
Gersbach, Hans; Haller, Hans

Working Paper

Gainers and Losers from Market Integration

CESifo Working Paper, No. 7977

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Gersbach, Hans; Haller, Hans (2019) : Gainers and Losers from Market
Integration, CESifo Working Paper, No. 7977, Center for Economic Studies and ifo Institute (CESifo),
Munich

This Version is available at:
https://hdl.handle.net/10419/214979

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/214979
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

7977 
2019 

November 2019 

 

Gainers and Losers from 
Market Integration 
Hans Gersbach, Hans Haller 



Impressum: 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
www.cesifo-group.org/wp 

An electronic version of the paper may be downloaded 
· from the SSRN website:  www.SSRN.com 
· from the RePEc website:  www.RePEc.org 
· from the CESifo website:         www.CESifo-group.org/wp

mailto:office@cesifo.de
http://www.cesifo-group.org/wp
http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.org/wp


CESifo Working Paper No. 7977 
Category 11: Industrial Organisation 

 
 
 

Gainers and Losers from Market Integration 
 
 

Abstract 
 
We compare integration of economic, matching and networking markets. There can be losers from 
integration in all three cases, but their relative numbers depend on the type of market. There can be many 
losers from integration of pure exchange economies. There are relatively few losers from integration of 
networking markets. In the matching case, the relative numbers tend to lie between those of the other two 
cases. 
JEL-Codes: C780, D020, D850. 

Keywords: competitive exchange, matching theory, networks, market integration. 
 
 
 
 

 

  
Hans Gersbach 

CER-ETH – Center of Economic Research at 
ETH Zurich 

Zürichbergstrasse 18 
Switzerland – 8092 Zurich 

hgersbach@ethz.ch 

Hans Haller 
Department of Economics 

Virginia Polytechnic Institute at 
State University 

USA – Blacksburg, VA 24061-0316 
haller@vt.edu 

 

 
 
 
 
This Version: November 2019 
We would like to thank David Adjiashvili, Eric Bahel, Mario Gersbach, Bettina Klaus, Jeff 
Kline, Vincent Lohmann, Jonathan Lorand, Jan Christoph Schlegel and Simon Skok for helpful 
comments. 



1 Introduction

When two hitherto separate economic or social systems are merged to become

one, all previous outcomes are still feasible. Therefore, the integrated system can,

in principle, achieve better or equally good outcomes. This optimistic outlook is

correct from a social planner’s perspective. Yet, some individuals can be worse

off after integration when the outcome is determined in a competitive or strategic

equilibrium.

Both theory and casual empiricism suggest that economic integration can have

beneficial effects on some economic agents and detrimental effects on others. In

this paper, we make some simple comparisons how integration in three well under-

stood equilibrium models produces gainers and losers: competitive pure exchange

economies, two-sided pairwise matching and strategic network formation.

We first consider pure exchange economies in the sense of Arrow-Debreu, that is

economies as described in Debreu (1959). Second, we consider two-sided pairwise

matching studied by Gale and Shapley (1962) and Roth and Sotomayor (1990),

with stable matching as the solution concept. Finally, we consider strategic net-

work formation. A number of recent contributions have treated social and eco-

nomic networks as the outcome of a network formation game. The players of the

game constitute the nodes of the network to be formed. In the purely noncoop-

erative approach of Bala and Goyal (2000) adopted here, addition and deletion of

links are unilateral decisions of the player from whom the respective links orig-

inate.1 The player’s strategy is a specification of the set of agents with whom

he forms links. The costs of link formation are incurred only by the player who

initiates the link. The formed links define the network.

Our investigation is focused on the gainers and losers from integration and,

more precisely, their relative numbers. In the pure exchange context, almost all

but not all consumers can lose. In the matching context, less than half of the

members of each group can be losers. In the strategic network formation setting,

1Pairwise stability à la Jackson and Wolinsky (1996) treats addition of a link in a network as a
bilateral decision by the two players involved, whereas severance of a link constitutes a unilateral
decision.
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integration of two groups causes at most half the members plus one in one group

to be losers and nobody in the other group. We shall comment on these results

in Section 5 and relate them to enduring debates about gainers and losers from

market integration in the literature.

The next three sections are devoted to the three different integration scenarios.

2 Pure Exchange Economies

Pure exchange economies belong to the canon of contemporary microeconomic

theory. Therefore, we confine their formal description to the bare minimum.

2.1 Brief Outline of the Model

A finite pure exchange economy is specified by a tuple E = (Xi,%i, ωi)i∈I . The

economy consists of a finite set I of consumers. There exist a finite number of com-

modities l = 1, . . . , `. Each consumer has consumption set Xi = R`
+. Superscripts

denote commodities. Hence xl
i stands for the quantity of commodity l consumed

by i ∈ I. Consumer i’s consumption bundles assume the form xi = (x1
i , . . . , x

`
i).

In our general theory, ` can be any finite number. In the numerical examples,

` = 2. Consumer i has complete and transitive preferences on Xi, represented

by the binary relation %i. Finally, each consumer is endowed with a commodity

bundle ωi ∈ Xi.

The following definitions apply to the economy E at large:
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Feasible Allocations: A feasible allocation is a vector

x = (xi)i∈I ∈ X ≡ Πi∈IXi such that∑
i∈I xi =

∑
i∈I ωi.

Pareto Optima: A feasible allocation x = (xi)i∈I is

Pareto optimal if there is no feasible allocation

(x′i)i∈I such that x′i Âi xi for some i ∈ I and

x′i %i xi for all i ∈ I.

Weak Pareto Optima: A feasible allocation x = (xi)i∈I is weakly

Pareto optimal if there is no feasible allocation

(x′i)i∈I such that x′i Âi xi for all i ∈ I.

Competitive Equilibrium: A competitive equilibrium is a pair (x∗, p∗)

where x∗ = (x∗i )i∈I is a feasible allocation,

p∗ ∈ R`
+ is a price system, and for each consumer

i ∈ I:

p∗x∗i ≤ p∗ωi and xi ∈ Xi, xi Âi x∗i implies p∗xi > p∗ωi.

x∗ is called an equilibrium allocation. p∗ is called

an equilibrium or market clearing price system.

We shall invoke the following version of the first welfare theorem.

Proposition 1 (First Welfare Theorem).

(a) Equilibrium allocations are weakly Pareto optimal.

(b) If preferences are locally non-satiated, then equilibrium allocations are Pareto

optimal.

Notice that (a) holds without any assumption on preferences whereas (b) holds

for locally non-satiated and transitive but not necessarily complete preferences.

By Proposition 11.C.1 of Mas-Colell, Whinston and Green (1995), a finite pure

exchange economy E = (Xi,%i, ωi)i∈I has a competitive equilibrium if
∑

i∈I ωi À 0

and every consumer has continuous, strictly convex and strongly monotone pref-

erences. These sufficient conditions are not necessary. In particular, a competitive
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equilibrium exists if all consumers have Cobb-Douglas preferences. However, non-

existence may occur if the sufficient conditions are violated. Of special interest to

us is the case where each of two separate pure exchange economies has a competi-

tive equilibrium, but there is no competitive equilibrium of the integrated economy.

This means that market integration can have a destabilizing effect. Such a case

will be presented in 2.4. We first consider a simple example to illustrate how

integration generates gainers and losers.

2.2 A First Example

We consider the separate economies of Aland and Eland and then the economy

after integration of the two. The economy of Aland consists of three consumers,

Anna, Bart, and Carl, labeled a, b and c, respectively. Let IA = {a, b, c} denote

the set of these consumers. Each i ∈ IA has an endowment ωi = (1, 1) and

consumption set Xi = IR2
+. Preferences are given by the utility functions

Ua(x
1
a, x

2
a) = x1

a(x
2
a)

3 for Anna;

Ub(x
1
b , x

2
b) = x1

bx
2
b for Bart;

Uc(x
1
c , x

2
c) = min{x1

c , x
2
c} for Carl.

Up to price normalization, this economy has a unique competitive equilibrium

(x∗A, p∗A) given as p∗A = (1, 5/3), x∗A = (x∗a, x
∗
b , x

∗
c), x∗a = (2/3, 6/5), x∗b = (4/3, 4/5), x∗c =

(1, 1), Ua(x
∗
a) = 144/125, Ub(x

∗
b) = 16/15, Uc(x

∗
c) = 1.

The economy of Eland consists of two consumers, Dennis and Esther, labeled

d, and e, respectively. Let IE = {d, e} denote the set of these consumers. Each

i ∈ IE has an endowment ωi = (1, 1) and consumption set Xi = IR2
+. Preferences

are given by the utility functions

Ud(x
1
d, x

2
d) = (x1

d)
3x2

d for Dennis;

Ue(x
1
e, x

2
e) = x1

ex
2
e for Esther.

Up to price normalization, this economy has a unique competitive equilibrium
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(x∗E, p∗E) given as p∗E = (1, 3/5), x∗E = (x∗d, x
∗
e), x∗d = (6/5, 2/3), x∗e = (4/5, 4/3),

Ud(x
∗
d) = 144/125, , Ue(x

∗
e) = 16/15.

In the integrated economy with consumers in I = IA ∪ IE, the unique equilib-

rium (up to price normalization) is (x̂, p̂) with p̂ = (1, 1), x̂ = (x̂a, x̂b, x̂c, x̂d, x̂e),

x̂a = (1/2, 3/2), x̂b = (1, 1), x̂c = (1, 1), x̂d = (3/2, 1/2), x̂e = (1, 1), Ua(x̂a) =

27/16, Ub(x̂b) = 1, Uc(x̂c) = 1, Ud(x̂d) = 27/16, Ue(x̂e) = 1. It follows that Anna

and Dennis are gainers from integration, Bart and Esther are losers, and Carl is un-

affected by integration. In this particular example, Bart and Esther actively trade

in the respective equilibria before integration and do not trade after integration.

More commonly, a consumer might trade before and after market integration, but

nevertheless lose from integration.

Further notice that the allocation x∗ = (x∗i )i∈I is of course feasible in the

integrated economic, but not weakly Pareto optimal. It is strictly dominated by

some feasible allocation x′. However, it is not dominated by x̂.

2.3 More General Analysis

We consider two countries whose economies are initially separated and compare

original equilibrium outcomes with equilibrium allocations after market integra-

tion. As a consequence of the first welfare theorem, we obtain

Proposition 2.

(a) Not all consumers can be losers from market integration.

(b) In case preferences are locally non-satiated, if there exists a loser, then there

also exists a gainer from market integration.

proof. Let the two countries A and B have respective sets of consumers IA and

IB. Set I = IA ∪ IB. Before integration, let (p∗A, x∗A) be a competitive equilibrium

for A’s economy, with x∗A = (x∗i )i∈IA
, and (p∗B, x∗B) be a competitive equilibrium for

B’s economy, with x∗B = (x∗i )i∈IB
. Furthermore, consider a competitive equilibrium
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(x̂, p̂) of the integrated economy, with x̂ = (x̂i)i∈I . Finally, define x∗ = (x∗i )i∈I , a

feasible allocation of the integrated economy.

(a) Suppose all consumers are losers from market integration, that is, x∗i Âi x̂i

for all i ∈ I. Then x̂ is not weakly Pareto optimal, contradicting part (a) of

Proposition 1. Hence to the contrary, not all consumers can be losers.

(b) Suppose that there are some losers from market integration and no gainers.

That means x∗i Âi x̂i for some i ∈ I and x∗i ºi x̂i for all i ∈ I. Therefore, x̂ is not

Pareto optimal. But if preferences are locally non-satiated, then by part (b) of

Proposition 1, the equilibrium allocation x̂ is Pareto optimal. Thus a contradiction

results. Hence to the contrary, if there are some losers, there has to exist a gainer

as well. ¥

The proposition does not rule out the possibility that almost all consumers lose.

Consider, for example, consumer populations IA = {1, . . . , n} and IB = {n + 1}
with n ≥ 2. Let the commodity space be R2 and each consumer i’s consumption

set be Xi = R2
+. All consumers have Cobb-Douglas preferences represented by

ui(x
1
i , x

2
i ) = x1

i x
2
i for (x1

i , x
2
i ) ∈ R2

+. Consumer 1 has endowment bundle ω1 = (1, 1)

whereas consumers i = 2, . . . , n + 1 have endowment bundle ωi = (1, 2). Then

consumers 1 and n+1 gain from economic integration and all other consumers lose.

At the other extreme, assume that all consumers have the endowment bundle (1, 1),

all consumers within IA have identical Cobb-Douglas preferences, all consumers

within IB have identical Cobb-Douglas preferences, but preferences in IA differ

from those in IB. Then all consumers benefit from market integration.

It is also possible that the welfare of consumers in country B, say, is unaffected

by economic integration, but merely their presence in the integrated economy

affects the consumers in country A. For example, let A’s economy consist of con-

sumers 1 and 2, both with endowment bundle (1, 1). Consumer 1 has lexicographic

preferences: (x1
1, x

2
1) Â1 (y1

1, y
2
1) if x1

1 > y1
1 or x1

1 = y1
1 & x2

1 > y2
1. Consumer 2 only

cares for commodity 2, hence has utility representation U2(x
1
2, x

2
2) = x2

2. Up to

price normalization, A’s economy has a unique competitive equilibrium (x∗A, p∗A)

with p∗A = (1, 1), x∗A = (x∗1, x
∗
2) = ((2, 0), (0, 2)). Country B consists of consumer

3 with endowment bundle ω3 = (1, 1) and utility function U3(x
1
3, x

2
3) = x1

3 + 2x2
3.
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Up to price normalization, this economy has a unique competitive equilibrium

(x∗B, p∗B) with p∗B = (1, 2) and x∗B = x∗3 = ω3 = (1, 1). Up to price normalization,

the integrated economy has a unique competitive equilibrium (x̂, p̂) with p̂ = (1, 2)

and x̂ = (x̂1, x̂2, x̂3) = ((3, 0), (0, 1.5), (0, 1.5)).

2.4 Destabilizing Effect of Integration

This example relies on non-convex preferences of the consumers in country A. Let

country A consist of two consumers 1 and 2, each with endowment bundle ωi =

(1, 1) and utility function Ui(x
1
i , x

2
i ) = (x1

i )
2 + (x2

i )
2. Up to price normalization,

this economy has two equilibria with price system p∗A = (1, 1) where one consumer

chooses consumption bundle (2, 0) and the other consumer chooses consumption

bundle (0, 2).

Let country B consist of consumer 3 with endowment bundle ω3 = (1, 1) and

utility function U3(x
1
3, x

2
3) = x1

3 + 2x2
3. Up to price normalization, this economy

has a unique competitive equilibrium (p∗B, x∗B) with p∗B = (1, 2) and x∗B = x∗3 =

ω3 = (1, 1).

Now consider the integrated economy. Because of monotonicity of preferences,

an equilibrium price system p has to satisfy p = (p1, p2) À 0. Let us take com-

modity 1 as numéraire so that p1 = 1. We can distinguish several cases depending

on the size of p2. If p2 < 1, then consumers 1 and 2 each demand more than 2

units of good 2; hence there is positive excess demand for good 2. If p2 = 1 then

there are three subcases: In case both consumers in A demand two units of good

2, there is positive excess demand for good 2. In case one of the consumers in A

demands 2 units of good 1 and the other demands 2 units of good 2, there is still

positive excess demand for good 2, since consumer 3 will demand 2 units of that

good. In case both consumers in A demand two units of good 1, then there is

excess demand for good 1. If p2 > 1, then consumers 1 and 2 each demand more

than 2 units of good 1 and there is positive excess demand for good 1. Thus there

are no relative prices at which the market in the integrated economy is cleared.

This shows that market integration can have a destabilizing effect.
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3 Pairwise Two-sided Matching

Our focus lies on two-sided pairwise matching as in the seminal contribution of

Gale and Shapley (1962). In the marriage market interpretation, the population

consists of men and women. A matching selects heterosexual couples such that

each individual is matched with exactly one partner of the other sex or remains

unmatched. Stability requires that no matched person prefers to be single and no

pair consisting of a man and a woman prefers being a couple to the status quo.

This presupposes that individuals have preferences over partners, including having

no partner. In the standard setting of two-sided matching, in principle, a man can

be matched with any woman and vice versa – if one disregards preferences.

We observe that a stable matching exists in any matching market where all

individuals have complete and transitive preferences (Gale and Shapley 1962). We

will establish as a general result that with strict preferences, the number of losers

from integration cannot exceed the number of gainers. More precisely, if two or

more separate groups are merged into one, then within each group, at most half

of the members are losers from integration.

3.1 Basic Model

Some of the notation and terminology is adopted from Roth and Sotomayor (1990).

There is a finite population I that is partitioned into a non-empty male subpopula-

tion M = {m1, . . . , mk} and a non-empty female subpopulation W = {w1, . . . , w`}.
A bipartite graph or bigraph based on the given partition is an undirected graph

whose edges are of the form {m,w} for some m ∈ M and some w ∈ W .

Matching. A matching is a bigraphM based on the given partition such that

no two of its edges share an element: {m,w}∩{m′, w′} = ∅ for {m,w}, {m′, w′} ∈
M, {m,w} 6= {m′, w′}. Elements of M are called matches. A matching M can

be identified with a bijection µ : I → I with the properties that (a) µ−1 = µ; (b)

µ(m) /∈ W implies µ(m) = m for m ∈ M ; (c) µ(w) /∈ M implies µ(w) = w for

w ∈ W .
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Preferences. Individuals have preferences for partners, including the pos-

sibility of not having a partner. Each m ∈ M has complete and transitive prefer-

ences on W ∪ {m}, represented by an ordered list P (m). For example

P (m) = w1, w2,m, w3, . . . , w`

means that m’s first choice is to be married to woman w1, his second choice is to

be married to woman w2, and his third choice is to remain single. Women w3 to

w` are not acceptable to m. He would rather be single than be married to one of

them. An abbreviated list contains only the acceptable women:

P (m) = w1, w2.

Similarly, each w ∈ W has complete and transitive preferences on M ∪ {w},
represented by an ordered list P (w). If a person is indifferent between several

possible mates, then those are put in square brackets in the preference list:

P (w) = m2, [m3,m4, w],m1

means that m2 is w’s first choice; to be married to m3, to be married to m4 and

being single tie for second choice while m1 is her third choice. The abbreviated

list is P (w) = m2, [m3,m4, w].

P = (P (m1), . . . , P (mk), P (w1), . . . , P (w`)) denotes a preference profile, that

is a collection of lists, one for each individual. Then a particular marriage market

is specified by a triple (M, W ;P). The notation w >m w′ means that m prefers

woman w to woman w′ and w ≥m w′ means that m likes w at least as much

as w′. m >w m′ and m ≥w m′ are defined in an analogous way. Woman w is

acceptable to man m if he likes her at least as much as remaining single, i.e.,

w ≥m m. Analogously, m is acceptable to w if m ≥w w. An individual is said to

have strict preferences if he or she is not indifferent between any two acceptable

alternatives.

Stable Matching. Formally, we consider matchings that are stable according

to the following

9



Definition 1. A matchingM (or, equivalently, µ) in the marriage market (M, W ;P)

is stable if:

1. For any m ∈ M, w ∈ W who are matched in M, neither partner wants to go

single. That is, {m,w} ∈ M (or, equivalently m = µ(w)) implies w ≥m m

and m ≥w w.

2. There is no pair (m,w) ∈ M×W who can get married to each other and who

prefer this marriage to the status quo. That is, µ(m) ≥m w or µ(w) ≥w m.

In particular, a stable matching µ is individually rational, that is µ(i) ≥i i

for all i ∈ I. If a pair {m,w} renders a potential matching unstable, we say that

{m,w} blocks or destabilizes the particular matching. That is, {m, w} blocks

the matching µ if w >m µ(m) and m >w µ(w). This is the strong version of

blocking. In the weak version of blocking, the pair {m, w} blocks the matching

µ if w >m µ(m), m ≥w µ(w) or if w ≥m µ(m), m >w µ(w). The two notions of

blocking coincide in the case of strict preferences.

3.2 Desegregation of Marriage Markets

Segregation of various sorts, be it racial, religious or political, restricts the marriage

market. As an actual example for the latter, consider the case of South and North

Korea or former West and East Germany. How would desegregation affect the

marriage market? We are going to study this question first in a simple example.

More specifically, we consider the case where the population I is segregated into

two sub-populations I1 = M1 ∪ W1 and I2 = M2 ∪ W2, with Mi = M ∩ Ii and

Wi = W ∩ Ii. Marriages are only possible within I1 and within I2.

Example 1 (Effect of desegregation). Let k = ` = 8 and

P (m) = w1, w2, . . . , wk for all m ∈ M ;

P (w) = m1,m2, . . . , mk for all w ∈ W .

Suppose the population I = M ∪ W is segregated into two parts I1 = M1 ∪W1

and I2 = M2 ∪W2 where M1 = {m1,m2,m3,m4},M2 = {m5,m6,m7,m8},W1 =

{w2, w3, w4, w5},W2 = {w1, w6, w7, w8}. Marriages are only possible within I1 and

10



within I2. Let P1 denote the restriction of the preference profile P to members

of I1 and P2 denote the restriction of the preference profile P to members of I2.

Then:

Under segregation, there exists a unique stable matching µ given by

µ(m1) = w2, µ(m2) = w3, µ(m3) = w4, µ(m4) = w5 for members of I1,

µ(m5) = w1, µ(m6) = w6, µ(m7) = w7, µ(m8) = w8 for members of I2.

After desegregation, there exists a unique stable matching µ′ given by

µ′(mi) = wi for i = 1, . . . , 8.

Men m1, m2, m3, m4 and woman w1 gain from desegregation whereas male m5 and

females w2, w3, w4, w5 lose. ¤¤

In the example, there are equal numbers of losers and gainers in I, and also in

each of the subpopulations I1 and I2. This observation generalizes as follows:

Proposition 3. Suppose the population is segregated into K ≥ 2 non-empty sub-

populations I1, . . . , IK. Let µ be any matching under segregation and µ′ be a stable

matching after desegregation. Then

|{i ∈ Ik : µ′(i) <i µ(i)}| ≤ |Ik|/2 for k = 1, . . . , K.

proof. Suppose that |{i ∈ Ik : µ′(i) <i µ(i)}| > |Ik|/2 for some k ∈
{1, . . . , K}. µ′(i) <i µ(i) implies µ(i) 6= i for i ∈ Ik. That is, all members of

Jk ≡ {i ∈ Ik : µ′(i) <i µ(i)} were matched under µ. Since |Jk| > |Ik|/2, there exist

two members of Jk who were matched with each other under µ. Therefore, they

can block µ′, contradicting the assumed stability of µ′. Hence to the contrary, the

assertion of the proposition has to hold. ¥

The proposition says that at most half of the people in each group are losers.

It is possible that, indeed, half of the people in each group are losers. It is also

possible that there are no losers at all. The result has been reported as Proposition

8 in Gersbach and Haller (2015). Proposition 2 of Ortega (2018) asserts that with

strict preferences, at most half of the population are losers, which is a corollary of

our result. He obtains additional results on the integration of matching markets.
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4 Strategic Network Formation

Our analysis of strategic network formation games is going to be two-fold. First we

will demonstrate, by means of an elaborate example with a heterogeneous player

population, that integration can cause isolation of a previously central player.

Second, we study the effects of integrating two groups where all individuals are

homogeneous and linkage costs are small. We show that from an ex ante point of

view, integration always proves desirable with a homogeneous player population

(and small linkage costs). While ex post losers cannot be ruled out, we find striking

restrictions on their numbers. As a rule, the upper bound on the number of losers

from integration of two networking groups is less than the corresponding upper

bound when two matching markets are integrated.

4.1 Basic Model

Our basic model is the two-way flow connections model à la Galeotti, Goyal, and

Kamphorst (2006) that incorporates cost and value heterogeneity. We adopt the

notation of Haller, Kamphorst and Sarangi (2007) for the case of perfectly reliable

links.

Let n ≥ 3. N = {1, . . . , n} denotes the set of players with generic elements

i, j, k. N also constitutes the set of nodes of the network to be formed. For ordered

pairs (i, j) ∈ N ×N , the shorthand notation ij or i,j is used and for non-ordered

pairs {i, j} ⊂ N the shorthand [ij] is used. The symbol ⊂ for set inclusion permits

equality. The model is specified by two families of parameters, indexed by ij, with

i 6= j:

• Cost parameters cij > 0.

• Value parameters Vij > 0.

In case cij 6= ckl (Vij 6= Vkl) for some ij 6= kl, the model exhibits cost (value)

heterogeneity; otherwise, it exhibits cost (value) homogeneity.
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We only consider pure strategies. A pure strategy for player i is a vector

gi = (gi1, . . . , gii−1, gii+1, . . . , gin) ∈ {0, 1}N\{i}. The set of all pure strategies of

agent i is denoted by Gi. It consists of 2n−1 elements. The joint strategy space is

given by G = G1 × · · · × Gn.

There is a one-to-one correspondence between the set of joint strategies G and

the set of all directed graphs or networks with vertex set N . Namely, to a strategy

profile g = (g1, . . . , gn) ∈ G corresponds the graph (N,E(g)) with edge or node set

E(g) = {(i, j) ∈ N × N | i 6= j, gij = 1}. In the sequel, we shall identify a joint

strategy g and the corresponding graph and use the terminology directed graph

or directed network g. Since our aim is to model network formation, gij = 1

is interpreted as a direct link between i and j is initiated by player i (edge ij is

formed by i) whereas gij = 0 means that i does not initiate the link (ij is not

formed). Regardless of what player i does, player j can set gji = 1, i.e., initiate a

link with i, or set gji = 0, i.e., not initiate a link with i.

Benefits. A link between agents i and j potentially allows for two-way (sym-

metric) flow of information. Accordingly, the benefits from network g are de-

rived from its closure g ∈ G, defined by gij := max {gij, gji} for i 6= j. Moreover, a

player receives information from others not only through direct links, but also via

indirect links. To be precise, information flows from player j to player i, if i and

j are linked by means of a path in g from i to j. A path of length m in f ∈ G
from player i to player j 6= i, is a finite sequence i0, i1, . . . , im of pairwise distinct

players such that i0 = i, im = j, and fikik+1
= 1 for k = 0, . . . , m − 1. Let us

denote

Ni(f) = {j ∈ N | j 6= i, there exists a path in f from i to j},

the set of other players whom player i can access or “observe” in the network

f . Information received from player j is worth Vij to player i. Therefore, player

i’s benefit from a network g with perfectly reliable links and two-way flow of
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information is (as in Galeotti, Goyal, and Kamphorst (2006)):

Bi(g) = Bi(g) =
∑

j ∈ Ni(g)

Vij.

Notice that g belongs to the set H = {h ∈ G|hij = hji for i 6= j}. In turn, there

is a one-to-one correspondence between the elements of H and the non-directed

networks (graphs) with node set N . Namely, for h ∈ H and i 6= j, [ij] is an edge

of the corresponding non-directed network if and only if hij = hji = 1.

Costs. Player i incurs the cost cij when she initiates the direct link ij, i.e., if

gij = 1. Hence when the network g is formed, i incurs the total costs

Ci(g) =
∑

j 6=i

gijcij.

Payoffs. Player i’s payoff from the strategy profile g is the net benefit

Πi(g) = Bi(g)− Ci(g). (1)

Nash Networks. Given a network g ∈ G, let g−i denote the network that

remains when all of agent i’s links have been removed so that gi ∈ G ≡
∏

j 6=i Gi.

Clearly g = gi ⊕ g−i where the symbol ⊕ indicates that g is formed by the union

of links in gi and g−i. A strategy gi is a best response of agent i to g−i if

Πi(gi ⊕ g−i) ≥ Πi(g
′
i ⊕ g−i) for all g′i ∈ Gi.

Let BRi(g−i) denote the set of agent i’s best responses to g−i. A network g =

(g1, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each i, that is if g

is a Nash equilibrium of the strategic game with normal form (N, (Gi)i∈N , (Πi)i∈N).

A strict Nash network is one where agents are playing strict best responses.

Efficient Networks. Let W0 : G → IR be defined as W (g) =
∑n

i=1 Πi(g). A

network ĝ is efficient (in the narrow traditional sense) if W (ĝ) ≥ W (g) for
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all g ∈ G. Efficiency is a major performance criterion for network designers or plan-

ners and plays a prominent role in the traditional network literature. It is most

attractive for cost-benefit analysis when payoffs are monetary and side-payments

between players are feasible. Efficiency constitutes an important benchmark for

network performance even when network formation is decentralized and structured

as a strategic game. In economics, the term “efficiency” is often used in a broader

sense, as a synonym for Pareto optimality.

Some Graph-theoretic Concepts. We now introduce some definitions of

a more graph-theoretic nature. The network with no links is called the empty

network and will be denoted e. A network g is said to be connected if there is

a path in g between any two agents i and j. A connected network g is minimally

connected, if it is no longer connected after the deletion of any link.

4.2 Isolation Caused by Integration

Let A = {a0, a1, . . . , am} with m ≥ 1 and B = {b0, b1, . . . , bn} with n ≥ 2.

We assume Vja0 = 0 for all j 6= a0 and Vij = 1 otherwise. We assume costs as

follows: m − 2 < cak,a0 = cA < m − 1 for k = 1, . . . , m; cak,b0 = cB < 1 for

k = 1, . . . , m; cb`,b0 = cB for ` = 1, . . . , n; and cij = m + n + 2 otherwise. Thus

in equilibrium, a0 will not form any links and value-wise is worthless by himself.

Still, his serving as an intermediary can benefit the other players and himself.

Indeed, when network formation is confined to group A, then the empty network

is Nash and the only non-empty Nash network is the periphery-sponsored star SA

with a0 as center. Similarly, when network formation is confined to group B, the

periphery-sponsored star SB with b0 at the center is the only Nash network —

while the empty network is not Nash.

After the two groups are integrated, the star SB persists as an equilibrium

subnetwork. Moreover, in equilibrium at least one link ak,b0 is formed, say a1,b0.

First of all, there cannot be a Nash equilibrium where all links in SA and SB

plus the link a1,b0 exist. Namely, if link a2,b0 does not exist, then player a2 is

better off severing link a2,a0 and forming link a2,b0 and if link a2,b0 does exist,
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then player a2 is better off severing link a2,a0 and keeping link a2,b0. Hence in

Nash equilibrium, some link ak,b0, say a1,b0, and all links in SB, but not all links

in SA are formed. Let link a`,a0 be one of the links in SA that are no longer

formed. Then the link a`,b0 exists in equilibrium. Now let h 6= 0, `. If both ah,a0

and ah,b0 exist, then ah’s payoff is at most m + n − 1 − (cA + cB). When ah

severs the link ah,a0, then the payoff is at least n + 1 − cB = n − 1 − cB + 2 =

m+n−1− cB +2−m = m+n−1− cB− (m−2) > m+n−1− (cB + cA). Hence

ah prefers severing that link. If only ah,a0 exists, then ah is better off severing

that link and forming ah,b0. If only ah,b0 exists, then ah does not want to change

his strategy. It follows that in Nash equilibrium, all links in SB and all links ak,b0

exist and none of the links in SA. Consequently, a0 is isolated now.

There are two possible scenarios. First, the empty network A may be group

A’s equilibrium network. Then all players benefit from integration except a0 who

remains isolated. Second, the star SA may be group A’s equilibrium network.

Then again all players benefit from integration except a0 who loses the privileged

intermediary status and becomes isolated. The case m = n = 3 is depicted in the

following diagram.
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4.3 Effects of Integration in Homogeneous Populations

Next let us consider the homogeneous model with Vij = V and cij = c for all ij.

We focus on the low cost case where c < V . Without loss of generality, we may

proceed with V = 1 and c < 1. For that case, Bala and Goyal (2000, p. 1202)

show that the Nash networks are all the minimally connected networks.2 Starting

with two separate groups A and B with |A| = m > 1 and |B| = n ≥ 1, take any

Nash network gA in A and any Nash network gB in B. Then the aggregate welfare

in group A is m(m−1)−(m−1)c and the per capita welfare is m−1−(1−1/m)c.

The latter is also a player’s ex ante expected payoff if all Nash networks have an

equal chance of being formed. As a consequence, we obtain the first assertion of

the next proposition.

Proposition 4. In the homogeneous model of network formation with V = 1 and

c < 1, the following assertions hold:

(a) Ex ante, all players benefit from integration.

(b) Ex post, a player may lose.

(c) Ex post, at least one player gains.

(d) Ex post, all players may gain.

proof. (a) The ex ante expected payoff is increasing in the number of players.

(b) Suppose B = {b}. The periphery-sponsored star SA with center a ∈ A is

a Nash network in A. The center-sponsored star SA∪B with center a is a Nash

network after integration. Thus a remains the intermediary, but instead of getting

a free ride, he shoulders all the costs in the larger network. Player a obtains payoffs

Πa(SA) = m− 1 and Πa(SA∪B) = m−mc. Hence in case c > 1/m, he is worse off

after integration.

(c) A minimally connected network of m+n players has m+n−1 links. Hence

ex post, at least one player does not form a link and gains from integration.

2Haller, Kamphorst and Sarangi (2007) show that Nash networks do not exist in some het-
erogeneous models.
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(d) If one labels i = 1, . . . ,m the players in A and i = m + 1, . . . , m + n the

players in B, then the network consisting of the links i,i+1 for i = 1, . . . ,m+n−1 is

minimally connected and hence a Nash network after integration. In that network,

each player forms at most one link and, therefore, gains from integration. ¥

Proposition 5. In every Nash equilibrium after integration of the homogeneous

model of network formation with V = 1 and c < 1, there are either no losers in

group A and at most 1 + (n− 1)/m losers in group B or no losers in group B and

at most 1 + (m− 1)/n losers in group A.

proof. A member of A enjoys the added benefit n from integration. In order

to be a loser, the player has to form more than n/c links. Similarly, a loser in B

has to form more than m/c links. Let LA denote the number of losers in A and

LB denote the number of losers in B. Then all losers combined form more than

LA · n
c

+ LB · m
c

links. Since the total number of links is m + n− 1 in equilibrium,

LA · n

c
+ LB · m

c
< m + n− 1

has to hold. This implies

LA · n + LB ·m < m + n− 1

because of c < 1. If there is at least one user in each group, then LA ·n+LB ·m ≥
m + n, a contradiction. Thus there is no loser in one of the groups, say group A.

In the latter case, LB ·m < m + n− 1 or LB < 1 + (n− 1)/m. In case there are

no losers in B, then LA < 1 + (m− 1)/n. ¥

The proposition implies that if the two groups have equal even numbers of

members, then at most 25% of all players lose from integration and all belong to

one group. For instance, LA < 1+(m−1)/n and n ≥ 2 imply LA < 1+(m−1)/2 =

(m + 1)/2 and LA ≤ m/2 = |A|/2.

Inspection of the proof shows that the assertion of the proposition can be

slightly sharpened by considering non-gainers instead of losers. Hence if the two

groups have equal even numbers of members, then at least 75% of all players gain
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from integration and one of the groups consists only of gainers. Further inspection

shows that a member of A is either a gainer or a loser if n/c is not a natural

number — and a member of B is either a gainer or loser if m/c is not a natural

number. Therefore,

Corollary 1. For generic cost parameters, including irrational c, ex post every

player is either a gainer or a loser from integration.

We also obtain

Corollary 2. If c < k ·min{m,n}/(n + m− 1), then there are less than k losers.

5 Concluding Remarks

We have seen that the integration of commodity markets, matching or marriage

markets, or networking markets can have both gainers and losers. Losers can

be prevalent when commodity markets are integrated. The relative numbers of

losers tend to be smallest when networking markets are merged. In the case of

competitive pure exchange economies, consumers interact with the market, not

one-on-one. Consequently, a change in the composition of the consumer popula-

tion can alter the terms of trade to the disadvantage of most consumers. In the

case of networking markets, one would expect occurrence of some losers from in-

tegration when network externalities are negative, like in the coauthor model. In

contrast, the benchmark model underlying our analysis exhibits positive network

externalities: A player benefits or at least is not harmed when someone else forms

a link. Therefore, to have losers from market integration is not that plausible.

Still, there can be some losers, though not very many. To be a loser, a player has

to create many links. Then others get away with few links. In turn, the loser has

an incentive to form the large number of links. In a sense, a loser gets boxed in at

equilibrium.

We have limited ourselves to some simple comparisons regarding gainers and

losers of integration of economic, matching and networking markets.

There are entire branches in economics that deal with gainers and losers in the
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context of production. The famous 1941 Stolper-Samuelson result showed that

for a two-goods, two-markets economy, market integration with a labor-abundant

economy can yield lower real wages and thus hurt workers.3. Since 1941, the

literature has repeatedly dealt with potential and actual negative consequences of

market integration or “globalization” on subgroups and small regions within the

economy, coexisting with positive aggregate effects (see Autor et al. (2013, 2015),

Feenstra and Sasahara (2018), Krugman (2019)). Similarly, reducing obstacles to

labor mobility and thus achieving more integration in the labor market has been the

topic of much political debate and empirical analysis. Finally, there is an extended

literature on how firms (and managers) are affected by market integration—with

conclusions depending on market structures and the nature of competition.4 Our

study is complementary to the literature, as we focus on comparisons of relative

gainers and losers across three different types of markets.

Let us conclude with two more observations. Our analysis also applies to

secession or market segregation if one reads the results in reverse. And there may

be other reasons than purely economic ones why a country wants to join or leave

a group like the European Union. Gainers and loosers from politically motivated

integration are an important area for thorough analysis.

3Stolper and Samuelson (1941)
4See, e.g., Gersbach and Schmutzler (2014) for the integration of Cournot markets, Eaton et

al. (2011) for empirical evidence of a differential impact of international trade on French firms.
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