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Abstract 
 
We introduce a methodology which deals with possibly integrated variables in the specification 
of the betas of conditional asset pricing models. In such a case, any model which is directly 
derived by a polynomial approximation of the functional form of the conditional beta will 
inherit a nonstationary right hand side. Our approach uses the cointegrating relationships 
between the integrated variables in order to maintain the stationarity of the right hand side of the 
estimated model, thus, avoiding the issues that arise in the case of an unbalanced regression. We 
present an example where our methodology is applied to the returns of funds-of-funds which are 
based on the Morningstar mutual fund ranking system. The results provide evidence that the 
residuals of possible cointegrating relationships between integrated variables in the specification 
of the conditional betas may reveal significant information concerning the dynamics of the 
betas. 
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1. Introduction

The Capital Asset Pricing Model (CAPM), proposed by Treynor (1962),

Sharpe (1964) and Lintner (1965), has been a cornerstone of the modern

asset pricing theory. This model postulates that the expected excess re-

turn, E(Rj − Rf ), on asset j, (that is, the expected return Rj minus the

known risk-free rate Rf ) is linearly related to the ‘beta’, βj, of asset j,

βj ≡ Cov(Rj, Rm)/V ar(Rm) where Rm denotes the returns on the market

portfolio and E(Rj − Rf ) = βjE(Rm − Rf ). Since the inception of CAPM,

numerous asset pricing models have been developed, such as the Single Fac-

tor Model and its multivariate generalization, the Multiple Factor Model, the

Arbitrage Pricing Model (Ross (1976)) and the Intertemporal Capital Asset

Pricing Model (Merton (1973)). These models have inspired the development

of a large number of variations or extensions.

One common assumption used in the aforementioned models, is that of

linear relationships between the (excess) return of asset j and the correspond-

ing risk factors. For the estimation of these models, it was initially assumed

that the slope coefficients (the betas) remain constant over time, or over the

estimation window. There is, however, overwhelming evidence suggesting

that betas are not constant over time. Important studies supporting the hy-

pothesis of a time-varying beta, βj,t, include Blume (1971), Blume (1975),

Fabozzi and Francis (1978), Sunder (1980), Ohlson and Rosenberg (1982),

Bos and Newbold (1984), Fisher and Kamin (1985), Collins et al. (1987),

Bos and Fetherston (1992), Bos and Fetherston (1995) and Faff et al. (1992).

The findings of these studies motivated the examination of models of time

varying betas (see, e.g., Shanken, 1990; Jagannathan and Wang, 1996; Ferson
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and Schadt, 1996; Lettau and Ludvigson, 2001).

Under the assumption that the dynamic behavior of the betas depends

on the variation of a set of observed variables, Shanken (1990) and Ferson

and Schadt (1996) used conditional versions of the CAPM. Specifically, let

rj,t+1 = bj(Zt)rm,t+1 + uj,t+1 (1)

E(uj,t+1 | Zt) = 0 (2)

E(uj,t+1rm,t+1 | Zt) = 0 (3)

where rj,t = Rj,t − Rf,t, i = 1, 2, ..., 5, Zt = [Z1,t, Z2,t, . . . , Zn,t]
′ is an n-

vector of state variables observable at time t, and rm,t = Rm,t − Rf,t. This

specification implies that the systematic risk of the asset j, as measured by

bj(Zt), changes over time.

Because the functional form of bj(·) is unknown, model (1)-(3) cannot be

directly estimated. It is, however, usual to approximate bj(·) by a first- or

second-order Taylor series expansion (see, e.g., Shanken, 1990; Ferson and

Schadt, 1996; Jiang et al., 2007; Clare et al., 2016; Chen and Chi, 2018).

To estimate the resulting ‘approximate’ model, it is naturally assumed that

the left hand side variable, rj,t+1, as well as rm,t+1 are stationary. This

assumption imposes restrictions on the selection of the variables included in

Zt so that the right hand side of the approximate model remains stationary.

For example, if n = 1 and Zt is I(1), then we will face the problem of an

unbalanced regression because both conditional and unconditional variances

of the right hand side of the model will be explosive. In general, this may be

the case if some (or all) of the variables in Zt are integrated.
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In the next section we propose a methodology that allows us to exploit

possible relationships between integrated variables, so that their inclusion

in Zt does not violate the stationarity requirement. In the third section we

apply our methodology to the returns of funds-of-funds which are created

with respect to the star-rating system of Morningstar. The fourth section

concludes the paper.

2. Integrated variables in the beta specification

As pointed out in the previous section, the inclusion of integrated vari-

ables in the specification of the conditional betas can lead us to spurious

conclusions. In this section we present a methodology for the appropriate

treatment of these variables. For expository simplicity we use a simple one

factor model. Our methodology, however, can be directly extended to multi-

ple factor models because the approximations of the functional forms of each

beta are treated separately.

2.1. Formalization and treatment of the problem

Let us begin by using a first order approximation of bj in equation (1).

We obtain

rj,t+1 = βj,0 + βc
jrm,t+1 + rm,t+1

n∑
i=1

βj,iZi,t + uj,t+1. (4)

It is quite natural to assume that both rj,t+1 and rm,t+1 in (4) are stationary.

On the other hand, this cannot be a priori assumed for Z1,t, Z2,t, . . . , Zn,t.

Therefore, we must first analyze in detail the alternative models (all based

on (4)) that arise depending on the statistical properties of the variables

Z1,t, Z2,t, . . . , Zn,t. Specifically, we distinguish three cases:
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(i) The vector stochastic process [rm,t+1;Z
′
t]
′ is stationary. This implies

that the new variables Zi,trm,t+1 will also be I(0) (given that the market

returns variable rm,t+1 is quite naturally I(0)), and equation (4) is legitimate

since rj,t+1 is also quite naturally I(0)).

(ii) Some (or all) of the variables Z1,t, Z2,t, . . . , Zn0,t, n0 ≤ n are I(1) and

not cointegrated. In this case, the product variables Zi,trm,t+1, i = 1, 2, ..., n0

will have an asymptotically unbounded unconditional variance and will not

be I(0). In such a case, we have the problem of an unbalanced regression

since the dependent variable, rj,t+1 is I(0).

(iii) Some (or all) of the variables Z1,t, Z2,t, . . . , Zn0,t, n0 ≤ n are I(1) and

cointegrated. In this case, we proceed as follows:

Equation (4) shows that under the assumption that the returns processes

{rj,t}t≥1 and {rm,t}t≥1 are I(0), the only case where some of the Zi,t can be

I(1) is when the corresponding coefficients are such that only multiples of

the cointegration relations between those Zi,t that are cointegrated are left

on the right-hand side of (4). The following example highlights differences

between case (ii) and case (iii):

Let

rj,t+1 = βj,0 + βc
jrm,t+1 + (βj,1Z1,t + βj,2Z2,t) rm,t+1 + uj,t+1 (5)

If Z1,t and Z2,t are not cointegrated and βj,1βj,2 6= 0, the unconditional vari-

ance of the right-hand side will grow to infinity as t→∞, violating our initial

assumption that the unconditional variance of rj,t+1 is bounded. Therefore

the estimated values of βj,1 and βj,2 will be very close to 0 when the sample
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is large. If, on the other hand, Z1,t and Z2,t are cointegrated and satisfy

Z1,t = a0 + a1Z2,t + wt

where {wt}t≥1 is I(0), the only way for the unconditional variance of βj,1Z1,t+

βj,2Z2,t to remain asymptotically bounded, with nonzero βj,1 and βj,2, is the

case where

βj,1Z1,t + βj,2Z2,t = λ (Z1,t − a1Z2,t) = λ (a0 + wt) , λ ∈ R.

The last equation implies that βj,1 = λ and βj,2 = −a1βj,1. If we identify the

cointegrating relationship between Z1,t and Z2,t, then we can rewrite (5) as

rj,t+1 = βj,0 + βc
jrm,t+1 + βj,1q1,trm,t+1 + uj,t+1 (6)

where q1,t = Z1,t − a1Z2,t = a0 + wt.

The previous example demonstrates that it is necessary for the sum
n∑

i=1

βj,iZi,t in (4) to be I(0) in order for (4) to be a legitimate regression.

It also suggests how to treat the initial set of candidate state variables, in

order to obtain in (4) a well-balanced regression. Specifically, the following

steps must be taken:

First, we identify all the state variables (elements of Zt) that are I(1).

Assume that the number of such I(1) variables is n0. If n0 > 0, without loss

of generality, reordering the variables if necessary, we can make sure that,

for i ≤ n0, {Zi,t}t≥1 are I(1) and, for n0 < i ≤ n, {Zi,t}t≥1 are I(0). Second,

we identify any cointegrating relationships between the processes {Zi,t}t≥1,

1 ≤ i ≤ n0. Let k < n0 be the rank of the cointegrating system. This means

that we can find a (k × n0) matrix A of order k, such that

A [Z1,t, Z2,t, · · · , Zn0,t]
′ = Ut , (7)
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where {Ut}t≥0 is I(0) with nontrivial coordinates Ui,t, 1 ≤ i ≤ k. Again,

without any loss of generality, we can reorder the variables Zi,t, 1 ≤ i ≤ n0

in (4), so that the first k columns of A are linearly independent. Therefore,

we can write A = [A1, A2] , where the k × k matrix A1 is invertible. Then,

left multiplication of (7) by A−11 yields[
Ik, A

−1
1 A2

]
Zt = A−11 Ut ,

which in turn gives

[Z1,t, Z2,t, · · · , Zk,t]
′ = −A−11 A2 [Zk+1,t, Zk+2,t, · · · , Zn0,t]

′ + A−11 Ut . (8)

The last equation is the first part of Phillips’s triangular system (Phillips

(1991)). The second part of this system is

[∆Zk+1,t,∆Zk+2,t, · · · ,∆Zn0,t]
′ = Vt , (9)

where Vt is also I(0). Equations (7) and (9) provide us with n0 I(0) processes

that can be considered as state variables in a new regression, replacing the

Zi,t, 1 ≤ i ≤ n0. Third, having defined the appropriate set, Wt, of I(0) state

variables,

Wt = (Wi,t)1≤i≤n = [U1,t, U2,t, . . . , Uk,t,∆Zk+1,t, . . . ,∆Zn0,t, Zn0+1,t, . . . , Zn,t]
′

we can run the following regression

rj,t+1 = β∗j,0+β
c
jrm,t+1+

k∑
i=1

β∗j,iUi,trm,t+1+

n0∑
i=k+1

β∗j,i∆Zi,trm,t+1+
n∑

i=n0+1

β∗j,iZi,trm,t+1+uj,t+1 .

(10)

This regression can be rewritten in a more compact form in terms of Wt as

rj,t+1 = β∗j,0 + βc
jrm,t+1 +

n∑
i=1

β∗j,iWi,trm,t+1 + uj,t+1 , (11)

8



or simply

rj,t = β∗j,0 + βc
jrm,t+1 +

d∑
i=1

β∗j,iXi,t + ζj,t , (12)

where Xi,t = Wi,t−1rm,t for 1 ≤ i ≤ n. The regression defined in (11) can be

considered a first-order approximation of the general model given by

rj,t+1 = β∗j,0 + β∗j (Wt)rm,t+1 + ε∗i,t+1 , (13)

which involves only I(0) processes.

The preceding discussion is based on approximating the unknown function

bj(Zt), or equivalently β∗j (Wt), by using a first-order Taylor series expansion.

Alternatively, we can approximate β∗j (Wt) by using a second-order Taylor

expansion. In such a case we have

rj,t+1 = β∗j,0+βc
jrm,t+1+

n∑
i=1

β∗j,iWi,trm,t+1+
∑

1≤i≤k≤n

β∗j,i,kWi,tWk,trm,t+1+ζj,t+1 .

(14)

The last equation involves n+

 n

2

 = n(n+1)
2

, d explanatory variables of

the form Wi,trm,t+1 or Wi,tWk,trm,t+1, 1 ≤ i ≤ k ≤ n, which can be denoted

as Xl,t+1, 1 ≤ l ≤ d.

We can rewrite (14) as:

rj,t = bj,0 + βc
jrm,t+1 +

d∑
i=1

bj,iXi,t + ζj,t (15)

where bj,0 = β∗j,0, bj,i = β∗j,i and Xi,t = Wi,t−1rm,t for 1 ≤ i ≤ n, bj,i = β∗j,g,h

and Xi,t is of the form Wg,t−1Wh,t−1rm,t, when n + 1 ≤ i ≤ d, for some

1 ≤ g, h ≤ n.
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2.2. A small simulation study

The previous subsection developed our argument about the requirement

that the additive terms of the polynomial approximation of bj must be sta-

tionary. A very simple simulation study demonstrates the way the sta-

tionarity assumption on the left hand side variable in (4) is violated when

this requirement is not satisfied. To this end, let {Z1,t} be generated by

Z1,t+1 = Z1,t + vt+1, t ≥ 0, Z1,0 = 0, while {vt}t≥1 are independent N(0, 1).

By construction, {Z1,t} is I(1). Within our very simplified setting, let us as-

sume that the market returns process {rm,t}t≥1 is also independent N(0, 1).

We will consider to returns processes, y1,t and y2,t. The generating mecha-

nism of the first one involves multiplication of rm,t+1 by the first differences

of Z1,t, ∆Z1,t = Z1,t−Z1,t−1, while the generating mechanism of y2,t involves

multiplication of rm,t+1 by Z1,t itself. Specifically, the equations that describe

these generating mechanisms are the following:

y1,t+1 = 0.5∆Z1,trm,t+1 + vt+1 (16)

and

y2,t+1 = 0.5Z1,trm,t+1 + vt+1, (17)

where the {vt}t≥1 are independent N(0, 1). We generate 5000 replications

for y1 and y2 and we estimate their sample standard deviations for sample

sizes ranging from 50 to 10000. For each sample size, the average of these

estimates over the 5000 replications is presented in Table 1.

As theoretically expected, Table 1 supports the explosive behavior of the

sample standard deviation of y2, and consequently its non-stationarity. The

explosive non-stationarity implied by the right hand side in (17) is clearly not
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Table 1: Explosive behavior of a returns process when the conditional beta is not station-
ary.

Sample size Average s.d.(y1) Average s.d.(y2)
50 1.11 2.48
100 1.11 3.36
500 1.12 7.03
1000 1.12 9.86
2000 1.12 13.93
5000 1.12 21.81
10000 1.12 30.94

compatible to the stylized facts of financial returns. Note that the stationar-

ity of the right hand side in (16) is guaranteed since ∆Z1,trm,t+1 = vtrm,t+1

is stationary. As explained in the previous subsection, the same holds when

instead of vt, we use as a multiplier the stationary linear combination of two

or more I(1) processes in the case that these processes are cointegrated and

are involved in the functional form of bj(·).

Next section provides an example of how our methodology can be applied

using portfolios of funds (funds-of-funds) which are based on the Morningstar

star-rating system.

3. An application to funds–of–funds based on the Morningstar

star-rating system

This section aims to demonstrate how the methodology presented in the

previous section can be implemented. To this end, we use Morningstar fund

data, aiming to identify possible factors that a fund manager may consider

when she/he adjusts the exposure of the corresponding portfolio to system-
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atic risk (the portfolio’s beta). The data used in our study were taken

from Morningstar Direct, which provides historical monthly returns of mu-

tual funds along with their star-based rankings calculated by Morningstar.

The Morningstar ‘star-rating’ is a risk-adjusted performance measure, which

ranges from one-star to five-stars (higher rating implying better risk-adjusted

performance), and usually varies slowly over time.

In 2002, Morningstar modified the star rating system by introducing new

peer groups and a new measure of risk-adjusted return (see Füss et al. (2010)

for an informative brief description of the procedure used by Morningstar).

This fact implied that incorporating data prior to July 2002 would add a

significant heterogeneity factor in our sample. In order to avoid possible

implications of this structural change, we cover the subsequent period (July

2002 - September 2018). We focus on the subset represented by US domiciled

equity mutual funds that invest at least 90% of their Non-cash Adjusted Total

Assets in equity securities around the world. To avoid dealing with currency

risk exposure we only consider funds quoted in US Dollars.

Given the availability of the star-ratings, we proceed further in our in-

vestigation aiming to answer the question of whether different star-ratings

correspond to different factors that appear to be significantly related to the

corresponding funds’ beta. To this end, we create five alternative portfo-

lios of funds (funds-of-funds) with respect to the five star-rating categories.

We first select funds purchased by large institutional investors. These funds

correspond to the Morningstar share class type ‘INST’ and involve various

share classes (4854 funds). In order, however, to properly demonstrate our

methodology, we have to choose our dataset in a way that minimizes the
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effects of other funds’ characteristics that may be correlated with the star-

ratings. For example, five-star funds are predominantly Class A shares, while

this is not true for one-star funds. This correlation may be a source of bias.

1

Concerning the returns series for each fund, we choose the Gross Returns

instead of the Net Returns, because our analysis focuses on the perspective

of the fund manager. Specifically, according to Morningstar, “for open-end

funds, Gross Returns are calculated by taking the Total Return and back-

ing out the most recent Expense Ratio. Total Returns are determined by

taking the change in price, reinvesting, if applicable, all income and capi-

tal gains distributions during the period, and dividing by the starting price.

Morningstar does not adjust Total Returns for sales charges (such as front-

end loads, deferred loads, and redemption fees). However, Total Returns do

account for the expense ratio, which includes management, administrative,

12b-1 fees, and other costs that are taken out of assets.” Thus, starting from

the Total Returns and reversing the effect of the expense ratio, Morningstar

calculates the Gross Returns. This returns series provides us a clearer per-

formance from the fund manager perspective, because it is directly related

to the performance of the constituents of the fund, and their corresponding

weights in the allocation scheme that the fund manager has chosen.

In order to create the portfolios and the corresponding returns we proceed

as follows: The first portfolio, named STAR1, consists of all the funds that in

1As a robustness check of the analysis concerning the ‘INST’ funds we conducted the

same analysis for the funds in the A share class (3971 funds) reaching the same conclusions.
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each time period, t, are rated one-star by Morningstar. Specifically, in period

t = 1 (the first period in our sample) we invest an amount A$ in a portfolio

consisting of all the funds (equally weighted) that have been given one-star

by Morningstar in period t = 1. In period t = 2, the amount (1 + R1∗
1 )× A

(R1∗
1 being the return of the portfolio between periods 1 and 2) is invested

again in a portfolio consisting solely of funds that in period 2 were rated one-

star by Morningstar. We continue this process until we reach period t = T ,

i.e. the last period of our sample. In this way, we obtain a series of returns

R1∗
1 , R

1∗
2 , ..., R

1∗
T generated by investing exclusively in one-star funds. These

are interpreted as being a random vector from the process {R1∗
t } generating

one-star portfolio returns. We repeat the same procedure for two-, three-,

four- and five-star funds, thus obtaining samples from the returns processes

{R2∗
t }, {R3∗

t }, {R4∗
t }, {R5∗

t }, which are supposed to generate returns for the

two-, three-, four- and five-star funds respectively. Finally, following how

an investor acts when a fund stops performing, we exclude non-surviving

funds from the allocation procedure after their exit of the Morningstar rating

system.

3.1. Identification of significant factors in the dynamics of conditional betas

We consider an asset pricing model that describes the relationship be-

tween the expected return and risk of the various portfolios under consid-

eration. Specifically, we adopt the conditional CAPM model of Ferson and

Schadt (1996) and Shanken (1990) in which the level of the systematic portfo-

lio risk is a function of the observed variables (see also, Lettau and Ludvigson

(2001)). This in turn implies that the relationship between the excess returns
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of the portfolio j and the excess returns of the market factor is given by the

relationships (1)-(3), where, now, rj,t = Rj∗
t − Rf,t, i = 1, 2, ..., 5, Rf,t is the

return of a one-month Treasury bill, Zt = [Z1,t, Z2,t, . . . , Zn,t] is an n-vector

of state variables observable by the managers at time t, and rm,t = Rm
t −Rf,t

where Rm
t stands for the returns of the market factor (returns on the S&P

500). This specification implies that the systematic risk of the portfolio j, as

measured by bj(Zt), changes with time.

The time-varying nature of beta is due to the fact that the portfolio

manager receives at time t an “information signal”, contained in the state

variables Zt, on the basis of which he changes the beta of his portfolio. If

the signal is “correct” and the manager succeeds in “receiving” it, then the

changes in the beta of the portfolio at time t will be consistent with the

realized returns rm,t+1 at time t+1. To put it differently, if rm,t+1 > 0 then

the correct interpretation of the signal implies that the manager will shift the

portfolio towards including stocks with high betas. The preceding discussion

implies that the ability of the fund manager to “time” the market depends on

the extent to which he/she can translate the information content of Zt into

predictions on the future behavior of rm,t+1. This does not necessarily mean

that “everybody” in the market can “read” the information contained in Zt.

In other words, although the variables Zt are indeed publicly available, the

information content of Zt might be available only to a ‘skillful’ fund manager.

As far as the selection of the variables in Zt is concerned, we follow Ferson

and Schadt (1996), by including the 1-month Treasury bill yield, z1t, the term

spread, z2t, defined as the difference between the constant-maturity 10-year

Treasury bond yield and the 3-month Treasury bill, the quality spread in the
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corporate bond market, z6t, defined as the Moody’s BAA-rated corporate

bond yield minus the AAA-rated corporate bond yield, the S&P 500 dividend

yield, z8t, and a dummy variable, z9t, for the January effect. In addition, we

include variables that are usually considered important indicators by the

financial community such as the price of oil, z3t, the weighted average of the

foreign exchange value of the US dollar against a subset of the broad index

currencies, z4t, the Consumer Sentiment Index of the University of Michigan,

z5t, and the Chicago Board Options Exchange volatility index (VIX), z7t.
2

Finally, note that the above model can be augmented by the market

timing term, γjr
2
m,t+1, proposed by Treynor and Mazui (1966). A positive

(negative) timing coefficient γj is interpreted as evidence suggesting superior

(inferior) market timing abilities of the corresponding fund manager.

3.1.1. Time series properties of the state variables

As explained in the previous section, the choice of the appropriate model

for conditional portfolio evaluation depends on the statistical properties of

the state variables z1t, z2t, ..., z8t, considering that z9t is a dummy variable.

The results from ADF and Phillips-Peron unit root tests, reported in Table

2A, unambiguously indicate that the first five series are I(1), while z6t, z7t, z8t

are I(0). In order to test the existence of cointegration relationships between

z1t, z2t, z3t, z4t and z5t we set the lag-length, l, of the Vector Autoregressive

model, VAR(l) equal to 4. The results reported in Table 2B show that the the

2The source of z1t, z2t, z5t and z6t is Bloomberg, of z3t, z4t and z7t is FRED St. Louis,

and of z7t is Standard’s & Poors.
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trace (TR) statistic of Johansen (1991) identifies at most one cointegration

relationship between the I(1) state variables. On the other hand, under the

hypothesis of no cointegration, the maximum eigenvalue (λ−max) statistic

is slightly below the 5% critical value. As a result, we run two alternative

conditional regressions assuming k = 0 and k = 1 (assuming GARCH(1,1)

errors and including the market timing term γjr
2
m,t+1).

3.1.2. Estimation results

Concerning the identification of the cointegrating relationship when we

assumed that k = 1, we proceeded as follows: First, we searched between all

combinations of the five I(1) variables by four for the one whose trace statis-

tic has the lowest p-value. We found that the most probable cointegrating

relationship involves z1t, z3t, z4t and z5t with a corresponding p-value equal

to 0.0511. Since this p-value exceeds 5%, one could claim that all five time

series are included in the cointegrating relationship. However, because the

p-value is only slightly over 5%, it seems natural to check whether there is

evidence of cointegration in a subset of three variables among z1t, z3t, z4t and

z5t. We proceed to the next step, which is to identify any possible cointe-

grating relationships that involve at most three of z1t, z3t, z4t and z5t. Using

the same p-value approach, we identify a relationship between z3t, z4t and

z5t, with a corresponding p-value equal to 0.0372. Since this p-value is lower

than 0.05 we proceeded by searching for a cointegrating relationship between

all possible pairs from z3t, z4t and z5t. Then we identify a cointegrating re-

lationship between z3t and z4t with a p-value of 0.0417. We have used this

relationship in our estimation, as described in the previous section.
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Table 2: Statistical properties of the state variables.

A. Unit root tests

Variable ADF P-P Constant Trend
z1t -0.92 -0.93 N N
z2t -1.48 -1.48 N N
z3t -2.49 -2.21 Y N
z4t -2.44 -2.28 Y N
z5t -2.46 -2.48 Y Y
z6t -3.79*** -3.79*** Y N
z7t -3.41** -2.91** Y N
z8t -3.46** -2.90** Y N

***: p-val<1% **: 1%, ≤ p-val<5%, *: 5% ≤ p-val<10%

B. Testing for cointegration among z1t, z2t, ... , z5t

l = 4 5% c.v.’s
λ−max TR λ−max TR

k = 0 32.92 83.21 34.81 76.97
k = 1 28.02 50.30 28.59 54.08
k = 2 12.60 22.28 22.30 35.19
k = 3 6.73 9.68 15.89 20.26
k = 4 2.95 2.95 9.16 9.16

Notes: 1) z1t = 1-month treasury bill yield, z2t = constant-
maturity 10-year Treasury bond yield minus 3-month Treasury bill,
z3t = the price of oil, z4t = the exchange rate of the US dollar, z5t =
the consumer confidence index, z6t = Moody’s BAA-rated corpo-
rate bond yield minus AAA-rated corporate bond yield, z7t = the
CBOE’s VIX volatility index, and z8t = the S&P 500 dividend
yield. 2) ADF and P-P refer to the standard augmented Dickey-
Fuller (Dickey and Fuller (1979)) and Phillips-Perron (Phillips and
Perron (1988)) tests respectively for the null hypothesis of a unit
root. The lag-length and the bandwidth parameter in ADF and
P-P, respectively, were selected by the Schwarz information crite-
rion and the Newey and West (1994) procedure respectively. 3)
l denotes the lag length of the unrestricted Vector Autoregressive
Model (VAR) based on which the Johansen (1991) maximum eigen-
value (λ−max) and trace (TR) statistics were calculated.
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The results presented in Table 3 correspond to the application of a general-

to-specific approach, where we start from equation (11) and in each step all

terms involving the factors zi, 1 ≤ i ≤ 9, and having coefficients with a

p-value greater or equal than 0.05 are omitted. Then the equation is re-

estimated.

Tables 3A and 3B report the results that correspond to the cases of zero

and one cointegrating relationships. In addition, we present the results that

correspond to the state variables used in Ferson and Schadt (1996) follow-

ing their approach (i.e. without differencing the I(1) variables). We focus

on the identification of significant state variables in the beta specification.

Specifically, we make the following observations:

(i) Only the dividend yield of the S&P 500, z8t, appears to be statisti-

cally significant, and only for the STAR1 and STAR2 portfolios, when the

approach of Ferson and Schadt (1996) is employed (Table 3C).3

(ii) The first differences of the term spread variable z2t appear to be statis-

tically significant for the STAR1, STAR2 portfolios under the assumption of

zero cointegrating relationships (Table 3A), and for the STAR1, STAR2 and

STAR3 portfolios, under the assumption of one cointegrating relationship

(Table 3B).

3Unfortunately there is no evidence for any cointegrating relationship among the I(1)

variables in Ferson and Schadt (1996). If, however, we take first differences we obtain

identical results with the ones of Table 3A for the STAR1 and STAR2 portfolios. Because

z5t does not belong in the set of variables of Table 3C, there is no evidence of any significant

variable for the STAR4 portfolio in this case.
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(iii) The first differences of the Consumer Sentiment Index z5t appear to

be statistically significant for the STAR4 portfolio under no cointegration

(Table 3A), and for the STAR3 and STAR4 portfolios under the assumption

of one cointegrating relationship (Table 3B).

(iv) Although the first differences of the price of oil z3t and of the US

dollar exchange rate z4t do not appear to be statistically significant under

the assumption of no cointegration (Table 3A), under the assumption of one

cointegrating relationship between z3t and z4t, the corresponding residuals

appear to statistically significant for the STAR2, STAR3 and STAR4 port-

folios (Table 3B).

4. Conclusions

We introduced a methodology that allows for the estimation of models

that derive from polynomial approximations of the time varying betas in

conditional asset pricing models. We first showed that when some of the

variables in the functional form of the betas are I(1), the researcher must

transform these variables in order to maintain stationarity of the right hand

side of the assumed asset pricing model. The straightforward approach is to

replace these variables with their first differences.

Our methodology provides an alternative treatment of the nonstationarity

problem of the right hand side. Specifically, our approach makes use of

possible cointegrating relationships between the variables in the functional

forms of the conditional loadings. We show that by replacing the cointegrated

variables with the corresponding residuals of the cointegrating relationship,

we maintain the stationarity of the right hand side of the asset pricing model.
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Table 3: Estimation of conditional models for the star-rated funds-of-funds. (GARCH(1,1)
error specification).

A: Cointegration rank among z1t, z2t, z3t, z4t and z5t equals zero.
∆z1t, ∆z2t, ∆z3t, ∆z4t, ∆z5t, z6t, z7t, z8t and z9t are employed as
state variables.

Significant State
Variables

Fund-Of-Funds a t(a) γ t(γ) (p-value<0.05) AIC SIC
STAR1 0.002 1.47 -0.79 -2.64 ∆(z2t−1), z8t−1 -5.79 -5.65
STAR2 0.002 2.50 -0.50 -1.92 ∆(z2t−1), z8t−1 -6.04 -5.90
STAR3 0.002 2.86 -0.35 -1.91 - -6.25 -6.15
STAR4 0.003 3.60 -0.57 -2.16 ∆(z5t−1) -6.26 -6.14
STAR5 0.003 2.72 -0.51 -1.42 - -6.00 -5.90

B: Cointegration rank among z1t, z2t, z3t, z4t and z5t equals one.
u1t, ∆z1t, ∆z2t, ∆z5t, z6t, z7t, z8t and z9t are employed as state
variables, where u1t corresponds to the cointegrating relationship
between z4t and z5t.

Significant State
Variables

Fund-Of-Funds a t(a) γ t(γ) (p-value<0.05) AIC SIC
STAR1 0.002 1.47 -0.787 -2.64 ∆(z2t−1), z8t−1 -5.79 -5.65
STAR2 0.003 2.82 -0.726 -2.54 u1t−1, ∆(z2t−1) -6.07 -5.93
STAR3 0.003 3.78 -0.803 -2.98 u1t−1, ∆(z2t−1), -6.29 -6.14

∆(z5t−1)
STAR4 0.003 4.01 -0.685 -2.46 u1t−1, ∆(z5t−1) -6.28 -6.14
STAR5 0.003 2.72 -0.513 -1.42 - -6.00 -5.90

C: Regressions based on Ferson and Schadt (1996). z1t, z2t, z6t, z8t
and z9t are employed as state variables.

Significant State
Variables

Fund-Of-Funds a t(a) γ t(γ) (p-value<0.05) AIC SIC
STAR1 0.001 1.14 -0.495 -1.46 z8t−1 -5.77 -5.66
STAR2 0.002 2.19 -0.237 -0.98 z8t−1 -6.03 -5.91
STAR3 0.002 2.86 -0.354 -1.91 -6.25 -6.15
STAR4 0.003 3.14 -0.444 -1.93 -6.25 -6.15
STAR5 0.003 2.72 -0.513 -1.42 -6.00 -5.90
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Next, we provided an example by applying our methodology to funds–

of–funds which are based on the Morningstar mutual fund ranking system

(see, e.g., Blake and Morey (2000)). Specifically, we considered a conditional

CAPM (see Ferson and Schadt (1996) and Shanken (1990)) in which portfolio

risk is a function of observed variables.

We showed that when the approach in Ferson and Schadt (1996) is used,

only the dividend yield of the S&P 500 appears to be a statistically significant

factor in the specification of the conditional betas. By employing a broader

set of candidate state variables for the specification of the betas, we pro-

ceeded by considering two cases. The first corresponded to no cointegration

between the I(1) variables. Interestingly, however, we identified a possible

cointegrating relationship between two of the I(1) variables, namely, the price

of oil and the US dollar exchange rate. We showed that the residuals of this

relationship appear to be statistically significant factors when they are used

in the functional form of the betas. On the other hand, the first differences

of both the price of oil and the US dollar exchange rate are not statistically

significant when no cointegration is assumed.

The methodology presented in Section 2, along the results of the subse-

quent empirical study support the view that the residuals of cointegrating

relationships between integrated variables in the specification of the condi-

tional betas may reveal significant information about the dynamics of the

betas.
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