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Measuring the Economic Risk of Epidemics 
 
 

Abstract 
 
We measure the economic risk of epidemics at a geo-spatially detailed resolution. In addition to 
data about the epidemic hazard prediction, we use data from 2014-2019 to compute measures 
for exposure, vulnerability, and resilience of the local economy to the shock of an epidemic. 
Using a battery of proxies for these four concepts, we calculate the hazard (the zoonotic source 
of a possible epidemic), the principal components of exposure and vulnerability to it, and of the 
economy’s resilience (its ability of the recover rapidly from the shock). We find that the 
economic risk of epidemics is particularly high in most Africa, the Indian subcontinent, China, 
and Southeast Asia. These results are consistent when comparing an ad-hoc (equal) weighting 
algorithm for the four components of the index, with one based on an estimation algorithm using 
Disability-Adjusted Life Years associated with communicable diseases. 

JEL-Codes: E010, Q540. 
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1. Introduction 

There is a well-documented global increase in zoonotic disease emergence. It has been linked 
to the intensification of human activity in previously sparsely inhabited locations and the 
increasing interactions between humanity and the natural world (Jones et al., 2013; Naicker, 
2011; Wolfe et al., 2005). Around 60% of Emerging Infectious Diseases (EIDs) are zoonotic and 
there is a long observed upward trend in the frequency of outbreaks.1  

Zoonotic epidemiology experts have attempted to identify regions that present a greater risk 
of experiencing an EID event (EID hotspots). A recent analysis of 335 emerging infectious 
disease events between 1940 and 2004 found that EIDs are significantly correlated with 
environmental, socio-economic and ecological factors (Jones et al., 2008). Specifically, the 
frequency of EIDs is correlated with increased human population density, mammalian species 
density and human population growth. This implies that highly biodiverse areas into which 
the human population rapidly expands exhibit high and increasing incidence of EIDs (Allen et 
al., 2017). The key EID risk regions identified by Allen et al. (2017) include most of Southeast 
and East Asia, the Indian Subcontinent, the Great Lakes region in Africa, and the Niger Delta 
(Figure 1).  

 
Fig. 1 Global Hotspots for Emerging Infectious Diseases. Source: Allen et al. (2017) 

We aim to measure the economic risk that is associated with this hazard of epidemics. This 
risk is distinct from the mortality and morbidity risk associated with epidemics, and plausibly 
has very different spatial variability. For example, even an epidemic with no mortality 
associated with it can lead to significant behavioural changes that can have very adverse 
                                                
1 Animal-to-human transmission is the primary conduit to the emergence of epidemics, and probably needs to 
occur repeatedly before the pathogens mutate sufficiently to enable human-to-human transmission. This 
implies that agricultural intensification (specifically animal husbandry) in areas previously inhabited by wildlife 
present an increased risk of EID transmission; as can the installation of irrigation, which increases the spread of 
disease vectors.  
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economic impacts. Given the paucity of data on epidemic cases in the recent past (the period 
for which comprehensive economic and demographic records are available), our aim here is 
not to measure the consequences of past events, but to evaluate where the economic risk of 
epidemics are currently located.  

Our risk measure is premised on the observation that a disaster, including an epidemic, occurs 
when a hazard (in this case the disease) interacts with an exposed population that is 
vulnerable to this hazard, thus causing harm to people. Epidemics always arise out of a natural 
pathogen (possibly zoonotic), but the pathogen by itself does not create the epidemic and 
definitely not its economic consequences. For that, the pathogen must encounter a society, 
people and an economy, that is both exposed and vulnerable to it. Resilience, in this 
framework, is conceptualized and measured as the ability of the economy to bounce back 
given the magnitude of the shock (generated by the intersection of the hazard, exposure, and 
vulnerability). The degree of resilience in a system (in this case, the economy) is thus 
determined by the speed in which the recovery process occurs, and when the system reverts 
back to its pre-shock level (i.e., full recovery is achieved). 

Measured at the level of grid cells, g, we model the risk associated with the economic impact 
of epidemics simply as a linear combination of hazard plus a local economy’s exposure and 
vulnerability to it, minus its resilience or ability to bounce back: 

!"#$%& =	)*+,-,./% 	+	)12345#6.7% 	+	)896:;7.,<=:=>?% 	−	)A!7#=:=7;B7%               (Eq.1) 

We first collect a large group of sub-national and national measures from recent years (2014-
2019) to proxy for exposure, vulnerability, and economic resilience. We then use principal 
component analysis (PCA) to compute a standardized index for each exposure, vulnerability, 
and resilience. Using the first component of exposure, vulnerability, and resilience index, in 
addition to the hazard data of Allen et al. (2017), we compute a risk index in relation to the 
economic risk of epidemics. In our simplest specifications, we assume 		)C 	= )D	 for all i and j. 

Our results suggest that the economic risk of epidemics is especially high in most of America, 
Africa, the Indian subcontinent, as well as in China and Southeast Asia. These results remain 
consistent even when we employ an alternative functional form that entails greater weights 
being placed one hazard and vulnerability, and less on exposure and resilience.  

2. Results 

Figure 2 shows descriptive information and PCA results of all variables we use to measure 
exposure, vulnerability, and resilience. The new principal component variable is the output of 
linear combination of the original variables. We use the first principal component for each 
exposure, vulnerability, and resilience index. As the first component accounts for most 
variation in the data and contribute the most explanation in the combining procedure. The 
proportion of eigenvalues indicates the explanatory importance of the factor, which are 4.0, 
5.9, and 2.4 for exposure, vulnerability and resilience respectively. Economic activities, 
demographic measures, and infrastructure density all positively explain exposure. High 
income areas with better healthcare quality (as measured by vaccination rate, health 
spending, sanitary infrastructure) are less vulnerable. Agricultural areas and high numbers of 



4 
 

the young are associated with more vulnerable. For resilience, areas with higher geographic, 
social, and cultural disparity (e.g., time to travel to a metropolitan area) have a lower index. 
Countries receiving more overseas incomes are more resilient. The results for the all principal 
components, as calculated using PCA, are presented in Supplementary Table A3. 

 

Fig. 2 Descriptive data and principal component analysis (PCA) results. The lower and upper caps represent 
standard errors of each variable in the first component. 

We normalize all exposure, vulnerability, and resilience indices. Figure 3 presents the 
cumulative distribution of main results for: Hazard, exposure, vulnerability, resilience, and 
economic risk. For hazard, we use the zoonotic EID events prediction of Allen et al. (2017) 
directly. We calculate the economic risk by an equal-weight linear combination. Using these 
results, we can then map, in the Supplementary Figure A1, the exposure, vulnerability, and 
resilience indices.  
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Fig.3 The cumulative distribution of indices 

We find that the economic risk of epidemics is especially high in most of Latin America (except 
for the Southern Cone countries), most of Africa, South Asia, China, and much of Southeast 
Asia (Figure 4). Fundamentally, countries of the greatest exposure to EID events prediction by 
Allen et al. (2017) align with the high economic risk: India is the highest in Asia, followed by 
China. The economic risk is high in Africa and Southeast Asia, as these are the most vulnerable 
areas with low income and healthcare quality. Resilience, intentionally or otherwise, plays a 
role in reducing the economic risk from epidemics. For example, in Southern Cone countries 
(Argentina and Chile) the resilience is higher than neighbourhood countries due to less 
fractionalized socio-cultural characteristics (lower ethnic, linguistics, and religious disparity). 
While Saudi Arabia and Russia have lower economic risks because their domestic economies 
are focussed on huge amounts of (oil) exports, and hardly rely on tourism. 

 
Fig. 4 Economic Risk of Emerging Infectious Diseases. The lowest economic risk value represents for 20th 
percentile. The value of 20th, 40th, 60th, 80th percentile are: 0.168, 0.233, 0.266, and 0.358 respectively.  
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A less ad-hoc weighting scheme, instead of equal-weights, for the economic risk index relies 
on the Disability-Adjusted Life Years (DALY) measure of overall disease burden. DALYs are the 
sum of years lost due to ill-health, disability or premature death from various causes. Weights 
for each of the four dimension components—aggregated by countries i—are derived by OLS 
regression on DALY: 

EFGHC = 	IJ + I*+,-,./C 	+ I12345#6.7C 	+ I896:;7.,<=:=>?C + IA!7#=:=7;B7C +	KC           (Eq.2) 

The estimated weights (coefficients) and the constant are plugged into the risk function (i.e., 
)C = IC) which now places considerably less weight on exposure and resilience, than on 
hazard and vulnerability: 

L!"#$%& =	−0.04 + 0.42+,-,./% 	+ 	0.052345#6.7% 	+ 	0.3496:;7.,<=:=>?% 	− 	0.15!7#=:=7;B7%   

(Eq.3) 

The spatial patterns of the DALY-weighted risk map in Figure 5 are similar to those observed 
in the unweighted map. As before, the areas at highest risk of economic losses from epidemics 
remain Sub-Saharan Africa and South Asia. By contrast, the DALY-weighted approach assigns 
lower risk to the American region, where fewer are predicted to be exposed to EID events.  

 

 
Fig. 5 Economic Risk of EIDs using the DALY-weighted index.  

 
3. Discussion 

We developed a method to estimate the economic risk of epidemics. With growing 
globalisation and inter-connectedness among far flung populations comes increased 
exposure to the risk of epidemics, with implications also for the world economy. Potentially 
important epidemic threats to the world’s economy include the Crimean-Congo 
haemorrhagic fever, Ebola, Marburg virus, Lassa fever, MERS, SARS, Nipah disease, Rift Valley 
fever, and Zika. Other damaging epidemics are also possible, especially influenza of various 
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types, and the emergence of other pathogens that are currently unknown to science is also 
highly probable (Bloom et al., 2018).  

The economic implications of an epidemic 

The economic consequences of an epidemic, like any other natural hazard shock, can be 
delineated into damages, direct losses, and indirect losses (Noy, 2016). Direct losses included 
lost income and output due to death and symptomatic illness as well as increased healthcare 
costs. The direct costs due to illness and mortality are measured by the World Health 
Organisation when it measures the Disability-Adjusted Life Years (DALYs) associated with 
various diseases (WHO, 2018). DALY calculations are not intended to measure, however, the 
direct and indirect economic losses, in terms of lost incomes and disruptions to economic 
activity. As such, they fail to acknowledge the potentially important economic significance of 
epidemic events.  

When we account for the ways an epidemic creates economic losses, we need to measure 
not only the direct reductions in economic activity that is attributable to changes in behaviour 
of infected individuals (e.g., their inability to work), but also measure behavioural changes 
that are caused by changing subjective judgements about the risk of contraction among the 
still healthy population. These behavioural changes may be influenced not only by the 
characteristics of the epidemic contagion process and the disease virulence, but also by its 
media coverage and the fear it might generate.  

For example, the Severe Acute Respiratory Syndrome (SARS) outbreak was the first epidemic 
of the 21st century to spread rapidly across 26 countries in a matter of weeks (Keogh-Brown 
and Smith, 2008). Several studies have suggested that the behavioural response was 
disproportionately large in relation to the actual contraction and mortality risks associated 
with SARS (Noy and Shields, 2019).2 Fortunately, the SARS epidemic was also contained 
relatively rapidly, infecting only around 8500 people, but with a mortality rate of around 11% 
(Noy and Shields, 2019). Nevertheless, the SARS epidemic did lead to some short-term 
declines in economic activity in various vulnerable sectors, in infected and even in un-infected 
countries, most notably through interruptions in international tourism flows. Had the SARS 
outbreak occurred in countries less equipped to manage an epidemic of this virulence, 
however, it is likely that its health and economic consequences would have been far more 
devastating.  

The risks of indirect losses caused by changing behaviours and policies (like border closures 
or increased quarantine requirements) have led to concerns that some disease outbreak 
could result in a major impact on the global economy driven by amplified behavioural 

                                                
2 The SARS outbreak generated substantial attention. One reflection of this panic was the early economic 
projections on the impact of SARS, which generally predicted losses to be far greater than what eventually 
transpired (Keogh-Brown and Smith, 2008). The most significant economic losses occurred in: (1) China; (2) Hong 
Kong; (3) Singapore; and (4) Taiwan (Brahmbhatt and Dutta, 2008). During the height of the epidemic, 
international visitor arrivals fell dramatically in these four economies and resulted in an estimated GDP loss 
amounting to US$ 13 billion (Noy and Shields, 2019). These losses, however, did not affect any of these 
economies for more than a couple of quarters and even the most heavily affected countries started recovering 
by the third quarter of 2003.  
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responses. Intriguingly, it seems little research has been done on these economic losses, and 
even less on the longer term losses arising from epidemics.  

Risk as a function of hazard, exposure, vulnerability, and resilience  

As defined by UNDRR (2017), a disaster is “a serious disruption of the functioning of a 
community or a society at any scale due to hazardous events interacting with conditions of 
exposure, vulnerability and capacity, leading to one or more of the following: human, 
material, economic and environmental losses and impacts. The effect of the disaster can be 
immediate and localized, but is often widespread and could last for a long period of time.”  

Exposure in the UNDRR definition refers to the population and the economic activity that is 
located in areas that are being exposed to the pathogen or that is indirectly exposed to the 
changing behavior that is induced by the presence of this pathogen, changes that can also 
impact the disease trajectory (e.g., Epstein, 2009). Vulnerability, in this case, refers to the 
ability of the pathogen to adversely affect the exposed entities (human, social, and 
economic). A higher degree of vulnerability will lead to a more adverse outcome for the same 
pathogen characteristics and exposure to it.3 As an example, in the SARS affected economies, 
domestic consumption of leisure activities, leisure-related local and international transport, 
and tourism, were the most significantly affected sectors. Whether the SARS epidemic 
generated any long-lasting demographic impact has not been investigated, but we assume 
this has not been the case.  

More broadly however, economic impacts will depend not only on the characteristics of the 
disease, but also on the ways the economy is exposed to it, the vulnerability of different 
sectors in the economy to the shock, and their resilience (their ability to bounce back). Prager 
et al. (2017), in their modelling of influenza in the United States, define ‘economic resilience’ 
as the capacity “to maintain functionality and dampen business interruption losses in the 
aftermath of a disaster” (p. 6). For some (maybe most) epidemics, they point out, some 
resilience policies are not really plausible given the rapid and short-term nature of the 
epidemic. What is most plausible is to make up for lost production once the epidemic has 
abated.  

SARS, for example, was quite contagious, so that people attempted to minimise face-to-face 
interactions and physical proximity with possibility infected persons. This manifested in 
significant changes to consumer behaviour due to individual judgements about the risk of 
contraction, and resulted in a significant portion of GDP loss attributed to social avoidance by 
millions. Exports of goods, in contrast, were relatively unaffected as the disease was 

                                                
3 These distinctions are imperfect, as even the basic epidemiological parameter, R0, may be a function of the 
socio-economic environment, as the contact rate, the probability of transmission upon contact, and the duration 
of infection are all also determined by social factors (e.g., poverty or nutrition) – see Janes et al. (2012). For 
example, Laffargue (2012) investigate the impact of an epidemic on fertility. While he elucidates the potential 
demographic impacts of an epidemic, his model results depend crucially on assumptions regarding the nature 
of the epidemic (the R0) and the most vulnerable cohorts to it. We assume that the epidemics whose economic 
risk we measure do not have any long-term demographic impact (which will imply long-term economic effects 
as well). 



9 
 

transmissible only through human to human contact (the disease pathogen did not exhibit 
the longevity outside of its human host that would have allowed for its spread via cargo).  

There are multiply reasons why economic activity might be adversely affected. They range 
from the direct impact on labour (as workers are symptomatic), to behavioural responses that 
might arise out of over-reactions, panics, and scientific misunderstandings. Indirect losses 
arise from the lost productivity of those directly affected, and more indirectly from aggregate 
behavioural changes driven by the public's reactions to the outbreak.  

Boucekkine and Laffargue (2010) describe three channels through which an epidemic might 
have long term impact on economic development. First, mortality of labour will increase 
wages and lead to a lower fertility (as women enter the workforce). Second, the expected 
mortality will increase fertility if women optimise for the number of children expected to 
survive to adulthood. Mortality will create orphans, who will be less able to invest in their 
education and will therefore experience a relative decline in lifetime income.4 Damon et al. 
(2015) find that there are ambiguous effects of increased mortality risk on investment 
decisions of households (specifically in conservation of environmental resources), since there 
are two opposing channels of causality (through the discount rate, and through labour 
productivity). An even longer-term indirect channel of economic impact was identified in 
Almond (2006). He found that U.S birth cohorts who were in-utero during the 1918-1919 
influenza epidemic exhibited reduced educational attainment, higher rates of physical 
disability, lower lifetime income, lower socioeconomic status, and higher transfer payments 
when compared to other birth cohorts born in similar locations and personal circumstances. 

Caveats and conclusions 
 
As public health systems continually evolve and improve, future epidemics are unlikely to be 
of the magnitude of the largest epidemics of the past (e.g., the 1918-19 Influenza pandemic); 
though they may still be of catastrophic scale. However, what remains equally salient, in 
contrast, are the economic consequences of future epidemics. The exposure, vulnerability, 
and resilience to these economic consequences were not ameliorated as much when public 
health systems developed throughout the last century. In contrast, potentially, the more 
recent advent of social media is likely to have amplified behavioural responses, and thus 
potentially exacerbated the economic affects generated through behavioural channels.  

The extensive behavioural reaction to SARS could be typified as a high prevalence-elasticity 
response to a disease outbreak; when the public response to an epidemic results in significant 
behavioural changes that increase in severity with the number of infected persons. The SARS 
case fits with the argument of Philipson (2000), that when private behaviour is strongly 
prevalence-elastic, the main economic cost of a disease outbreak is likely to arise out of 
individual preventative actions rather than directly from infections. Much of this analysis is 
based on the assumption that individuals make systematic and rational (or predictably 
irrational) judgements about the disease prevalence rate and the associated mortality risks. 
There is significant evidence from previous epidemics that individuals under prevailing 
circumstances of little reliable information can arrive at biased subjective assessments 
                                                
4 Chin and Wilson (2018) claim to find an increase in fertility in Sub-Saharan Africa as a result of the AIDS 
epidemic; while Karlsson and Pichler (2015) find no fertility effect. 
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concerning the risk of disease contraction. This can lead to panic and consequently worse 
decisions, which in turn result in an excessively high cost of preventative private actions. A 
better accounting of these risks of over-reactions and panics that lead to dramatic 
behavioural change, while important, remain outside the scope of what we measured here. 

In addition, a study by Perrings et al. (2014) highlights the importance of government 
intervention which targets the private costs and benefits of disease avoidance so that they 
induce individual behavioural responses which align with the interests of the wider society. 
This concerns the trade-off that individuals make regarding their respective costs and benefits 
from (for example) public interaction in an epidemic situation. If the benefits of social 
interaction for an individual are high (e.g.., interaction is necessary to earn the income 
required to meet daily subsistence costs) then this could result in continued interaction during 
an epidemic and, while reducing the economic impact, can potentially increase the disease 
reproduction rate. This can also work in the opposite direction; if the individual costs of public 
avoidance are very low and benefits very high, then mass public avoidance in an epidemic 
where the mortality and contagiousness are not significant enough to warrant such a 
response, will lead to unnecessarily large economic and welfare losses (Perrings et al., 2014). 
Improved understanding of the dynamics of individual trade-offs could help to prioritise 
public health interventions beyond what is suggested from our measure of economic risk. 

Another factor that cannot be adequately included here are government interventions that 
can dramatically affect the magnitude and time profile of losses, and the public’s likely 
compliance with any government interventions, (Perrings et al., 2014).5 Perrings et al. (2014) 
advocate for a more nuanced approach toward public management of epidemics that 
recognises that individual cost and benefits of social interactions can have a direct effect on 
the disease reproduction rate. Such targeted interventions could offer a more cost effective 
solution which will change the economic evaluation of the existing risks.  

Several suggestions that can minimise the economic risk of epidemics, as is measured here, 
include: Investment in prediction of disease emergence and appropriately designed Early 
Warning Systems that can shorten the period in which there are declines in economic activity; 
active minimization of transmission pathways thereby reducing exposure to the disease in 
areas that were not exposed to the initial hazard (for example, by timely global reporting); 
reducing vulnerability to disease outbreaks by improving public health systems or decreasing 
other ‘root causes’ of vulnerability (such as poverty); and facilitation of recovery planning by 
increasing economic resilience to the epidemic shock (for example, by curtailing mis-
information). All of these remain relatively neglected parts of the global attempts to reduce 
the economic risks of epidemics, attempts that are mostly shaped by the 2015 agreements 
on the Sustainable Development Goals and the Sendai Framework for Disaster Risk Reduction.  

4. Methods  

Principal components analysis 

                                                
5 For example, travel restrictions or bans and quarantines were widely used by governments in the SARS 
outbreak (Balinska and Rizzo, 2009) See a more complete example in (Noy and Shields, 2019). 
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Before going through the dimensionality reduction procedure, we standardize all variables 
and analyse the correlations to choose a proper set of variables. The correlation matrices for 
exposure, vulnerability, and resilience indicators are available in Supplementary Table A2. To 
compute a coherent index for exposure, vulnerability, and resilience separately, we use 
principal components analysis (PCA), an algorithm to compress a large set of variables while 
retaining most of information in the initial data (Ringnér, 2008). The eigenvalues, latent roots, 
capture the variations in the set of variables for that component. PCA bases on the eigen 
decomposition of positive semi-definite matrices and the singular value decomposition of 
rectangular matrices (Abdi and Williams, 2010).6 Mathematically, PCA is executed on a square 
symmetric matrix: (i) Pure sums of squares and cross products (SSCP matrix); (ii) scaled sums 
of squares and cross products (covariance matrix); (iii) sums of squares and cross products 
from standardized data (correlation matrix). Correlation matrix performs well when there are 
significant differences in the variances and the units of measurement of original variables.  

DALY weighting method 

Based on DALY data from the Institute for Health Metrics and Evaluation, we calculate the 
average of DALY in the period 2012-2017 from three communicable causes: (i) Diarrhea and 
common infectious diseases; (ii) Malaria and neglected tropical diseases; (iii) Other 
communicable diseases. We use this aggregate measure of DALYs lost to these infectious 
diseases as an alternative proxy for the risk of epidemics.  One DALY equals one lost year of 
healthy life, either from year of life lost or year lived with a disability. Since the DALY 
aggregates are calculated for each country (i), we also aggregate the hazard, exposure, 
vulnerability, and resilience measures to the country-level. We then estimate the following 
model by Ordinary Least Squares (OLS): 

EFGHC = 	IJ + I*+,-,./C 	+ I12345#6.7C 	+ I896:;7.,<=:=>?C + IA!7#=:=7;B7C + 	KC      

where +,-,./C  is the predicted probability of epidemics in country i. 2345#6.7C, 
96:;7.,<=:=>?C, and !7#=:=7;B7C is the first component of principal component analysis for 
exposure, vulnerability, and resilience in country i. 

Table 1: Estimation results for National DALY 
 Hazard 117.07** 
   (54.98) 
 Exposure 14.99 
   (37.14) 
 Vulnerability 92.55** 
   (37.57) 
 Resilience -41.06 
   (42.27) 
 _cons -10.139 
   (24.94) 
 Obs. 156 
 R2 0.156 

 
                                                
6 Abdi and Williams (2010) provide proof and statistical inference of PCA. 
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In Table 1, the result of three causes shows that a 1-percentage-point in the probability of 
hazard is positively related to 117 DALYs. Comparably, a 1-percentage-point of vulnerability 
is positively associated with 93 DALY points. The relation between exposure and DALY is 
smallest, the slope is almost 15. Whereas a 1-percentage-point increase of resilience relates 
to 41-DALY-point decrease. Building on these results, an alternative functional form to 
measuring economic risk uses the weights implied in the coefficients described in Table 1. The 

weights are calculated by I
TD
∑ VITDVA
DWJ

X , then: 

L!"#$%& =	−0.04 + 0.42+,-,./% 	+ 	0.052345#6.7% 	+ 	0.3496:;7.,<=:=>?% 	− 	0.15!7#=:=7;B7%     

Hazard indicators 

Allen et al. (2017) provide a comprehensive map of zoonotic disease epidemic at a geo-
spatially detailed grid-cell level, whereby each grid cell size is 1 degree x 1 degree. The data 
includes: (i) Total number of emerging infectious disease events from 1970 to 2008; (ii) the 
probability of EID risk by reporting effort; (iii) the predicted risk of event location after 
adjusting for reporting bias. 

Table 2: Hazard indicators 
Variable Mean ST. Dev Obs 
EID event counts 2.16 2.19 18,361 
EID event probability (reporting effort)  0.50 0.14 18,361 
EID event prediction (weighted output and population) 0.000026 0.000084 18,361 

Table 2 shows the descriptive statistics of EID events from Allen et al. (2017). On average, 
there are more than 2 events happening per grid cell over the period. The event probability, 
also related to reporting effort, is about 0.5. The predicted risk is more comparable spatially 
after controlling for reporting bias. We overlay all other spatial data to the map of EID event 
prediction weighted by output and population. 

Exposure indicators 

In terms of economic exposure, we use population and nighttime light density to measure 
human presence and economic activity. Nightlight data is used as a proxy for economic 
wealth; the data is described in Román et al. (2018). Transport density provides another 
relevant indicator for population density. An urban metropolitan area likely has a denser 
network of highways and air links. To get a coherent layer of transportation density, we use 
all types of transport as described in Lloyd et al. (2017). Transport databases from Open Street 
Map (OSM) include: Highway, waterway, railway network, railway station and airport. Last, 
we use the number of net incoming migrants to proxy for external economic exposure. Data 
for each variable to proxy for exposure are collected as raster format with higher resolution 
than data for hazard. Hence, we can plausibly merge with data about epidemic into grid 1 
degree by 1 degree by WGS84 projection. 

Vulnerability indicators 
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Likewise, we use a set of data on economic outcomes, human development, agriculture, and 
health quality to measure vulnerability. Drake et al. (2012) argue that the vulnerability to 
infectious disease outbreak is much higher in low- and middle-income countries, especially 
the vulnerability to mortality and morbidity risk. The United Nations’ Human Development 
Index (HDI), per capita Gross Domestic Product (GDP), and total GDP in each grid cell, are 
collected from the data described in Kummu et al. (2018). Kummu et al. (2018) estimate Gross 
Grid-Cell Product by multiplying country-level GDP per capita (PPP) with 30 arc-sec population 
data.7 To get sub-national data on HDI, Kummu et al. (2018) develop scaling factors to 
combine sub-national and national data.  

Tatem et al. (2012) survey the need and availability of sub-national detailed demographic data 
that might be useful in understanding disease exposure and vulnerability. They argue that for 
improvement in our understanding of disease transmission and control, we require detailed 
spatially-referenced demographic data (for example, distinguished by cohorts and gender). 
This data is only available in low frequency in countries that conduct a comprehensive census.  

We lack data on health quality at the sub-national level; except for spatially-detailed data on 
the young population density and infant mortality rate, we use country-level measures of 
child vaccination rates, healthcare spending and sanitary conditions. These data are from the 
World Bank Development Indicators (WDI), the United Nations Children's Fund (UNICEF), and 
World Health Organization (WHO). We merge the country-level data into the grid cell data by 
assigning the same value for all grid-cells within the same country.  

Resilience indicators 

We obtain spatial data about travel time to a settlement with more than 50,000 inhabitants. 
Lloyd et al. (2017) provide a raster layer depicting the number of hours to travel to the nearest 
big city. Fundamentally, travel time is a function of distance and the quality of the transport 
network. Hallegatte et al. (2016) argue that early warning systems possibly reduce asset 
losses. We assume information about epidemics is accessed via the internet and mobile 
phones, so we associate higher penetration rates of these with higher resilience. We use data 
from the WDI and the International Telecommunication Union.  

Next, we calculate the number of outmigrants per 100 persons for each country. We assume 
that the ability to migrate and the availability of remittances, associated with a larger number 
of outmigrants, are both related to higher resilience. The average share of exports of goods 
and services (as share of the national economy), and tourism spending (as share of national 
economy) both are also assumed to be associated with resilience (tourism negatively). Last, 
we use data about ethnic, linguistic and religious diversity to measure socio-cultural disparity 
(Alesina et al., 2003). We assume that the diversity plausibly affect the behaviour of 
individuals and communities in a hazard event. 

 

                                                
7 The strategy to estimate Gross Cell Product is very similar to Nordhaus and Chen (2016), but the Kummu et al. 
(2018) data were updated more recently, and are available at a higher resolution. 
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Table 3: Details of variables 

 Variable name Description Unit of 
measurement 

Kind of 
indicators 

Spatial 
availability 
 

Year 
released/ 
updated 

Data 
coverage 
by grid 

Source 

1 Emerging 
infectious disease 
(EID) 

Zoonetic disease events in the period 
1970-2008 

Number of 
events 

Hazard Resolution:  
1o WGS84 

2017 100% Allen et al. 
(2017) 

Emerging zoonotic diseases event 
probability 

Percent 

EID event prediction Index 
2 Population 

density 
Number of persons per square 
kilometre in 2015 
 

Number of 
people per km2 

 

Exposure Resolution: 
0.5’ (1 km) 
 

2017 100% (CIESIN, 2018) 

3 Night time lights Night-time light intensity in 2016 Index Exposure Resolution: 
1.5’ (3 km) 
 

2017 100% Román et al. 
(2018) 

4 Urban built-up Human impact on land by 
urbanization activity 

Index Exposure Resolution: 
0.5’ (1 km) 
 

2014 100% Tuanmu and 
Jetz (2014) 

5 Transport 
networks in 2016 

Highway density  Index Exposure Resolution: 
<1 km 

2016 100% Lloyd et al. 
(2017) Airport density 

Waterway density 
Railway network 
Rail station density 

6 Net migration Number of in-migrants minus out-
migrants 

Number of 
people 

Exposure Resolution: 
0.5’ (1 km) 
 

2015 100% de Sherbinin et 
al. (2015) 

7 GDP Gross Domestic Product (PPP) per grid 
in 2015 (constant 2011 USD). 

USD Vulnerability Resolution: 
0.5’ (1 km) 

2018 100% Kummu et al. 
(2018) 

8 GDP per capita Gross Domestic Product per capita 
(PPP) per grid in 2015 (constant 2011 
USD). 

USD Vulnerability Resolution: 
5’ (10 km) 
 

2018 98% World Bank 
(WDI) 



15 
 

9 HDI Human Development Index 
[0-1] 

Index Vulnerability Resolution: 
0.5’ (1 km) 
 

2018 100% Kummu et al. 
(2018) 

10 Crop land Percentage of land use for crop Percent Vulnerability Resolution:5’ 
 

2019 100% Klein Goldewijk 
et al. (2011) 

11 Young population 
density 

Number of children aged 0-4 per 
square kilometre in 2010 

Number of 
people per km2 

Vulnerability Resolution: 
0.5’ (1 km) 

2018 100% (CIESIN, 2018) 

12 Infant mortality 
rate 

The number of children who die 
before their first birthday per 1,000 
births in 2017 

Proportion Vulnerability Resolution: 
0.5’ (1 km) 

2018 100% (CIESIN, 2019) 

13 Immunization 
rate 
 

The percentage of children ages 12-23 
months who received DPT/ measles 
vaccinations  

Percent Vulnerability Country level 2017 96% UNICEF 

14 Out-of-pocket Share of Out-of-Pocket Expenditure on 
Healthcare 

Percent Vulnerability Country level 2014 96% World Bank 
(WDI) 

15 Health spending  Total health care expenditure as GDP   Percent Vulnerability Country level 2014 96% World Bank 
(WDI) 

16 Improved 
drinking water 

Share of population with access to 
improved drinking water 

Percent Vulnerability Country level 2015 99% World Bank 
(WDI) 

17 Sanitary facilities Share of population with improved 
sanitation facilities 

Percent Vulnerability Country level 2015 98% World Bank 
(WDI) 

18 Open defecation Share of population practicing open 
defecation 

Percent Vulnerability Country level 2015 99% WHO and 
UNICEF 

19 Travelling time Travel time to nearest city with 
population more than 50,000 

Hour Resilience Resolution: 
<1 km 

2016 100% Lloyd et al. 
(2017) 

20 Internet access Share of population using the Internet Percent Resilience Country level 2017 99% World Bank 
(WDI) 

21 Cellular user Mobile cellular subscriptions per 100 
people 

Numeric Resilience Country level 2017 99% International 
Telecommunicat
ion Union 

22 Out-migrants Number of emigrants per 100 
population 

Number of 
people 

Resilience Country level 2015 99% United Nations 
(2015) 
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23 Export Share of goods and services export to 
GDP 

Percent Resilience Country level 2018 98% World Bank 
(WDI) 

24 Tourism Share of travel and tourism to export Percent Resilience Country level 2018 94% World Bank 
(WDI)  

25 Socio - Cultural 
disparity 

Ethnic disparity [0-1] Index Resilience Country level 2016 99% Alesina et al. 
(2003) 

Linguistic disparity [0-1]  Index Resilience Country level 2016 99% Alesina et al. 
(2003) 

Religious disparity [0-1] Index Resilience Country level 2016 99% Alesina et al. 
(2003) 
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