more focused on the 

protection of new innovation and staking out its claim, academics are more concerned with 

publications (Bikard et al., 2018), and thus less likely to seek patent protection early in the 

research process. Further the revenue from licence income into a university represents a small 

portion of total income, thus unlikely to significantly effect R&D spend. 

Innovation is pivotal to increasing productivity, and governments are able to positively 

manipulate the rate of innovation, accelerating innovation output through investment in 

R&D, however all investment is not equal. Despite the majority of evidence in the 

affirmative for the effect of university-industry collaboration on innovation output, challenge 

has been in disentangling the effect of the collaboration per se with funding (Lee, 2005). 

Mirroring each other in most regards except for the requirement of an industry partner, the U-

I targeted LP and non-targeted DP grant schemes of the ARC may provide further insight into 

the effectiveness of investment in university-industry collaboration. 
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3. Context of the Australian Research Council and hypotheses development 

Established as an independent statutory agency in 2001 (Australian Research Council 

Act (Cth), 2001), the ARC in its current form replaced the previous council which was under 

the umbrella of the National Board of Employment, Education and Training (Australian 

Research Council, 1999; National Board of Employment, 1990). The ARC awards funding, 

based on peer review, under two major programs; Discovery, focused on knowledge 

advancement as an outcome, and Linkage which is aimed at strengthening links within the 

innovation system to capture the economic, social and cultural benefits of research 

(Australian Research Council, 2001). Each program administers a project funding scheme to 

support research projects undertaken by individual researchers or research teams. A 

distinguishing feature of the LP scheme compared to the DP scheme is that each grant must 

have at least one non-university collaborating organization, and the collaborating 

organizations must contribute to the project in cash.  

Although there is approximately two-fold the number of non-targeted grants awarded 

compared to U-I targeted grantsa, the schemes are analogous in most regards. The 2012 grant 

rounds awarded funding for up to three years of between $50,000 and $300,000 per year for 

LPs and $30,000 and $500,000 for DPs (Australian Research Council, 2011, 2012). Drawing 

on assessors from a common pool, selection criteria for both schemes is based on investigator 

track record, project innovation, feasibility and research environment, with partner 

commitment also taken into consideration with respect to LPs (Australian Research Council, 

2011, 2012). Between 2001 and 2012, grant size for LPs averaged $260,000 and for DPs, 

$310,000b, with more than one-third of ARC grant recipients awarded both U-I targeted and 

non-targeted grants during the 12-year period.  

Compared to the non-targeted scheme, the U-I targeted scheme is designed to foster 

engagement within the innovation system, and capture the economic value of innovation, 

through incentivising university engagement with industry stakeholders. Prior to the 

commencement of a U-I targeted project, parties must contemplate likely forms of 

intellectual property, and reach agreement as to how newly created intellectual property, and 

                                                 
a Extracted from Australian Research Council National Competitive Grants Program Dataset (Australian 
Research Council, 2017) 
b Extracted from Australian Research Council National Competitive Grants Program Dataset (Australian 
Research Council, 2017) 



 9 

existing background intellectual property owned by the respective parties, will be dealt with 

(Australian Research Council, 2016). Consideration is given to potential outcomes, and how 

these will be captured and protected, and how commercialization will be managed. Thus, it 

would be expected that universities that have greater engagement with industry partners 

through collaboration on U-I targeted grants will engage more with the patent system. 

H1. Award of U-I targeted grants is associated with the filing, and subsequent grant, of 

more patent applications compared to the award of non-targeted grants.  

The underlying rationale for governments to invest in research is to promote 

innovation, ultimately improving the economy, and it is generally considered government 

investment does result in increased innovation. However, the difficulty in showing a temporal 

break in innovation at the point of funding has been acknowledged in previous studies. For 

example, in a study of New Zealand’s Marsden fund the authors contributed the challenge in 

identifying a time in performance change to noisy data and the sample size being too small 

(Gush, Jaffe, Larsen &  Laws, 2017). With U-I targeted grants accounting for slightly under 

5% of university income between 2001-2012c, and most universities receiving a similar 

quantum of ARC project grants year on end, the effect of additional grants on subsequent 

patent activity is difficult to detect. The dynamics of the relationship between patent activity 

and award of grants will be more evident at an inventor level, where a single grant is likely to 

account for the majority of an individual’s research income, increasing the signal-to-noise 

ratio of holding a grant vis-à-vis not holding a grant.  

Almost without exception, funding of university research results in increased 

innovation output. However, more recently the temporal stability of the relationship between 

funding of firm R&D and innovation output has come into question. If this instability is 

transmitted during interactions between industry and university, a similar reverse causality 

may be expected in academia with patent activity preceding U-I targeted grants.  

H2. The award of U-I targeted grants lags patent activity of inventors.  

If it is the case, as hypothesised, that U-I targeted grants correspond with increased 

economic value – as measured by patents applied for as well as patent granted – then it would 

expected that inventors that concentrate on U-I targeted funding to support their research will 
                                                 
c Extracted from Australian Research Council National Competitive Grants Program Dataset (Australian 
Research Council, 2017) 
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have the highest propensity to apply for, and be awarded, patents. If this hypothesis is 

rejected, evidence that a mix of targeted and non-targeted funding maximizes the impact of 

public research funding would be observed. 

H3. Innovators with a higher proportion of U-I targeted grants compared to non-

targeted grants demonstrate greater patent activity. 

4. Data and descriptive findings  

This study was conducted at a university level in order to determine the association 

between patent activity and the award of U-I targeted grants, and then at an inventor level 

with the aim of exploring the dynamics of this relationship. The sample comprises 36 

Australian universities, and the complete population of inventors from each of the 

universities. The study draws upon publicly available data from Australian government 

agencies for both the focus independent variables, and the two dependent variables, number 

of patent applications filed and granted patents. The count of LPs and DPs awarded was 

extracted from the Australian Research Council National Competitive Grants Program 

Dataset (Australian Research Council, 2015) whilst the IP Australia patent database (IP 

Australia, 2018) was used to extract counts of patent applications and granted patents. Patent 

application data is included in the study in addition to patent grant data as it provides a more 

complete record of invention, and provides greater statistical power as only a fraction of 

applications proceed to grant (Colatat, 2015). 

ARC project grants are counted as of year of submission. For the purpose of this study, 

the ARC data was limited to project grants in the fields of science, technology, engineering 

and mathematics (STEM – described in Table A2 in the Appendix), research in these fields 

being likely to result in patentable subject matter. Patent applications are counted based on 

the year of filing of the complete application. Granted patents are counted as of year the 

complete patent application was filed. At the time of the study there were no pending patent 

applications, with all applications filed between 2001 and 2012 either being granted or lapsed 

before grant. 

Previous studies have reported a number of confounding variables that effect both the 

likelihood of being awarded funding and research output, including university status, field of 

research, age of the researcher, and gender. 
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Controlling for the effect of university affiliation, dummy variables were included for 

the network each university was affiliated with; Group of Eight Universities (Go8), 

Australian Technology Network Universities (ATN) and Industrial Research Universities 

(IRU), compared to non-affiliated universities. Universities in each of the alliances are 

unified by their agendas: the Go8 comprising ‘Australia’s leading universities’, the ATN 

describing itself as the ‘most innovative and enterprising universities in the nation’, whilst the 

IRU members research is ‘focussed at the translation of research’. A list of universities and 

their affiliations is provided in Table A1. 

To take into account variations due to research environment, information on university 

publications and staffing was included from the datasets of a number of government 

agencies, collected annually (details provided in Table A3 in the Appendix). With perceived 

and actual institutional support of commercialization activities in research centres being 

observed to be predictive of invention disclosures, but not patent activity, as measured by 

patent grants (Hunter, 2011; Meyer & Tang, 2007), variation in commercialization support 

was also factored in. 

At an inventor level the number of ARC Fellowships was also included, with 40% of 

the selection criteria weighted toward researcher track-record ARC Fellowships are 

informative of endogenous researcher attributes.  

Scopus database was used to ascertain the field of research and date of first publication 

of each researcher. The later was used as a proxy for inventor seniority, with academic age 

being calculated as time since first publication, as of 2012. Although it has been suggested 

older researchers are more productive and have greater grant success (Kyvik, 2008), the 

greatest discoveries are usually made by researchers under forty (Gieryn, 1981). Affiliation 

data contained in Scopus was used to verify whether the inventor was a university inventor or 

an industry fellow, and which university the recipient of an ARC award was associated with.  

With studies showing that women made up only 10.8% of inventors in 2013, their 

patents having a lower technological impact, and associated with a higher number of 

International Patent Classifications (Sugimoto, Ni, West &  Lariviere, 2015), gender was 

taken into account in the study. Gender was determined by the first name of the inventor. 

4.1. University sample 

The university sample represents all Australian universities that responded to the 

national Higher Education Research Data Collection (Universities Australia, 2016) for the 
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full period between 2001-2012. The number of STEM project grants awarded to each sample 

university as administering organization over the twelve-year period tallied 3615 for LPs and 

6825 DPs.  

A search of the IP Australia database returned 1394 unique patent applications filed 

between 2001 and 2012 by these universities. In cases where a university had an associated 

commercialization entity, such as New South Innovation for the University of New South 

Wales, both names were searched. Patent applications with two or more universities as co-

applicants were counted once for each university. At the university-level there were 1510 

patent applications and 783 granted patents. 

4.2. Inventor sample 

Sample university patent applications were consolidated, removing duplicate patents. 

Inventors listed on the sample university patent applications formed the sample inventors. For 

each inventor the count of patent applications, granted patents, DPs, LPs and ARC 

Fellowships submitted between 2001 and 2012 was tallied.  

The final stage in the data collection was the removal of inventors that were not 

affiliated with one of the 36 universities at the time of patent filing, for example investigators 

who were employees of industry co-applicants, and to consolidate inventors which appeared 

under several names. Unlike the ARC investigator details, inventor details on the IP Australia 

database are not accurately recorded, and an inventor may appear under several different 

names, for example John Smith, John C Smith and Jon C Smith. Further in the case of jointly 

filed patent applications, it is not possible to ascertain from the IP database which 

organization the inventor was affiliated with. For this reason, inventor details were verified 

using Scopus database.  

Prior to the final stage there were 2807 inventors, upon cleaning the number of unique 

inventors was reduced to 2468, named as inventors on patent applications 3849 times, 

granted patents 2094 times and occurring as chief investigators 1523 times on LPs and 1816 

times on DPs. During the 12-year period 62.34% of inventors received neither DP nor LP 

grants, whilst 16% were awarded grants under both schemes. 

4.3. Descriptive findings 

Descriptive statistics for each of the variables in the panel data set is presented in Table 1.  
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Table 1 

Summary statistics of university and inventor level panel data set – yearly, 2001-2012.  

Variable Mean Std. Dev Min.  Max. N 
University level      
Patent applications  3.50 5.41 0 42 432 
Granted patents 1.81 3.02 0 20 432 
U-I targeted grants 8.37 8.97 0 41 432 
Non-targeted grants 15.80 21.25 0 106 432 
Publications per 
researcher 

4.54 7.79 1 81 407 

Comm staff per 
researcher 

0.06 0.19 0 2 407 

 

Inventor level      
Patent applications 0.13 0.40 0 11 29616 
Granted patents 0.07 0.28 0 8 29616 
U-I targeted grants 0.05 0.24 0 3 29616 
Non-targeted grants 0.06 0.25 0 2 29616 
Academic age  18.71 11.41 -5 57 23832 
Female 0.22 0.42 0 1 28488 
ARC fellowships 0.01 0.09 0 2 29616 
Publications per 
researcher (uni avg) 

2.43 2.71 0 53 28440 

Comm staff per 
researcher (uni avg) 

0.03 0.11 0 2 28440 

 

Despite U-I targeted grants accounting for only one third of project grants awarded by 

the ARC, inventors averaged near to as many targeted as non-targeted grants (.84:1), an 

artefact of LPs having on average more investigators than DPs. The ratio of patent 

applications to granted patents was marginally over 50% for both inventors and universities, 

which is consistent with the conversion rate of patent application to grant reported in 

previous studies (Michael Carley & Alan, 2015).  

A subset of 930 inventors were chief investigators on U-I targeted and/or non-targeted 

project grants over the 12-year study period, with 396 holding both. The average 12-year 

aggregate ratio of U-I targeted grants to combined grants for inventors in this subset was .47. 

Isolating the effect of a single grant, submitted in the middle year of a 3-year period, 

recipients of isolated U-I targeted grants were approximately 20% more likely to file a patent 

application in the year of submission or following year compared to recipients of an isolated 
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non-targeted grant, as shown in Figure 2. Significantly, the patent applications of inventors 

with isolated U-I targeted grants were almost 30% more likely to be sealed, which may be an 

indication of the increased value of the captured technology. Overall, recipients of U-I 

targeted and non-targeted grants were significantly more likely to file a patent application in 

the year of submission or subsequent year, compared to years in which they were not 

awarded project grants. 

 

 

Fig. 2. Isolated ARC grants, submitted in year 2 of a 3-year period, and patent activity in years 2 and 
3. Average number of patent applications filed (panel (a)) and granted patents (panel (b)) by 
academics who are both inventors on patents and chief investigators on ARC grants. Statistical 
significance for (mean comparison) t-test (two-tailed) are shown; n.s. not significant, * p<0.05, ** 
p<0.01, *** p<0.001.  

5. Model specification 

As described above, the goal of the study was to determine whether there is an 

association between the award of U-I targeted grants and innovation outcomes, at a university 

level u and examine the dynamics of the association at an individual inventor level i. 

Innovation outcome is operationalized using two independent variables, the number of patent 

applications filed in a given year [PatAppt] and the number of patent applications filed in a 

given year that were subsequently granted [PatGrat]. 

The focus of the study is on the effect of the U-I targeted LP grant scheme, which is 

represented by the independent variable number of awarded LPs submitted in a given year 

[UI-Tt]. Being the main source of non-targeted ARC project funding, the number of awarded 
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DPs submitted in a given year [N-Tt] was also taken into account. In seeking to explore the 

dynamics between awarded grants and patent activity, lags for LPs, DPs, and patent activity 

were allowed for [UI-Tt-l], [N-Tt-l], [PatAppt-l] and [PatGrat-l] at an inventor level. 

With universities, and many inventors, awarded both U-I targeted and non-targeted 

grants, to explore interplay between the two the ratio of U-I targeted grants to total grants 

[UI-TotRat] and total grants [Tot] were used, with an interaction of the ratio allowed for [UI-

TotRat#].  

For controls we use variables associated with the research environment [ResEnvt], such 

as university affiliation, publications per researcher and commercialization staff per 

researcher, that contribute to the capability for the university to apply for, and subsequently 

be granted, patents. We also include year dummies [year] to capture the temporal effects of 

changes in funding and patent policy. 

At an inventor level, to take into account the heterogeneity of the cohort we include 

inventor attributes [InvAttit] in addition to factors influencing the university research 

environment. Inventor attributes considered include gender, field of research, inventor age as 

of 2012 measured from year of first publication, and ARC Fellowships.  

The models to be estimated can be expressed in a reduced form as: 

University level: 

PatApput = f(UI-Tut, N-Tut, ResEnvut, Year) 

PatGraut = f(UI-Tut, N-Tut, ResEnvut, Year) 

Inventor level: 

PatAppit = f(UI-Tit, N-Tit, UI-Tit-l, N-Tit-l, PatAppit-l, ResEnvit, InvAttit, Year) 

PatGrait = f(UI-Tit, N-Tit, UI-Tit-l, N-Tit-l, PatGrait-l, ResEnvit, InvAttit, Year) 

Interaction between targeted and non-targeted grants:  

PatApp = f(Tot, UI-TotRat, UI-TotRat#,  ResEnv,) 

PatGra = f(Tot, UI-TotRat, UI-TotRat#,  ResEnv,) 

6. Results  

The regressions estimate the factors that influence innovation output, as measured by 

the number of patent applications and granted patents, at a university and inventor level. 
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Tables 2 and 3 present at a university level the results of regression models against patent 

applications and granted patents, respectively. As the dependent variables corresponding to 

patent activity are both count measures, and the data for the independent variables is overly 

dispersed, negative binomial regression suitable for panel data was employed in Models 1 to 

5. Model 6 employed a mixed effect regression, allowing for the effect of universities nested 

in clusters as defined by their university affiliation, thus taking into account both fixed effects 

and random effectsd. We also employ robust standard errors clustered at the university level 

to take into account the non-independence of observations regarding the same university.  

Variance inflation factors for the explanatory variables was less than 7 for all variables, 

reported in Table A4 in the Appendix. Central to the hypothesis of the study is that 

engagement per se of academia with industry via U-I targeted grant schemes will result in 

increased patent activity. Consideration was given to including the quantum of funding, as 

well as total numbers of grants awarded. However, as predicted, there was severe collinearity 

between number of grants received and funding, hence the latter was excluded from the final 

regression analysis.  

Table 2 

Models for the effect of ARC project grants on university patent applications. 

 (1) (2) (3) (4) (5) (6) 
Dep. Var. Patent apps Patent apps Patent apps Patent apps Patent apps  Patent apps 
U-I targ 0.107***  0.055*** 0.035** 0.030** 0.012† 
 (0.012)  (0.012) (0.011) (0.010) (0.007) 
 0.447  0.212 0.126 0.116 0.046 
Non-targ  0.043*** 0.023*** 0.018** 0.017** 0.001 
  (0.004) (0.003) (0.006) (0.006) (0.004) 
  0.175 0.090 0.066 0.066 0.005 
Go8    0.898* 0.767† 1.949*** 
    (0.446) (0.416) (0.439) 
    2.696 2.542 7.617 
ATN    0.824** 0.623* 0.886** 
    (0.272) (0.259) (0.328) 
    2.372 1.904 1.805 
IRU    0.211 -0.004 0.099 
    (0.274) (0.262) (0.369) 
    0.435 -0.008 0.132 
Pub/researcher     -0.028 -0.041† 
     (0.023) (0.024) 
     -0.107 -0.163 

                                                 
d The Hausman test did repute the null hypothesis, returning a significant difference between coefficients when 
effects of variables were fixed compared to random (χ2=30.10, p>.001).   
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Comm staff/res     0.041 -0.237 
     (0.291) (0.581) 
     0.157 -0.930 
Constant -0.122 0.212 -0.026 -0.188 0.133 0.039 
 (0.243) (0.207) (0.215) (0.236) (0.213) (0.280) 
lnalpha -0.540* -0.664** -0.907*** -1.156*** -1.244*** -2.277*** 
 (0.216) (0.205) (0.235) (0.284) (0.273) (0.514) 
var(_cons[uni])      0.376* 
      (0.192) 
Year dummies Yes Yes Yes Yes Yes Yes 
Obs. 432 432 432 432 407 407 
N University 36 36 36 36 35 35 
Log likelihood -852.1 -848.4 -827.2 -809.4 -786.4 -757.3 
Wald χ2 125.4 143.7 237.1 307.1 329.5 269.6 
Prob. > χ2 0.000 0.000 0.000 0.000 0.000 0.000 
Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Standard errors clustered at university level in 
parentheses. Marginal effects in italics. Models 1 to 5 employ negative binomial (NBREG) regression. 
Model 6 employs mixed effects negative binomial (MENBREG) model, allowing for the effect of 
university affiliation.  

Table 3 

Models for the effect of ARC project grants on university patent grants. 

 (1) (2) (3) (4) (5) (6) 
Dep. Var. Patent 

grants 
Patent 
grants 

Patent 
grants 

Patent 
grants 

Patent 
grants 

Patent 
grants 

U-I targ 0.104***  0.060*** 0.041*** 0.038** 0.024* 
 (0.011)  (0.011) (0.012) (0.012) (0.010) 
 0.214  0.116 0.076 0.075 0.047 
Non-targ  0.042*** 0.021*** 0.014* 0.013* 0.002 
  (0.005) (0.003) (0.005) (0.005) (0.005) 
  0.087 0.040 0.025 0.026 0.004 
Go8    1.081** 0.959* 1.761*** 
    (0.408) (0.386) (0.483) 
    1.609 1.562 3.109 
ATN    0.880** 0.714** 0.877** 
    (0.282) (0.265) (0.300) 
    1.165 1.011 0.906 
IRU    0.380 0.204 0.281 
    (0.276) (0.263) (0.315) 
    0.382 0.220 0.209 
Pub/researcher     -0.016 -0.028 
     (0.022) (0.026) 
     -0.031 -0.054 
Comm 
staff/researcher 

    0.013 -0.188 

     (0.376) (0.523) 
     0.026 -0.362 
Constant -0.677** -0.316 -0.588** -0.854*** -0.612** -0.647* 
 (0.231) (0.210) (0.204) (0.242) (0.237) (0.281) 
lnalpha -0.682* -0.649** -0.980*** -1.218*** -1.249*** -1.825*** 
 (0.273) (0.221) (0.277) (0.321) (0.322) (0.427) 
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var(_cons[uni])      0.219† 
      (0.119) 
Year dummies Yes Yes Yes Yes Yes Yes 
Obs. 432 432 432 432 407 407 
N University 36 36 36 36 35 35 
Log likelihood -638.5 -643.7 -622.4 -608.7 -597.7 -588.6 
Wald χ2 167.7 186.4 286.5 463.8 565.7 379.7 
Prob. > χ2 0.000 0.000 0.000 0.000 0.000 0.000 
Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Standard errors clustered at university level in 
parentheses. Marginal effects in italics. Models 1 to 5 employ negative binomial (NBREG) regression. 
Model 6 employs mixed effects negative binomial (MENBREG) model, allowing for the effect of 
university affiliation.  

As hypothesised, at a university level the number of patent applications (Table 2) and 

granted patents (Table 3) correlate significantly with both the number of U-I targeted (Model 

1) and non-targeted (Model 2) grants awarded. The correlation is retained when targeted and 

non-targeted grants are factored together (Model 3), and with the introduction of university 

affiliation (Model 4) and research environment (Model 5). Although the magnitude of results 

varies across models, the co-efficient for U-I targeted grants is consistently in the order of 

two-fold larger than the co-efficient for non-targeted grants, the latter losing significance 

when mixed effects of variables is allowed for (Model 6). With respect to research 

environment, university affiliation did positively correlate with patent activity at a university 

level for the Go8 and ATN alliances compared to non-aligned universities, for both patent 

application and grant (Models 4 to 7). 

Models 1 to 4 of Tables 2 and 3 (university level) are replicated at an inventor level in 

Tables 4 and 5. Estimates of the control variables are provided in Table A5 and A6 in the 

Appendix, respectively. Similar trends were returned at an inventor level for both patent 

applications (Table 4) and granted patents (Table 5), with U-I targeted grants consistently 

having a stronger correlation with patent activity compared to non-targeted grants. Ceteris 

paribus, an additional U-I targeted grant awarded to a university is associated with 0.126 

additional patent application filed and 0.076 patent application proceeding to grant (Model 4, 

Tables 2 and 3). At an inventor level, obtaining an additional U-I targeted grant increases the 

number of patent application filed by 0.041 and granted patent by 0.033 (Model 4, Tables 4 

and 5). In contrast, an additional non-targeted grant is only associated with 0.026 and 0.007 

increase in patent applications and granted patents at an inventor level. 

There was a weak, but highly significant correlation between patent activity and 

academic age, however no correlation was observed with gender. Whereas ARC Fellowships 

correlated with patent applications, the correlation with granted patents was insignificant. 
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Factors contributing to research environment did not correlate with patent activity, however 

unexpectedly there was a relatively strong negative correlation between commercialisation 

staff per research staff and both patent applications and granted patents. 

In order to address Hypothesis 2 and explore the dynamic relationship between patent 

activity and the award of ARC project grants, the introduction of lagged variables of both the 

dependent variable and independent variables into the model was required, making standard 

regression estimators inconsistent. As an alternate, a generalized method of moments (GMM) 

estimator, suitable for datasets with many panels and few periods, was used to investigate the 

dynamic relationship (Models 5 and 6). Generally considered to generate more efficient 

estimates of dynamic panel data, GMM accounts for the violation of strict exogeneity, which 

occurs when internal lag variables are used. The criteria set by Bond ( 2001) was used to 

select the more appropriate GMM estimator between the differential estimator (Arellano & 

Bond, 1991) and system estimator (Arellano & Bover, 1995; Blundell, 1998). A one-step 

differential model of GMM employing Roodman’s collapse option (Roodman, 2009) to 

restrict over-inflation of variables was chosen, returning a co-efficient for the lagged 

dependent variable closer to that generated by a pooled OLS model than a fixed effect model 

(comparative results for coefficients tabled in Table A7). The AR(1) and AR(2) tests 

confirmed goodness of fit of the GMM-diff model. As the Hansen statistic becomes inflated 

with an increasing number of instruments, reducing confidence in the p-value (Roodman, 

2009), we reject the null hypothesis of exogeneity of lagged instruments based on the slightly 

higher than significant p-value.  

Regressing variables that are non-stationary returns spurious results, hence the 

stationary nature of the data was confirmed using the Harris-Tzavalis root test. Assuming the 

number of panels tends to infinity while the number of time periods is fixed, this test is 

suitable to deal with the 2000 plus panels in the inventor data. A maximum lag-length of 2 

years was chosen, this in consistent with previous studies that deal with similar variables 

(Altuzarra, 2019; Baraldi et al., 2014) and, as the time period is relatively short at 12 years, 

preserves degrees of freedom.  

Table 4 

Models for the effect of ARC project grants on inventor patent applications. 

 (1) (2) (3) (4) (5) (6) 
Dep.Var. Patent apps Patent apps Patent apps Patent apps Patent apps U-I targ 
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U-I targ 0.430***  0.380*** 0.303*** 0.114  
 (0.059)  (0.061) (0.063) (0.208)  
 0.055  0.048 0.041   
Non targ  0.363*** 0.299*** 0.193** 0.255† 0.038 
  (0.059) (0.061) (0.063) (0.136) (0.135) 
  0.046 0.038 0.026   
    -0.076   
L.Patent apps     0.055* -0.013 
     (0.023) (0.014) 
L2.Patent apps     0.022* 0.006 
     (0.010) (0.008) 
Patent apps      0.174 
      (0.224) 
L.U-I targ     0.033 -0.070** 
     (0.025) (0.021) 
L2.U-I targ     -0.024 -0.041* 
     (0.021) (0.020) 
L.non targ     0.069* 0.015 
     (0.029) (0.030) 
L2.non targ     0.048† 0.001 
     (0.026) (0.026) 
Constant -2.133*** -2.133*** -2.149*** -2.482***   
 (0.060) (0.060) (0.060) (0.126)   
lnalpha 0.128 0.130 0.115 0.088   
 (0.127) (0.127) (0.128) (0.133)   
Controls Not incl. Not incl. Not incl. Incl. Incl. Incl. 
Year dummies Incl. Incl. Incl. Incl. Incl. Incl. 
Obs. 29616 29616 29616 22788 17091 17091 
N Inventor 2468 2468 2468 1899   
Log likelihood -11647.6 -11655.0 -11635.7 -9205.2   
Wald χ2 266.4 252.0 294.4 .   
Prob. > χ2 0.000 0.000 0.000 . 0.000 0.590 
Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Standard errors clustered at inventor level in 
parentheses. Marginal effects in italics. Models 1 to 4 employ NBREG regression. In Models 5 and 6 
one-step GMM-diff estimators are used, implementing the collapse option (Roodman, 2009). 
Estimates for control variables of Models 4 to 6 are reported in Table A5 in Appendix.  

Table 5 

Models for the effect of ARC project grants on inventor patent grants. 

 (1) (2) (3) (4) (5) (6) 
Dep. Var. Patent 

grants 
Patent 
grants 

Patent 
grants 

Patent  
grants 

Patent 
grants 

U-I targ 

U-I targ 0.573***  0.544*** 0.467*** -0.014  
 (0.077)  (0.077) (0.082) (0.171)  
 0.038  0.036 0.033   
Non targ  0.282*** 0.184* 0.094 -0.009 0.095 
  (0.083) (0.085) (0.090) (0.102) (0.130) 
  0.019 0.012 0.007   
L.Patent grants     0.061* -0.012 
     (0.031) (0.025) 
L2.Patent     0.023* 0.004 
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grants 
     (0.011) (0.012) 
Patent grants      -0.046 
      (0.388) 
L.U-I targ     -0.003 -0.065** 
     (0.019) (0.020) 
L2.U-I targ     -0.019 -0.047* 
     (0.017) (0.020) 
L.non targ     0.025 0.030 
     (0.021) (0.027) 
L2.non targ     0.009 0.012 
     (0.019) (0.025) 
Constant -2.685*** -2.668*** -2.693*** -2.900***   
 (0.079) (0.079) (0.079) (0.178)   
lnalpha 0.757*** 0.787*** 0.754*** 0.784***   
 (0.145) (0.144) (0.146) (0.142)   
Controls Not incl. Not incl. Not incl. Incl. Incl. Incl. 
Year dummies Incl. Incl. Incl. Incl. Incl. Incl. 
Obs. 29616 29616 29616 22788 17091 17091 
N Inventor 2468 2468 2468 1899   
Log likelihood -7318.6 -7339.4 -7316.3 -5783.5   
Wald χ2 141.0 92.5 144.6 .   
Prob. > χ2 0.000 0.000 0.000 . 0.000 0.001 
Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Standard errors clustered at inventor level in 
parentheses. Marginal effects in italics. Models 1 to 4 employ NBREG regression. In Models 5 and 6 
one-step GMM-diff estimators are used, implementing the collapse option (Roodman, 2009). 
Estimates for control variables of Models 4 to 6 are reported in Table A6 in Appendix. 

 

The filing of patent applications (Model 5, Table 5) and granted patents (Model 5, 

Table 6) in previous years did positively correlate with patent activity in the current year. 

Allowing for the effect of lagged patent and grant activity washed out the correlation between 

patent activity and U-I targeted grants in the current year, with no correlation observed 

between patent activity and U-I targeted grants in previous years. Interestingly, there was a 

weak correlation between non-targeted grants in the same and previous year and patent 

applications, though this did not transfer to granted patents. 

Allowing for the reverse relationship, patent activity was regressed against U-I targeted 

grants in Model 6, returning no evidence to suggest patent activity in previous years 

influences U-I targeted grants. Award of U-I targeted grants in previous years correlated 

negatively with U-I targeted grants in future years. This may be explained by the fact that the 

grants run over three years, and hence inventors do not apply in consecutive rounds. 

Regressing the 4-year lag of U-I targeted grants against U-I targeted grants we do not see any 

evidence of correlation, however the reduction in degrees of freedom compromises the 

reliability of this result. 
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In order to address the third hypothesis, whether there is an interaction between the U-I 

targeted and non-targeted grants, the ratio of U-I targeted grants to total combined grants was 

introduced.  The effect of the U-I targeted grants as a portion of total grants on patent activity 

is shown at a university level and an inventor level in Tables 6 and 7, respectively.  As it is 

rare for an inventor to be awarded multiple grants in a given year, the regressions were 

performed on 12-year aggregate data. Similarly, at a university level 12-year aggregate data 

was employed.  

Table 6 

Models for the effect of ratio U-I targeted grants to non-targeted grants on university patent 

activity (12-year aggregate). 

 (1) (2) (3) (4) 
Dep. Var. Patent apps Patent apps Patent grants Patent grants 
Ratio (U-I targ:Total) -0.943 6.152† -0.625 7.128* 
 (1.022) (3.737) (0.967) (2.864) 
Ratio2   -6.702†  -7.466* 
  (3.916)  (3.068) 
Total (U-I+non targ) 0.002*** 0.003*** 0.002*** 0.003*** 
 (0.000) (0.001) (0.000) (0.001) 
Constant 3.140*** 1.394 2.103*** 0.205 
 (0.534) (0.961) (0.543) (0.757) 
lnalpha -1.251* -1.380** -1.775** -2.065*** 
 (0.488) (0.458) (0.568) (0.564) 
Obs. 35 35 35 35 
N University     
Log likelihood -139.6 -137.8 -114.7 -111.8 
Wald χ2 181.0 191.5 193.2 249.2 
Prob. > χ2 0.000 0.000 0.000 0.000 
Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. NBREG regression. Standard errors are shown in 
in parentheses. Estimates for control variables are reported in Table A8 in Appendix. 

Table 7 

Models for the effect of ratio U-I targeted grants to non-targeted grants on inventor patent 

activity (12-year aggregate). 

 (1) (2) (3) (4) 
Dep. Var. Patent apps Patent apps Patent grants Patent grants 
Ratio (U-I targ:Total) 0.265*** 0.746* 0.391*** 0.832† 
 (0.080) (0.304) (0.115) (0.454) 
Ratio2  -0.484  -0.439 
  (0.303)  (0.437) 
Total (U-I+non targ) 0.025** 0.016 0.038** 0.030* 
 (0.009) (0.011) (0.012) (0.014) 
Constant -0.280 -0.293 -0.809* -0.824** 
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 (0.213) (0.214) (0.316) (0.316) 
lnalpha -2.724*** -2.745*** -1.518*** -1.526*** 
 (0.405) (0.416) (0.303) (0.310) 
Obs. 826 826 826 826 
N Inventors     
Log likelihood -1334.3 -1333.0 -1092.9 -1092.4 
Wald χ2 . . . . 
Prob. > χ2 . . . . 
Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. NBREG regression. Standard errors are shown in 
parentheses. Estimates for control variables are reported in Table A9 in Appendix. 

 

At an inventor level there is a strong linear relationship between patent activity and the 

ratio of U-I targeted grants to total grants. However, at a university level a moderately 

significant non-linear effect is observed between the patent activity and U-I targeted grants as 

a fraction of total grants.  Figure 3 shows the optimal marginal effect on patent activity is 

when a university holds a fair mix of U-I targeted and non-targeted grants, slightly biased to 

non-targeted grants. In contrast, an inventor’s propensity to engage with patents grows as the 

ratio of U-I targeted to non-targeted grants increases. 

 

 

Fig. 3. Marginal effects of ratio of U-I targeted grants to total grants on patent activity at a 

university level (panel a and panel b – Table 6 Models 2 and 4, respectively) and inventor 

level (panel c and panel d – Table 7 Models 2 and 4, respectively).  
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7. Discussion 

Our results showed a positive correlation at both a university and an inventor level 

between patent activity and the award of U-I targeting LP grants, with the correlation 

stronger at an inventor level. This is to be expected with the U-I targeted grant scheme 

accounting for around 5% of university research income, whereas at an inventor level, award 

of a U-I targeted grant would generally represent a significant portion of research income for 

an individual.  

Encouragingly for the U-I targeting LP scheme, overall patent activity was more 

strongly correlated with the award of U-I targeted grants compared to non-targeted DPs. 

These findings suggest that the ARC U-I targeting scheme is not only achieving its intended 

objective of capturing benefit from research, but that the U-I targeting scheme is serving a 

distinct function to the non-targeted DP grant scheme. With the non-targeted DP scheme 

purposed with supporting knowledge advancement, it is reassuring that the outcomes of the 

two schemes can be distinguished both at an organizational and individual level.  

The benefit of U-I targeted grants may be in adding value to a discovery post patent 

application stage, increasing the likelihood of a patent being granted. At a university level the 

correlation between U-I targeted grants and patent activity was similar in size for both patent 

applications and granted patents. However, at an individual level, U-I targeted grants had a 

stronger correlation with granted patents compared to patent applications. This is in line with 

initial observations that inventors with an isolated U-I grant were 20% more likely to file a 

patent application in the subsequent years, and the patent application was 30% more likely to 

proceed to grant, compared to inventors holding an isolated non-targeted grant.  

Interesting is the synergistic effect of the U-I targeted and non-targeted grants at a 

university level, which was not observed at an inventor level. A ratio of slightly less than one 

U-I targeted grants to one non-targeted grant yielded maximum prediction of patent activity. 

This suggests that at an organisational level it is important to have a mix of fundamental and 

applied research to maximize the capture of economic benefit, with individuals within the 

organisation focusing on one stream of research or the other. However, at an inventor level 

this observation may not truly account for the multifaceted relationship between basic 

discovery and the stock of knowledge that inventions ultimately draw upon. A limitation in 

aggregating grant success over time is that it is not possible to observe the influence of one 

form of grant preceding the other. Further, although we attempt to take into account the 
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attributes of individual inventors, there may be an unidentified bias of inventors to engage in 

one scheme over the other, such as academic prestige.   

A variable worthy of further investigation is the number of commercialization staff per 

researcher. Although there was no correlation between patent activity and commercialization 

staff at a university level, surprisingly there was a significant negative correlation between 

commercialization staff and both patent applications and granted patents at an inventor level. 

It is the function of the university commercialization office to manage the patenting process 

(Van Looy et al., 2011). Many organizations adopt a strategy of filing a patent application at 

an early stage in the innovative process, while still evaluating the economic potential 

(Lanjouw, Pakes &  Putnam, 1998). Applications are then triaged during the prosecution 

process based on the potential value of the invention. A more efficient technology transfer 

office may have fewer granted patents in its portfolio, but each more likely of capturing 

potential value. During the study period there was a trend for smaller universities to out-

source commercialization activities to universities with large technology transfer offices. For 

this reason, the number of commercialization staff may be under-inflated in some instances, 

and over-inflated in others. 

Observation of a similar effect at both a university and inventor level of granularity 

indicates that the correlation between U-I targeted grants and patent activity is not a result of 

the domineering effect of the university to which an inventor belongs. The correlation 

between university affiliation and patent activity for the Go8 and ATN university alliances at 

a university level may be explained by the infrastructure these universities have in place to 

support patenting activities, the collective effect of which is significant at an organizational 

level. At an inventor level seniority correlated positively with both patent applications and 

granted patents. This could be due to researchers becoming more commercially savvy with 

experience, despite their most creative years being behind them (Gieryn, 1981). 

Turning to Hypothesis 2, the unexpected correlation between non-targeted grants in 

previous years and patent applications was made more surprising by the lack of correlation 

between previously awarded U-I targeted grants and patent activity. The lack of correlation 

between lagged U-I grants and patent activity, and vice versa may be explained by the 

various scenarios that lead to the submission of a U-I targeted grant (i) it could signify the 

start of a new collaboration with an industry partner, and a new project, in which case patent 

filings will lag behind U-I targeted submissions, (ii) there may be an existing collaboration 

which has already generated intellectual property, and the parties are looking to further 
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develop this, or (iii) the university may have background intellectual property which the 

partner organization wishes to collaborate on to further develop. In the third scenario it is not 

uncommon for a university to file a patent application immediately prior to formally entering 

a collaboration so as to clearly mark out university background IP. In two of the three 

scenarios, where background IP exists, the relationship between submitting a U-I targeted 

grant and filing a patent application will not be causal.  

The lack of a correlation between patent activity and U-I targeted grants in previous years 

may be due to the difficulty in pin-pointing the project commencement.  For the purpose of 

the regressions, time zero is the year of filing for both patents and ARC grants, however this 

does not represent a definitive start date. Although non-targeted DP grants commence 

officially after announcement of award, commencement of U-I targeted LP grants may be 

delayed for up to 2 years. Funding rules for LP grants stipulate that a project cannot 

commence until a collaborative research agreement is in place between all parties, effectively 

deferring commencement. Similarly, although the term of a patent is determined from the 

date the complete patent application was filed, and legal rights can only be asserted back to 

that date, it is the norm for applicants to initiate patent protection by filing a provisional 

patent application up to 12-months prior to lodging the complete application. Thus, it is 

difficult to accurately pin down the sequence of events. 

8. Conclusion 

Innovation output, as measured by patent activity, correlates with the award of U-I 

targeted grants at both a university and inventor level, the correlation being stronger at an 

inventor level. Patent activity is more closely associated with the award of U-I targeted grants 

compared to non-targeted grants. However, at a university level an interaction effect is 

observed suggesting an optimal ratio of U-I targeted to non-targeted grants, in favour of the 

later, is preferable to either U-I targeted or non-targeted grants exclusively. At a university 

level U-I targeted grants had an equivalent effect on patent applications and granted patents, 

whereas at an inventor level the association with patent grants was stronger. 

In relation to the dynamics of the relationship between U-I targeted grants and patent 

activity, we observe no evidence to suggest that one exists. This lack of evidence is 

unsurprising given the challenge in accurately time stamping activities. Although the year of 

grant submissions is accurately recorded, the true commencement date of a U-I targeted 

project may be delayed by several years.  
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Overall, our findings lead to the conclusion that the U-I targeted LP scheme does serve 

to increase the capture of economic value from university research, above and beyond that of 

the non-targeted DP scheme. Regardless of whether or not U-I targeted grants are seeding 

collaboration, from a policy perspective the desired objective is still being achieved, of 

capturing economic benefit from research output.  
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Appendix 

Table A1 

University affiliation between 2001 and 2012. 

University Affiliation 
Australian National University Group of Eight Australia (Go8) 

The Go8 was incorporated in 1999 and comprises 
Australia’s eight leading universities.  Between them this 
group accounts for two thirds of all research funding to 
Australian Universities.  
See https://go8.edu.au. 

Monash University  
The University of Adelaide 
The University of Melbourne 
The University of Queensland 
The University of Sydney 
The University of Western Australia 
University of New South Wales 
Curtin University Australian Technology Network of Universities (ATN) 

The ATN brings together five of the ‘most innovative and 
enterprising universities in the nation’. ATN universities 
describe themselves as modern, innovative, dynamic and 
globally focused institutions with a focus on real-world 
research.   
See https://www.atn.edu.au. 

Queensland University of 
Technology 
RMIT University 
University of South Australia 
University of Technology Sydney 

Charles Darwin University1 Innovative Research Universities (IRU) 
The IRU is a policy group comprising Australian 
universities, all of which were established as research-
intensive universities during the 1960s and 1970s.  “The 
IRU members’ research is focussed at the translation of 
research on issues of critical importance to the 
communities in which they are based which address 
problems of national and global scale.” 
See https://www.iru.edu.au. 

Flinders University 
Griffith University 
James Cook University*2  
La Trobe University 
Macquarie University3 
Murdoch University 
The University of Newcastle*4 

Australian Catholic University Non-aligned universities 
Universities not affiliated with the university networks 
above. 
 

Bond University* 
Central Queensland University* 
Charles Sturt University* 
Deakin University  
Edith Cowan University  
Swinburne University of Technology  
University of Canberra  
University of New England*  
University of Southern Queensland*  
University of Tasmania  
University of the Sunshine Coast*  
University of Western Sydney  
University of Wollongong*  
Victoria University  
* Regional universities. 
1 joined the IRU in 2009. 
2 joined the IRU in 2007. 
3 withdrew from the IRU in 2008. 
4 withdrew from the IRU in 2014. 
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Table A2 

Fields of Research.  

FoR codes ASRC divisions 
01 Mathematical Sciences 
02 Physical Sciences 
03 Chemical Sciences 
04 Earth Sciences 
05 Environmental Sciences 
06 Biological Sciences 
07 Agriculture and Veterinary Sciences 
08 Information and Computing Sciences 
09 Engineering 
10 Technology 
11 Medical and Health Sciences 
12 Built Environment and Design 
13 Education 
14 Economics 
15 Commerce, Management, Tourism and 
Services 
16 Studies in Human Society 
17 Psychology and Cognitive Sciences 
18 Law and Legal Studies 
19 Studies in Creative Arts and Writing 
20 Language, Communication and Culture 
21 History and Archaeology 
22 Philosophy and Religious Studies 

21 Science -General 
22 Social Sciences, Humanities and Arts – 
General 
23 Mathematical Sciences 
24 Physical Sciences 
25 Chemical Sciences 
26 Earth Sciences 
27 Biological Sciences 
28 Information, Computing and 
Communication Sciences 
29 Engineering and Technology 
30 Agricultural, Veterinary and 
Environmental Sciences 
31 Architecture, Urban Environment and 
Building 
32 Medical and Health Sciences  
33 Education 
34 Economics 
35 Commerce, Management, Tourism and 
Services 
36 Policy and Political Science 
37 Studies in Human Society 
38 Behavioural and Cognitive Sciences 
39 Law, Justice and Law Enforcement 
40 Journalism, Librarianhip and Curatorial 
Studies 
41 The Arts 
42 Language and Culture 
43 History and Archaeology 
44 Philosophy and Religion 

 

ARC grants with a Field of Research (FoR) code of 01 to 12 or Australian Standard 

Research Classification (ASRC) of 23 to 32 were included in the study. The FoR codes were 

introduced in 2008 replacing the ASRC. 

Across the 36 universities in the sample, 71.8% of U-I targeted grants and 72.1% of 

non-targeted grants had an FoR code of 01 to 12, or the equivalent ASRC code, between 

2001 and 2012.  
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Table A3 

Data source of variables contributing to university research environment. 

University variable Source 
Number of researchers Selected Higher Education Statistics, Department of 

Education and Training Higher Education 
Number of articles published in 
scholarly refereed journals 

Higher Education Research Data Collection, 
Department of Education and Training 

Number of total commercialization 
staff 

National Survey of Research Commercialization, 
Department of Industry, Innovation and Science 

  



Table A4 

Variance Inflation Factors for university variables. 

 (1)  (2)  (3)  (4)  (5)  
 Patent 

applications  
 Patent 

applications  
 Patent 

applications  
 Patent 

applications  
 Granted 

patents 
 

Linkage grants 0.203** 13.01 0.160*** 4.42 0.136*** 4.33 0.190*** 3.80 0.131*** 3.80 
Discovery grants 0.0845 70.08 0.0368 8.55 0.0594** 8.13 0.0944*** 5.64 0.0349** 5.64 
Linkage Funding ($) -0.000000183 11.41         
Discovery Funding ($) -0.000000143 64.69         
Non-affiliated 0  0  0  0  0  
Go8 0.471 8.48 0.767 8.23 0.541 8.21 1.755 6.02 1.104 6.02 
ATN -0.326 1.47 -0.227 1.45 0.0986 1.42 0.174 1.45 0.0287 1.45 
IRU -0.786 1.37 -0.712 1.35 -0.601 1.34 -0.443 1.41 -0.101 1.41 
Research funding -3.24e-08*** 20.00 -3.69e-08*** 17.69       
University publications 0.00477*** 25.28 0.00512*** 24.20 0.00176* 12.03     
Research staff 0.00234 16.60 0.00180 15.66 0.000550 15.05     
Commercialization staff 0.0292* 1.33 0.0290* 1.33 0.0272* 1.33     
Time (year) -0.172** 1.83 -0.193** 1.74 -0.215*** 1.73 -0.0709 1.06 0.0287 1.06 
Publications per researcher       0.00274 1.20 0.00325 1.20 
Commercialisation staff per 
researcher 

      0.478 1.10 0.263 1.10 

Constant 343.4**  385.7**  430.2***  142.4  -57.73  
Observations 420  420  420  407  407  
Notes: VIF in second column. * p < 0.05, ** p < 0.01, *** p < 0.001 



Table A5  

Models for the effect of ARC project grants on inventor patent applications – controls. 

 (4) (5) (6) 
Dep. Var. Patent apps Patent appls U-I targ 
Academic age (as of 2012) 0.012*** 0.000 0.000 
 (0.002) (.) (.) 
 0.002   
Female -0.052 0.000 0.000 
 (0.037) (.) (.) 
 -0.007   
ARC Fellowships 0.372* 0.051 -0.042 
 (0.155) (0.052) (0.036) 
 0.050   
Go8 0.027  0.000 
 (0.085)  (.) 
 0.004   
ATN -0.075  0.000 
 (0.087)  (.) 
 -0.010   
IRU -0.102  0.000 
 (0.091)  (.) 
 -0.013   
Pubs/researcher (uni avg) 0.005 -0.001 0.000 
 (0.008) (0.003) (0.001) 
 0.001   
Comm staff/researcher (uni avg) -0.566*** 0.169 -0.029 
 (0.147) (0.260) (0.097) 
 -0.076   
Scopus field of research  Incl. Incl. Incl. 
Obs. 22788 17091 17091 
N Inventor 1899   
Log likelihood -9205.2   
Wald χ2 .   
Prob. > χ2 . 0.000 0.590 
Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Standard errors clustered at inventor level in 

parentheses. Marginal effects in italics. 
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Table A6 

Models for the effect of ARC project grants on inventor patent grants - controls. 

 (4) (5) (6) 
Dep. Var. Patent grants Patent grants U-I targ 
Academic age (as of 2012) 0.010*** 0.000 0.000 
 (0.003) (.) (.) 
 0.001   
Female -0.050   
 (0.066)   
 -0.003   
ARC Fellowships 0.287 0.035 -0.031 
 (0.220) (0.031) (0.036) 
 0.020   
Go8 0.040   
 (0.109)   
 0.003   
ATN -0.084   
 (0.125)   
 -0.006   
IRU -0.142   
 (0.132)   
 -0.009   
Pubs/researcher (uni avg) 0.014 0.003 0.000 
 (0.011) (0.003) (0.002) 
 0.001   
Comm staff/researcher (uni avg) -0.426* -0.285 -0.001 
 (0.178) (0.196) (0.138) 
 -0.030   
Scopus field of research Incl. Incl. Incl. 
Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. Standard errors clustered at inventor level in 

parentheses. Marginal effects in italics. 

 

 



Table A7 

Appropriateness of GMM estimator. 

Estimator Co-efficient of 1-year lag 
patent applications 

Co-efficient of 1-year lag U-I targ 
(patent applications) 

Co-efficient of 1-year lag 
granted patents 

Co-efficient of 1-year lag U-I targ 
(granted patents)  

 Co-eff AR 
(2) 

Hansen test 
p-val Co-eff AR 

(2) 
Hansen test 

p-val Co-eff AR 
(2) 

Hansen test 
p-val Co-eff AR 

(2) 
Hansen test 

p-val 
Num. 

instruments 
Pooled OLS .0389   .0944   .0515   .0946    
Fixed effect -.0343   -.1414   -.0502   -.1410    

Collapsed 
One-step Diff. 
GMM .0548 .151 .186 -.0696 .232 .017 .0614 .619 .501 -.0646 .258 .069 42 

Two-step Diff. 
GMM .0437 .163 .186 -.0654 .485 .017 .0561 .890 .501 -.0595 .506 .069 42 

One-step Sys. 
GMM .0528 .167 .127 -.0662 .278 .015 .0592 .875 .363 -.0636 .198 .044 49 

Two-step Sys. 
GMM .0403 .157 .127 -.0687 .575 .052 .0454 .797 .363 -.0637 .485 .044 49 

Not collapsed 
One-step Diff. 
GMM .0555 .129 .001 -.0682 .115 .061 .0515 .181 .000 -.0627 .084 .019 174 

Two-step Diff. 
GMM .0295 .151 .001 -.0488 .389 .061 .0215 .891 .000 -.0429 .437 .019 174 

One-step Sys. 
GMM .0647 .042 .000 -.0057 .004 .068 .0649 .704 .000 -.0019 .002 .032 208 

Two-step Sys. 
GMM .0462 .206 .000 .0016 .045 .068 .0397 .789 .000 .0065 .026 .032 208 

 

 

 
 



Table A8 

Models for the effect of ratio ARC Project grants on university patent activity (12-year 

aggregate) - controls. 

 (1) (2) (3) (4) 
Dep. Var. Patent apps Patent apps Patent grants Patent grants 
Go8 -0.010 0.027 0.235 0.292 
 (0.419) (0.423) (0.428) (0.421) 
ATN 0.511† 0.358 0.684* 0.552* 
 (0.265) (0.270) (0.271) (0.269) 
IRU -0.227 -0.134 0.029 0.165 
 (0.317) (0.321) (0.307) (0.293) 
Pubs/researcher -0.053 -0.050 -0.036 -0.031 
 (0.036) (0.035) (0.036) (0.035) 
Comm staff/rearcher 0.123 0.026 0.184 0.084 
 (0.238) (0.210) (0.273) (0.235) 
Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. NBREG regression. Standard errors are shown in 

in parentheses. 



Table A9 

Models for the effect of ratio ARC Project grants on inventor patent activity (12-year 

aggregate) - controls. 

 (1) (2) (3) (4) 
Dep. Var. Patent apps Patent apps Patent grants Patent grants 
Academic age (as of 
2012) 

0.011*** 0.011*** 0.008* 0.008* 

 (0.003) (0.003) (0.004) (0.004) 
Female -0.106 -0.106 -0.117 -0.117 
 (0.070) (0.070) (0.117) (0.117) 
ARC Fellowship 0.184** 0.183** 0.122 0.121 
 (0.070) (0.071) (0.104) (0.105) 
Go8 0.155 0.158 0.222 0.225 
 (0.152) (0.152) (0.190) (0.191) 
     
ATN 0.020 0.012 0.001 -0.005 
 (0.150) (0.151) (0.214) (0.216) 
IRU -0.071 -0.070 -0.040 -0.041 
 (0.157) (0.157) (0.210) (0.209) 
Pubs/researcher (uni 
avg) 

0.019 0.020 0.013 0.013 

 (0.014) (0.014) (0.032) (0.032) 
Comm staff/researcher 
(uni avg) 

-0.107 -0.081 0.277 0.302 

 (0.204) (0.204) (0.204) (0.207) 
Scopus field of 
research 

Incl. Incl. Incl. Incl. 

Notes: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001. NBREG regression. Standard errors are shown in 
parentheses.  
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