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Abstract 
 
Many-player divide-the-dollar games have been a workhorse in the theoretical and experimental 
analysis of multilateral bargaining. If we are dealing with a loss, that is, if we consider many-
player “divide-the-penalty” games for, e.g., the location choice of obnoxious facilities, the 
allocation of burdensome chores, or the reduction of carbon dioxide emissions at a climate 
change summit, the theoretical predictions do not merely flip the sign of those in the divide-the-
dollar games. We show that the stationary subgame perfect equilibrium (SSPE) is no longer 
unique in payoffs. The most “egalitarian” equilibrium among the stationary equilibria is a mirror 
image of the essentially unique SSPE in the Baron-Ferejohn model. That equilibrium is fragile 
in the sense that allocations are sensitive when responding to changes in parameters, while the 
most “unequal” equilibrium is not affected by changes in parameters. Experimental evidence 
clearly supports the most unequal equilibrium: Most of the approved proposals under a majority 
rule involve an extreme allocation of the loss to a few members. Other observations such as no 
delay, proposer advantage, and the acceptance rate are also consistent with the predictions based 
on the most unequal equilibrium. 

JEL-Codes: C780, D720, C920. 
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1 Introduction

Multilateral bargaining refers to a situation in which a group of agents with conflicting interests

try to bargain under a predetermined voting rule. Many-player divide-the-dollar (henceforth, DD)

games where a group of agents reach an agreement on a proposal dividing a dollar have served well

as an analytic tool for understanding multilateral bargaining behavior (Baron and Ferejohn, 1989).

However, we claim that this model sheds light on only one side of multilateral bargaining: The other

side addresses the distribution of a loss or a penalty. Our contribution is twofold: (1) to persuade

that multilateral bargaining on the distribution of bads is theoretically different from that of goods

and (2) to provide experimental evidence that it clearly diverges from the standard findings in the

experimental multilateral bargaining literature.

Real-life situations dealing with the distribution of a loss are as common as those addressing

a surplus. The climate change summit is an example of dividing a penalty in the sense that the

participating countries share the global consensus on the need to reduce carbon dioxide emission

levels, but no single country wants to take the whole burden, which may be harmful to their eco-

nomic growth. A location choice of an obnoxious facility is another example of the allocation of a

loss, as those closer will suffer from the disutility of the facility more than other areas. Taxation for

public spending or redistribution could also be understood as a distribution of burdens. Despite its

relevance to many policy issues, little attention has been paid to multilateral bargaining over the di-

vision of losses. Such inattention might be due to a naïve conjecture that the theoretical predictions

of a many-player “divide-the-penalty" (henceforth, DP) game would be exactly the inverse of those of

the DD game. We claim this is not the case. Our claim does not rely on any behavioral/psychological

assumptions, including loss aversion.

(1,0,0) (0,1,0)

(0,0,1)

Division of gains
(−1,0,0) (0,−1,0)

(0,0,−1)

Division of losses

Preference direction

Satiation point(s)

Figure 1: Different preference directions and satiation points

Figuratively speaking, comparing the DD game with the DP game is not analogous to comparing

the allocation of a “half-full" cup of water to that of a “half-empty" cup; instead, it is analogous to

comparing the allocation of a full cup of “clean" water when everyone is thirsty to that of a full cup of

“filthy" water when everyone is fully saturated. The latter example deals with fundamentally differ-

ent objectives that have the opposite preference directions. This difference is not due to the domain

of utilities: Even if every subject is endowed with several cups of clean water sufficient enough to

enjoy a positive level of utilities overall, the allocation of filthy water is still different from the allo-
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cation of clean water.1 A 2-dimensional unit simplex, which captures the allocation of the resources

(normalized to one) among three players, can also illustrate this analogy. In Figure 1, player 1 at

the bottom-left vertex has a unique satiation point over the division of gains, but she prefers any

linear combinations of other two vertices over the division of losses. Although the procedure of the

division of the fixed amount of resources would be identical, the preference directions on the object

are not merely flipped.

Another key difference comes from a proposer advantage in the division of losses: Whoever is in

a position with stronger bargaining power, she cannot take advantage that is greater than gaining

zero losses. In the DD game, a proposer exploits rent from being the proposer by forming a mini-

mum winning coalition (MWC) to the extent that the number of “yes" votes is just sufficient for the

proposal to be approved and by offering the members in the MWC their continuation value so that

rejecting the offer would not make them better off. Altogether, a significant amount of the proposer

advantage is predicted in the DD game. However, the proposer in the DP game, who will at best

enjoy no losses, may not be better off than those in the MWC, who could also enjoy no losses.

The fact that the proposer cannot enjoy an advantage greater than zero losses is a source of the

primary theoretical difference between the DD game and the DP game. While the DD game has

a unique stationary subgame perfect equilibrium (SSPE) in payoffs (Eraslan, 2002), the DP game

has a continuum of stationary subgame perfect equilibria. The strategy of one SSPE, which we

call the utmost inequality (UI) equilibrium, is for the proposer to assign the total penalty to one

randomly chosen member: The other members without a penalty will accept the proposal because

the continuation value (the expected payoff from moving on to the next bargaining round) would be

strictly smaller than 0. At the other extreme, the strategy of another SSPE, which we call the most

egalitarian (ME) equilibrium, is for the proposer to distribute the penalty across all of the members

except herself to the extent that MWC members will not be better off by rejecting the current offer.

Of course, any intermediate strategy between these two extreme SSP equilibrium strategies can

constitute an SSPE. Therefore, the primary goal of this paper is to comprehensively investigate the

DP game and compare it with the DD game both theoretically and experimentally.

Laboratory experiments have been a useful tool in the multilateral bargaining literature. We

claim that the use of lab experiments is more critical for the DP game. Even if we narrow down

our focus to stationary strategies, theory is silent in guiding us toward the equilibrium that is more

likely to be consistent with our observations. Anecdotal empirical evidence might be sporadically

available, but we cannot be free from the issues of measurement, endogeneity, and unobservable

heterogeneities to identify a clear causal link. Moreover, it is challenging, if not impossible, for

experimenting policymakers to test different situations where an actual loss should be distributed.

Among many potential directions that the experiments could be designed to test the theory, we

chose the simplest possible, yet most revisited ones. We conducted experiments of four treatments

that vary by two dimensions: the group size (either 3 or 5) and the voting rule (either majority

or unanimity). Theoretical predictions based on the ME equilibrium were used as null hypotheses

because it resembles the essentially unique SSPE in the DD game, and it approaches the unique

equilibrium under unanimity as the qualified number of voters for approval goes to n. Experimen-

1Our experimental design is based on the implementation of this idea.
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tal evidence clearly rejects the ME equilibrium. Instead, the UI equilibrium is the most consistent

with our experimental observations. Most of the approved proposals under a majority rule involve

an extreme allocation of the loss to a few members. That is, in three-member bargaining, one mem-

ber receives all the losses exclusively, and in five-member bargaining, either one member receives

the total loss or two members receive a half each. The utilitarian efficiency, meaning no delay in

reaching an agreement, and the proposer advantage are well observed.

We claim that our experimental evidence is a watershed that determines potentials to extend

this study. If the observed patterns were similar to the mirror image of the SSPE over the division

of gains, although we identify other SSP equilibria over the division of losses, we may conclude that

the many-player divide-the-dollar game is still good enough to study multilateral bargaining over

the division of losses. Since we find the crucial differences both theoretically and experimentally,

it is worth revisiting all the important studies on multilateral bargaining, if the main motivating

situations of those studies are about the division of losses.

The rest of this paper is organized as follows. In the following subsection, we discuss the related

literature. Section 2 presents the model of the divide-the-penalty game, and Section 3 describes

the theoretical properties of the model. The experimental design, hypotheses, and procedure are

discussed in Section 4. We report our experimental findings in Section 5. Section 6 discusses further

issues, and Section 7 concludes the paper.

1.1 Related Literature

This study stems from a large body of literature on multilateral bargaining. A legislative bar-

gaining model initiated by Baron and Ferejohn (1989) has been extended (Eraslan, 2002; Norman,

2002; Jackson and Moselle, 2002), adopted for use with more general models (Battaglini and Coate,

2007; Diermeier and Merlo, 2000; Volden and Wiseman, 2007; Bernheim et al., 2006; Diermeier and

Fong, 2011; Ali et al., 2019; Kim, 2019), and experimentally tested (Diermeier and Morton, 2005;

Fréchette et al., 2003, 2005; Fréchette et al., 2012; Agranov and Tergiman, 2014; Kim, 2018).2 Our

contribution to this literature is to show that the theoretical predictions of the DP game could be

significantly different due to the natural restriction of proposer advantage: In the DP game, the

maxmimum advantage available to the proposer is receiving no penalties.

In that the fundamental idea of the model relates to the allocation of bads, this study is perti-

nent to chore division models (Peterson and Su, 2002), a subset of envy-free fair division problems

(Stromquist, 1980) in which the divided resource is undesirable. Social choice theorists are well

aware of the distinctive difference between the allocation of goods and that of bads. Bogomolnaia

et al. (2018) show that in the division of bads, unlike that of goods, no allocation rule dominates

the other in a normative sense. While the literature on envy-free division has focused more on

the algorithms or protocols that lead to the desired allocation, this paper only considers predeter-

mined voting rules and does not focus on the design of algorithms. Another area of the literature

philosophically connected to our study is those works addressing the principle of equal sacrifice in

income taxation (Young, 1988; Ok, 1995) in which the primary purpose is to justify the traditional

2For more complete review, see Eraslan and Evdokimov (2019).
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equal sacrifice principles in taxation from a non-utilitarian perspective by showing that the utility

function satisfying equal sacrifice principles could be a consequence of more primitive concepts of

distributive justice. Although taxation for public spending or redistribution is related to the idea of

distributing monetary burdens, we try not to be normative in this paper. Experimental findings on

multilateral bargaining over the division of losses are rare. Gaertner et al. (2019) find that when

subjects are endowed with a different amount of money and collectively determine the allocation of

the loss under a unanimity rule, the proportionality principle—resource allocation proportional to

the endowment—is hardly observed.

This study is also remotely connected to the literature documenting behavioral asymmetries be-

tween the gain and loss domains. From the many studies about loss aversion, we know that human

behavior when dealing with losses is different from that when experiencing gains. In this regard,

Christiansen and Kagel (2019) is one study philosophically related to ours. They examine how the

framing changes three-player bargaining behavior. In particular, based on the model studied by

Jackson and Moselle (2002), they study two treatments that are isomorphically the same in theory

but framed differently. Since the theoretical predictions of the two treatments are identical, their

primary purpose is to observe the framing effect.3 Their study is rather related to the literature

on the discrepancies between willingness-to-pay and willingness-to-accept. The crucial difference

between our study and theirs is that we deal with the different incentive structures, so the framing

does not play an important role. While the experimental design considered in Christiansen and

Kagel (2019) can be regarded as a ‘half-full’ versus ‘half-empty’ glass of water, figuratively speaking,

ours is a full glass of clean water versus a full glass of filthy water. In the sense that we indirectly

compare an economic outcome on a gain domain with that on a loss domain, Gerardi et al. (2016) is

another closely related study. They compare the penalty of not turning out to vote with a lottery for

those who do turn out, show that these two incentive structures are theoretically similar, and pro-

vide experimental evidence that voters are more likely to turn out under a lottery treatment than

under a penalty treatment.

Although it may appear that the public bad prevention compared with the public good provision

(Andreoni, 1995) is somewhat related, the comparison between the DD game and the DP game is

distinctively different from the comparison between public good provision and public bad prevention

because the former does not involve any form of externality. Regarding the treatment of public

bads, a political economy of NIMBY (“Not In My Back Yard") conflict could also be related to this

paper. Levinson (1999) demonstrates that local taxes for hazardous waste disposal can be inefficient

because of the tax elasticity of polluters’ responses. Fredriksson (2000) shows that a centralized

system for siting hazardous waste treatment facilities is sub-optimal compared to the decentralized

system because of lobbying activities. Feinerman et al. (2004) adopt a model of a competitive real

estate market between two cities and provide suggestive evidence that if all cities in the region form

political lobbies, the political siting is geographically close to the socially optimal location. To the

best of out knowledge, the political procedure and the equilibrium outcomes under a qualified voting

rule have not been investigated in the previous studies.

3Christiansen et al. (2018) continue examining the framing effect using the Baron-Ferejohn model, as well as the role of
communication, as in Agranov and Tergiman (2014) and Baranski and Kagel (2015).
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2 A Model

We consider a many-player divide-the-penalty game. As the many-player divide-the-dollar game

à la Baron and Ferejohn (1989) aims to understand multilateral bargaining over a surplus, the

divide-the-penalty game will serve as a theoretical tool to understand multilateral bargaining over

a loss.

There are n (an odd number greater than or equal to 3) players indexed by i ∈ N = {1, . . . ,n}. A

feasible allocation share is p = (p1, . . . , pn) ∈ {[−1,0]n|∑i pi = −1} and the set of feasible allocation

shares is denoted as P. We consider q-quota voting rule: The consent of at least q ≤ n players is

required for a proposal to be approved. The voting rule is called a dictatorship if q = 1, a (simple)

majority if q = n+1
2 , unanimity if q = n, and a super-majority if q ∈ { n+3

2 , . . . ,n−1}.

The amount of the loss increases as time passes, so delay is costly. The cost of delay is captured

by the growth rate of the loss, g ∈ [1,∞) per delay. At the same time, delay dilutes the disutility of

the penalty. If players prefer having the disutility tomorrow to having the same amount of disutility

today, they may want to postpone the actual allocation of the penalty as much as possible, so that

the disutility of the allocation can be diluted. Let β ∈ (0,1] denote such time preference. When the

allocation of the penalty is made in round t, player i’s utility is U t
i (p) = (βg)t−1 pi. For notational

convenience, let δ ≡ βg, which can be larger or smaller than 1.4 Over the division of losses, these

two factors, β and g, lead to different incentives. When the time preference dominates the growth

rate of penalty, that is, when δ< 1, players have an incentive to postpone the actual allocation of the

loss. Otherwise, players want to make a decision as quickly as possible. We focus on δ≥ 1 because

it can capture more pertinent situations: If the nature of bargaining drives the relevant parties

to postpone their agreement as much as possible, such bargaining may deal with relatively trivial

issues.5 To complete the model with δ≥ 1, we assume that each player earns the utility of negative

infinity when they do not reach an agreement for infinite rounds of bargaining. This assumption is

corresponding to the assumption in the DD game with δ≤ 1 where each player earns nothing when

disagreeing forever.

Players bargain over the loss until they reach an agreement. The timing of the game is as follows:

1. In round t ∈N+ a randomly selected player i is recognized as the proposer. The selected player

proposes an allocation of −gt−1 in terms of proportions.

2. Each player votes on the proposal. If it is approved, that is, if q or more players accept the

proposal, the proposal is implemented, U t
i (p) is accrued, and the game ends. If the proposal is

not accepted, the game moves on to round t+1.

3. In round t+1, a player is randomly recognized as the proposer. The game repeats at t+1.

Let ht denote the history at round t, including the identities of the previous proposers and the

current proposer. Let {pt
i(h

t), xt
i(h

t)} denote a feasible action for player i in round t, where pt
i(h

t) ∈
4A discount factor in the standard dynamic models, δ ∈ [0,1), can be understood as the depreciation rate (the inverse of

the growth rate), 1/g, times the subjective time-discount factor, β. In this case, δ is always smaller than 1, so the distinction
between the depreciation rate and time preference is not crucial. That is, on a gain domain, a discount factor δ ∈ (0,1] can
be innocuously interpreted in two different ways: It could represent a time preference, the depreciation of the resource, or
both.

5The case with δ< 1 is discussed in Section 6.
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∆(P) is the (possibly mixed) proposal offered by player i as the proposer in round t, and xt
i(h

t) is the

voting decision threshold of player i as a non-proposer in round t, where ∆(P) is the set of probability

distributions of P. A strategy si is a sequence of actions {pt
i(h

t), xt
i(h

t)}n
i=1, and a strategy profile s is

an n-tuple of strategies, one for each player.

Concerning the DD game, it is known that there are numerous stage-undominated equilibria

(Baron and Kalai, 1993), and virtually all allocations can be supported as an equilibrium under

majority rule (Baron and Ferejohn, 1989). A similar folk theorem can be applied to the DP game.

Proposition 1. Assume n ≥ q+1≥ 3 and δ≥ 1. For any p ∈ P, there exists an undominated subgame

perfect equilibrium for which p is the equilibrium outcome.

Proof: See Appendix A.

The result of Proposition 1 delivers a rationale for considering a refinement of the equilibria. We

here focus on stationary subgame perfect equilibria. A strategy profile is stationary if it consists of

time- and history-independent strategies. A strategy profile is subgame perfect if no single deviation

in a subgame can make the player better off.6 A strategy si is now simplified to {pi, xi}. Furthermore,

we consider symmetric agents, so the strategy boils down to (1) the proposal p when a member is

recognized as a proposer and (2) the voting decision threshold x at which a non-proposer accepts.

We also restrict our focus to equilibria in which each player’s strategy is symmetric.

3 Analysis

While the DD game has a unique SSPE in payoffs (Eraslan, 2002), the DP game has a contin-

uum of stationary equilibria that involve different payoffs. For a brief illustration, we start with a

particular case in which a simple majority rule is applied, and δ = 1. Perhaps the most intuitive

stationary equilibrium involves allocation of the whole penalty to only one member.

Proposition 2 (Utmost Inequality equilibrium). One SSPE can be described by the following strat-

egy profile:

• Member i, being recognized as a proposer in round t, picks member j 6= i at random and pro-

poses p j =−1 and p− j = 0.

• A member offered to have no penalty accepts the proposal and rejects it otherwise.

In this equilibrium, the proposal made by the first round proposer is approved.

Proof: See Appendix A.

We call this equilibrium the utmost inequality (UI) equilibrium because only one member will be

given the total burden of the penalty. Another equilibrium is the most egalitarian among stationary

subgame perfect equilibria.

6It is worth noting that a stationary equilibrium where everyone rejects every proposal forever is not subgame perfect:
If one is offered a loss smaller than the ex-ante expected loss moving on to the next round, then deviating from the current
“reject everything" strategy is at least weakly beneficial. This stationary equilibrium, however, is more relevant in the
cases with δ< 1.
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Proposition 3 (Most Egalitarian equilibrium). One SSPE can be described by the following strategy

profile:

• The member recognized as the proposer in round t picks n−1
2 MWC members at random. She

proposes pi =−1/n if i ∈ MWC, s−i =− n+1
n(n−1) if i 6∈ MWC and keeps 0 for herself.

• If member i is offered x ≥−1/n, he accepts the proposal and rejects it otherwise.

In this equilibrium, the proposal made by the first round proposer is approved.

Proof: See Appendix A.

In this most egalitarian (ME) equilibrium, the distribution of the penalty is spread across mem-

bers. Note that the ME equilibrium does not involve an equal split of the penalty: The allocation in

the ME equilibrium is the most egalitarian in the sense that the largest share of the penalty that

one member would take is the smallest among all possible stationary equilibria.

Table 1 juxtaposes how the theoretical predictions of the DP game are different from those of the

DD game under a simple majority rule when the discount factor is 1.

Table 1: Comparisons: Simple Majority, δ= 1

Game
Proposer MWC non-MWC Proposer

Share Share Share Advantage†

DD 1− n−1
2n

1
n 0 n−1

2n
DP (UI) 0 0 1 (one of them) 0
DP (ME) 0 1

n
n+1

n(n−1)
1
n

†: Proposer advantage is a difference between the payoff of the pro-
poser and that of the MWC member.

Indeed, there are other stationary subgame perfect equilibria that take an intermediate form

between the UI equilibrium and the ME equilibrium. For example, in one equilibrium, the proposer

picks n−1
2 members randomly and offers − 2

n−1 to each. The other n−1
2 members who were offered

no penalty will accept the proposal. Proposition 4 and Corollary 1 describe all possible stationary

subgame perfect equilibria in the DP game for any δ≥ 1.

Proposition 4. Assume q < n. Every SSPE can be described by the following strategy profile:

• Member i, being recognized as the proposer in round t, selects q−1 MWC members at random.

She proposes p j ≥ −δ/n if j ∈ MWC, proposes p j ≤ 0 if j ∈ OTH ≡ N \ MWC \ {i} such that∑
k∈OTH pk =−1−∑

j∈MWC p j, and keeps zero for herself.

• If member i is offered x ≥−δ/n, he accepts the proposal and rejects it otherwise.

In this equilibrium, the proposal made by the first round proposer is approved.

Proof: See Appendix A.
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Corollary 1. Assume q = n. If δ ≥ n
n−1 , proposer i still keeps zero for herself and offers p j ≥ −δ/n

for all j 6= i. If δ< n
n−1 , the unique stationary equilibrium is to offer −δ/n to every member and keep

(n−1)δ−n
n .

Proof: See Appendix A.

There are at least three points worth mentioning. First, the theoretical predictions of the DP

game, although the structure of the game can be understood as a mirror image of the DD game, are

not the inverse of the theoretical predictions of the DD game except for the particular case where

n = 3 and δ = 1.7 By construction, the ME equilibrium corresponds to the SSPE in the DD game:

The members in the MWC are offered the smallest amount of surplus that is just sufficient for them

to accept the offer in the DD game, while they are offered the largest amount of losses that is just

acceptable for them to agree to the offer in the DP game. We require attention to this result because

one of the primary reasons that previous studies have paid little attention to the DP game is perhaps

the naïve conjecture that the theoretical results are symmetrical.

Second, while the SSPE in the DD game is unique in payoffs, the ME equilibrium in the DP game,

the mirror image of the equilibrium in the DD game, has many fragile aspects. The equilibrium is

not strict in the sense that players will vote for the proposal with probability 1 when indifferent

between accepting and rejecting it. Even if the proposer decides to offer a loss to the MWC members

that is “ε-less" than the continuation value, each player’s “ε" may not be common knowledge, so

choosing the ME strategy may not guarantee approval of the proposal. The cognitive cost for each

player to coordinate on the ME equilibrium is also high. It requires each player to exactly calcu-

late the continuation value given that other members also use the same stationary strategy, which

varies by the voting rule, the size of the group, and the discount factor. In other words, the ME

equilibrium is less robust given strategic uncertainty. Another notable observation is that when δ is

sufficiently large, the continuation value, the amount offered to the MWC members, can be smaller

than the ex-ante payoff of the other members.8 That is, the MWC members can be treated worse

than other members in the ME equilibrium. In such a situation, the definition of the “minimum"

winning coalition itself becomes fragile, as all the members receive an offer more attractive than

their continuation value. Thus, the ME equilibrium, although it corresponds more directly to the

unique equilibrium outcome in the DD game, is fragile in that it requires a stronger assumption

about voting behavior and a higher coordination cost.

Third, the existence of multiple stationary subgame perfect equilibria gives rise to the equilib-

rium selection issue.9 Both the UI equilibrium and the ME equilibrium are optimal from a utilitar-

ian perspective. Given the same level of social efficiency, which strategy would the proposer choose?

On the one hand, the proposer may want to choose the most egalitarian strategy because the ME

7When n = 3 and δ= 1, the ME equilibrium allocation of the DP game, where the proposer keeps 0, a coalition member
receives −1/3, and the other member received −2/3, looks like a mirror image of the SSPE allocation of the DD game, where
the proposer keeps 2/3, a coalition member receives 1/3, and the other member receives nothing.

8For example, consider the ME equilibrium when n = 5, q = 3, and δ= 1.5. Each of the MWC members is offered −0.3,
while each of the other members is offered −0.2 on average.

9We discuss in Section 6.4. more equilibrium selection arguments including the quantal response equilibrium and the
trembling hand perfection, and some behavioral arguments.

9



equilibrium is better from a Rawlsian perspective. Moreover, the ME equilibrium is consistent with

a naïve conjecture prevailed in the literature, so we set our null hypotheses based on the ME equi-

librium. On the other hand, there may be an incentive for her to choose the most unequal strategy.

If the proposer is uncertain about how often other players will mistakenly make a wrong decision,

she may want to secure strictly more votes than q so that her payoff is robust to the other members’

mistakes. For this purpose, she may want to allocate the penalty to the smallest number of players.

Taking inequity aversion (Fehr and Schmidt, 1999) into account does not help us refine the set of

equilibria.10 From the perspective of the members who are offered a zero penalty in the UI equi-

librium, although accepting the offer brings the largest disutility from the advantageous inequity

perspective, it involves the smallest disutility from the disadvantageous inequity perspective.11 Our

laboratory experiments will answer this open question.

4 Experimental Design and Procedure

4.1 Design and Hypotheses

We tailor laboratory experiments to examine how people behave to determine the distribution

of losses, especially in terms of the choices of the winning coalition. The major treatment variables

address the group size (n ∈ {3,5}) and the voting rule (q = (n+1)/2 or majority; q = n or unanimity).

We set the appreciation factor δ to 1.2. Table 2 presents our 2×2 treatment design. Each of those

treatments is respectively called M3 (majority rule for a group of three), M5 (majority + five), U3

(unanimity rule for a group of three), and U5 (unanimity + five). M3 and M5 are collectively called

the majority treatments, and U3 and U5 are called the unanimity treatments.

Table 2: Experimental Treatments

Voting Rule

Majority Unanimity

Group Size
3 M3 U3
5 M5 U5

Figure 2 illustrates the theoretical predictions, which can be categorized as two qualitatively dif-

10Similarly, taking loss aversion (Kahneman and Tversky, 2013) into account does not significantly help to further refine
the set of equilibria, as we do not know the reference point of the players. If the reference point is set to zero, the “gain
domain" is never achieved, so loss aversion does not play a role. If the reference point is set to an equally split loss, it
implies that the reference point changes over time, which has little support. If the reference point is set to the ex-ante
expected utility in the first round, there is still a continuum of equilibria, and the set could be larger than what we have,
depending on the loss aversion parameters. Loss aversion could encourage the coalition members (who fear the possibility
of losing more in the next round) to accept the less attractive offer now.

11Montero (2007) showed that in the DD game, inequity aversion might increase the proposer’s share in equilibrium, and
the underlying intuition follows the same logic. From the perspective of the coalition member, the marginal disutility from
the increased difference between the proposer’s share and what he is offered may be smaller than the marginal utility from
the decreased difference between what he is offered and what other non-MWC members receive (zero).
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ferent types. The first type of prediction (Hypotheses 1 and 2) includes those that do not depend on

equilibrium selection. The second type (Hypothesis 3) is those that vary depending on which equilib-

rium is selected. First, we will discuss the first type of predictions and derive a set of experimental

hypotheses.

The followings are true regardless of which equilibrium is played in all treatments. First, it is

predicted that the offers are approved immediately so that full utilitarian efficiency is achieved.

Second, the agreed-upon share of the proposer is smaller than the agreed-upon shares of the non-

proposers.

Hypothesis 1 (Full Efficiency and Proposer Advantage).

(a) The first round proposals are approved in all treatments.

(b) The proposer receives the smallest loss in all treatments.

The second set of hypotheses is about the distribution of loss. The agreed-upon shares of the

proposer may vary across different group sizes depending on the voting rule. First, for a given

group size, the agreed-upon share of the proposer is larger under the unanimity rule than under the

majority rule. Second, given the majority rule, the agreed-upon share of the proposer is always zero

regardless of the group size. Third, given the unanimity rule, the agreed-upon share of the proposer

is larger when the group size is smaller. Accordingly, the non-proposers are offered a larger share of

the loss when the group size is smaller.

Hypothesis 2 (Share of Loss).

(a) The proposer keeps a smaller loss in the majority treatment than in the unanimity treatment.

(b) In the majority treatment, the proposer keeps zero regardless of the group size.

(c) The proposer keeps a larger share of the loss in the U3 treatment than in the U5 treatment.

(d) The non-proposers are offered a larger share of the loss in the U3 treatment than in the U5

treatment.

We move on to discuss the second set of predictions that are dependent upon the equilibrium

selection. First, the offers to the non-proposers vary based on the choice of an equilibrium. Espe-

cially in the majority treatment, players who are not the proposer are offered a share of the loss

ranging from zero to the full penalty. Second, under the majority rule, the possible variations of

what the MWC can be offered varies by the size of the group, but such theoretical variations are

not allowed under the unanimity rule. Given that our primary objective is to observe behaviors in

the lab and falsify/select some equilibria, we shall derive our next set of null hypotheses based on

the assumption that the ME equilibrium is played in the lab. We do not mean that we are selecting

the ME equilibrium as the most plausible candidate. It plays a role as the benchmark for clearly

stating the experimental hypotheses. There are two reasons why we take the ME equilibrium as a

benchmark. First, it is the closest to the mirror image of the unique stationary equilibrium of the

DD game. Second, it is the unique stationary equilibrium prediction under the unanimity rule (i.e.,

when q = n). By continuity, it is natural to take the same equilibrium when q < n. In Figure 2, the

upper bound of the MWC share of the loss and the lower bound of the non-MWC share constitute

the ME equilibrium.

11
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Figure 2: Hypotheses from theoretical predictions

Hypothesis 3 (Winning Coalition and Non-proposers’ Shares under Majority).

In the majority treatments:

(a) The number of non-proposers who accept the proposal is (n−1)/2. That is, one member rejects

the proposal in the M3 treatment, and two members reject it in M5.

(b) The agreed-upon share of the non-proposers who accept the proposal is larger than that of the

proposer.

(c) The agreed-upon share of the non-proposers who accept the proposal is larger in M3 than in

M5.

As we have emphasized already, the predictions summarized in Hypothesis 3 do not hold for the

UI equilibrium. While the ME equilibrium predicts that two members reject the proposal in the

M5 treatment (Hypothesis 3 (a)), the UI equilibrium predicts that only one member will reject the

proposal. Contrary to Hypothesis 3 (b), the shares of the MWC members are the same as that of the

proposer in the UI equilibrium. In addition, the share of the accepting non-proposers is the same as

zero in both majority treatments. Thus, testing these hypotheses using the observed behaviors in

the lab would enable us to justify one of the stationary equilibria. Given that the observed behaviors

can be rationalized, we could conclude which equilibrium will be more likely to be selected.

4.2 Experimental Procedure

All the experimental sessions were conducted in English at the experimental laboratory of the

Hong Kong University of Science and Technology in November 2018. The participants were drawn

from the undergraduate population of the university. Four sessions were conducted for each treat-

ment. A total of 271 subjects participated in one of the 16 (= 4×4) sessions. Python and its appli-

cation Pygame were used to computerize the games and to establish a server-client platform. After
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the subjects were randomly assigned to separate desks equipped with a computer interface, the in-

structor read the instructions for the experiment out loud. Subjects were also asked to carefully

read the instructions, and then they took a quiz to demonstrate their understanding of the experi-

ment. Those who failed the quiz were asked to reread the instructions and to retake the quiz until

they passed. An instructor answered all questions until every participant thoroughly understood

the experiment. Whenever a question was raised, the instructor repeated the question out loud and

answered it so that every subject was equally informed.

We conducted many-person divide-the-penalty experiments. In structure, the game is a mirror

image of a typical many-person divide-the-dollar game, and it proceeds as follows: At the beginning

of each bargaining period (called a ‘day’ in the experiment), each bargainer is endowed with 400

tokens, a token being the currency unit used in the laboratory. In each bargaining round (called

a ‘meeting’ in the experiment) one randomly selected player proposes a division of −50∗n tokens,

where n is the number of players in each group. The proposal is immediately voted on. If the

proposal gets q or more votes, the bargaining period ends, and the subjects’ endowment is reduced

based on the approved proposal. Otherwise, the bargaining proceeds to the second round, where

the penalty increases by 20 percent, that is, in the second round, the players must determine an

allocation of −60∗n tokens. A new proposer is randomly selected, and the new proposal is voted on.

This process is repeated indefinitely until a proposal is passed.

Since the subjects were informed that they would eventually earn at least a show-up payment of

HKD 30 (≈ USD 4), we implicitly limited the largest possible losses out of the equilibrium. As long

as the largest out-of-equilibrium loss is sufficiently large, in particular, if it is larger than δ∗50∗n,

no stationary equilibrium is restricted or ruled out. Thus, the theoretical analysis still serves as a

benchmark for our experiments.12

Subjects in the U3 and M3 treatments participated in 12 bargaining days and those who were

in the U5 and M5 treatments participated in 15 bargaining days.13 We used the random matching

protocol and a between-subject design. Although new groups were formed every bargaining day,

there was no physical reallocation of the subjects, and they only knew that they were randomly

shuffled. They were not allowed to communicate with other participants during the experiment,

nor allowed to look around the room. It was also emphasized to participants that their allocation

decisions would be anonymous. The experimental instructions for the M5 treatment are presented

in Appendix B.

At the end of the experiment, the subjects were asked to fill out a survey asking their gender and

age as well as their degree of familiarity with the experiment. The subjects’ risk preferences were

12In addition, in a few cases under the unanimity treatment, the bargaining meetings went beyond the point where the
total value of the loss exceeded the sum of the group members’ show-up payments, but there was no noticeable discrepancy
around the threshold meeting. Those days were not selected as a payment day, so all subjects were paid strictly more than
their show-up payment.

13The number of bargaining days varies to make sure that every participant plays the proposer role at least twice. If
there are 12 bargaining days in treatments with n = 5, each subject could be recognized as a proposer 2.4 times on average,
which is not large enough to observe variations by individual. We did not use the strategy method (i.e., asking all subjects
to submit their proposals, knowing that one of them would be randomly selected for voting afterward) because we were
unsure whether the strategy method, in this particular context of the DP game, would work the same as the standard
method. Brandts and Charness (2011) report that 15 out of 29 existing comparisons between the two methods show either
significant differences or some mixed evidence.
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also measured by the dynamically optimized sequential experimentation (DOSE) method (Wang et

al., 2010). The number of tokens that each subject earned at one randomly selected period (Azrieli

et al., 2018) was converted into HKD at the rate of 2 tokens = 1 HKD. The average payment was

HKD 202.7 (≈ USD 26), including the HKD 30 guaranteed show-up fee. The payments were made

in private, and subjects were asked not to share their payment information. Each session lasted 1.5

hours on average.

5 Experimental Results

Before presenting the test results for the hypotheses posed in the previous section individually,

we provide a summary of the main findings as follows:

1. In the majority treatments, experimental evidence clearly rejects the ME equilibrium and

supports the UI equilibrium.

2. In the unanimity treatments, the allocations in the approved proposals are consistent with

theoretical predictions.

3. Most of the proposals are approved in the first round.

4. In the majority treatments, the proposers form the winning coalition to minimize their losses.

5. Risk preferences, familiarity with the game, and comprehensibility were not significant factors

affecting the outcomes of the experiments. Females tend to take a slightly greater share of the

loss than males, and older subjects tend to accept the proposal.
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Figure 3: Proposed Shares, Majority
Approved proposals in the last 5 Days

Figure 3, which juxtaposes the equilibrium predictions for the majority treatments and the ob-

served average allocation of the loss from the approved proposals in the last five days, represents
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the main finding. The share of loss in the UI equilibrium is marked with ¦, and that in the ME equi-

librium is marked with ×. In the M3 treatment, it is clear that one (non-MWC) member is offered

almost the total loss, and such allocation is distinctively different from the ME equilibrium predic-

tion (Wilcoxon signed-rank test, p < 0.001.)14 We observe similar behavior in the M5 treatment. The

proposer keeps nothing for herself, which is consistent with the theoretical prediction (Hypothesis

2 (b)), offers at least two members almost nothing, and allocates almost all of the loss to at least

one of the remaining two members. In the sense that the loss is exclusively allocated to the non-

MWC member(s), the observations from both the M3 and M5 treatments reject the null hypothesis

(Hypothesis 3) based on the ME equilibrium, while supporting the UI equilibrium. Specifically, we

reject Hypothesis 3 (b), as the average share of the MWC members is at most only marginally dif-

ferent from the share of the proposer in Majority treatments (Mann-Whitney test, p = 0.1292 in M3

and p = 0.0814 in M5). In the M5 treatment, roughly speaking, a half of the approved proposals are

similar to (0,0,0,0,1) up to permutation, as the greatest share of the loss is allocated to one mem-

ber, and the other half are similar to (0,0,0,0.5,0.5) up to permutation, as the greatest share of the

loss is distributed to two members. Thus, the average non-MWC share of the loss is approximately

0.66, which rejects Hypotheses 3 (a) and (c). In-group favoritism is one empirical similarity between

our experimental observations and those in previous experiments on the DD game (Fréchette et al.,

2005). Gamson’s Law, a popular empirical model that supports an equal split within a coalition,

is often interpreted as evidence of in-group favoritism, which might lead to the proposer’s partial

rent extraction as opposed to the full rent extraction predicted by the Baron-Ferejohn model. In the

sense that in the UI equilibrium, the proposer treats the MWC members most favorably, our obser-

vations might be consistent with the empirical interpretation of in-group favoritism. However, we

are cautious in this interpretation because there are several other post-experiment rationalizations.
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14All aggregate data reported and used for non-parametric statistical testing are from the last 5 days with session-level
data as independent observations. Using data from the last 5 days allows us to give more weight to converged behavior.
However, the qualitative aspects of our findings remain unchanged if we use, for example, data from the last 8 or 10 days.
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In unanimity treatments, the allocation in the approved proposals is weakly consistent with the

unique SSPE predictions. Figure 4 shows the theoretical predictions and the average share of the

loss. On average, the proposers keep a share of the loss that is larger than the equilibrium level

in both the U3 and U5 treatments and offer a smaller share of the loss to non-proposers compared

with the equilibrium level. The observation that the proposer keeps a larger loss in the unanimity

treatment than in the majority treatment is consistent with Hypothesis 2 (a). Although statistically

significant only in the U5 treatment, the proposers keep a smaller share of the loss than what the

other members are offered in both the U3 and U5 treatments (Mann-Whitney tests, p = 0.2482 in

U3 and p = 0.0209 in U5.) Together with the majority treatments, we find that the observations are

consistent with Hypothesis 1 (b).

Figure 5 shows the average number of meetings by day. In the majority treatments, nearly all

of the proposals are approved in the first meeting, which is consistent with a theoretical prediction

(Hypothesis 1 (a)). Even in the unanimity treatments, although the first three days are somewhat

varied (Figure 5 (a)), the average number of meetings of the last five days is fewer than 1.5 (Figure

5 (b)). Efficiency loss under a unanimity rule is one of the common findings in the multilateral

bargaining experiments, as in Kagel et al. (2010), Miller and Vanberg (2013), and Kim (2018), to

name a few.
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Figure 5: Average Number of Meetings

Figure 6 shows the average proportion of subjects who accept a given proposal. In the M3 treat-

ment, for which all the stationary equilibria make the same prediction about the size of the winning

coalition, two-thirds of the subjects, or two out of the three members, accept the proposal, which

is consistent with the theoretical prediction. However, in the M5 treatment, nearly 80% of the

subjects, that is, approximately four out of the five members, accept the proposal, which explicitly

rejects Hypothesis 3 (a) that there are two members who reject the proposal (Wilconxon signed-rank

test, p < 0.001).

Table 3 reports some regression results to examine whether individual characteristics have any

impact on the outcomes of the experiments. The regressions reported in Table 3 use only proposals

that were approved in the first round.15 To summarize, we did not find any strong impact of indi-

vidual characteristics. The dependent variable in the first three regressions is the proposer’s own

15Given that the dependent variable is either the vote itself or the proposer’s share—both of which are probably different
in approved versus unapproved proposals—there are likely to be issues of selection and endogeneity, which seem not to be
addressed.
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Figure 6: Average Acceptance Rate

Table 3: Individual Characteristics

Dep.Var. Proposer’s Own Share Non-proposer’s Vote StDev(Proposal)
(1) (2) (3) (4: LPM) (5: Logit) (6)

M5 0.0170 0.0174∗ 0.0159 −0.0834∗∗∗ −1.6503∗∗∗ 0.3182
(0.0103) (0.0100) (0.0100) (0.0222) (0.4879) (4.6753)

U3 0.2768∗∗∗ 0.2720∗∗∗ 0.2720∗∗∗ −74.1292∗∗∗
(0.0116) (0.0091) (0.0092) (1.9761)

U5 0.1522∗∗∗ 0.1523∗∗∗ 0.1503∗∗∗ −76.7516∗∗∗
(0.0073) (0.0071) (0.0073) (1.7611)

Share −0.9659∗∗∗ −7.7228∗∗∗
(0.0249) (0.7866)

StDev 0.0006 0.0077
(0.0004) (0.0047)

Day −0.0035∗∗∗ −0.0039∗∗∗ −0.0039∗∗∗ −0.0019 −0.0186 1.3230∗∗∗
(0.0008) (0.0008) (0.0008) (0.0022) (0.0263) (0.2992)

Female 0.0166∗∗ 0.0152∗∗ −0.0171 −0.2057 −8.8552∗∗∗
(0.0067) (0.0068) (0.0273) (0.3802) (2.6477)

Age −0.0063 0.0535∗∗ 0.7272∗ 3.6051
(0.0088) (0.0262) (0.3712) (4.0365)

RiskAversion 0.0020 0.0066 0.0894 −0.4723
(0.0018) (0.0063) (0.0802) (0.7085)

Familiarity −0.0001 −0.0556 −0.9365 0.0337
(0.0072) (0.0347) (0.4394) (2.8944)

QuizFailed −0.0050 0.0209 0.4068 0.6037
(0.0071) (0.0305) (0.4615) (2.6803)

_Cons. 0.0478∗∗∗ 0.0425∗∗∗ 0.0440∗∗∗ 0.9039∗∗∗ 3.0777∗∗∗ 73.0042∗∗∗
(0.0108) (0.0099) (0.0150) (0.0555) (0.7724) (5.2324)

R2 0.7058 0.7392 0.7434 0.6875 0.6360 0.7353
N 781 735 728 1239 1239 728

Only approved proposals in Meeting 1 are considered. In parentheses are standard errors cluster-adjusted at the individual
level. *, **, and *** indicate statistical significance at the 10% level, 5% level, and 1% level, respectively.

17



share, and the dependent variable in the last two regressions is the non-proposer’s voting decision.

Some explanatory variables are from the post-experiment survey. We collected self-reported gender

and age. The subjects’ risk preferences were measured by at most two survey questions, where the

second question is dynamically adjusted based on the answer to the first question, which asks the

subject to compare a simple lottery with a certain payment. This method enables us to categorize

a subject into one of seven types of risk preference. Familiarity is a subjective assessment of how

familiar the subject was with the underlying game in the experiment. QuizFailed is the dummy

variable indicating whether the subject had to retake the quiz after failing to pass, which would

serve as a proxy of the comprehensibility of the experiment. As control variables, we include treat-

ment dummies and a time trend (labeled as Day) for regressions on the proposer’s own share. We

also include the offered share and the standard deviation of the proposal for regressions on the non-

proposer’s voting decision. The standard deviation of the proposal is added to examine whether the

shape of the proposal matters in the subject’s vote.16 In all regressions, M3 is set as the baseline

treatment. We focus on the approved proposals in meeting 1 only. Since the individual choices are

positively correlated across days, standard errors are cluster-adjusted at the individual level.17

Risk preference, familiarity, and the comprehensibility of the experiment did not have any sig-

nificant impact on the proposer’s decisions or the non-proposer’s voting decisions. We found that

females allocate slightly more (approximately 1.52% to 1.66%, varying by model specification) losses

to themselves. Related to this observation, we also found that female proposers allocate the losses

in a more egalitarian way: The standard deviation of the proposals offered by female proposers

is, on average, 8.85 tokens smaller. Older subjects tended to accept the proposals more often, but

the statistical significance is weak and the age variance is not huge, as in many typical laboratory

experiments.

In summary, the observed patterns of our experimental data are primarily consistent with the

theoretical predictions based on the UI equilibrium, and individual characteristics do not lead to

noticeably different outcomes of the experiments.

6 Discussions

In this section, we discuss some theoretical deviations to which we paid less attention.

6.1 Incentive Compatibility of Participation

On a gain domain, the ex-ante expected payoff in the SSPE is 1/n. Thus, participating in bargain-

ing is always incentive compatible. Therefore, adding a pre-stage for agents to make a participation

decision does not lead to any theoretical differences. This pre-stage decision, however, matters in

16For example, consider two proposals (0.2, 0, 0.8) and (0.2, 0.4, 0.4). For member 1, these two proposals offer the same
amount of losses, 0.2, but the distribution of the proposal varies. The standard deviation of the proposal will capture the
impact of the distribution of the proposal if the subjects’ voting decision is indeed affected by it.

17The standard errors cluster-adjusted at the session level were overall smaller (that is, less conservative) than those at
the individual level, so more estimated coefficients appear to be significant at the session level. Unless a subject randomly
changes the strategies over time, the individual choices are more correlated than the whole observations at the session
level. Here we report more conservative standard errors.
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multilateral bargaining over the division of losses: If the members know that they are about to di-

vide losses, and the ex-ante expected loss in any stationary equilibria is −1/n, simply quitting the

bargaining process would undoubtedly be better. We implicitly assume here that a specific form of

enforcement for participation exists. Dealing with inevitable issues, such as an allocation of the

tax burden to different socioeconomic groups and the international agreement on greenhouse gas

emission abatement, are relevant in the sense that members cannot easily choose to opt out the

country or the planet. Even if the issue is avoidable, there are many ways to implement the full

participation of members. For example, collectively agreeing that all the losses go to some of those

who do not participate in bargaining would prevent every member from doing so: Given that other

members agree on this protocol, one would receive the entire loss by not participating. In this case,

agreeing to participate makes one better off.

6.2 Voting Rules Other Than Unanimity

Another issue may be the choice of voting rules other than unanimity. Since the UI equilibrium

involves an extreme allocation of the loss to a few members, some risk-averse agents may demand

nothing but unanimity. However, unanimity is not suitable for every situation. Implementation of

a new policy would be one important example where a majority rule is applied. For example, the

Tax Cuts and Jobs Act of 2017 in the United States was passed by the Senate on December 20,

2017, in a 51–48 vote. Assume for simplicity that a government wants to reform tax policy to cope

with a budget deficit, and there are only three types of citizens with equal populations: the rich, the

poor, and the middle-class. In this case, victimizing one of the three distinct groups by allocating

the tax burden to that group may be implemented, but we do not claim that we should change the

voting rule to unanimity due to that possibility. In addition, although the stability of the voting rule

is beyond our concerns in this paper, studies including Barbera and Jackson (2004) characterize a

self-stable majority voting rule with the persuasive argument that the general trend is away from

unanimity. Moreover, as our experimental evidence and many other similar experimental studies

show, a unanimity rule accompanies efficiency loss due to delay.18 Risk-neutral agents who negotiate

over a loss repeatedly may want to avoid unanimity because it might eventually be harmful to every

agent.

6.3 Bargaining When Delay is Socially Desirable

We assume δ = βg ≥ 1 so that no one has an incentive to postpone their bargaining decision.

However, in situations where δ < 1, that is, β (the subjective discount factor of a future payoff) is

sufficiently smaller than 1/g (the inverse of the growth rate of the penalty), the Pareto optimal allo-

cation is for everyone to reject any form of proposal for any round t so that everyone can eventually

have zero losses. In this situation, still, the stationary subgame perfect equilibria can be sustained

as long as we maintain the assumptions that each individual is self-interested and that subgame

perfect strategies are considered. For example, when a proposal of allocating all the losses to one

18Bouton et al. (2018) discourage use of unanimity rule for a different reason, by showing that unanimity is Pareto-inferior
to majority rules with veto power.
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member is put to the vote, a member who receives an offer of zero losses would accept the proposal

because the continuation value of the next bargaining round is at least weakly smaller than the zero

losses. If the qualified number of votes for approval is less than n, the proposal would be accepted

immediately. Similar to the public goods game situation, the Pareto-optimal collective behavior is

distinctly different from the equilibrium behavior.

We have paid less attention to the case with δ< 1 for several reasons. First, we try to make the

structure of the DP game as similar to that of the DD game as possible. In the DD game, delay

is discouraged, as it is in the DP game with δ ≥ 1. Second, the experimental evidence may be con-

founded because each subject’s internalized social norms may be heterogeneous and unobservable

(Kimbrough and Vostroknutov, 2016). If the primary purpose of this study was to observe how sub-

jects behave differently when the Pareto-optimal behavior and the equilibrium behavior diverge, a

typical linear public goods game would have been more pertinent. Third, since it is unusual to have

losses that will disappear as time passes if nothing is done, we claim that δ < 1 is less relevant to

real-life situations.

6.4 Equilibrium Selection

Our primary purposes are to convince that the DP game is theoretically different from the DD

game and to report that the experimental observations are quite distinct. However, it is worth

discussing what the proper refinement of the equilibrium of giving zero losses to all winning coalition

members is. Indeed there are many justifications of selecting the UI equilibrium.

Although we did not explicitly mention the quantal response equilibrium (QRE, McKelvey and

Palfrey, 1995), one argument about why the ME equilibrium is fragile goes along with the assump-

tion of QRE. If winning coalition members could sometimes mistakenly reject the proposal, then

the proposer needs to minimize the risk associated with such mistakes by providing more favorable

offers to them. QRE has a property that the probability of a mistake depends on the cardinal payoff

that a player gives up, so it renders the proper incentives to choose a particular proposal of which

approval depends least on the critical calculation of the indifferent offer.

While the idea of QRE can address why each of winning coalition members could have the least

losses, trembling hand perfection (THP, Selten, 1975) could explain why the size of the winning

coalition could be lager than the minimum when it is possible. A possibility of nonproposers’ mis-

takes will make the proposer demand a larger coalition. When n = 5, for example, among several

stationary equilibria allocating zero losses to the winning coalition members, (0,0,0,−x,−1+x), THP

will select the most uneven allocation, x = 0, because this is the way to minimize the risk of rejection

due to mistakes. This argument is consistent with our experimental findings in M5.

If we seek behavioral arguments, in-group favoritism can explain the selection of the UI equi-

librium as well. From the perspective of the proposer who has an epsilon concern on in-group fa-

voritism, allocating zero to the minimum winning coalition members is a corner solution, regardless

of how negligible the in-group favoritism is. Experimental evidence, including Efferson et al. (2008)

suggest that in-group favoritism can be evolved with arbitrary and initially meaningless markers.

Although in our experimental setting are no clear distinctions between in-group and out-group, a

sense that some members must vote “yes" for the proposer might be sufficient to form a notion of
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in-group.

Lastly, if subjects are concerned about utilitarian social welfare and every subject has a concave

utility on the losses, then the UI equilibrium is likely to be selected. If the marginal disutility of

a loss is diminishing as we typically characterize loss-averse utility functions, the disutility of one

person’s significant loss is smaller than the sum of disutilities of several persons’ small losses. Then,

selecting the UI equilibrium leads to the largest utilitarian social welfare. Although we believe

those are plausible arguments, we admit that our experiments are not suitable to determine which

arguments are more plausible than the others.

7 Concluding Remarks

We examine the divide-the-penalty (DP) game to better understand multilateral bargaining

when agents are dealing with the distribution of a loss. Although the literature on multilateral

bargaining is substantial, both theoretically and experimentally, multilateral bargaining over the

division of losses has received less attention. It may perhaps be that a naïve conjecture prevails

that the theoretical properties of the DP game are a mirror image to those of the divide-the-dollar

(DD) game due to their structural resemblance. We theoretically show that there are fundamen-

tal differences. The stationary subgame perfect equilibria in the DP game are no longer unique in

payoffs, unlike in the DD game. One extreme among the continuum of stationary subgame perfect

equilibria, which we call the most egalitarian (ME) equilibrium, is characterized similarly to the

unique SSPE in the DD game. The other extreme equilibrium, which we call the utmost inequality

(UI) equilibrium, predicts that the proposer concentrates the penalty on a few members. Although

the ME equilibrium shares many properties with the SSPE in the DD game, experimental evidence

is primarily consistent with the predictions based on the UI equilibrium.

Our results have at least two implications. First, multilateral bargaining over the division of

losses should not be understood through the lens of the typical DD game because both theoretical

properties and experimental evidence deviate from those of the DD game. Second, many interest-

ing studies in multilateral bargaining on a gain domain are worth revisiting. Bargaining among

asymmetric players, dynamic multilateral bargaining, the allocation of public bads produced for the

agents’ private sake, and the changes of the bargaining protocols including competitions for recog-

nition are some, but not exhaustive, subjects that can extend this study. The direction of research

should distinguish simple behavioral/psychological framing effects from more fundamental differ-

ences.
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A Appendix - Proofs

Proof of Proposition 1: This is analogous to the proof of Proposition 2 in Baron and Ferejohn

(1989). Fix a strategy profile with the following statements.

1. For all i ∈ N and t ∈N+, if i is recognized in t, i proposes pit = p, and all individuals vote for p.

2. If p is rejected under the q−quota rule in t, j ∈ N recognized in t+1 proposes p j(t+1) = p.

3. If, in any period t, the chosen proposer i offers an alternative other than p, say pit = y 6= p,

then

(3.a) a set M(y) of at least q individuals rejects y;

(3.b) the period t+1 proposer, say j, offers an allocation z such that zi =−1 and all individuals

in M(y) vote for z against y.

4. If, in (3.b), the period t+ 1 the proposer j offers some alternative y′ 6= z, repeat (3) with y′

replacing y and j replacing i.

Statement 1 specifies what happens along the equilibrium path. Statements 2, 3, and 4 describe

off-the-equilibrium path behavior. That is, those jointly specify the consequences of any deviation

from the behavior specified in 1.

For notational simplicity, relabel players in a way that player n is the period t proposer who offers

pnt = y 6= p where pn < 0, and yj ≤ yj+1 for all j = 1, . . . ,n−2. If pn = 0, there is no way for player n

to be better off, so pn < 0 is reasonable without loss of generality. It is trivial that yn >−1, because

player n does not have an incentive to deviate from p to keep the all the loss from the beginning.

Under (3.a) and (3.b), players in M(y) reject y, and the next proposer offers an alternative proposal

z with zn = −1 such that M(y) approves. Such a distribution z for which (3.a) and (3.b) describe

best response behavior to y. We divide situations into two cases: Assume first that the proposer

conditional on y being rejected is some individual j 6= n. Let M∗(y) = {1, . . . , q}, let Y ∗ = ∑
i∈M∗(y) yi,

and let m∗ = |{i ∈ M∗(y) : yi < 0}|. By construction of M∗(y), Y ∗ < 0 and m∗ > 0. Y ∗ = 0 (and hence

m∗ = 0) implies that pn =−1 and thus p = z. If yi < 0, then z is strictly preferred because δzi = 0> yi.

If yi = 0, then z is as preferred as y because the payoff of i is unaffected. If z is rejected, then under

strategy statement 4, it will simply become the next proposal and so on.

Now we assume that player n is again recognized as a proposer in the next period. Our goal is

to show that player n cannot benefit from proposing any allocation other than p. In such a case,

(3.b) specifies that player n proposes the allocation z, which “punishes” herself for her initial devi-

ation. Apparently, she should fail to do this and instead propose some y′ 6= z, strategy statement 4

requires a q-majority to reject y′ and the period t+2 agenda-setter to offer z, which then passes.

Therefore, the only circumstance under which the period t proposer n can avoid having z proposed

and accepted in response to an initial deviation to y 6= p is when player n is chosen in every period

as the proposer. Such probability (1/n)t approaches zero, and the size of the penalty for the deviation

is non-decreasing. Therefore, player n is not better off by deviating than she is proposing p as re-

quired, with hoping that she could eventually attain a higher payoff than proposing p and accepting

pn.
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Proof of Proposition 2: Suppose for every round players have an identical stationary strategy de-

scribed above. A member who received an offer of zero penalties this round will accept the proposal

if moving on to the next round does not make him better off. In the next round, with probability

(n−1)/n, he will be a proposer or a member who receives no penalty. With probability 1/n, he will be

randomly selected by a proposer in that round and take all the penalty. Certainly, the utility from

the current offer (zero) is strictly larger than the continuation value (−δt−1), he will accept the offer.

The proposer, who keeps no penalty for herself, cannot be better off by any other proposal. Thus,

everyone would not be better off by deviating from this stationary strategy profile for any round.

Proof of Proposition 3: Consider player i who received an offer of −1/n. If the game moves on to

the next round, his expected payoff is

1
n

0− n−1
2n

1
n
− n−1

2n
n+1

n(n−1)
=−n−1

2n2 − n+1
2n2 =−

(
2n
2n2

)
=−1

n
.

Therefore, he will not be better off by rejecting the current offer. From the perspective of the current

proposer, there is no strategy to make her better off than receiving zero penalties.

Proof of Proposition 4: First we show that unless unanimity, there is no stationary equilibrium

where the proposer keeps strictly negative payoff.

Lemma 1. For any q < n, the proposer’s share in the proposal of any of SSPE is zero.

Proof: Without loss of generality, relabel that member 1 is the proposer in the first round, and

pi ≥ pi+1 for i = 1, . . . ,n− 1. Suppose for the contradiction p1 < 0. There could be at most n− q

members who vote against the proposal. Define M(p) as a set of members who vote against the

proposal. If M(p) is nonempty, consider an alternative proposal p′ that subtracting p1 from p and

adding pn to one randomly selected member in M(p). p′ would make the proposer better off, while

the members who vote for the proposal are not affected, because the continuation value under a

stationary proposal p′ is identical to that under p, that is,

δ
n∑

i=1

1
n

pi =−δ
n
= δ 1

n

n∑
i=1

1
n

p′
i.

Therefore, the proposer has an incentive to deviate the equilibrium proposal, which contradict the

supposition of subgame perfection.

Next, for any stationary strategies, the continuation value is − δ
n . Suppose that a proposer in

the current round offers (p1, . . . , pn). For any player i, the expected payoff of moving on to the next

round is:

δ

(
1
n

p1 +·· ·+ 1
n

pn

)
= δ

n

n∑
i=1

pi =−δ
n

.

Therefore, players offered a share more than − δ
n are willing to accept the current proposal. Since

the proposer, who keeps zero (Lemma 1), wants her proposal to be approved, must offer more than

− δ
n to q−1 players. The allocation of the remaining losses, −1−∑

j∈MWC p j must be allocated to the

other members who are not included as a minimum winning coalition.
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Proof of Corollary 1: As long as players use stationary strategy, the continuation value is − δ
n . If

the proposer offers − δ
n to every player, then −1+ (n−1)δ

n is the remaining loss that she would take.

If δ ≥ n
n−1 , then −1+ (n−1)δ

n > 0. That is, the proposer still has a room to keep zero for herself, and

allocate the losses unevenly to other players as long as what other players are offered is greater

than or equal to − δ
n . If δ< n

n−1 , however, the proposer must keep (n−1)δ
n −1 for herself and offer − δ

n

to other members.
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B Appendix - Experimental Instructions (M5)

Welcome to this experiment. Please read these instructions carefully. The cash payment you will

receive at the end of the experiment will depend on the decisions you make as well as the decisions

other participants make. The currency in this experiment is called “tokens."

Overview
The experiment consists of 15 “Days." In each Day, every participant will be endowed with 400 to-

kens, and you will be randomly matched with four other participants to form a group of five. The

five group members need to decide how to split a DEDUCTION of (at least) 250 tokens from group

members’ endowments.

How the groups are formed
In each Day, all participants will be randomly assigned to groups of five members. Each member of

a group is assigned an ID number (from 1 to 5), which will be displayed on the top of the screen. In

a given Day, once your group is formed, the five group members will not change. Your ID is fixed

throughout the Day.

Once the Day is over, you will be randomly re-assigned to a new group of five, and you will be

assigned a new ID. Check your ID number when making your decisions.

You will not learn the identity of the participants you are matched with, nor will those partici-

pants learn your identity. Identities remain anonymous even after the end of the experiment.

How a deduction of tokens is divided
In each Day, you and your group members will decide how to split a deduction of (at least) 250 tokens

across group members. Each Day may consist of several ‘Meetings.’

In Meeting 1, one of the five members in your group will be randomly chosen to make a proposal

to split the deduction of 250 tokens as follows.

Member 1 Member 2 Member 3 Member 4 Member 5

# of Tokens Deducted: ____________ ____________ ____________ ____________ ____________

The number of tokens deducted from each member must be between 0 and 250. The total number

of tokens must add up to 250 tokens.

Each member has the same chance of being chosen to be the proposer. After the proposer has

made his/her proposal, the proposal will be voted up or down by all members of the group. Each

member, including the proposer, has one and only one vote.

• If the proposal gets three or more votes, it is approved. The tokens allocated to you are DE-

DUCTED from your endowment and then the day ends.

• Otherwise, the proposal is rejected and your group moves to Meeting 2.

In Meeting 2, one member will be randomly selected to be a proposer. Every member, including

the proposer in Meeting 1, has an equal chance to be a proposer. The total amount of tokens to be

deducted will increase by 20% of that in the previous Meeting. That is, the five members in Meeting
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2 need to decide how to split a deduction of 300 tokens. After the proposer proposes how to split the

deduction of 300 tokens, it will be voted up or down by all members of the group. If this new proposal

is rejected in Meeting 2, then in Meeting 3, another randomly selected member proposes to how to

split a deduction of 360 tokens (20% more of 300 tokens), and so on. Your group will repeat the

process until a proposal is approved. The following table shows the size of the deduction of tokens

for each meeting.

Meeting 1 2 3 4 5 6 7 · · ·
Deduction (in Tokens) 250 300 360 431 518 622 746 20% Larger

The amount of tokens you need to deduct is growing

To summarize, if you are selected as a proposer, make a proposal of splitting the deduction of the

current number of tokens, and move to the voting stage. If you are not a proposer, wait until the

proposer makes a proposal, examine it and decide whether to accept or reject it. Previous proposers

can be a proposer again. If a proposal is approved, the number of tokens offered to you will be DE-

DUCTED from your endowment.

Information Feedback
At the end of each Meeting, you will be provided with a summary of what happened in the Meeting,

including the proposed split of the deduction, the proposer’s ID, and the voting outcome. At the end

of each Day, you will learn the approved proposal and your earning from the Day.

Payment
In each Day, your earning is

[400 tokens − the number of tokens offered to you in the approved proposal]

The server computer will randomly select one Day and your earning in that Day will be paid. Each

day has an equal chance to be selected for the final cash payment. So it is in your best interest to

take each Day equally seriously. Your total cash payment at the end of the experiment will be the

number of tokens you earn in the selected Day converted into HKD at the exchange rate of 2 tokens

= 1 HKD plus 30 HKD guaranteed show-up fee.

Summary of the process

1. The experiment will consist of 15 Days. There may be several Meetings in each Day.

2. Prior to each Day, every participant is endowed with 400 tokens and will be randomly matched

with four other participants to form a group of five. Each member of the group is assigned an

ID number.

3. At the beginning of each Day, one member of the group will be randomly selected to propose

how to split a deduction of (at least) 250 tokens.
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4. If three or more members in the group accept the proposal, the proposal is approved, and

tokens offered to you will be DEDUCTED from your endowment.

5. If the proposal is rejected, then the group proceeds to the next Meeting of the Day and a

proposer will be randomly selected.

6. The volume of the tokens that need to be deducted increases by 20% following each rejection

of a proposal in a given Meeting.

Remember that tokens offered to you in the approved proposal are DEDUCTED, not added.

Quiz and Practice Day
To ensure your understanding of the instructions, we will provide you with a quiz below. After the

quiz, you will participate in a Practice Day. The Practice Day is part of the instructions and is not

relevant to your cash payment. Its objective is to get you familiar with the computer interface and

the flow of the decisions in each Meeting. Once the Practice Day is over, the computer will tell you

when the official Days begin.

Quiz
To ensure your understanding of the instructions, we ask that you complete a short quiz before we

move on to the experiment. This quiz is only intended to check your understanding of the written

instructions. It will not affect your earnings. We will discuss the answers after you work on the

quiz.

Q1. In each Day, you will be assigned to a group of (A) members. In Meeting 1, each group will

decide how to split a deduction of (B) tokens. What are appropriate numbers in (A) and (B)?

Q2. Suppose that in Day 1, your ID number is 3, and member 1 is selected as a proposer in Meeting

1. Which of the followings is NOT TRUE? (a) If member 1’s proposal is rejected, member 1 can be

a proposer in Meeting 2. (b) Even if I reject the proposal, it could be approved by majority. (c) In

the next Day, my ID number must be 3 again. (d) In Meeting 2 of the current Day, my ID number is

unchanged.

Q3. In Meeting 1, there are 250 tokens being divided. Which of the following exemplary proposals

makes sense? (a) (200,50,0,0,0) (b) (20,20,20,20,20) (c) (450,−50,−50,−50,−50) (d) (300,0,0,0,0)

Q4. If a proposal in Meeting 1 is rejected, what will happen next? (a) Your group will move to

Meeting 2. One member will be randomly selected as a proposer. (b) Your group will end the Day.

The tokens that need to be deducted are equally distributed to each member. (c) The previous

proposer will propose one more time. (d) Your group will end the Day. The tokens that need to be

deducted will be added to the tokens for the next Day.

Q5. In each Day, you are endowed with 400 tokens. If the approved proposal offered you 100 tokens,

what’s your earning on that Day?
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C Appendix - Supplementary Figures

Some figures placed in Appendix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
300

320

340

360

380

400

#
of

To
ke

ns

U5
M5
U3
M3

(a) Proposers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
300

320

340

360

380

400

#
of

To
ke

ns

U5
M5
U3
M3

(b) Non-proposers

Figure 7: Average Earnings

0

1

Share
of loss

0.2

0.4

0.6

0.8

Majority, n = 3 Majority, n = 5 Unanimity, n = 3 Unanimity, n = 5

¦ ¦

¦

Pr
op

os
er

M
W

C

N
on

-M
W

C

¦ ¦

¦

Pr
op

os
er

M
W

C

N
on

-M
W

C Pr
op

os
er

A
cc

ep
ti

ng
N

P
R

ej
ec

ti
ng

N
P

¦

¦ ¦
Pr

op
os

er

A
cc

ep
ti

ng
N

P
R

ej
ec

ti
ng

N
P

¦

¦ ¦

Figure 8: Proposed Shares
All (including rejected) proposals in the whole periods

31



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

P
ro

po
se

d
Sh

ar
e

U5
M5
U3
M3

(a) All Proposals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

P
ro

po
se

d
Sh

ar
e

U5
M5
U3
M3

(b) Approved Proposals

Figure 9: Average Proposed Share - Proposer
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(b) Approved Proposals

Figure 10: Average Proposed Share - Accepting Non-proposer
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(b) Approved Proposals

Figure 11: Average Proposed Share - Rejecting Non-proposer
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