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Abstract 
 
We propose a heuristic switching model of an asset market where the agents’ choice of heuristic 
is consistent with their individual risk aversion. They choose between a fundamentalist and a 
trend-following rule to form expectations about the price of a risky asset. Given their risk 
aversion, agents make a deterministic trade-off between mean and variance both in choosing a 
forecasting heuristic and determining the number of risky assets to buy. Heterogeneous risk 
preferences can lead to diverse choices of heuristic. Using empirical estimates for the 
distribution of risk aversion, simulations show that the resulting time-varying heterogeneity of 
expectations can give rise to chaotic dynamics: irregular booms and busts in the asset price 
without exogenous shocks. Small, stochastic price shocks lead to larger asset price bubbles, and 
can make stable solutions explosive. We prove that a representative agent cannot capture our 
model. 
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1. Introduction

From historical examples like the Tulip Mania to more recent ones like the US housing

bubble, it seems that bubbles are a recurring characteristic of asset markets. While it is

hard to identify bubbles in real markets because fundamental values cannot be observed,

experimental asset markets, with known fundamentals, can also exhibit price bubbles

and crashes (e.g., Smith et al., 1988). It is important to understand and model the

mechanisms underlying these price dynamics, in order to provide policymakers with the

necessary tools to promote stability in real financial markets.

Asset price bubbles cannot always be explained by rational, speculative motives. Lei

et al. (2001) show that bubbles can emerge even when speculation is not possible, suggest-

ing that the behaviour is inherently irrational. Hommes et al. (2005, 2008) specifically

look at irrationality in expectations. In their learning-to-forecast experiments, subjects

are rewarded for accurately forecasting future price realizations of a risky asset. At the

individual level, their results indicate that the subjects use different, simple rules to pre-

dict future asset prices. At the aggregate level, they find that the interaction between

the forecasting rules used by the subjects can lead to different asset price dynamics in the

same experimental setting. These dynamics include slow convergence to, and significant

deviations from the fundamental.

Anufriev and Hommes (2012) show that these different price dynamics can be ex-

plained by modelling expectations with the heuristic switching framework introduced by

Brock and Hommes (1997). In line with the learning-to-forecast results, this framework

assumes that individuals choose between a number of simple forecasting rules (heuristics)

to form their expectations. They base their choice on the past performance of those rules.

As the performance changes over time, the individuals update their choice, switching be-

tween heuristics. The heuristic switching framework is in line with a large literature on

boundedly rational, heterogeneous expectations, where heterogeneity changes over time.

Mankiw et al. (2003), for example, show that consumers as well as professional forecasters

have diverse inflation expectations, and Wieland and Wolters (2010) find time-varying
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heterogeneity in model forecasts. Heuristic switching models are able to explain certain

stylized facts of financial markets, like excess volatility and volatility clustering (Anufriev

and Panchenko, 2009; Gaunersdorfer et al., 2008). These models have also been applied

in macroeconomics, investigating the effects of monetary policy (e.g., Hommes et al.,

2019), fiscal policy (e.g., De Grauwe et al., 2019), and the financial sector (De Grauwe

and Macchiarelli, 2015). Branch (2004) estimates a heuristic switching model using in-

flation forecasting data. His results indicate that consumers do indeed switch between

forecasting strategies based on past performance.

In the context of this heuristic switching literature, our main contribution is to study

the natural consequence of the standard asset pricing assumption that agents are mean-

variance optimizers.1 Specifically, they make a trade-off between forecasting performance

and variability of that performance when choosing a heuristic. This means that risk

aversion plays a key role in expectation formation: Agents with different risk preferences

might choose a different heuristic, because their risk aversion determines the importance

of performance variability for their choice. As the heuristics’ performance changes over

time, agents reconsider their choice. This can lead them to switch between forecasting

rules. In this way, diverse risk preferences can lead to time-varying heterogeneity of

expectations. We model this diversity by using risk preference estimates for the general

population provided by Kimball et al. (2008) and Aarbu and Schroyen (2009).2

We argue that diverse risk preferences are a natural source of heterogeneous expec-

tations for two reasons.3 First, risk preferences play a central role in economic theory

and have been linked empirically to a variety of outcomes related to, for example, ca-

reer choice, financial decision making, and migration (Dohmen et al., 2012; Falk et al.,

2018; Jaeger et al., 2010). Second, risk preferences are indeed heterogeneous, as shown

1This assumption is central in modern portfolio theory, which goes back to Markowitz (1952). The
benchmark for asset pricing models with heuristic switching (Brock and Hommes, 1998) also assumes
that agents are mean-variance optimizers.

2The estimate by Kimball et al. (2008) is also used by Xiouros and Zapatero (2010) to empirically
validate an asset pricing model, but assuming rational expectations.

3In a previous contribution to the heterogeneous switching literature, Pfajfar (2013) also pinpoints
potential sources of expectations heterogeneity. He links heterogeneity to the computing capabilities and
information sets of agents.
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by a large body of empirical research, consisting of surveys (e.g., Falk et al., 2018), ex-

periments (e.g., Choi et al., 2007; von Gaudecker et al., 2011), and decision-making by

actual market participants (Cohen and Einav, 2007; Paravisini et al., 2016). Diverse risk

preferences have previously been used to explain differences in asset allocation across

households (Kimball et al., 2008), and to generate a number of empirical regularities of

stock market returns in a general equilibrium model (Chan and Kogan, 2002).

We have three main results. First, we analytically characterize the model’s dynamics

around its steady state, which corresponds to the fundamental price. We do this for the

case that expectations heterogeneity is constant. This heterogeneity is measured by the

fractions of aggregate risk tolerance that are represented by fundamentalists and trend-

followers. These risk-tolerance fractions measure the importance of the fundamentalist

and trend-following rules in the market, and play a central role in the asset price dy-

namics. We show that a threshold risk-tolerance fraction of fundamentalists exists that

determines the stability of the steady state. This threshold depends on the strength

of the trend-following rule relative to the risk-free rate. Depending on the combination

of parameter values, the constant-fractions model can exhibit oscillatory or exponential

asset price dynamics, where the price converges towards the fundamental if the steady

state is stable, and otherwise diverges away from it.

Second, we show numerically that time-varying risk-tolerance fractions give rise to rich

dynamics. For some parameter values, our model exhibits deterministic chaos. Chaos,

which can only arise in non-linear dynamical systems, is characterized by sensitive de-

pendence on initial conditions: Small perturbations in the initial state of the system

blow up exponentially. This makes long-term forecasting difficult even when the laws

governing the system are known. Another characteristic of deterministic chaos is en-

dogenous variability: Even without stochastic shocks, irregular fluctuations can occur.

In our model, chaos manifests itself in the form of irregular, unpredictable booms and

busts in the deviations from the fundamental asset price (excessive volatility). To inves-

tigate the resilience of the system, we introduce noise traders, which leads to stochastic
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price shocks. We find that small price shocks can be amplified by the chaotic dynamics,

turning deterministically stable solutions into explosive ones.

Third, we show that a representative agent aggregation does not exist for our model

with heterogeneous agents. However, our mean-variance modelling of the choice of fore-

casting heuristic does allow for such an aggregation in the case of the benchmark asset

pricing model with heuristic switching (Brock and Hommes, 1998), which does not in-

clude heterogeneous risk preferences. The representative agent uses a weighted average of

two heuristics to form expectations, where the weights are determined by mean-variance

maximization. We derive an analytical expression for the representative agents’ time-

varying risk aversion.

We highlight two previous contributions to the heuristic switching literature that have

incorporated heterogeneous risk preferences. First, Park (2014) links the rate of risk aver-

sion to the forecasting heuristic that is chosen. He assumes that fundamentalists have

a constant rate of risk aversion, while chartists have a time-varying risk aversion that

is inspired by prospect theory’s reflection effect: Chartist’s risk aversion increases (de-

creases) if the risky asset generates positive (negative) returns. Note that this approach

implies that the heuristic that agents use to form expectations determines whether they

are affected by the reflection effect, and that they change their risk preferences when

they switch heuristics. Moreover, it does not take into account the effect of risk aversion

on the choice of forecasting rule. We choose to model risk preferences as constant, and

explicitly incorporate these in the heuristic choice process. This means that the focus

is on differences in risk preferences and their implications for expectations, instead of

time-varying risk preferences.

Second, Chiarella and He (2002, 2003) study a heuristic switching model where risk

aversion is again linked to the chosen heuristic, but the risk aversion parameter for a given

heuristic is constant. They study this model, which also incorporates learning, in two

institutional settings: Chiarella and He (2002) use a Walrasian scenario, while Chiarella

and He (2003) use a market-maker. They find that the diversity of risk preferences
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matters for the asset pricing dynamics. Like Park (2014), they do not take into account

the implications of diverse risk preferences for expectation formation.

2. The model

2.1. An asset market with heuristic switching mean-variance optimizers

Following Brock and Hommes (1998) and Park (2014), we consider a discrete-time

asset market that consists of a risk-free and a risky asset. The risk-free asset has perfectly

elastic supply and pays a gross return Rf > 1. The risky asset has price pt and pays a

dividend dt in period t ∈ N0. We denote by Ret+1 the excess return per risky asset in

period t+ 1: Ret+1 = pt+1 + dt+1 −Rf pt.

Agents differ only in their constant relative risk aversion (CRRA) parameter γ, drawn

from a distribution defined on (0,∞). We assume a population size normalized to 1 and

denote the density function by g, with cumulative distribution function G. Focusing on

relative risk aversion as it appears in the CRRA utility function allows us to use the

empirical estimates of its distribution that can be found in the literature (see subsec-

tion 2.3).

We give all variables that differ across agents a subscript γ to indicate their depen-

dence on risk aversion. We write zγ,t for agents’ real demand for the risky asset in period

t. We let It = {pt, pt−1, . . . , dt, dt−1, . . .} be the information set in period t and denote

agents’ beliefs about expectation and variance, conditional on It, by Ẽγ,t and Ṽγ,t.

The agents are myopic mean-variance maximizers of their expected wealth:

Uγ,t = Ẽγ,t[Wγ,t+1]− γ

2
Ṽγ,t[Wγ,t+1], (1)

with period t+1 wealth Wγ,t+1 = zγ,tR
e
t+1+Rf Wγ,t. Note that we make the simplifying

assumption that the value of risk aversion that appears in the mean-variance utility is

the CRRA parameter γ. This assumption is supported by Ang (2014), who argues that

mean-variance and CRRA utility are closely related, and even converge under certain
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conditions.4

We have that5

Ẽγ,t[Wγ,t+1] = zγ,t Ẽγ,t[R
e
t+1] +Rf Wγ,t (2a)

Ṽγ,t[Wγ,t+1] = z2
γ,tṼγ,t[R

e
t+1]. (2b)

Since Uγ,t is concave in zγ,t, the first-order condition gives the risky asset demand that

maximizes utility:

zγ,t =
Ẽγ,t

[
Ret+1

]
γ Ṽγ,t

[
Ret+1

] . (3)

Aggregate real demand for the risky asset in period t, denoted by Zt, is then obtained

by integrating over the population with density g:

Zt =

∫ ∞
0

Ẽγ,t
[
Ret+1

]
γ Ṽγ,t

[
Ret+1

] g(γ) dγ. (4)

In line with previous literature (e.g., Brock and Hommes, 1998; Park, 2014), we

assume that agents have homogeneous beliefs on variance (Ṽγ,t
[
Ret+1

]
= Ṽt

[
Ret+1

]
) and

that the net supply of the risky asset is zero. The former assumption can be justified

by previous studies that indicate that conditional variances are easier to estimate than

conditional means (e.g., Nelson, 1992). The latter assumption means that no shares in

the risky asset are issued or withdrawn: A fixed number of shares is traded in the market.

These assumptions increase the tractability of the model.

Equating aggregate demand and supply, Zt = 0, gives an expression for the risky

4We could also explicitly consider CRRA utility maximization, but mean-variance optimization is
more tractable, and is more in line with the idea of boundedly rational agents using simple forecasting
strategies.

5In line with previous literature (e.g., Brock and Hommes, 1998; Park, 2014), we assume that agents’
beliefs about conditional expectation and variance have certain properties in common with the standard
expectation and variance operators:

Ẽγ,t [aXt+p+1 + b Yt+q+1 + cZt−r + d] = a Ẽγ,t [Xt+p+1] + b Ẽγ,t [Yt+q+1] + cZt−r + d;

Ṽγ,t [aXt+p+1 + b Yt−q + c] = a2 Ṽγ,t [Xt+p+1] ,

with X,Y, Z stochastic processes, a, b, c, d ∈ R, and p, q, r ∈ N0.
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asset price in period t:

pt =
1

Rf Θ

∫ ∞
0

g(γ)

γ
Ẽγ,t [pt+1 + dt+1] dγ, (5)

where we have defined the aggregate risk tolerance

Θ =

∫ ∞
0

g(γ)

γ
dγ. (6)

Risk tolerance θ is the reciprocal of risk aversion: θ = γ−1.

The fundamental price for the risky asset, denoted by p∗t , is the price that would arise

in a homogeneous, rational market. We denote expectation and variance, conditional on

information set It, by Et and Vt. Equation (5) implies that

p∗t =
Et
[
p∗t+1 + dt+1

]
Rf

. (7)

In the case of an i.i.d. dividend process with mean µd, for example, we have a single

non-explosive solution given by p∗ = µd/
(
Rf − 1

)
, a constant. This fundamental price

corresponds to the present value of the expected future dividend stream, in accordance

with the dividend discount model. In the remainder of this section, we describe the the

system in terms of price deviations from the fundamental xt = pt − p∗t .

Following Brock and Hommes (1998) and Park (2014), we assume that agents form

beliefs about deviations from the fundamental. First, all agents have rational beliefs

about the fundamental price and dividend process:

Ẽγ,t
[
p∗t+1 + dt+1

]
= Et

[
p∗t+1 + dt+1

]
. (8)

This is reasonable in the case of a simple dividend process, like the i.i.d. example that we

discussed earlier. All possible fundamental price and dividend processes can be captured

by the model however, since we do not have to specify these processes to model the
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deviations from the fundamental.

Second, the agents form beliefs about future price deviations from the fundamental

by using a forecasting heuristic. These heuristics are simple rules that predict price

deviations based on a specific number of observed previous deviations. Formally, the

heuristics are indexed by the finite set I, and for s ∈ I, we define a heuristic as a

function hs : RL → R, (xt−1, . . . , xt−L) 7→ hs(xt−1, . . . , xt−L), where L ∈ N indicates the

number of lags of price deviations that are taken into account.6 In period t, agents of type

γ use heuristic sγ,t ∈ I, and their beliefs about price deviations from the fundamental

are given by

Ẽγ,t [xt+1] = hsγ,t (xt−1, . . . , xt−L) . (9)

An example is the naive heuristic, which uses only one lag, and predicts that next pe-

riod’s price deviation from the steady state will be the same as last period’s deviation:

h(xt−1) = xt−1. The agents decide which heuristic to use based on their past perfor-

mance. This will be discussed in more detail below.

Together, equations (8) and (9) pin down the agents’ beliefs about the gross return

per risky asset: Ẽγ,t [pt+1 + dt+1] = Ẽγ,t
[
p∗t+1 + dt+1

]
+ Ẽγ,t [xt+1]. This means that we

can solve for the price deviations from the fundamental using equations (5) and (7):

xt =
1

Rf Θ

∫ ∞
0

g(γ)

γ
hsγ,t (xt−1, . . . , xt−L) dγ. (10)

Usually in the heuristic switching literature, a central role is played by the fractions of

agents that use the different heuristics. In our set-up with diverse risk preferences how-

ever, this role is played by the fraction of aggregate risk tolerance that is represented by

the agents that use the heuristics. This is explained by the fact that agents with a larger

risk tolerance buy and sell more of the risky asset, because of the inverse relationship

6Note that these heuristics are functions of past asset price deviations only. Omitting period t
deviations in forming beliefs about period t + 1 is in accordance with previous studies in the heuristic
switching literature (e.g., Brock and Hommes, 1998; Park, 2014). It is possible to include xt in the
specification of hs, but this leads to simultaneity issues where xt is undefined in some cases.
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between risky asset demand and risk aversion (see equation 3).

We define Γs,t as the set of risk aversion rates for which agents use heuristic s in

period t, and Θs,t as the fraction of aggregate risk tolerance (defined in equation 6)

represented by agents that use heuristic s in period t:

Θs,t = Θ−1

∫
Γs,t

g(γ)

γ
dγ. (11)

Note that these fractions add up to one:
∑
s∈I Θs,t = 1.

Now we can rewrite equation (10) as

xt =
1

Rf

∑
s∈I

Θs,t hs (xt−1, . . . , xt−L) . (12)

We can interpret Θs,t as a measure of the importance of heuristic s in the market in

period t. In the extreme case that Θs,t = 0, no one is using it, and it has no impact on

the price. At the other extreme, when Θs,t = 1 everyone is using the heuristic, and it

fully determines the price. If Θs,t = 1
2 for example, its impact on the asset price is the

same as that of all other heuristics combined.

In the following, we explain how the agents choose a forecasting heuristic in each

period. The agents are mean-variance maximizers, who therefore base their choice on the

past performance of the heuristics, and on the variability of that performance. Because

their rate of risk aversion determines the weight that the variability carries in their

decision, agents with different risk preferences may use different heuristics in a given

period.

The agents measure the performance of heuristic s in period t, denoted by us,t, in

terms of their squared forecasting errors:

us,t = − [xt − hs(xt−2, . . . , xt−L−1)]
2
. (13)

They calculate a weighted average 〈us〉t, a weighted squared average 〈u2
s〉t, and a weighted
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variance σ̃2
s,t of the observed performance of heuristic s, where past performance is

weighted by a memory parameter η that satisfies 0 < η < 1:7

〈us〉t = η 〈us〉t−1 + (1− η)us,t (14a)〈
u2
s

〉
t

= η
〈
u2
s

〉
t−1

+ (1− η)u2
s,t (14b)

σ̃2
s,t =

〈
u2
s

〉
t
− 〈us〉2t . (14c)

The weighted variance satisfies σ̃2
s,t ≥ 0 if σ̃2

s,0 ≥ 0.8 The average and variance are

combined in a mean-variance performance measure, defined as

Ψγ,s,t = 〈us〉t −
γ

2
σ̃2
s,t. (15)

For simplicity, we assume that we can use the same risk aversion coefficient γ as in

the mean-variance utility in terms of their wealth: The same agents have the same risk

aversion in these two contexts.

At the end of each period, the agents choose the heuristic with the largest mean-

variance performance measure to use in the next period. This means that the risk-

tolerance fraction represented by heuristic s in period t, Θs,t, will be determined by the

values of the mean-variance performance measure in period t − 1: An agent with risk

aversion γ uses the heuristic in period t if Ψγ,s,t−1 > Ψγ,r,t−1 for all r ∈ I \ {s}. We

assume that when two or more rules have the same mean-variance utility, agents are

equally likely to choose any one of those rules.

2.2. Fundamentalists and momentum traders

Following previous literature (Anufriev and Panchenko, 2009; Gaunersdorfer et al.,

2008), and in line with empirical evidence (e.g., Chiarella et al., 2014), we consider the

7Many heuristic switching studies use such a weighted average (e.g., Brock and Hommes, 1998). The
weighted variance is a natural extension.

8A proof is available upon request. One can also show that this is a sensible definition of variance,
in the sense that it is consistent with the definition of weighted average.
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case in which agents choose between a fundamentalist and a trend-following (chartist)

rule. We focus on just two rules to keep the model simple, but one could extend it to

include more rules.

The fundamentalist heuristic predicts that the price of the risky asset converges to

the fundamental, where the speed of convergence is measured by the fundamentalist

parameter f , which satisfies 0 ≤ f < 1:

hF (xt−1) = f xt−1. (16)

The smaller f , the faster the asset price will converge. In the special case that f = 0 (the

usual choice in the heuristic switching literature), the rule predicts that any deviations

from the fundamental will disappear in the next period.

The trend-following heuristic, also referred to as momentum rule, assumes that price

deviations from the fundamental follow a trend. It predicts that the deviation in the next

period equals the one observed in the previous period, corrected for the last observed

change in price deviations. A momentum parameter m, which satisfies m > 0, determines

the strength of the correction:

hM (xt−1, xt−2) = xt−1 +m (xt−1 − xt−2) . (17)

The larger m, the stronger the past momentum will be extrapolated into future deviations

from the fundamental.9

To analyse the dynamics of the price of the risky asset, we have to derive the risk-

tolerance fractions represented by the two heuristics. Because the fractions add up to

1, the fundamentalist fraction ΘF,t will also give us the fraction of momentum traders:

ΘM,t = 1−ΘF,t.

9The trend-following rule is often defined without reference to the fundamental price. We choose
to define it in terms of price deviations from the fundamental however, to avoid the need to explicitly
specify a fundamental price process. Note that the two definitions are equivalent when the fundamental
price is constant.
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Looking at the definition of the mean-variance performance measure for choosing

between the heuristics (15), we see that the choice in period t is independent of risk

aversion if the variances of the rules’ performance are equal (σ̃F,t = σ̃M,t). This means

that all agents use the same rule in period t+1: If the fundamentalist rule has performed

better on average (〈uF 〉t > 〈uM 〉t), everyone uses the fundamentalist rule in period t+ 1

and ΘF,t+1 = 1. On the other hand, if the momentum rule has performed better on

average, we have that ΘF,t+1 = 0. In the case that the heuristics have performed equally

well on average, the agents are evenly divided between the two heuristics in period t+ 1,

and ΘF,t+1 = 1
2 .

If the weighted variances of the heuristics’ performance are not equal (σ̃F,t 6= σ̃M,t),

risk aversion does play a role in the choice between forecasting rules. The risk aversion

coefficient for which the mean-variance performance of the forecasting heuristics are equal

in period t, denoted by γt, is given by

γt = 2
〈uF 〉t − 〈uM 〉t
σ̃2
F,t − σ̃2

M,t

. (18)

If σ̃F,t > σ̃M,t, agents of type γ < γt choose the fundamentalist heuristic for period t+ 1.

Only agents with a low enough risk aversion are willing to accept the larger variance in

order to profit from the better average performance. When 〈uF 〉t < 〈uM 〉t in this case,

γt < 0, and all agents use the momentum rule in period t + 1: When the risk is bigger

and average performance worse, none of the agents use the fundamentalist heuristic. If

σ̃F,t−1 > σ̃M,t−1 and 〈uF 〉t−1 ≥ 〈uM 〉t−1, ΘF,t is given by equation (11), with s = F and

ΓF,t = (0, γt−1).

The opposite holds when σ̃F,t−1 < σ̃M,t−1: Agents of type γ > γt−1 choose the

fundamentalist heuristic for period t, so that ΘF,t = 1 when 〈uF 〉t−1 > 〈uM 〉t−1, and

ΘF,t is given by equation (11), with s = F and ΓF,t = (γt−1, 0) if 〈uF 〉t−1 ≤ 〈uM 〉t−1.
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We now have that

ΘF,t+1 =



Θ−1
∫ γt

0
g(γ)
γ dγ if σ̃F,t > σ̃M,t and 〈uF 〉t ≥ 〈uM 〉t;

Θ−1
∫∞
γt

g(γ)
γ dγ if σ̃F,t < σ̃M,t and 〈uF 〉t ≤ 〈uM 〉t;

1 if σ̃F,t ≤ σ̃M,t and 〈uF 〉t > 〈uM 〉t;

0 if σ̃F,t ≥ σ̃M,t and 〈uF 〉t < 〈uM 〉t;

1
2 if σ̃F,t = σ̃M,t and 〈uF 〉t = 〈uM 〉t.

(19)

The function ΘF,t+1 is discontinuous at points where σ̃F,t = σ̃M,t and 〈uF 〉t = 〈uM 〉t: If

we start in the 〈uF 〉t > 〈uM 〉t area for example, and move towards the 〈uF 〉t < 〈uM 〉t area

while keeping σ̃F,t = σ̃M,t, ΘF,t+1 jumps from 1 to 1/2 to 0 as we pass the 〈uF 〉t = 〈uM 〉t

point. This discontinuity has consequences for the analysis of the dynamics that we

discuss in subsection 3.2.

Combining equations (12) and (14), the dynamical system with fundamentalists and

momentum traders is given by



xt =
1

Rf
{ΘF,t f xt−1 + (1−ΘF,t) [xt−1 +m (xt−1 − xt−2)]}

〈uF 〉t = η 〈uF 〉t−1 − (1− η) (xt − f xt−2)
2

〈uM 〉t = η 〈uM 〉t−1 − (1− η) [xt − xt−2 −m (xt−2 − xt−3)]
2

〈
u2
F

〉
t

= η
〈
u2
F

〉
t−1

+ (1− η) (xt − f xt−2)
4

〈
u2
M

〉
t

= η
〈
u2
M

〉
t−1

+ (1− η) [xt − xt−2 −m (xt−2 − xt−3)]
4
,

(20)

where the risk-tolerance fractions ΘF,t are given by equation (19).
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2.3. Empirical grounding

To empirically ground our model, we draw from the rich literature on risk aversion,

which includes studies on experiments, surveys, and decision-making in the field. Kim-

ball et al. (2008) estimate the CRRA parameter for risk tolerance θ. They determine

the distribution of risk tolerance by using hypothetical income gambles by respondents

to the US Health and Retirement Study.10 Kimball et al. find that a log-normal distri-

bution fits the individual-level risk tolerance data well, because it has a fat right tail and

imposes non-negative risk aversion. An additional advantage is that this distribution

is computationally efficient. They estimate that log θ ∼ N (−1.84, 0.73). This implies

that log γ ∼ N (1.84, 0.73) and that the relative rate of risk aversion has mean 8.22 and

standard deviation 6.90.

A limitation of Kimball et al.’s estimated distribution is that their respondents are

all between 51 and 61 years of age. Aarbu and Schroyen (2009) take a similar approach,

but use Norwegian survey data that covers ages 18 – 74. They find a lower average rate

of risk aversion of 3.92, which is in line with earlier studies, with standard deviation 2.95.

Figure 1 shows the density functions for both estimates. We find similar results with

both distributions, but we present the results using Aarbu and Schroyen’s estimate, since

they cover a broader age group.

A disadvantage of (most) surveys and experiments is that incentives are hypothetical

or small. However, we have not been able to find studies that explicitly estimate the

distribution of CRRA parameters using actual decision-making in the field. Cohen and

Einav (2007) and Paravisini et al. (2016) do elicit relative risk aversion in this way, but

these studies use income-based relative risk aversion: Absolute risk aversion is multiplied

by a measure of income to obtain relative risk aversion. Reassuringly, both studies find

the same distributional characteristics as laboratory experiments and survey studies.

10Surveys often have the drawback that they produce ordinal instead of cardinal data on risk aversion.
The German Socio-Economic Panel Study (SOEP), which has been used in studies of risk aversion and
its implications (e.g., Jaeger et al., 2010; Dohmen et al., 2012), falls into this category and is therefore
not considered here.
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Figure 1: Distribution of relative rate of risk aversion, as estimated by Kimball et al. (2008):
log γ ∼ N (1.84, 0.73), and Aarbu and Schroyen (2009): log γ ∼ N (1.14, 0.67).

3. Analytical results

3.1. Does a representative agent exist?

In finance, the behaviour of many agents is often modelled to be resulting from a

single, representative agent. As a consequence, the heterogeneity in the market is not

‘fundamental’, and there is no need to explicitly model that heterogeneity. A natural

question would be to ask whether the behaviour of our heterogeneous, switching agents

can be captured by a representative agent.

We consider a representative agent with time-varying risk aversion who diversifies

across heuristics. She observes the performance and variance of the two heuristics (and

possibly their correlation). Instead of choosing only one, she can combine the two heuris-

tics in a weighted average to achieve a better balance between expected performance and

risk. The agent’s forecast will be somewhere between the forecasts of both heuristics.

She assigns weights to the heuristics by mean-variance optimization, where we allow the

representative agent’s risk aversion to change over time. Correlations are incorporated

in the same way as in standard mean-variance analysis.

In Appendix A, we show that our market with heterogeneous agents cannot be cap-

tured by a representative agent with time-varying risk aversion. We furthermore prove

that a representative agent aggregation does exist for the asset pricing model by Brock
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and Hommes (1998). Specifically, we show that their heterogeneous market with heuris-

tic switching agents is equivalent to one with a diversifying representative agent whose

risk aversion is given by

γR,t+1 =


6β2(UF,t − UM,t)

π2

exp (β UF,t) + exp (β UM,t)

exp (β UF,t)− exp (β UM,t)
if UF,t 6= UM,t;

12β

π2
if UF,t = UM,t.

(21)

Here, β > 0 is the intensity of choice parameter. It measures how quickly agents switch

between heuristics, and plays a key role in previous heuristic switching models. The

heuristic performance measures UF,t and UM,t for period t can be equal to the weighted

average of squared forecasting errors that we use in our model, or any other measure of

performance.11

3.2. Dynamics

In this section, we present analytical results on the dynamics of the asset pricing

model as defined by the dynamical system (20). These results give an idea of the type of

behaviour that the model can exhibit, and help us understand the simulations that we

present in section 4. First, there is only one steady state, with the risky asset price at

the fundamental and the weighted averages and variances at zero:

Lemma 1 (Existence of steady state). The system (20) has precisely one steady state,

namely (0, 0, 0, 0, 0).

Proof. See Appendix C.

We cannot use standard linearization techniques to study the stability of the steady

state, because the risk-tolerance fraction ΘF,t has a discontinuity at this point. However,

we can investigate its stability under the assumption that agents stick to one of the two

11Although we refer to the fundamentalist and momentum rules here, we note that our conclusions
regarding representative agent aggregations hold for any two heuristics, including those explored by
Brock and Hommes (1998).
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forecasting rules, so that the risk-tolerance fractions are constant and equal to an ex-

ogenously given value ΘF . This assumption simplifies the analysis even further, because

we can ignore the part of the system that governs the switching, namely the weighted

averages and variances of the heuristics’ performance. In what follows, we derive three

lemmas that characterize the behaviour under the constant, exogenous fraction assump-

tion. After this analysis, we relax the assumption to return to the original model, and

use these lemmas to understand its behaviour.

3.2.1. Exogenous, constant fractions

Under the assumption of exogenous, constant risk-tolerance fractions ΘF , the relevant

dynamics is described by a two-dimensional, linear system. If we write νt = xt−1, it is

given by νt
xt

 = A

νt−1

xt−1

 (22a)

A =

 0 1

− 1

Rf
(1−ΘF )m

1

Rf
[ΘF f + (1−ΘF ) (1 +m)]

 . (22b)

Lemma 2 (Existence of steady state with constant fractions). The system (22) has

(0, 0)T as its only steady state.

Proof. See Appendix C.

This steady state corresponds to the risky asset price being at the fundamental, like

that of the unrestricted system (20).

Turning to the dynamics around the steady state, we start with the special case of a

homogeneous market:

Lemma 3 (Dynamics in homogeneous market). If ΘF = 1, the steady state of (22) is

stable, and the eigenvalues of A are real. Let

m± = 2

(
Rf ±

√
Rf (Rf − 1)

)
− 1, (23)
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which satisfy 0 < m− < 1 and m+ > Rf . For ΘF = 0, we have:

1. If 0 < m < Rf , the steady state is stable.

2. If m > Rf , the steady state is unstable.

3. If m ≤ m− or m ≥ m+, the eigenvalues of A are real.

4. If m− < m < m+, the eigenvalues of A are complex.12

Proof. See Appendix C.

This lemma tells us that the steady state is stable when all agents use the funda-

mentalist rule, while the real eigenvalues in this case imply exponential price dynamics:

The risky asset price exponentially converges to the fundamental. The intuition is that

the fundamentalist rule is stabilizing, because it implies a move of asset price deviations

towards zero, the steady state.

If all agents are momentum traders, stability depends on the momentum parameter:

The larger m, the stronger past momentum is extrapolated into future asset price devi-

ations. The stability threshold lies at the risk-free rate Rf : If the momentum parameter

is smaller than the risk-free rate, the steady state is stable, while it is unstable if the

parameter is larger than the risk-free rate.

The type of dynamics also depends on the momentum parameter. In the extreme

cases of m ≤ m− and m ≥ m+, we have exponential convergence towards, and divergence

from the fundamental, respectively. In between these extremes (m− < m < m+), the

eigenvalues are complex, indicating a rotation in the νt−xt plane, and hence an oscillation

of the asset price around the fundamental.

If the market consists of a constant mix of fundamentalists and momentum traders,

the dynamics is described by the following lemma, which is represented graphically in

Figure 2:

12We refer to an eigenvalue λ as complex if it has non-zero imaginary part: We can write λ = a+ b i,
with a, b ∈ R, b 6= 0, and i2 = −1.
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Lemma 4 (Dynamics with constant fractions). Define m± as in Lemma 3. Furthermore

define

ΘF = 1− Rf

m
,

f± =
1 +m±

√
(1 +m)2 − 4mRf

2
,

and

ΘF,± =
(1 +m− f)(1 +m)− 2mRf ± 2

√
m2 (Rf )

2 − f mRf (1 +m− f)

(1 +m− f)2
.

1. The steady state of (22) is unstable if ΘF < ΘF .

2. The steady state of (22) is stable if ΘF > ΘF .

3. If m ≤ m− and f− ≤ f ≤ f+, the eigenvalues of A are real. Otherwise, we have:

(a) The eigenvalues are real if ΘF ≤ ΘF,− or ΘF ≥ ΘF,+.

(b) The eigenvalues are complex if ΘF,− < ΘF < ΘF,+.

4. If m > 1, it follows that ΘF,− < ΘF < ΘF,+.

5. If m > m−, it follows that 0 < ΘF,+ ≤ 1, where ΘF,+ = 1 if and only if f = 0.

6. If m− < m < m+, it follows that ΘF,− < 0, and if m ≥ m+, we have that

0 ≤ ΘF,− < ΘF,+, where ΘF,− = 0 if and only if m = m+.

Proof. See Appendix C.

This lemma tells us that in a heterogeneous market with constant fractions, the

stability of the steady state depends on the risk-tolerance fraction of fundamentalists,

relative to a threshold ΘF . If the fundamentalist fraction is relatively low (ΘF < ΘF ),

the steady state is unstable, while a relatively high fraction (ΘF > ΘF ) implies a stable

steady state. The size of the momentum parameter m also plays an important role.

First, note that if the momentum parameter is small enough, namely m < Rf , the

steady state is stable, independent of the fraction of fundamentalists: In this case we

have that ΘF < 0, which means that ΘF > ΘF , since ΘF is positive. Second, a larger m
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Figure 2: Graphical representation of Lemma 4, showing risky asset price dynamics with fixed fractions
of fundamentalists and momentum traders, for different values of the momentum parameter m and the
risk-tolerance fraction of fundamentalists ΘF . Each of the four regions is characterized by two properties:
the stability of the steady state and the type of dynamics (exponential or oscillatory). The solid and
dotted lines represent ΘF,+ and ΘF,−, respectively, while the dashed line represents ΘF . The shapes of

these lines depend on the values of Rf and f , but the four regions remain. As Rf gets larger (smaller),
the blue and red areas become smaller (larger). Changes in f have the opposite effect. The boundaries
between the different regions cross the m-axis at m−, Rf , and m+, regardless of the parameter values.

implies a larger ΘF , meaning that a larger risk-tolerance fraction of fundamentalists is

required for the steady state to be stable. These results are consistent with the intuition

behind Lemma 3 for the homogeneous case: The fundamentalist traders bring stability

in the market, while the momentum rule is destabilizing, where a larger momentum

parameter implies a stronger destabilizing effect.

The type of dynamics depends on the complexity of the eigenvalues of A, which,

according to Lemma 4, is determined by combination of the risk-tolerance fraction of

fundamentalists and the parameters m, f , and Rf : Real eigenvalues imply exponential

behaviour, and complex eigenvalues imply oscillatory behaviour.

We can use above results to describe the behaviour of the risky asset price for specific

ranges of the momentum parameter and the risk-tolerance fraction of fundamentalists.

As shown in Figure 2, we can distinguish between four regions. First, if ΘF is large
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or m small, the asset price exponentially converges towards the fundamental (the blue

region). Second, the system exhibits converging oscillations when m is relatively small

or ΘF relatively large (the orange region). Third, if m > Rf , the asset price can exhibit

oscillations diverging from the fundamental, depending on the value of ΘF (the green

region). Fourth, if m ≥ m+, the price exponentially diverges from the fundamental when

ΘF is small enough (the red region).

3.2.2. Endogenous, time-varying fractions

We return to the unrestricted system (20), in which agents are allowed to switch

between forecasting strategies. Lemma 3 and Lemma 4 help us characterize its behaviour,

because we can see the constant-fractions system (22) as part of the switching system.

In each period t, ΘF,t and the lagged asset price deviations xt−1 and xt−2 determine

the current deviation xt through (22). Given xt, the weighted average and variances are

pinned down by (20), which in turn determine ΘF,t+1 through (19). This new fraction

then serves as the input for the constant-fractions system in period t+ 1, and the cycle

repeats.

Based on our analytical results for the system with constant fractions, we expect the

risky asset price to exhibit a combination of oscillatory behaviour around, exponential

convergence towards, and exponential divergence away from the fundamental. Lemma 4

tells us that the asset price will converge to the fundamental as long as the risk-tolerance

fraction of fundamentalists ΘF,t lies above the threshold ΘF . As soon as ΘF,t falls below

the threshold, the asset price starts diverging away from the fundamental. The lemma

also explains how depending on the fundamentalist fraction and the parameters of the

system, the dynamics is exponential or oscillatory.

We cannot describe the precise dynamics of the switching system, as the fractions

of fundamentalist and momentum traders are endogenously determined in a non-linear

way. The evolution of the asset price deviations from the steady state depend on the non-

linear interaction between the stabilizing and destabilizing forces of the fundamentalist

and momentum investors.
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In one particular case however, we can to a certain extent describe the behaviour

of the switching system: As discussed earlier, the steady state of the constant-fractions

system is stable regardless of the fraction of fundamentalists if m < Rf . This means

that solutions of the switching system always converge to the steady state in this case.

Whether the dynamics is exponential or oscillatory depends on the specific combination

of parameters, but we know that the asset price eventually converges to the fundamental.

4. Numerical results

We now turn to numerical methods to study the dynamics of the asset pricing model

with switching. The interesting dynamics occurs when the fundamentalist heuristic is

attractive even when all agents use the momentum rule. This is the case when m− < m <

m+, so that the asset price oscillates around the fundamental when ΘF < ΘF,+: During

the oscillations, the fundamentalist rule becomes more attractive as the asset price moves

towards the fundamental. For certain parameter combinations, the fundamentalist rule

becomes attractive enough to make agents switch from the momentum rule. We use

Rf = 1.01, η = 0.2, f = 0.6, and m = 1.1 as the baseline parameter values in our

simulations. The distribution of relative risk aversion follows the empirically validated

density g(γ) that was introduced in subsection 2.3.

These parameter values correspond to m− ≈ 0.82, m+ ≈ 1.22, ΘF,− ≈ −0.02, ΘF,+ ≈

0.84, and ΘF ≈ 0.08. It follows that indeed m− < m < m+, so that ΘF,− < 0. Using

the insights from subsection 3.2, we know that the asset price oscillates away from the

fundamental if the risk-tolerance fraction of fundamentalists is smaller than 8%, oscillates

towards it if the fundamentalist fraction lies between 8% and 84%, and exponentially

converges towards the fundamental if the fraction is larger than 84%.

4.1. Chaotic dynamics

In the two left panels of Figure 3, we show the evolution of the price deviations from

the fundamental, and of the risk-tolerance fraction of fundamentalists for the baseline
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parameters. The stabilizing and destabilizing forces of the two heuristics keep each

other in check, leading to oscillations in the asset price that neither converge to, nor

diverge from the fundamental in the long run. In period 1,003, one of the first periods

shown, all traders follow the momentum rule, and the asset price follows an explosive,

oscillatory path. This path first leads the asset price away from the fundamental, but it

slows down and eventually moves back towards the fundamental starting in period 1,025.

The return towards the fundamental makes the fundamentalist rule more attractive, and

some investors start abandoning the momentum rule in period 1,035. As more investors

follow, the system first moves from the unstable and oscillatory region into the stable and

oscillatory region (crossing the dashed line), and then into the stable and exponential

region (crossing the dotted line), meaning that the asset price starts on an exponential

convergence towards the fundamental. The momentum rule picks up on this convergence,

and becomes attractive again. Almost half of the investors have switched back to the

momentum rule just before the asset price reaches the fundamental, so that it overshoots.

It starts moving away from the fundamental again on a diverging oscillatory path.
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Figure 3: Top left: Price deviations from the fundamental for periods 1000 − 1250, where the colour
gradient represents the value of ΘF . Bottom left: Risk-tolerance fraction choosing the fundamentalist
strategy for periods 1000 − 1250. The dashed and dotted lines indicate ΘF and ΘF,+, respectively.
Right: Evolution of the dynamical system in the (〈uF 〉t − 〈uM 〉t) − (σ̃2

F,t − σ̃
2
M,t) plane for periods

1000 − 1250. The solid, dashed, dotted, and dot-dashed black lines indicate the 0, ΘF , ΘF,+, and

1 contour lines of ΘF,t+1, respectively. Parameter values: Rf = 1.01, η = 0.2, f = 0.6, m = 1.1,
log γ ∼ N (1.14, 0.67). Initial values: x−2 = x−1 = x0 = 0.1, 〈uF 〉0 = −1, 〈uM 〉0 = −0.90,

〈
u2F
〉
0

= 2,〈
u2M
〉
0

= 1.91 (implying ΘF,1 = 0.5).
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The right panel of Figure 3 shows the behaviour of the system over the same period

in the (〈uF 〉t − 〈uM 〉t) − (σ̃2
F,t − σ̃2

M,t) plane. Its position in this plane determines

the risk-tolerance fraction ΘF,t+1 in the next period, through equation (19). We have

added several contour lines for ΘF,t+1 to the figure, in particular those corresponding to

ΘF,t+1 = 0 (solid) and ΘF,t+1 = 1 (dot-dashed): In the second quadrant, corresponding

to 〈uF 〉t − 〈uM 〉t < 0 and σ̃2
F,t − σ̃2

M,t > 0, we have that ΘF,t+1 = 0, and in the

fourth quadrant, corresponding to 〈uF 〉t − 〈uM 〉t > 0 and σ̃2
F,t − σ̃2

M,t < 0, we have

that ΘF,t+1 = 1. Note that all contour lines come together in the discontinuity at the

origin. Each cycle, the system stays in the second quadrant relatively long, which means

that all agents follow the momentum rule. As the fundamentalist rule becomes more

attractive, it moves towards the first quadrant, where the variance of the fundamentalist

rule is still larger than that of the momentum rule. This means that the most risk-

tolerant investors are the first to switch to the fundamentalist rule. When the variance

of the fundamentalist rule drops below that of the momentum rule, the system moves

towards the fourth quadrant, where all agents are fundamentalists. As the momentum

rule starts picking up on the asset price movement towards the fundamental and becomes

more attractive, the system briefly visits the third quadrant. It moves back to the

second quadrant, with only momentum traders in the market, when the variance of the

momentum rule becomes smaller than that of the fundamentalist rule. This cycle repeats

itself indefinitely, each time in a slightly different way.

Although the price deviations look regular, it is difficult to make long-term predictions

about its state. The amplitude of the oscillations, as well as their length, changes with

each cycle. This apparently random behaviour is called chaotic. Various definitions of

chaos exist, but we follow the intuitive definition by Gros (2015, p. 66): “A deterministic

dynamical system that shows exponential sensibility of the time development on the

initial conditions is called chaotic.” More rigorous definitions exist, but we are mostly

interested in sensitive dependence on initial conditions and the apparent randomness that

can arise in deterministic, chaotic systems, because these have implications for forecasting
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and policy-making.

The dynamics of a chaotic system can be characterized by a spectrum of Lyapunov

exponents that indicate how nearby solutions converge or diverge over time. A nega-

tive exponent indicates convergence, while a positive exponent indicates divergence. The

largest, or maximal, Lyapunov exponent, denoted by λ1, determines whether the dynam-

ics is chaotic (see, e.g., Gros, 2015). The average factor by which the distance between

two neighbouring points increases or decreases in each time-step is given by eλ1 (Boccara,

2010, ch. 5). Using the algorithm proposed by Benettin et al. (1980), we find for the asset

pricing model that λ1 = 0.0035.13 This positive exponent implies exponential divergence:

Solutions that start close to each other drift apart over time. This sensitive dependence

on initial conditions is the defining characteristic of a chaotic system. Given the value

λ1 = 0.0035, the distance between neighbouring points doubles after approximately 200

time-steps.

Figure 4 shows the long-term behaviour of the asset pricing system. It plots the

points of a solution consisting of one million time-steps (after an initialization period

of 1000 steps) in the (〈uF 〉t − 〈uM 〉t) − (σ̃2
F,t − σ̃2

M,t) plane (left panel) and in xt −

(〈uF 〉t − 〈uM 〉t) − (σ̃2
F,t − σ̃2

M,t) space (right panel). In the left panel, we also show

a contour plot for the fraction of fundamentalists ΘF . It shows that the behaviour in

Figure 3 is representative of the long-term dynamics. The system often comes close to

the discontinuity at the origin, and it spends most time in the second quadrant, where

all traders use the momentum rule. The right panel shows that these points correspond

to large asset price deviations, while those points where xt is small correspond to larger

fractions of fundamentalists.

Both panels show that the solution is confined to a specific set of points: the strange

attractor. Strange attractors arise in chaotic dynamical systems when trajectories are

attracted to a subset of their phase space, but have chaotic dynamics within this subset:

13The other Lyapunov exponents are λ2 = 0.0010, λ3 = −1.4917, λ4 = −1.6059, λ5 = −1.6094,
λ6 = −2.4687, λ7 = −23.8493. To calculate the exponents, we have used parameter values equal to
those used in Figure 3, and an initialization period of 2000 time-steps.
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Figure 4: Left: Attractor of the asset pricing system (blue) and contour plot of ΘF,t+1 (colour gradient)
in the (〈uF 〉t − 〈uM 〉t) − (σ̃2

F,t − σ̃
2
M,t) plane. Right: Attractor of the asset pricing system in xt −

(〈uF 〉t − 〈uM 〉t) − (σ̃2
F,t − σ̃

2
M,t) space. Parameter values: Rf = 1.01, η = 0.2, f = 0.6, m = 1.1,

log γ ∼ N (1.14, 0.67). Initial values: x−2 = x−1 = x0 = 0.1, 〈uF 〉0 = −1, 〈uM 〉0 = −0.90,
〈
u2F
〉
0

= 2,〈
u2M
〉
0

= 1.91 (implying ΘF,1 = 0.5).

Nearby solutions that enter the attractor drift apart over time, while staying within the

confines of the attractor. The dimension of a strange attractor is a useful tool in studying

chaotic systems. A strange attractor’s dimension quantifies the complexity of the system

by representing its effective number of degrees of freedom. It can also be compared with

other theoretical studies and empirically tested. The strange attractor in our model has

a box-counting (fractal) dimension (Falconer, 2004, ch. 3) of about 1.8. This value is

close to the dimensions reported by Brock and Hommes (1998).

The dynamics of the asset pricing model crucially depends on the parameter values.

One example is the threshold ΘF , which is determined by the ratio between Rf and

m. Here we focus on the memory parameter η. Figure 5 shows long-term asset price

deviations in the deterministic system for different values of this parameter: For each

value of η, this diagram plots 1000 asset price deviations after an initialization period of

1000 time-steps. Solutions with deviations that are larger than 1000 in absolute value

are omitted.

For η larger than 0.63, the system is unstable, and the amplitude of the asset price

oscillations increases indefinitely. In this case, the momentum traders take over the

market, and ΘF,t stays constant at 0. For some values between 0.40 and 0.63, the solution
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Figure 5: Long-term behaviour of the asset price deviations from the fundamental for different values of
the memory parameter η. Deviations that are larger than 1000 in absolute value are omitted. Parameter
values: Rf = 1.01, f = 0.6, m = 1.1, log γ ∼ N (1.14, 0.67). Initial values: x−2 = x−1 = x0 = 0.1,
〈uF 〉0 = −1, 〈uM 〉0 = −0.90,

〈
u2F
〉
0

= 2,
〈
u2M
〉
0

= 1.91 (implying ΘF,1 = 0.5).

converges to the steady state, with the asset price at the fundamental. For other values

between 0.40 and 0.63, the dynamics is chaotic, with small asset price deviations from

the fundamental. The dynamics is also chaotic if η is smaller than 0.40, with larger

deviations for smaller η.

Note on the wealth distribution. While the risk aversion distribution does not change in

the asset pricing model, the wealth distribution can shift over time. More risk-tolerant

traders invest a larger share of their wealth in the risky asset, which means that they can

earn bigger returns. They also make bigger losses, but without a bankruptcy mechanism

in place, they stay in the market. Shifts of wealth between traders does not affect the

asset price however, because their demand for the risky asset is independent of their

wealth (see equation 3). We have chosen not to include a bankruptcy mechanism to keep

the asset pricing model as simple as possible, and focus on the dynamics resulting from

the heterogeneous expectations.

Cobweb application. To investigate to what extent the richness of the dynamics resulting

from our expectation-formation framework depends on the choice of model, we also study

its dynamics in the cobweb model (see Appendix D). The cobweb model is used by Muth

(1961) to introduce the rational expectations hypothesis, and by Brock and Hommes
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(1997) to introduce their heuristic switching model. Contrary to the asset pricing model,

this market exhibits negative expectations feedback: A higher expected price will lead to

a lower realized price. Like in Brock and Hommes (1997), agents can choose between a

stable, rational strategy, and an unstable, naive strategy, where the former is costlier. In

this different context, our mean-variance switching model gives rise to a dynamics that

is just as rich as that observed in the asset pricing model, including deterministic chaos.

4.2. Resilience to price shocks

To assess the resilience of our asset market, we also consider a version of the model

that adds stochasticity in the form of noise traders. As we show in Appendix B, the

pricing equation in this case includes a price shock, denoted by εt:

xt+1 =
1

Rf
{ΘF,t f xt + (1−ΘF,t) [xt +m (xt − xt−1)]}+ εt. (24)

We simulate this stochastic version of the model with an i.i.d. price shock εt ∼ N (0, 0.05),

which is small compared to the range of price deviations that occur in the deterministic

system. The results are presented in the top panels of Figure 6.

We do not just observe noise around the deterministic solution of Figure 3, but the

dynamics is different. The heterogeneous beliefs, especially the trend-following heuristic,

amplify the small noise, leading to larger and less regular asset price deviations. Periods

where the fundamentalists take over the market also last longer. The changed dynamics is

reflected in the long-term behaviour, which is presented in the top-right panel of Figure 6:

The shape of the attractor is preserved, but it is bigger and less well-defined.

In the following, we investigate the stochastic system in different parameter ranges.

When η = 0.4, the deterministic system converges to the steady state.14 However, when

we introduce a small normally distributed price shock with a standard deviation of 0.01,

14This is true for a wide range of initial values, as long as the initial asset price deviations do not become
too large. The convergence is not exponential and relatively slow: Starting from the initial conditions
used in Figure 3, the solution oscillates towards the steady state in approximately 2500 time-steps.
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Figure 6: Two top-left panels: Price deviations from the fundamental (top) and risk-tolerance fraction
choosing the fundamentalist strategy (bottom) for periods 1000 − 1250, with Rf = 1.01, η = 0.2,
and xt+1 given by (24) with an i.i.d. price shock εt ∼ N (0, 0.05). Top-right panel: Attractor in
xt − (〈uF 〉t − 〈uM 〉t) − (σ̃2

F,t − σ̃2
M,t) space of the noisy asset pricing system depicted in the top-

left panels. Two bottom-left panels: Price deviations from the fundamental (top) and risk-tolerance
fraction choosing the fundamentalist strategy (bottom) for periods 400− 561, with Rf = 1.01, η = 0.4,
and xt+1 given by (24) with an i.i.d. price shock εt ∼ N (0, 0.05). Two bottom-right panels: Price
deviations from the fundamental (top) and risk-tolerance fraction choosing the fundamentalist strategy
(bottom) for periods 0− 250, with Rf = 1.2, η = 0.4, and xt+1 given by (24) with an i.i.d. price shock
εt ∼ N (0, 5). Note: A colour gradient represents the value of ΘF , and dashed and dotted lines indicate
ΘF and ΘF,+, respectively. Parameter values: f = 0.6, m = 1.1, log γ ∼ N (1.14, 0.67). Initial values:
x−2 = x−1 = x0 = 0.1, 〈uF 〉0 = −1, 〈uM 〉0 = −0.90,

〈
u2F
〉
0

= 2,
〈
u2M
〉
0

= 1.91 (implying ΘF,1 = 0.5).
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the solution is pushed out of equilibrium, and exhibits behaviour similar to that shown

in the top panels of Figure 6.

Increasing the standard deviation of the shock to 0.05, the solution becomes explo-

sive. In the bottom-left panels of Figure 6, we show its behaviour for periods 400-561. It

starts close to the fundamental, with long periods of only fundamentalists in the market.

After about 80 time-steps, the momentum traders take over, and the asset price starts

oscillating around the fundamental with ever-increasing amplitude. Although the deter-

ministic system is stable, it is less resilient than the chaotic η = 0.2 system, because it is

less able to absorb small price shocks.

Following Lemma 4, we showed that the deterministic asset pricing model always

converges to the steady state when m < Rf , because in this case ΘF,t ≥ 0 > ΘF . If we

adjust the η = 0.4 system by setting Rf = 1.2 > m = 1.1, it is much more resilient. The

bottom-right panels of Figure 6 show the solution with large price shocks εt ∼ N (0, 5).

Note that indeed, the dashed line, corresponding to ΘF , lies below zero, and hence

ΘF,t never comes below it. Even though the price shocks are bigger, the solution stays

closer to the fundamental than in the case where Rf < m. The market is dominated by

fundamentalists, which stabilize it. Momentum traders only take over from time to time

to give rise to short-lived booms and busts.

5. Conclusion

We have incorporated diverse risk preferences into an asset pricing model with fun-

damentalists and momentum traders. Agents switch between the two forecasting rules

based on a trade-off between forecasting performance and variability, taking into account

their risk preferences. Heterogeneous expectations result from heterogeneous risk aver-

sion. By using estimates for the risk aversion distribution, we have empirically grounded

our switching mechanism.

We have proven that this model cannot be captured by a representative agent. Fur-

thermore, we have shown that a steady state exists, and have characterized the asset
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price dynamics under the assumption of constant fractions: Stability of the steady state

depends on the risk-tolerance fraction of fundamentalists relative to a threshold. This

threshold depends on the strength of the momentum rule relative to the risk-free rate. If

the risk-free rate is larger than the strength of the momentum rule (Rf > m), the steady

state is always stable. A lower interest rate implies a larger threshold, which means that

a larger fundamentalist fraction is needed for the steady state to be stable. This result

is particularly interesting given the current low-interest-rate climate, and suggests that

monetary stimulus can lead to less stable financial markets.

Numerically, we have shown that allowing for time-varying fractions, our asset pricing

model can exhibit chaotic dynamics with a strange attractor. Bubbles and crashes emerge

endogenously and unpredictably. By including stochastic asset price shocks, we have

shown that heterogeneous beliefs and the resulting non-linearities have implications for

resilience. Even when the endogenous dynamics (without stochastic shocks) is minimal

or non-existent, small price shocks can cause large asset price bubbles.

We highlight three promising avenues for further research. First, agents could be

modelled to form expectations by combining heuristics in a weighted average, in the

same way that the representative agent does in subsection 3.1. While exploring the

implications of this assumption, we have found that a representative agent does exist

when the heterogeneous agents diversify across heuristics in this way, given that she has

a time-varying risk aversion.15 This could be linked to the time-varying risk aversion

that is used in the more traditional finance literature that uses representative agents

(e.g., Campbell and Cochrane, 1999).

Second, one may include a bankruptcy mechanism in our model, which we have not

included for the sake of simplicity. Such a model allows for the study of wealth impli-

cations of heterogeneous beliefs. Combined with a demand function that depends on

wealth, it can also be linked to aforementioned time-varying risk aversion in the repre-

sentative agent framework, which can be explained by underlying wealth-shifts between

15A proof is available upon request.
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agents with different risk preferences (Chan and Kogan, 2002; Xiouros and Zapatero,

2010).

Third, further empirical validation and calibration of our model could be achieved by

comparing the numerical results, like the fractal dimension of the attractor, with data.

It would be interesting to include different specifications of the forecasting strategies in

this analysis.
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Appendix A. Does a representative agent exist?

In this appendix, we show that while a representative agent does exist for the asset

pricing model by Brock and Hommes (1998), no such aggregation is possible for our

model.

First, a rational agent could not represent a heterogeneous economy, since an asset

market with a rational agent would never deviate from the fundamental price. Second, an

agent who would use the same heuristic forecasting method as the agents in the hetero-

geneous economy would only choose one rule at a time. She could therefore not represent

the heterogeneous economy in which both heuristics can be used at the same time. We

conclude that a representative agent would have to diversify across the heuristics instead

of switching between them.

We start by deriving the pricing equation in the representative agent market, as well

as the weights that she assigns to both rules in terms of the mean and variance of their

performance. The mean-variance utility (1) does not have a maximum if γ ≤ 0, so we

assume that the representative agent has risk aversion γR,t ∈ (0,∞) for all t. In this

case, aggregate demand is equal to individual demand, given by the representative agent

version of equation (4):

ER,t
[
Ret+1

]
γR,t VR,t

[
Ret+1

] , (A.1)

where ER,t and VR,t denote the representative agent’s beliefs about expectation and

variance, conditional on information set It.

Like the heterogeneous agents, the representative agent is assumed to be familiar with

the fundamental price and dividend processes: ER,t
[
p∗t+1 + dt+1

]
= Et

[
p∗t+1 + dt+1

]
.

However, instead of choosing only one heuristic, the agent combines the fundamentalist

and momentum rules in a weighted average to predict the price deviation from the

fundamental:

ER,t [xt+1] = wF,t hF (xt−1) + wM,t hM (xt−1, xt−2) , (A.2)

where wF,t and wM,t are the period t weights assigned to the fundamentalist and mo-
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mentum rules, respectively. Note that we use the same two heuristics as in our model.

However, the derivations and conclusions in this appendix hold for any two heuristics,

including those explored by Brock and Hommes (1998).

The price deviations from the fundamental are given by

xt =
1

Rf
{wF,t f xt−1 + (1− wF,t) [xt−1 +m (xt−1 − xt−2)]} . (A.3)

The weights for period t are determined by maximizing the following mean-variance

performance measure with respect to wF,t and wM,t:

Φt =

(
wF,t wM,t

)〈uF 〉t−1

〈uM 〉t−1

− γR,t
2

(
wF,t wM,t

)
Σt−1

wF,t
wM,t

 , (A.4)

such that wM,t+1 + wF,t+1 = 1 and 0 ≤ wF,t+1 ≤ 1. Here, Σt is the covariance matrix

given by

Σt =

 σ̃2
F,t σ̃FM,t

σ̃FM,t σ̃2
M,t

 , (A.5)

with σ̃FM,t a measure of the covariance between the utilities of the two heuristics in

period t.16 Note that period t risk aversion enters the performance measure, while mean

and (co)variance measures are from period t − 1. The timing is similar to that in the

heterogeneous economy; period t mean and variance are not yet known when determining

the weights for that period.

By maximizing the mean-variance performance measure (A.4), the representative

agent chooses the weights given in the following lemma:

Lemma 5 (Representative agent weights). The weights chosen by the representative

16We do not need to specify this measure here, but a definition in line with (14) would be σ̃FM,t =
〈uF uM 〉t − 〈uF 〉t〈uM 〉t, with 〈uF uM 〉t = η 〈uF uM 〉t−1 + (1− η)uF,t uM,t.
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agent with relative risk aversion coefficient γR,t are given by

wF,t+1 = min
[
max

(
w∗F,t+1, 0

)
, 1
]
,

where w∗F,t+1 is the interior solution given by

w∗F,t+1 =
γ−1
R,t+1 (〈uF 〉t − 〈uM 〉t)− σ̃FM,t + σ̃2

M,t

σ̃2
F,t − 2 σ̃FM,t + σ̃2

M,t

,

and

wM,t+1 = 1− wF,t+1.

Proof. See Appendix C.

We now consider the representative agent for the model of Brock and Hommes (1998),

who model the fractions of agents that use the heuristics with the multinomial logit

(MNL).17 The MNL can be derived from a stochastic utility model:18 The utility Ũs,i,t

derived from heuristic s ∈ {F,M} by agent i is expressed as

Ũs,i,t = Us,t + εs,i,t. (A.6)

Here, Us,t is a performance measure for period t, which is observable at the aggregate

level and can be equal to the weighted average of squared forecasting errors that we use

in our model, or any other measure of expected performance. The stochastic term εs,i,t

represents the stochastic differences between agents. It reflects all utility determinants

that are not captured by Us,t as well as measurement errors and errors resulting from a

potential misspecification of the functional form of Us,t.

The representative agent is a mean-variance optimizer, who therefore wants to max-

imize the individual utilities, while penalizing their spread. The spread of individual

17Most heuristic switching studies use the MNL, following Brock and Hommes (1997). The MNL is
well-documented in the discrete choice literature (e.g., Anderson et al., 1992).

18Most studies in the heuristic switching literature that refer to a specific derivation of the MNL (e.g.,
Hommes, 2013), refer to the interpretation of the stochastic utility model that we use here.
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utilities around the performance measure is measured by the variance of the stochastic

term. The size of the penalty is determined by the representative agent’s risk aversion.

The MNL arises when the εs,i,t are assumed to be i.i.d across agents and heuristics ac-

cording to the double exponential distribution. The variance of this distribution is given

by π2/(6β2), with β > 0 the intensity of choice parameter. To be able to compare the

original model with our representative agent aggregation, we make the same assump-

tion regarding the distribution of the stochastic utility term. To translate the results of

Lemma 5 to this setting, we have

〈uF 〉t = UF,t, 〈uM 〉t = UM,t, σ̃FM = 0, σ̃2
F = σ̃2

M =
π2

6β2
.

With our fundamentalist and momentum heuristics, the Brock and Hommes (1998)

deviations from the fundamental price are given by

xt =
1

Rf
{nF,t f xt−1 + (1− nF,t) [xt−1 +m (xt−1 − xt−2)]} , (A.7)

with nF,t the fraction of agents using the fundamentalist rule, given by the MNL:

nF,t+1 =
exp (β UF,t)

exp (β UF,t) + exp (β UM,t)
. (A.8)

Comparing with equation (A.3), we see that the representative agent model is equivalent

to the Brock and Hommes model precisely when wF,t+1 = nF,t+1 for arbitrary UF,t and

UM,t. In the following lemma, we show that this is possible when the representative

agent has a specific, time-varying risk aversion.

Lemma 6 (Representative agent for multinomial logit switching). Suppose that the rep-

resentative agent believes that the performance measures of the two forecasting heuristics

are independent (σ̃FM,t = 0 for all t), and have equal, constant variance, given by

σ̃2
F = σ̃2

M =
π2

6β2
,
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where β is the intensity of choice in the MNL. Furthermore suppose that she has a time-

varying risk aversion given by

γR,t+1 =


6β2(UF,t − UM,t)

π2

exp (β UF,t) + exp (β UM,t)

exp (β UF,t)− exp (β UM,t)
if UF,t 6= UM,t;

12β

π2
if UF,t = UM,t.

Then the representative agent market is equivalent to a heterogeneous market with agents

switching between the two heuristics, where the fractions of agents following the two rules

are governed by the MNL.

Proof. See Appendix C.

The agent’s risk aversion γR,t can be set to any value when UF,t = UM,t. However,

we have made the particular choice presented in the lemma to ensure continuity of risk

aversion as a function of UF,t and UM,t. We also note that more general formulations

of the lemma can be proven. The only requirements are that the variances of the two

heuristics are equal and non-zero. An aggregation can also be achieved when variances

are time-varying, or when the performance measures are correlated.19

We now turn to the representative agent for our market consisting of mean-variance

optimizing agents with heterogeneous risk preferences. Comparing the representative

agent price dynamics (A.3) with the heterogeneous system (20), we see that the rep-

resentative agent economy is identical to it if and only if the weight assigned by the

representative agent to the fundamentalist heuristic is equal to the risk-tolerance frac-

tion represented by that heuristic in the heterogeneous economy in every period, that

is, if and only if wF,t = ΘF,t for all t ∈ N0. Now suppose that for some period t, we

have that 〈uF 〉t = 〈uM 〉t and σ̃FM,t < σ̃2
F,t < σ̃2

M,t. It follows from equation (19) that

ΘF,t+1 = 1, while Lemma 5 tells us that wF,t+1 < 1, independent of the agents’ risk

aversion. It follows that wF,t+1 6= ΘF,t+1, implying that our heterogeneous market of

19A proof is available upon request.
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switching agents cannot be captured by a representative agent. The same argument holds

if the representative agent does not take into account the covariance (i.e., σ̃FM,t = 0).20

20One can prove that this result also holds when allowing the representative agent to divide her wealth
over a finite set of (time-varying) risk aversions (proof available upon request).
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Appendix B. Introducing noise traders

In this appendix, we derive the pricing equation for our model when it includes noise

traders in addition to heuristic switching agents. The noise traders buy a random amount

of the risky asset in each period. We denote by αN the fraction of noise traders in the

market, which leaves a fraction 1 − αN of heuristic switching agents. Let et be the

stochastic demand of the noise traders in period t (in our simulations, this demand is

drawn from a normal distribution). Equating supply and demand now gives

0 = (1− αN )

∫ ∞
0

Ẽγ,t
[
Ret+1

]
γ Ṽγ,t

[
Ret+1

] g(γ) dγ + αN et

pt =
1

Rf Θ

∫ ∞
0

g(γ)

γ
Ẽγ,t [pt+1 + dt+1] dγ +

1

Rf Θ

αN
1− αN

et.

In the case of fundamentalists and chartists, this gives the following equation for the

deviations from the fundamental price:

xt =
1

Rf
{ΘF,t f xt−1 + (1−ΘF,t) [xt−1 +m (xt−1 − xt−2)]}+ εt,

where we have defined the resulting price shock in terms of the noise traders’ demand:

εt =
1

Rf Θ

αN
1− αN

et.
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Appendix C. Proofs

Proof of Lemma 1. We write
(
x∗, 〈uF 〉∗, 〈uM 〉∗,

〈
u2
F

〉∗
,
〈
u2
M

〉∗)
to denote the steady

state. It follows from the definition of the system (20) that

〈uF 〉∗ = η 〈uF 〉∗ − (1− η) (x∗ − f x∗)2

〈uF 〉∗ = − (x∗)
2

(1− f)
2
.

Similarly, we have that
〈
u2
F

〉∗
= (x∗)

4
(1− f)

4
. Furthermore, it follows that

〈uM 〉∗ = η 〈uM 〉∗,

so that 〈uM 〉∗ = 0 (since 0 < η < 1). Similarly,
〈
u2
M

〉∗
= 0.

It now follows from (19) that

Θ∗F =


0 if x∗ 6= 0;

1
2 if x∗ = 0,

Note that if Θ∗F = 0, we have that

x∗ =
x∗

Rf
,

which means that x∗ = 0. We conclude that (0, 0, 0, 0, 0) is the only steady state.

Proof of Lemma 2. We write the steady state as (ν∗, x∗). Because νt = xt−1, we have

that ν∗ = x∗. It then follows from the definition of A in (22) that

1

Rf
[ΘF f x

∗ + (1−ΘF )x∗] = x∗

x∗
[
Rf − 1 + ΘF (1− f)

]
= 0

x∗ = 0,

where in the last step we have used that Rf − 1 + ΘF (1 − f) > 0, since Rf > 1,
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0 ≤ ΘF ≤ 1, and f < 1. We conclude that (0, 0)T is the only steady state.

Proof of Lemma 3. If ΘF = 1, the map A simplifies to

A =

0 1

0
f

Rf

 ,

with eigenvalues 0 and f/Rf . Because f < 1 and Rf > 1, both eigenvalues have absolute

value smaller than 1, which implies that the steady state is stable.

If ΘF = 0, we have

A =

 0 1

− m

Rf
1 +m

Rf

 ,

with characteristic equation

Rf λ2 − (1 +m)λ+m = 0,

and eigenvalues

λ± =
1 +m±

√
(1 +m)2 − 4mRf

2Rf
.

The eigenvalues are complex when

(1 +m)2 − 4mRf < 0

m2 +
(
2− 4Rf

)
m+ 1 < 0.

The zeros of the quadratic function on the left-hand side lie at

m± =
4Rf − 2±

√
(2− 4Rf )2 − 4

2

= 2

(
Rf ±

√
Rf (Rf − 1)

)
− 1.

Note that m± ∈ R because Rf > 1. It follows that λ± ∈ C when m− < m < m+, and
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λ± ∈ R if m ≤ m− or m ≥ m+.

Because m− is strictly decreasing in Rf 21 and

lim
Rf→∞

Rf −
√
Rf (Rf − 1) =

1

2
, 22

we have that

m− > 2

(
1

2

)
− 1 = 0.

Because on the other hand

√
Rf (Rf − 1) >

√
(Rf − 1)2 = Rf − 1,

it follows that

m− < 2
(
Rf −Rf + 1

)
− 1 = 1.

21To prove this, consider m− a function of Rf ∈ (1,∞), and take the derivative with respect to Rf

to get

dm−

dRf
= 2

(
1−

2Rf − 1

2
√

(2− 4Rf )2 − 4

)
.

For Rf = 2, the derivative is equal to

dm−

dRf
= 2

(
1−

3

2
√

2

)
< 0.

The derivative is equal to 0 if and only if

2Rf − 1 = 2
√

(2− 4Rf )2 − 4.

Squaring both sides of the equation gives 1 = 0, a contradiction. It follows that the derivative of m−
with respect to Rf never vanishes, and is negative for Rf = 2. Because in addition this derivative
is continuous on (1,∞), it is negative everywhere on this interval. We conclude that m− is strictly
decreasing in Rf .

22To see this, note that for x ∈ (1,∞):

x−
√
x(x− 1) =

(
x−
√
x2 − x

)(
x+
√
x2 − x

)
x+
√
x2 − x

=
x

x+
√
x2 − x

=
1

1 +

√
1−

1

x

→
1

2
(x→∞).
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We also have that

m+ = Rf + 2
√
Rf (Rf − 1) +Rf − 1 > Rf .

We investigate |λ±| to derive the results about stability. The steady state is stable

if the eigenvalues lie within the unit circle in the complex plane (|λ±| < 1), neutral

when they lie on the unit circle (|λ±| = 1), and unstable if they lie outside the unit

circle(|λ±| > 1). If m− < m < m+, we have λ± ∈ C, and

|λ±|2 =
1

4 (Rf )
2

[
(1 +m)2 + 4mRf − (1 +m)2

]
=

m

Rf
.

Note that m− < Rf < m+, so that λ± ∈ C and |λ±| = 1 if m = Rf , implying a neutral

steady state. It furthermore follows that the steady state is stable for m− < m < Rf ,

and unstable for Rf < m < m+.

If λ± ∈ R (i.e., m ≤ m− or m ≥ m+), we have that

(1 +m)2 − 4mRf ≥ 0,

and √
(1 +m)2 − 4mRf ≤

√
(1 +m)2 = 1 +m,

(using m ≥ 0) which implies that

1 +m−
√

(1 +m)2 − 4mRf ≥ 0.

In this case, it follows that

|λ±| = λ± =
1 +m±

√
(1 +m)2 − 4mRf

2Rf
,
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so that

λ− = |λ−| ≤ |λ+| = λ+. (C.1)

We now prove that the steady state is stable for 0 ≤ m ≤ m−. Given inequality

(C.1), it is enough to prove that λ+ < 1. Let us write λ+ as a function of m:

λ+(m) =
1 +m+

√
(1 +m)2 − 4mRf

2Rf
.

First note that

λ+(m−) =
1 +m− + 0

2Rf
<

1

Rf
< 1.

Next, we consider m ∈ [0,m−). Because Rf > 1, it follows that

λ+(0) =
1

Rf
< 1.

We continue by proving that λ+(m) is strictly decreasing on [0,m−), which implies that

λ+(m) < 1 for all m ∈ [0,m−), since it is smaller than 1 at m = 0. For m ∈ [0,m−), we

have that

dλ+

dm
(m) =

1

2Rf

[
1 +

1 +m− 2Rf√
(1 +m)2 − 4mRf

]
,

implying that

dλ+

dm
(0) =

1−Rf

Rf
< 0.

Because the derivative is continuous on [0,m−), it would have to vanish for some m′ ∈

(0,m−) in order to change sign. The derivative vanishes at m′ if and only if

1 +m′ − 2Rf = −
√

(1 +m′)2 − 4m′Rf .

Squaring both sides and rearranging leads to

(
Rf
)2

= Rf .
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This equality has no solutions for Rf > 1, and because the squares are not equal, no

m′ ∈ (0,m−) exists for which the derivative of λ+ vanishes. We conclude that the

derivative is negative on [0,m−), implying that λ+ is strictly decreasing on this interval.

As argued above, this means that λ+(m) < 1 for all m ∈ [0,m−). We already showed

that λ+(m) < 1 for m = m−, so we can conclude that the steady state is stable for

m ≤ m−.

To prove that the steady state is unstable for m ≥ m+, it suffices to show that λ− > 1,

because of (C.1). Let us now write λ− as a function of m:

λ−(m) =
1 +m−

√
(1 +m)2 − 4mRf

2Rf
.

We have that

λ−(m+) =
1 +m+ − 0

2Rf
=
Rf +

√
Rf (Rf − 1)

Rf
> 1.

For m ∈ (m+,∞) the derivative is given by

dλ−
dm

(m) =
1

2Rf

[
1− 1 +m− 2Rf√

(1 +m)2 − 4mRf

]
.

The sign of the derivative is determined by the function

ζ : (m+,∞)→ R, m 7→ 1 +m− 2Rf −
√

(1 +m)2 − 4mRf .

If ζ is positive, the derivative is negative, if ζ = 0, the derivative vanishes, and if it is

negative, the derivative has positive sign. We can extend the domain of ζ to include m+,

and find that

ζ(m+) =
√
Rf (Rf − 1) > 0.

Since ζ is continuous and nowhere vanishing,23 it is positive on the whole interval

23We did a similar derivation above: ζ = 0 if and only if

1 +m− 2Rf = −
√

(1 +m)2 − 4mRf .
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(m+,∞), which implies that the derivative of λ− with respect to m is negative on this

interval. We conclude hat λ− is strictly decreasing as a function of m ∈ (m+,∞). We

finalize the proof that λ− > 1 for m ∈ (m+,∞) by showing that λ−(m)→ 1 as m→∞:

lim
m→∞

λ−(m) = lim
m→∞

1

2Rf

[
1 +m−

√
(1 +m)2 − 4mRf

]
= lim
m→∞

1

2Rf

[
1 +m+

√
(1 +m)2 − 4mRf

]−1

×
[
1 +m−

√
(1 +m)2 − 4mRf

]
×
[
1 +m+

√
(1 +m)2 − 4mRf

]
= lim
m→∞

1

2Rf

[
4mRf

1 +m+
√

(1 +m)2 − 4mRf

]

= lim
m→∞

1

2Rf

 4Rf

1

m
+ 1 +

√
1

m2
+

2

m
+ 1− 4Rf

m


= 1.

We have shown that λ− strictly decreases from a value above 1 at m = m+ to 1 as

m→∞. This implies that λ−(m) > 1 for all m ∈ [m+,∞). We conclude that the steady

state is unstable for m ≥ m+.

Combining the stability results for complex eigenvalues with those for real eigenvalues,

we can conclude that the steady state is stable for 0 < m < Rf , and unstable for m > Rf .

This concludes the proof.

Proof of Lemma 4. The map A, as defined in (22) has characteristic equation

Rfλ2 − [ΘF f + (1−ΘF ) (1 +m)]λ+ (1−ΘF )m.

Squaring both sides and rearranging gives us(
Rf
)2

= Rf ,

which has no solutions for Rf > 1. We conclude that ζ cannot vanish when Rf > 1.
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The eigenvalues are given by

λ± =
1

2Rf

{
ΘF f + (1−ΘF ) (1 +m)

±
√

[ΘF f + (1−ΘF ) (1 +m)]
2 − 4Rf (1−ΘF )m

}
=

ΘF f + (1−ΘF ) (1 +m)±
√
ξ (ΘF ;Rf , f,m)

2Rf
,

where we have defined ξ : [0, 1]→ R,

ΘF 7→ [ΘF f + (1−ΘF ) (1 +m)]
2 − 4Rf (1−ΘF )m

= (f − 1−m)2 Θ2
F +

[
2(1 +m)(f − 1−m) + 4Rfm

]
ΘF

+ (1 +m)2 − 4Rfm,

with parameters Rf ∈ (1,∞), f ∈ [0, 1), and m ∈ (0,∞).

Complexity of the eigenvalues. The eigenvalues of A are real if ξ ≥ 0 and complex if

ξ < 0. The zeros of ξ are given by

ΘF,± =
(1 +m− f)(1 +m)− 2mRf ± 2

√
m2 (Rf )

2 − f mRf (1 +m− f)

(1 +m− f)2
.

The eigenvalues are complex when these zeros are real and ΘF,− < ΘF < ΘF,+. They

are real when the zeros of ξ are complex, or when they are real and ΘF /∈ (ΘF,−,ΘF,+).

The expression in the square root in the definition for ΘF,± can be rewritten as

mRf
[
f2 − (1 +m) f +mRf

]
.

Since m > 0, the sign of this expression is determined by the function

χ : [0, 1)→ R, f 7→ f2 − (1 +m) f +mRf .
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The zeros ΘF,± are complex when χ < 0, and real when χ ≥ 0. Also note that if χ = 0,

we have that ΘF,− = ΘF,+, which means that ξ ≥ 0 and that the eigenvalues are real.

The zeros of χ are given by

f± =
1 +m±

√
(1 +m)2 − 4mRf

2
.

We conclude that the eigenvalues of A are real if f− ≤ f ≤ f+ or ΘF ≤ ΘF,− or

ΘF ≥ ΘF,+, and complex otherwise.

The modulus of the eigenvalues. Note that

√
ξ(ΘF ;Rf , f,m) ≤

√
[ΘF f + (1−ΘF ) (1 +m)]

2
= ΘF f + (1−ΘF ) (1 +m)24,

which implies that

ΘF f + (1−ΘF ) (1 +m)−
√
ξ (ΘF ;Rf , f,m) ≥ 0.

If the eigenvalues are real (ξ ≥ 0), this means that

λ− = |λ−| ≤ |λ+| = λ+. (C.2)

If the eigenvalues are complex, we have that

λ± =
1

2Rf

{
ΘF f + (1−ΘF ) (1 +m)

± i
√

4Rf (1−ΘF )m− [ΘF f + (1−ΘF ) (1 +m)]
2

}
,

24Note that
√
ξ(ΘF ;Rf , f,m) 6=

√
[ΘF f + (1−ΘF ) (1 +m)]2 if ΘF < 1 and m > 0.
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so that

|λ±|2 =
1

4 (Rf )
2

{
[ΘF f + (1−ΘF ) (1 +m)]

2

+ 4Rf (1−ΘF )m− [ΘF f + (1−ΘF ) (1 +m)]
2

}
=

(1−ΘF )m

Rf
.

It follows that |λ±| = 1 at a threshold value given by

ΘF = 1− Rf

m
. (C.3)

If ΘF < ΘF , we have that |λ±| > 1, and if ΘF > ΘF , it follows that |λ±| < 1.

Now assume that m > 1. We are going to show that ΘF,− < ΘF < ΘF,+. Consider

ΘF,± as functions of f :25 ΘF,± : [0, 1)→ R,

f 7→
(1 +m− f)(1 +m)− 2mRf ± 2

√
m2 (Rf )

2 − f mRf (1 +m− f)

(1 +m− f)2
.

It follows that

ΘF,±(0) = 1 +
±2mRf − 2mRf

(1 +m)2
.

We find that ΘF,+(0) = 1 > ΘF , while ΘF,−(0) < ΘF if and only if

4mRf

(1 +m)2
>
Rf

m

4 >
(1 +m)2

m2

4 > 1 +
2

m
+

1

m2

m > 1,

25Later in this proof, we show that m > m−, which includes the case of m > 1, implies that ΘF,± ∈ R
and ΘF,− < ΘF,+. We do this by noting that the f± are complex if m− < m < m+ and showing that
f± > 1 if m ≥ m+.
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where we have used the fact that m > 0. Hence it follows that ΘF,−(0) < ΘF < ΘF,+(0).

Since ΘF,± are continuous functions of f and ΘF is independent of f , we can only have

ΘF /∈ (ΘF,−,ΘF,+) if ΘF,−(f) = ΘF or ΘF,+(f) = ΘF for some f ∈ [0, 1). However,

note that ΘF,± = ΘF if and only if

(1 +m− f)(1 +m)− 2mRf ± 2

√
m2 (Rf )

2 − f mRf (1 +m− f)

(1 +m− f)2
= 1− Rf

m

± 2

√
m2 (Rf )

2 − f mRf (1 +m− f) = Rf
[
2(f − 1) +m− (1− f)2

m

]
− f(1 +m)

Squaring both sides and solving for Rf leads to

Rf =
f m

f − 1− 3m
or Rf =

f m

f − 1 +m
.

These solutions contradict Rf > 1, because we have that

f m

f − 1− 3m
< 0,

and since m > 1, it follows that

f < 1

(m− 1)f < m− 1

f m < f − 1 +m

f m

f − 1 +m
< 1,

so ΘF,± 6= ΘF . We conclude that ΘF,− < ΘF < ΘF,+ if m > 1.

Before we continue with the proof, we formulate a lemma about the the range of the

eigenvalues when they are real. Its proof can be found at the end of this appendix.
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Lemma 7. The functions defined by

λ± : D → R, ΘF 7→
ΘF f + (1−ΘF ) (1 +m)±

√
ξ (ΘF ;Rf , f,m)

2Rf
,

with 0 ≤ f < 1, m > 0, Rf > 1 , and where the domain D is chosen to ensure that

D ⊂ [0, 1] and that the function is real:

D =



[0, 1] if f− ≤ f ≤ f+ or ΘF,± ≤ 0 or ΘF,± ≥ 1;

[0,ΘF,−] ∪ [ΘF,+, 1] if 0 ≤ ΘF,− < ΘF,+ ≤ 1;

[0,ΘF,−] if 0 ≤ ΘF,− < 1 < ΘF,+;

[ΘF,+, 1] if ΘF,− < 0 < ΘF,+ ≤ 1;

∅ if ΘF,− < 0 and ΘF,+ > 1;

satisfy

λ± 6= 1.

The case 0 < m ≤ m−. Suppose that 0 < m ≤ m−. Because m ≤ m−, it follows that

(1 +m)2 − 4mRf ≥ 0 (see the proof of Lemma 3), and the zeros f± of χ are real. Also

note that √
(1 +m)2 − 4mRf <

√
(1 +m)2 = 1 +m,

so that f− > 0. We also have that

f− ≤
1 +m−

2
< 1,

because m− < 1 (Lemma 3). This means that there exist f ∈ (0, 1) for which f− ≤ f ≤

f+. For these values of f , the eigenvalues of A are real. We conclude that the eigenvalues

are real when 0 < m ≤ m− and f− ≤ f ≤ f+. If 0 < m ≤ m− and f /∈ [f−, f+], the

zeros ΘF,± of ξ are real and ΘF,− < ΘF,+. In this case, the eigenvalues are complex if

ΘF,− < ΘF < ΘF,+, and real otherwise.
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Let us now consider the stability of the steady state when 0 < m ≤ m−. In the

following, we show that the steady state is stable if the eigenvalues are real. Given

inequality (C.2), it suffices to show that λ+ < 1. First assume that f− ≤ f ≤ f+ or

ΘF,± ≤ 0 or ΘF,± ≥ 1, so that we can define λ+ as a continuous function of ΘF ∈ [0, 1]

as in Lemma 7. From Lemma 3, we know that λ+(1) < 1. Because λ+ is continuous and

Lemma 7 gives us that λ+ 6= 1, it follows that λ+ < 1.

Now assume that ΘF,± ∈ R. If 0 < ΘF,− < 1 and ΘF ≤ ΘF,−, we can define λ+ as a

function of ΘF ∈ [0,ΘF,−]. Lemma 3 implies that λ+(0) < 1. Because λ+ is continuous

on [0,ΘF,−] and Lemma 7 tells us that λ+ 6= 1, it follows that λ+ < 1. If 0 < ΘF,+ < 1

and ΘF ≥ ΘF,+, we can define λ+ as a continuous function on [ΘF,+, 1]. Combining this

with the fact that λ+(1) < 1 and Lemma 7, we conclude that λ+ < 1.

In the case that ΘF,− < ΘF < ΘF,+, the eigenvalues of A are complex. We have

already shown that the modulus of the eigenvalues depends on a threshold fraction of

fundamentalists ΘF , as defined in equation (C.3). If m ≤ m− < 1, we have that ΘF < 0,

and ΘF > ΘF . This means that |λ±| < 1 and the steady state is stable.

The case m− < m < m+. We start by showing that ΘF,− < 0 < ΘF,+ ≤ 1. If

m− < m < m+, the zeros f± of χ are complex, and ΘF,± ∈ R. We know from Lemma 3

that if m− < m < m+, the eigenvalues of A are complex at ΘF = 0, which means

that ξ(0) < 0. This implies for the zeros of ξ that ΘF,− < 0 and ΘF,+ > 0. From the

definition of ξ, we know that

ξ(1) = f2 ≥ 0,

where ξ(1) = 0 if and only if f = 0. This means that either ΘF,+ = 1 (when f = 0), or

ΘF,+ ∈ (0, 1) (when f > 0). We conclude that ΘF,− < 0 < ΘF,+ ≤ 1, where ΘF,+ = 1 if

and only if f = 0.

Now ΘF < ΘF,+ implies that ΘF,− < ΘF < ΘF,+, since ΘF,− < 0 ≤ ΘF . This means

that the eigenvalues of A are complex, and the stability of the steady state depends on

the threshold value ΘF like before.
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Lastly, we show that the steady state is stable if ΘF ≥ ΘF,+. In this case, it follows

that the eigenvalues are real, and inequality (C.2) implies that it suffices to show that

λ+ < 1. Defining λ+ as a function of ΘF on [ΘF,+, 1], Lemma 7 implies that it suffices

to show that λ+(ΘF ) < 1 for some ΘF ∈ [ΘF,+, 1]. We already know from Lemma 3

that λ+(1) < 1, so we can conclude that the steady state is stable if ΘF ≥ ΘF,+.

The case m ≥ m+. If m ≥ m+, the zeros f± of χ are real, but they satisfy f± > 1,

which means that ΘF,± ∈ R and ΘF,− < ΘF,+ (because f < 1). To see that f± > 1,

note that χ has its minimum at f∗, which satisfies

f∗ =
1 +m

2
≥ 1 +m+

2
>

1 +Rf

2
> 1.

If m = m+, it follows that f± = f∗ > 1. If m > m+, we have that f± ∈ R and χ(f∗) < 0.

On the other hand, we know that

χ(1) = m
(
Rf − 1

)
> 0.

Because χ is continuous, it follows that f− ∈ (1, f∗), and

1 < f− < f+.

We continue by showing that 0 ≤ ΘF,− < ΘF,+ ≤ 1. Note that ξ takes its minimal

value at

Θ∗F =
(1 +m− f)(1 +m)− 2mRf

(1 +m− f)2
.

We have that

m ≥ m+ = 2

(
Rf +

√
Rf (Rf − 1)

)
− 1 > 2Rf − 1,

56



so that

m+ 1− 2Rf > 0

m2 +m(1− 2Rf ) > 0

m(1 +m)− 2mRf > 0.

This implies that

(1 +m− f)(1 +m)− 2mRf > m(1 +m)− 2mRf > 0,

and Θ∗F > 0.

Moreover, it follows that Θ∗F < 1 if and only if

(1 +m− f)(1 +m)− 2mRf < (1 +m− f)2

f2 − (1 +m)f + 2mRf > 0. (C.4)

Because m ≥ m+ > Rf > 1, we have that

f2 − (1 +m)f + 2mRf > −(1 +m) + 2mRf = m
(
2Rf − 1

)
− 1 > 0,

and inequality (C.4) holds, so that Θ∗F < 1. Because in addition f < f−, as we have

shown earlier, we conclude that

ξ(Θ∗F ) < 0, 0 < Θ∗F < 1. (C.5)

We furthermore have that

ξ(0) = (1 +m)2 − 4mRf ≥ 0,

because m ≥ m+, with ξ(0) = 0 if and only if m = m+. In combination with (C.5), this
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means that ΘF,− ≥ 0 and ΘF,− = 0 if and only if m = m+. We also know that ξ(1) ≥ 0,

with ξ(1) = 0 if and only if f = 0 (as mentioned earlier). Combining this with (C.5)

implies that ΘF,+ ≤ 1 and that ΘF,+ = 1 if and only if f = 0.

We now consider the stability of the steady state of A. If ΘF ≤ ΘF,−, the eigenvalues

of A are real. In the following, we show that the steady state is unstable in this case,

meaning |λ±| > 1. Inequality (C.2) implies that showing λ− > 1 is sufficient. We can

define λ− as a real-valued function of ΘF ∈ [0,ΘF,−]. Lemma 3 implies that λ−(0) > 1,

since m ≥ m+ > Rf . Because λ− is continuous and λ− 6= 1 (Lemma 7), it follows

that λ− > 1 for all ΘF ∈ [0,ΘF,−]. We conclude that the steady state is unstable for

ΘF ≤ ΘF,−.

If ΘF,− < ΘF < ΘF,+, the eigenvalues of A are complex, and the stability of the

steady state is again determined by the threshold ΘF . The proof that the steady state

is stable if ΘF ≥ ΘF,+ (implying real eigenvalues) carries over from the case of m ∈

(m−,m+).

Taking all cases together, the steady state is unstable if ΘF < ΘF , and stable if

ΘF > ΘF . To see this, first note that we have shown that the steady state is stable if

m ≤ m−, while in this case indeed ΘF > ΘF , because ΘF < 0. Second, in the case of

m− < m < m+, we have shown that the stability of the steady state depends on ΘF

as described above if ΘF < ΘF,+. If ΘF ≥ ΘF,+, the steady state is stable, while it

indeed also holds that ΘF > ΘF , since ΘF,+ > ΘF . Third, note that if m ≥ m+, we

have that the stability of the steady state is determined by ΘF if ΘF,− < ΘF < ΘF,+. If

ΘF < ΘF,− (ΘF > ΘF,−), the steady state is unstable (stable), which is consistent with

the claim above, since ΘF,− < ΘF < ΘF,+.

Furthermore, we have that the complexity of the eigenvalues is determined by ΘF

relative to the ΘF,± as described above, except for the case in which the ΘF,± are

complex: If m ≤ m− and f− ≤ f ≤ f+, the ΘF,± are complex, and the eigenvalues of A

are real.

Proof of Lemma 5. The representative agent maximizes Φt given by equation (A.4).
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Omitting time subscripts for clarity and using that wM = 1− wF , this reduces to

Φ = wF (〈uF 〉 − 〈uM 〉) + 〈uM 〉

− γR
2

[
w2
F σ̃

2
F + 2wF (1− wF ) σ̃FM + (1− wF )2 σ̃2

M

]
.

The weights are constrained to the [0, 1] interval:

−wF ≤ 0; (C.6a)

wF − 1 ≤ 0. (C.6b)

The first and second derivatives of the objective function with respect to wF are given

by

∂Φ

∂wF
= 〈uF 〉 − 〈uM 〉 − γR

[
wF σ̃

2
F + (1− 2wF ) σ̃FM − (1− wF ) σ̃2

M

]
;

∂2Φ

∂w2
F

= −γR
(
σ̃2
F − 2 σ̃FM + σ̃2

M

)
.

The parenthetical expression in the second derivative is just the variance of the difference

between heuristics’ performance (σ̃2
F−2 σ̃FM+σ̃2

M = V [uF−uM ]), which is non-negative.

This implies that the objective function is concave (since γ > 0). Because we also have

that the constraints are convex and continuously differentiable with respect to wF , the

Karush-Kuhn-Tucker conditions are sufficient. Denoting the optimum by w∗F and the

multipliers corresponding to constraints (C.6a) and (C.6b) by µ1,2, these conditions are
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given by

∂Φ

∂wF

∣∣∣∣
w∗
F

= µ2 − µ1; (C.7a)

−w∗F ≤ 0; (C.7b)

w∗F − 1 ≤ 0; (C.7c)

µ1,2 ≥ 0; (C.7d)

−µ1 w
∗
F = 0; (C.7e)

µ2 (w∗F − 1) = 0. (C.7f)

We start with the interior solution: When none of the constraints are binding, we

have that µ1 = µ2 = 0, and condition (C.7a) gives that

γ−1
R (〈uF 〉 − 〈uM 〉) = w∗F σ̃

2
F + (1− 2w∗F ) σ̃FM − (1− w∗F ) σ̃2

M

w∗F =
γ−1
R (〈uF 〉 − 〈uM 〉)− σ̃FM + σ̃2

M

σ̃2
F − 2 σ̃FM + σ̃2

M

. (C.8)

The two constraints cannot be binding at the same time. If (C.6a) is binding, we have

w∗F = 0, µ1 > 0, µ2 = 0, and condition (C.7a) implies that

γ−1
R (〈uF 〉 − 〈uM 〉)− σ̃FM − σ̃2

M < 0

Comparing with equation (C.8), we see that this corresponds to the interior solution

being negative. Analogously, if constraint (C.6b) is binding, it follows that w∗F = 1,

µ1 = 0, µ2 > 0, and condition (C.7a) implies that

γ−1
R (〈uF 〉 − 〈uM 〉)− σ̃FM + σ̃2

M > σ̃2
F − 2 σ̃FM + σ̃2

M ,

which corresponds to the interior solution being strictly larger than 1. We conclude that
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the optimal weight put on the fundamentalist rule is

w∗F = min

[
max

(
γ−1
R (〈uF 〉 − 〈uM 〉)− σ̃FM + σ̃2

M

σ̃2
F − 2 σ̃FM + σ̃2

M

, 0

)
, 1

]
,

with the optimal weight for the momentum rule given by w∗M = 1− w∗F .

Proof of Lemma 6. For simplicity, we write

σ2 = σ̃2
F = σ̃2

M =
π2

6β2

and rewrite the MNL fractions as

nF,t+1 =
exp (β∆t)

exp (β∆t) + 1
,

where we have defined ∆t = UF,t − UM,t. To prove the theorem, we have to show that

the representative agent weights satisfy wF,t+1 = nF,t+1 for arbitrary ∆t, which would

imply that the pricing equations (A.3) and (A.7) for the representative agent market and

the MNL switching market are the same.

Because we have that σ̃FM,t = 0, it follows from Lemma 5 that the interior solution

to the representative agent maximization problem is given by

w∗F,t+1 =
∆t

2γR,t+1 σ2
+

1

2
.

First note that when ∆t = 0, it follows that

wF,t+1 = w∗F,t+1 =
1

2
= nF,t+1.

Now suppose that ∆t 6= 0. We can rewrite the representative agent’s risk aversion as
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defined in the lemma in terms of ∆t and σ2:

γR,t+1 =
∆t

σ2

exp (β∆t) + 1

exp (β∆t)− 1
,

which gives that

w∗F,t+1 =
1

2 exp (β∆t)+1
exp (β∆t)−1

+
1

2
.

=
exp (β∆t)

exp (β∆t) + 1

= nF,t+1.

Since 0 < nF,t+1 < 1, we have that wF,t+1 = w∗F,t+1 = nF,t+1. We conclude that

wF,t+1 = nF,t+1 for arbitrary ∆t.

Proof of Lemma 7. We have that λ± = 1 if and only if

ΘF f + (1−ΘF ) (1 +m)±
√
ξ (ΘF ;Rf , f,m) = 2Rf

±
√

[ΘF f + (1−ΘF ) (1 +m)]
2 − 4Rf (1−ΘF )m = 2Rf

−ΘF f − (1−ΘF ) (1 +m). (C.9)

Squaring both sides and rearranging gives

Rf = 1 + ΘF (f − 1−m) ≤ 1.

This is a contradiction, since Rf > 1. Since the squares are not equal, equality (C.9)

cannot hold. We conclude that λ± 6= 1.
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Appendix D. Cobweb application

Appendix D.1. The linear cobweb model with diverse risk preferences

In this appendix, we present the implications of our expectation-formation framework

in a linear cobweb model. The version of the cobweb model we present here is inspired by

Hommes (2013). We use the linear version to focus on the non-linearities arising from the

expectation-formation process. The cobweb model represents a market for non-storable

goods (e.g., corn), which are produced in the period before they are sold in the market.

In each period, suppliers have to decide how much they are going to produce. This

decision crucially depends on the price for which they can expect to sell their produced

goods in the next period. This means that in period t they have to form expectations

about the price in period t+ 1.

Appendix D.1.1. Market mechanism

The supply function of an individual producer is linear and given by s pet , with s > 0

and pet the forecast for the period t price. This supply function is consistent with profit

maximization under a quadratic cost function c(q) = q2/2s (Brock and Hommes, 1997).26

Now assume that we have a continuum of producers on the unit interval (0, 1). Denoting

by pet (i) the price forecast of producer i ∈ (0, 1), we find that aggregate supply is given

by

St =

∫ 1

0

s pet (i) di

= s pet ,

expressed in terms of the average of all producers’ forecasts: pet =
∫ 1

0
pet (i) di.

27

Aggregate demand is given by D(pt) = a−d pt, where a, d > 0. By adding the market

26Expected profit in period t is given by Πet (q) = q pet − q2/2s. We have FOC pet − q∗/s = 0, which
gives q∗ = s pet . Because Πet (q) is strictly concave, q∗ is a maximum.

27This identity readily extends to the discrete case, with the integral replaced by a summation.
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clearing condition, we get the system that governs the dynamics of the model:

D(pt) = a− d pt, a, d > 0, (D.1a)

S(pet ) = s pet , s > 0, (D.1b)

D(pt) = S(pet ). (D.1c)

Appendix D.1.2. Beliefs

We investigate the dynamics when producers can choose between two strategies: ra-

tional and naive. The rational strategy requires complete information about the model

and all the other agents’ expectations, and perfectly predicts the price in the next pe-

riod. The naive strategy predicts that the price in the next period will be the same as

the last observed price. Using the notation peR,t+1 for the rational and peN,t+1 for the

naive forecast, we have that

peR,t+1 = pt+1; (D.2a)

peN,t+1 = pt. (D.2b)

The choice of strategy is governed by the same framework as in the asset pricing

model: Suppliers use the mean-variance performance measure defined in equation (15)

to find the strategy that best balances performance and risk. Different from the asset

pricing model, a strategy’s performance measure does not only depend on the squared

forecasting errors, but also on the cost of using the strategy. We assume that use of the

naive rule is free, but that the rational rule has a cost CR. The interpretation is that

resources are needed to gather information about the structure of the model and the

expectations of the other suppliers. The specification of these strategies, including the

information costs of the rational rule is taken from Brock and Hommes (1997).

Note that the rational rule always has zero forecasting errors, meaning that its utility

is always equal to minus its cost: uR,t = uR = −CR. The utility for the naive rule is
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given by

uN,t = − (pt − pt−1)
2
.

The average utility, average squared utility and variance are calculated in the same way

as in the asset pricing model (equations 14a, 14b, and 14c). Note that the rational rule

has zero variance, since its utility is constant.

The following result establishes a link between squared forecasting errors and profits,

providing support for our choice of utility:

Lemma 8. In the the linear cobweb model with cost function c(q) = q2/2s, the squared

forecasting error is equal to the difference between maximum profit and realized profit, up

to a constant. They are equal for s = 2.

Proof. Maximum profit is given by

Π∗t = s p2
t −

(s pt)
2

2s

=
s

2
p2
t ,

while realized profit is given by

Πt = s pet pt −
(s pet )

2

2s

=
s

2

[
2 pet pt − (pet )

2
]
.

It follows that

Π∗t −Πt =
s

2

[
p2
t − 2 pet pt + (pet )

2
]

=
s

2
(pt − pet )

2
,

which is s/2, a constant, times the squared forecasting error. The constant equals 1 for

s = 2.
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We are now in the position to determine the period t fractions of producers that

use the forecasting strategies. Since they have to form one-period ahead forecasts, these

fractions are determined in the previous period (t − 1) and based on information from

that period. Similar to the asset pricing model, we can determine the risk aversion

coefficient for which an agent would be indifferent between the two rules in period t− 1,

again denoted by γt−1. Because the rational rule is riskless, suppliers with risk aversion

below the threshold γt−1 will choose the naive rule, and those with risk aversion above

the threshold will choose the rational rule. If σ̃N,t−1 6= 0, it follows that

γt−1 = 2
〈uN 〉t−1 + CR

σ̃2
N,t−1

.

The fraction of producers using the naive rule in period t is then given by

nN,t = G
(
γt−1

)
,

with G the empirical cumulative distribution function of risk aversion. The fraction of

rational producers is given by

nR,t = 1−G
(
γt−1

)
.

If σ̃N,t−1 = 0, the fractions are only determined by 〈uN 〉t−1: If 〈uN 〉t−1 < −CR, we

have nN,t = 0, if 〈uN 〉t−1 > −CR, we have nN,t = 1, and if 〈uN 〉t−1 = −CR, we have

nN,t = nR,t = 1/2.

The average forecast in period t is given by

pet = nR,t pt + nN,t pt−1. (D.3)
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Combining equations (D.1a) – (D.3), we find that the clearing price is given by

pt =
a− nN,t s pt−1

nR,t s+ d
.

The steady state price is given by

p∗ =
a

s+ d
, (D.4)

where we have used that nR,t + nN,t = 1. Note that this steady state price is constant,

contrary to the fundamental price that we derived in the asset pricing model.

For a = 0, the steady state is 0 and the model reduces to the deviations-from-steady-

state model of Muth (1961). In some of our simulations, we include an aggregate supply

shock εt, due to weather conditions for example. In that case, aggregate supply (D.1b)

is replaced by

S(pet ) = s pet + εt,

so that the market clearing price becomes

pt =
a− nN,t s pt−1 − εt

nR,t s+ d
.

The steady state is the same if the supply shock has zero mean.

We denote the phase space by Z = R × R≤0 × R≥0. The evolution of the resulting

3-dimensional discrete dynamical system is governed by the one-step map

ψ : Z → Z,


pt

〈uN 〉t〈
u2
N

〉
t

 7→


pt+1

η 〈uN 〉t − (1− η) (pt+1 − pt)2

η
〈
u2
N

〉
t

+ (1− η) (pt+1 − pt)4

 . (D.5)
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If σ̃N,t 6= 0, next period’s price pt+1 is given by

pt+1 =

a−G
(

2
〈uN 〉t + CR
〈u2
N 〉t − 〈uN 〉2t

)
s pt − εt[

1−G
(

2
〈uN 〉t + CR
〈u2
N 〉t − 〈uN 〉2t

)]
s+ d

.

If σ̃N,t = 0, it is given by

pt+1 =



a− εt
s+ d

if 〈uN 〉t < −CR;

a− s pt
2
− εt

s

2
+ d

if 〈uN 〉t = −CR;

a− s pt − εt
d

if 〈uN 〉t > −CR.

Appendix D.2. Dynamics

Appendix D.2.1. Dynamics with constant fractions

Before introducing endogenous switching between the two forecasting strategies into

the Cobweb model, we study its properties when the fractions of rational and naive

agents are constant. This will later help us understand the dynamics of the full model.

Lemma 9. When the fractions of rational and naive producers are constant, the clearing

price in the linear cobweb model evolves according to

pt =

(
− nN s

nR s+ d

)t
(p0 − p∗) + p∗,

with p0 the initial price and p∗ the steady state price given by equation (D.4). Stability

of the steady state depends on the fraction of rational producers relative to a threshold

given by

nR =
s− d

2s
.

When nR > nR, the steady state is globally asymptotically stable, meaning that it is
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stable and everywhere attracting. For nR = nR, the steady state is neutral and the

system follows a two-cycle. When nR < nR, the steady state is unstable and all solutions

are unbounded, except for the steady state.

Proof. The clearing price in period t is given by

pt =
a

nR s+ d
− nN s

nR s+ d
pt−1.

The homogeneous problem

pt = − nN s

nR s+ d
pt−1

has general solution

pt =

(
− nN s

nR s+ d

)t
c,

with c some constant. Knowing that the steady state p∗ is a particular solution for the

full, inhomogeneous problem, we can add it to the general solution for the homogeneous

problem and solve for c to get

pt =

(
− nN s

nR s+ d

)t
(p0 − p∗) + p∗.

The stability of the steady state changes at the threshold value nR given by

nN s

nR s+ d
= 1

(1− nR)s = nR s+ d

nR =
s− d

2s
.

For nR > nR, the steady state is stable and globally attracting. When nR = nR, the

clearing price jumps back and forth between p0 and 2p∗ − p0 in a two-cycle, indicating

metastability. For nR < nR, lastly, |pt − p∗| increases indefinitely when p0 6= p∗.

In the special case that all producers use the rational strategy at all times (nR,t =
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nR = 1), the system is always at the steady state. Even when the initial price p0 is far

from the steady state price, the system immediately converges to the steady state.

When all producers are using the naive rule (nN,t = nN = 1), the model’s dynamics

depends on the relation between supply and demand parameters s and d. In the case

that s < d, nR < 0 and nR > nR: the system converges to the steady state, while price

deviations alternate between positive and negative. The intuition is that after an initial

price above the steady state, suppliers expect the same deviation in the next period, and

produce more than steady state supply s p∗. This oversupply then leads to a price below

steady state in the following period. Because s < d however, the increase in supply is

smaller than needed to reach the same absolute deviation from steady state, and the

new price is closer to the steady state price. Next, the suppliers expect the same low

price level, and decide to produce less than steady state supply. This again leads to

an above-steady-state price that is yet closer to the steady state. This process of ever

smaller deviations from steady-state supply continues until the steady state is reached.

When s = d, the clearing price jumps back and forth between p0 and 2p∗ − p0 in

a two-cycle: The over or undersupply compared to steady state is precisely enough to

reach the same price deviation in the next period, but on the other side of the steady

state. Lastly, in the case s > d, the steady state is unstable, and deviations from the

steady state become arbitrarily large.

Note that in general the steady state is globally asymptotically stable when d > s,

since in that case nR < 0, while nR ≥ 0.

Appendix D.2.2. Dynamics with endogenous fractions

We now allow for endogenous switching between the two forecasting strategies. We

set the cost of using the rational strategy to 1 (i.e., CR = 1). We use numerical meth-

ods to study the systems’ dynamics. We provide intuitive explanations in terms of the

theoretical results presented in Lemma 9. We present the results on the price dynamics
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in terms of deviations from the steady state, denoted by xt:

xt = pt − p∗.

In all our simulations, we set d = 1 and s = 2. This means that the squared forecasting

error is equal to the profit deviations from the maximum (Lemma 8). Moreover, it implies

that s > d: The steady state is unstable under the naive rule, and the threshold fraction

of rational producers is given by nR = 0.25. The interaction between the stabilizing and

destabilizing forces of the rational and naive suppliers will give rise to rich dynamics:

stable in some parameter ranges and chaotic in others.

We start with the deterministic model, with zero supply shock (i.e., εt = 0). When

producers have substantial memory (η = 0.9), chaotic dynamics arise, as can be seen in

the two top-left panels of Figure D.7. The system starts close to the steady state, with

the fraction of rational producers above the threshold value nR = 0.25, so that the steady

state is stable and attracting (Lemma 9). The fraction of rational agents quickly drops

below the threshold, leading to an unstable steady state and increasing volatility in the

clearing price. When the forecasting errors of the naive rule become too large, producers

begin to switch back to the rational rule, starting with those who have the largest rate

of risk aversion. As soon as the fraction of rational producers exceeds the threshold of

0.25, the system starts to stabilize, and the producers gradually switch back to the naive

rule to save costs (starting with those with lowest γ).

A key characteristic of this chaotic solution is that not all producers switch to the

rational rule during volatile periods: Both forecasting strategies are used at all times.

We can identify two reasons for this behaviour. First, there are producers left with low

enough risk aversion to stick with the naive rule. Second, there is significant persistence

in the performance measures of the naive rule (because η = 0.9), meaning that the larger

volatility only gradually affects the mean-variance utility of that rule. The result is that

the system never reaches the steady state. When the fraction of rational producers drops
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Figure D.7: Two top-left panels: Price deviations from the steady state (top) and fraction following
rational strategy (bottom) for η = 0.9, CR = 1, and εt = 0. Top-right panel: Strange attractor for
η = 0.9, CR = 1, and εt = 0. Two mid-left panels: Price deviations from the steady state (top) and
fraction following rational strategy (bottom) for η = 0.9, CR = 1, and with i.i.d. aggregate supply shock
εt ∼ N (0, 1). Mid-right panel: Noisy attractor for η = 0.9, CR = 1, and with i.i.d. aggregate supply
shock εt ∼ N (0, 1). Bottom-left panel: Long-term behaviour of the price deviations from the steady
state for different values of the memory parameter η, keeping CR at 1. Bottom-right panel: Long-term
behaviour of the price deviations from the steady state for different values of the cost of the rational
rule CR, keeping η at 0.9. Parameter values: a = 0, d = 1, s = 2, log γ ∼ N (1.14, 0.67). Initial values:
p0 = 0.10, 〈uN 〉0 = −0.50,

〈
u2N
〉
0

= 0.57 (implying nR,1 = 0.50).
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below 0.25 after a volatile episode, the steady state becomes unstable, and price devia-

tions from the steady state start increasing again, giving rise to a new volatile episode:

Stable periods sow the seeds of volatile periods. This cycle repeats itself indefinitely,

each time in a slightly different way.

For the specification used in the top-right panel of Figure D.7, we find the following

Lyapunov exponents: λ1 = 0.0749, λ2 = −0.1049, λ3 = −0.1342 (Benettin et al., 1980).

The positive maximal exponent indicates that the dynamics is indeed chaotic. This

system is more sensitive to initial conditions than the asset pricing system that we studied

in the main body of this paper, which had a maximal exponent of λ1 = 0.0035. We

present the strange attractor for this solution in the top-right panel of Figure D.7. It has

a box-counting dimension of approximately 1.6.

If we include a standard normal, i.i.d. aggregate supply shock εt ∼ N (0, 1), price

deviations from the steady state become larger, and the rational rule becomes more

important because of the added volatility (see the mid-left panels of Figure D.7). The

strange attractor of the deterministic system is still discernible in the attractor of this

noisy solution, which is larger and less well-defined, as we show in the bottom-right panel

of Figure D.7.

To explore how sensitive the dynamics is to changes in the model parameters, we plot

the long-term behaviour of the price deviations from the steady state for different values

of η and CR in the bottom panels of Figure D.7. For each value of the parameter, we plot

the last 1,000 price deviations of 2,000 period simulation. For η = 0.5, the system stays

at the steady state after the 1,000 initialization periods. For a value of η slightly above

0.8, the system becomes chaotic, and the long-term behaviour has no clear structure. The

more producers remember, the larger the deviations from the steady state become, as is

reflected in the increasing bandwidth for higher values of η. This can be explained by

the fact that a larger η means that the utility of the naive rule is affected more gradually

in times of high volatility, meaning that it takes longer for producers to switch to the

rational rule and that there is therefore more time for the system to move away from the
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steady state.

We see a similar threshold value for the cost of the rational rule (CR). As long as

the cost is low enough, the naive rule cannot compete with the rational rule, and the

system converges to the steady state eventually. However, at a cost slightly below 1, the

dynamics becomes chaotic. As the cost becomes higher, the naive rule becomes relatively

more attractive, and the price deviations become larger.
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