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Abstract 
 
A large literature suggests that the expected equity risk premium is countercyclical. Using a 
variety of different measures for this risk premium, we document that it also exhibits growth 
asymmetry, i.e. the risk premium rises sharply in recessions and declines much more gradually 
during the following recoveries. We show that a model with recursive preferences, in which 
agents cannot perfectly observe the state of current productivity, can generate the observed 
asymmetry in the risk premium. Key for this result are endogenous fluctuations in uncertainty 
which induce procyclical variations in agent’s nowcast accuracy. In addition to matching 
moments of the risk premium, the model is also successful in generating the growth asymmetry 
in macroeconomic aggregates observed in the data, and in matching the cyclical relation 
between quantities and the risk premium. 

JEL-Codes: E200, E300, G100. 
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1 Introduction

The most recent U.S. investment and housing booms that ended abruptly in 2001 and

2007 have been associated with highly optimistic beliefs about pro�tability. In the former

case, beliefs about pro�tability were linked to information technology and in the latter to

house price gains. Both booms were associated with times of low uncertainty and saw long

hikes in stock markets. Adjustments of beliefs about pro�tability resulted in sharp recessions,

heightened uncertainty, and strong corrections in stock markets (see e.g. Beaudry and Portier

(2006) and Shiller (2007)). In this situation, investors were less willing to bear �nancial risk

and, for a given level of stock market risk, they required a higher compensation to hold stocks

instead of a risk free short-term asset. Indeed, this equity risk premium increased sharply

at the brink of both recessions, very much in contrast to the slow and gradual decline that

could be observed during the preceding booms. This growth asymmetry shows in positively

skewed distributions of risk premium growth � skewness is 0.64 and 1.00, respectively over

these two business cycles.1

There is a large body of work in the �nance literature on risk premia, which for example

provides substantial empirical evidence that the equity risk premium varies over time and

is countercyclical.2 A recent and growing literature jointly studies both the behavior of risk

premia and macroeconomic dynamics. We contribute to this body of work which has not

considered the important asymmetric feature of risk premia. We �rst document the degree of

asymmetry in the data and then develop a structural model with endogenous countercyclical

variations in uncertainty that is consistent with this feature in the data. To the best of our

knowledge this is the �rst paper that tackles this issue.

We start by computing statistics on growth asymmetry for a variety of expected equity

risk premium measures that have been found relevant in the literature. We document for the

post-WWII U.S. economy that growth rates of all risk premium measures exhibit positive

skewness. This growth asymmetry is not only a salient feature over the entire sample, but it is

1These skewness statistics over the two business cycles are signi�cant with p-values of 0.065 and 0.017,
respectively. The positively skewed distribution implies that positive changes in risk premia are more extreme
than negative changes.

2See e.g. Fama and French (1989), Ferson and Harvey (1991), and Bekaert and Harvey (1995).
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also present across subsamples � which we specify to include two consecutive business cycles

as de�ned by the NBER's Business Cycle Dating Committee � and for di�erent investment

horizons of risk premia. In particular, we construct risk premium measures using models

based on the historical mean of realized stock market returns in excess of Treasury bond

yields, and models based on predictive time series regressions of equity returns on selected

fundamentals. We further employ direct risk premium measures based on responses of Chief

Financial O�cers recorded in the Duke CFO Global Business Outlook Survey. The broad

support for growth asymmetry is remarkable given the substantial diversity in assumptions

underlying the various employed risk premium measures.

We then build a structural model that is consistent with the empirically observed growth

asymmetry in the risk premium. The core of the model is a standard real business cycle model

with capital adjustment costs and preferences of the Epstein and Zin (1989) type. This setup

allows disentangling relative risk aversion and the elasticity of intertemporal substitution and

gives rise to a risk premium. Our empirical measures for expected risk premia incorporate

information about future returns, so that their value can di�er from realized ex-post risk

premia. In the model, deviations from fundamentals are possible, because agents need to

form nowcasts about the state of total factor productivity (TFP). Nowcasting is required as

the otherwise standard Cobb-Douglas type production function includes an additive noise

term and neither TFP nor the noise term can be observed separately at the time decisions

about production inputs are made.3

The key mechanism to generate growth asymmetry in the risk premium are endogenous

changes in the degree of uncertainty about the state of productivity, which in turn induce

procyclical variations in agent's nowcast precision. TFP follows a two-state Markov pro-

cess and agents employ a Bayesian learning technology to form a nowcast about the state

of current productivity. Intensi�ed use of production inputs ampli�es the signal on the

state of productivity relative to the noise and results in endogenous procyclical variations

of the signal-to-noise ratio. When production inputs are high, agent's nowcasts are rela-

3This setup is consistent with the nowcasting process of statistical agencies documented in Faust et al.
(2005). They describe the preliminary nowcast to be the sum of the �nal GDP announcement and an additive
noise term.

2



tively accurate as uncertainty about the state of productivity is low. The end of a boom,

implied by a change from the high to the low productivity state, can be nowcasted with

high accuracy and the risk premium will increase sharply. The reduced use of production

inputs during the following recession leads to a lower signal-to-noise ratio and a situation of

heightened uncertainty about the state of productivity. For this reason, agent's nowcasting

accuracy increases only slowly during the following recovery. The associated gradual decline

in uncertainty comes along with a slow and gradual decline in the risk premium.

The model is calibrated to match nowcast precision in the Survey of Professional Fore-

casters (SPF). Overall, it is successful in generating the observed growth asymmetry in the

risk premium and in matching the risk premium's relation with macroeconomic activity in

the data. The model captures the empirically observed positive skewness in the risk pre-

mium, while a framework without the endogenous variation in nowcast accuracy does not

imply a skewness substantially di�erent from zero. The model's ability to generate growth

asymmetry rests on the procyclicality of nowcast precision and the associated variations in

uncertainty. This mechanism �nds strong support in the data. Firstly, the median absolute

nowcast error for real GDP growth from the SPF varies countercyclically and is notably

heightened when the economy contracts. We also �nd this absolute median nowcast error is

particularly high at times when the risk premium rises strongly. Secondly, we employ the

dispersion in nowcasts for GDP growth from the SPF as a proxy for uncertainty to pro-

vide further corroborative evidence for the model mechanism. We report uncertainty varies

countercyclically � in line with evidence in the literature, see e.g. Bloom (2014) � and is

notably heightened at times when the economy contracts and when risk premia are high.

Endogenous procyclical variations in agent's nowcasting precision are crucial also for the

model's ability to generate the well known stylized business cycle fact of negatively skewed

growth rates in macroeconomic aggregates � i.e. expansions in economic activity are long

and gradual while recessions are sharp and short. In addition to the skewness statistics, it is

notable that our model is also successful in matching the countercyclical movements of risk

premia observed in the data.

Our paper is related to several strands of the literature. There is a large body of work
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in the empirical �nance literature on risk premia. Yet, existing theoretical work in �nance

has mostly been con�ned to endowment economies that do not consider feedback between

time-varying risk premia and macroeconomic aggregates.4 On the other hand, most standard

macroeconomic models do not include a meaningful role for the risk premium. Our work links

to a growing literature that jointly studies the behavior of macroeconomic aggregates and risk

premia in bond or equity markets (e.g. Jermann (1998) and Kaltenbrunner and Lochstoer

(2010)). Gilchrist and Zakraj²ek (2012) empirically document a close link between increases

in the excess bond premium and a deterioration of macroeconomic conditions. Gourio (2013)

develops a macroeconomic framework driven by variations in disaster risk that reproduces key

features of corporate bond risk premia � such as their countercyclicality � and studies their

implications for business cycles. Campbell et al. (2019) show how macroeconomic dynamics

drive risk premia in bond and equity markets and Corradi et al. (2013) �nd that the level and

volatility of �uctuations in the stock market are largely explained by business cycle factors.

Bekaert et al. (2009) highlight the role of uncertainty for the countercyclical volatility of

asset returns. We contribute to this literature by explaining the growth asymmetry in risk

premia and macroeconomic aggregates.

Our paper is also related to work that highlights the importance of beliefs about current

and future TFP for �uctuations in macroeconomic and �nancial aggregates (e.g. Beaudry

and Portier (2006), Barsky and Sims (2011), Cascaldi-Garcia and Vukotic (2019)). Görtz

et al. (2019) document a close link between changes in expectations about future TFP, stock

prices and risk premia. Risk premia incorporate expectations about future stock market

returns and as such, they can di�er from ex-post realizations. In our model, this can be

the case as agents need to form nowcasts to learn about the current state of productivity.

Milani (2011) highlights the relevance of expectations and learning for output �uctuations.

He relaxes the rational expectations assumption to allow for agent's learning in a New

Keynesian framework and estimates the model using forecast data from the SPF. Enders

et al. (2017) compute GDP nowcast errors based on the SPF and show that these are sizable

4Jermann (1998) and Lettau and Uhlig (2000) stress that many asset pricing models which are successful
in endowment economies do not generalize well to production economies.
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and play a non-negligible role, accounting for up to 15% of output �uctuations.

While the above literature typically does not consider asymmetries, in our framework

agents have to solve a signal extraction problem with time varying parameters to explain

growth asymmetries in the data. In this respect, our work links closely to a literature that

considers an asymmetric speed of learning and time variation in uncertainty (e.g. Veldkamp

(2005), Boldrin and Levine (2001), Fajgelbaum et al. (2017)). Our mechanism for endogenous

variations in the signal-to-noise ratio is closely related to Van Nieuwerburgh and Veldkamp

(2006) and Ordoñez (2013) who employ it to explain steepness asymmetry in macroeconomic

aggregates observed at business cycle frequencies. A similar mechanism is used in Saijo

(2017). In this paper, agents learn about the e�ciency of investments in an environment

where uncertainty varies endogenously and has adverse e�ects on economic activity. Common

across this literature is that endogenous variations in uncertainty imply state dependencies

in the strength of agents' responses to shocks. While also our model relies on such a type

of mechanism, the studies above use it to explain empirical facts related to macroeconomic

aggregates. We add to this literature by studying asymmetries in risk premia.

The remainder of the paper is structured as follows. Section 2 provides an overview

about the data. In Section 3 we provide details on the estimation of risk premium measures

and document their growth asymmetry. Section 4 describes the model and Section 5 the

calibration and computational details. Section 6 discusses the model mechanism that gives

rise to asymmetries and results from simulations. Section 7 concludes.

2 Data

We construct measures for U.S. risk premia over a horizon from 1957Q3 to 2019Q2. For

comparability with the existing literature, we follow the common practice and use the S&P

500 as a measure for equity prices and treasury yields for the risk-free rate (see e.g. Graham

and Harvey (2007)). Quarterly time series for the S&P 500 index are from Robert Shiller's

website. Since it has become standard in the empirical literature to estimate risk premia

with a horizon of one year and shorter, we consider investment horizons of one and four
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quarters.5 Consistent with the respective horizon, we either use the 3-Month Treasury Bill

rate (TB3MS) or the 1-Year Treasury Constant Maturity rate (DGS1) as measures for the

risk-free rate which are obtained from the Board of Governors of the Federal Reserve System.

For the fundamentals in the regression based method to estimate risk premia, we use the

cyclically adjusted price-earning Ratio (CAPE) available from Robert Shiller's website. As

an alternative fundamental, we compute the cyclically adjusted price-dividend ratio (CAPD)

based on data from the same source. Consistent with Shiller's cyclical adjustment to the

price earnings-ratio, we compute the CAPD as the current real price of equity divided by

the average of dividends over the previous ten years. The real price of equity is de�ned as

the S&P 500 index de�ated with the CPI.

The U.S. Bureau of Economic Analysis provides time series for real gross domestic prod-

uct (GDPC1), real gross private domestic investment (GPDIC1), and real personal con-

sumption expenditures (PCECC96). These series are quarterly, seasonally adjusted, and in

billions of chained 2012 Dollars. Hours worked by all persons in the non-farm business sector

(HOANBS) is available from the US Bureau of Labor Statistics. This source also provides

a time series of civilian non-institutional population (CNP16OV) used to express the above

macroeconomic aggregates in per-capita terms.

3 Empirical Evidence on Risk Premia

In this section, we estimate risk premia using a variety of models that have been found

relevant in the literature. We then document that all measures for risk premia exhibit growth

asymmetry.

The equity risk premium is the compensation required to make agents indi�erent at

the margin between investing in a risky market portfolio and a risk-free bond. Formally,

the equity risk premium at time t over investment horizon k, ERPt,t+k, is de�ned as the

di�erence between the expected return on equity, Re
t,t+k, and the risk-free rate, Rf

t,t+k, over

5See for example Goyal and Welch (2008), Lettau and Ludvigson (2001a), Lettau and Ludvigson (2001b).
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horizon k,

Et[ERPt,t+k] = Et[R
e
t,t+k]−R

f
t,t+k. (1)

The term Rf
t,t+k, as it is risk-free, is known at time t, while the future expected performance

of the stock market is not. Investors can only observe with certainty the past returns of the

stock market up to time t, and can use the information available to form expectations.

To compute the risk premium in equation (1), a variety of methods have been suggested in

the literature. Duarte and Rosa (2015) provide an extensive overview about the most widely

used models and classify these in �ve categories. We will estimate risk premia based on four

models for investment horizon k = 4 and three models for investment horizon k = 1 which,

according to Duarte and Rosa (2015)'s classi�cation, are part of three of these categories. The

�rst category comprises models based on the historical mean of realized equity premia, the

second includes models that employ time series regressions and the third is based on survey

data. Models in these three categories have the advantage that they rely on a minimum

of assumptions, and importantly, allow us to compute long time series for risk premia. In

addition, Goyal and Welch (2008) and Campbell and Thompson (2008) show that models

based on the historical mean of realized equity premia and based on time series regressions

are hard to improve upon in terms of out-of-sample predictability. The other two methods

classi�ed by Duarte and Rosa (2015) are undoubtedly very useful in other circumstances,

but have substantial drawbacks for our purposes.6 We now provide a brief overview over the

models we employ to compute risk premia.

3.1 Historical Mean of Realized Returns

This method is the most straightforward of all approaches to compute the future risk

premium from time t to t+ k. Following Goyal and Welch (2008), it is simply the historical

6Models based on cross-sectional regressions (see e.g. Adrian et al. (2013)) impose tight restrictions on
the estimation of risk premia and results are heavily dependent on the portfolios, state variables and risk
factors used (Harvey et al. (2016)). While models in our three considered categories use information in
real time where investors don't have information sets that include future realizations, this method uses full-
sample regression estimates which is particularly problematic in our context with a focus on asymmetries.
Risk premium estimates based on dividend discount models (see e.g. Damodaran (2019)) require additional
strong assumptions, for example on the computation of future expected dividends and a discount rate for
these dividends.
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mean of realized stock market returns in excess of the risk-free rate over H periods preceding

time t. This can be formalized as

ERPt,t+k =
1

H

H∑
h=0

(Re
t−k−h,t−h −R

f
t−k−h,t−h).

We specify H = t− k as in Goyal and Welch (2008) who use systematically all the available

historical data since the beginning of the sample.

The validity of this method relies on the assumption about consistent behavior between

past and future. This means the mean of excess returns should either be constant or very

slow moving to avoid a systematic bias in the estimates. We verify that there is no trend in

realized excess stock market returns using the augmented Dickey-Fuller test (for details see

Appendix A.1).

3.2 Time series regressions

This method is based on the idea to utilize the relationship between time series of eco-

nomic variables and stock market returns to predict future equity returns from a linear

regression. One can then subtract the contemporaneous risk-free rate to recover an estimate

of the risk premium, as in Fama and French (1988), Fama and French (2002) and Campbell

and Thompson (2008). We estimate the following predictive regression

Re
t,t+k = α + β · fundamentalt + εt, (2)

where fundamentalt represents a variable that theory and practice have found likely to

drive future excess stock returns. This method links as directly as possible to equation (1)

by computing the equity risk premium

Et[ERPt,t+k] = α̂ + β̂ · fundamentalt −Rf
t,t+k, (3)
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based on the estimates α̂ and β̂ for α and β. Generally the literature relies on a single

fundamental in this regression, as using several variables at once has been found to reduce

model's out-of-sample accuracy. The fundamental used is typically a valuation ratio such as

the price-dividend ratio or the price-earning ratio. These valuation ratios are known to be

negatively correlated with future stock returns since the works of Roze� (1984), Campbell

and Shiller (1988a), and Campbell and Shiller (1988b).

We compute risk premia from two di�erent models based on the above time series regres-

sions and follow the detailed methodology in Campbell and Thompson (2008). The models

di�er in the variable used as fundamental, where we either employ Shiller's cyclically ad-

justed price-earning ratio (CAPE) or the cyclically adjusted price-dividend ratio (CAPD).

For each quarter t in our sample, we estimate parameters in equation (2) based on a sample

up to time t− 1. The risk premium is then constructed according to equation (3) using an

out-of-sample forecast. To estimate α and β we use a sample that begins 20 years prior to

1957Q3.7 We further implement the two restrictions suggested by Campbell and Thompson

(2008), i.e. β̂ must have the sign predicted by theory, otherwise it is replaced by zero, and

the predicted risk premium must be positive, otherwise the historical mean is used as a

predictor instead. Out-of-sample forecasts are produced for each quarter t from 1957Q3 to

2019Q2.

3.3 Survey based risk premium measures

The third method we consider to derive a measure for the risk premium is based on

survey data. The Duke CFO Global Business Outlook Survey is the longest ongoing survey

about the expected equity return (conducted quarterly since 2000Q2) in the United States.8

Graham and Harvey (2018) then recover the 10-year ahead expected risk premium by sub-

tracting the known risk-free Treasury bond annual yield to the median forecast of future

7Our results are robust also to using a sample beginning in 1881Q1, when both fundamentals are �rst
available.

8Every quarter, on average about 350 Chief Financial O�cers from a sample of representative US �rms
respond to the following question: �The current annual yield on a 10-year Treasury bond is x%. Please
complete the following: Over the next 10 years, I expect the average annual S&P 500 return will be: ...%�.
Here x% is replaced by the the actual yield on a 10-year Treasury bond at the time of the survey. A
corresponding question is asked for a one-year investment horizon.
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S&P 500 annual returns. Since 2004Q1, the survey also includes a question on the expected

return of the S&P 500 over the next year. We use the responses to this question to compute,

analogously to Graham and Harvey (2018), the expected risk premium for an investment

horizon of one year. Responses and questions based upon which we could construct risk

premia with an investment horizon of one quarter are not available in this survey.

3.4 Asymmetries in Risk Premia

In this section, we show skewness statistics for the growth rate of the risk premium

measures described above. In particular, we report results based on a model that relies on

the historical mean of realized returns, results based on two time series regression models

(using either the cyclically adjusted price-dividend or the price-earning ratio as fundamental),

and results based on survey evidence. Table 1 summarizes results based on each of the four

models for an investment horizon of one year (k = 4). All four risk premium measures exhibit

growth asymmetry which manifests in positively skewed distributions. Over the entire sample

(1957Q3 - 2019Q2) the growth in the risk premium based on the historical average method

and the two time series regression models has a skewness of 2.55, 0.15 and 0.14, respectively.

The positive skewness implies that the risk premium exhibits growth asymmetry: it declines

gradually and rises much more sharply. This result is robust also when considering parts of

our sample. Table 1 shows skewness statistics for subsamples designed to cover two business

cycles from peak to peak as de�ned by the NBER's Business Cycle Dating Committee. It

is evident that the vast majority of risk premia also exhibit a positive skewness over these

subsamples. The risk premium measure based on survey evidence covers a much shorter

sample, starting in 2004Q1. Nonetheless, its use is appealing to con�rm our results since

this measure is based on a very di�erent methodology. Over the available sample, the survey

based measure exhibits a skewness of 0.80 and hence also provides evidence for steepness

asymmetry in the risk premium.

Next, we discuss skewness statistics at an investment horizon of one quarter (k = 1) for

the three risk premium measures based on the historical average and time series regressions.9

9The Duke CFO Global Business Outlook Survey does not include a question that corresponds to the
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These are summarized in Table 2, where we again provide statistics over the entire sample

as well as subsamples. Also results at the one quarter investment horizon document posi-

tive skewness over the entire sample and the majority of subsamples. While qualitatively

consistent, quantitatively the degree of skewness varies considerably across measures. The

risk premium based on the historical average method implies a skewness of 0.12 while the

measures based on time series exhibit skewness of 0.25 and 1.12. These quantitative dif-

ferences are not surprising � and consistent with �ndings for �rst and second moments in

the literature (see e.g. Duarte and Rosa (2015)) � in light of the substantial diversity in

assumptions and the underlying methodologies to derive the risk premium measures. Given

this, it is striking that all considered measures feature positive skewness. Overall, this sec-

tion provides broad evidence that the risk premium � measured in a variety of ways and at

di�erent investment horizons � exhibits growth asymmetries: declines are long and gradual

and rises are sharp and short.

4 The model

The core of our model is a representative agent real business cycle (RBC) model which

is extended with two key mechanisms. Firstly, households have recursive preferences of the

Epstein and Zin (1989) type. It is well known that standard RBC models with Arrow-Pratt

preferences and a reasonable degree of relative risk aversion (RRA) fail to account for the

existence of risk premia. This is due to the fact that the intertemporal elasticity of sub-

stitution (EIS) and the RRA are reciprocal of each other. A small EIS of the magnitude

necessary to justify meaningful risk premia necessarily leads to an excessively large RRA.

Recursive preferences separate the RRA and the EIS. Secondly, agents cannot directly ob-

serve productivity. Instead, they receive a noisy signal about previous period's productivity

and use a Bayesian learning technology to form nowcasts. Agent's varying speed of learning

over the business cycle is the key to match empirically observed asymmetries in risk premia

one quarter investment horizon. Based on this survey, Graham and Harvey (2018) provide a risk premium
measure for a 10 year investment horizon though. Skewness for growth in this measure is 0.151 over a
2000Q2-2019Q2 sample.
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Table 1: Skewness statistics for growth in di�erent measures of risk premia
based on an investment horizon of one year

Time series Time series
(fundamental = CAPE) (fundamental = CAPD)

1957Q3 - 2019Q2 0.15 (0.324) 0.14 (0.367)

1957Q3 - 1969Q4 1.64 (0.000) 1.99 (0.000)
1969Q4 - 1980Q1 0.08 (0.804) 0.65 (0.080)
1980Q1 - 1990Q3 0.39 (0.251) 0.13 (0.704)
1990Q3 - 2007Q4 -2.41 (0.000) -1.34 (0.000)
2007Q4 - 2019Q2 1.85 (0.000) 2.51 (0.000)

Historical average
1957Q3 - 2019Q2 2.55 (0.000)

1957Q3 - 1969Q4 -1.98 (0.000)
1969Q4 - 1980Q1 1.89 (0.000)
1980Q1 - 1990Q3 -0.01 (0.968)
1990Q3 - 2007Q4 1.20 (0.000)
2007Q4 - 2019Q2 3.12 (0.000)

Survey

2004Q1 - 2019Q2 0.80 (0.012)

2007Q4 - 2019Q2 0.71 (0.042)

Notes. 1957Q3-2019Q2 is the full sample for the historical mean and time series methods. Smaller
sub-samples are constructed such as to cover two peak-to-peak cycles each as de�ned by the NBER's
Business Cycle Dating Committee, with the exception of the last sub-sample that covers the time from
the most recent peak. Survey results are available only from 2004Q1 to 2019Q2. �Historical average�,
refers to the expectations obtained using the historical average method. �Time series (fundamental =
CAPE)� and �Time series (fundamental = CAPD)� refer to the expectations obtained using the time
series regression method, using the CAPE and CAPD ratios respectively as fundamentals. �Survey�
refers to a risk premium measure based on the Duke CFO Global Business Outlook Survey. Skewness
statistics are calculated from the �rst di�erence of the logarithm of the risk premium. P-values,
in parenthesis, are based on D'Agostino, Belanger and D'Agostino (1990) and Royston (1991) test
statistics.
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Table 2: Skewness statistics for growth in di�erent measures of risk premia
based on an investment horizon of one quarter

Time series Time series
(fundamental = CAPE) (fundamental = CAPD)

1957Q3 - 2019Q2 0.25 (0.104) 1.12 (0.000)

1957Q3 - 1969Q4 0.07 (0.821) 0.05 (0.886)
1969Q4 - 1980Q1 0.23 (0.495) 1.62 (0.000)
1980Q1 - 1990Q3 0.68 (0.053) 0.27 (0.426)
1990Q3 - 2007Q4 2.16 (0.000) 1.63 (0.000)
2007Q4 - 2019Q2 2.88 (0.000) 3.10 (0.000)

Historical average
1957Q3 - 2019Q2 0.12 (0.042)

1957Q3 - 1969Q4 -0.17 (0.596)
1969Q4 - 1980Q1 0.72 (0.043)
1980Q1 - 1990Q3 0.26 (0.430)
1990Q3 - 2007Q4 0.32 (0.237)
2007Q4 - 2019Q2 -0.14 (0.661)

Notes. 1957Q3-2019Q2 is the full sample for the historical mean and time series methods. Smaller
sub-samples are constructed such as to cover two peak-to-peak cycles each as de�ned by the NBER's
Business Cycle Dating Committee, with the exception of the last sub-sample that covers the time from
the most recent peak. �Historical average�, refers to the expectations obtained using the historical
average method. �Time series (fundamental = CAPE)� and �Time series (fundamental = CAPD)�
refer to the expectations obtained using the time series regression method, using the CAPE and
CAPD ratios respectively as fundamentals. Survey results are not available for this horizon. Skewness
statistics are calculated from the �rst di�erence of the logarithm of the risk premium. P-values, in
parenthesis, are based on D'Agostino, Belanger and D'Agostino (1990) and Royston (1991) test
statistics.
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and macroeconomic variables.

4.1 Production and technology

The economy comprises of a continuum of perfectly competitive identical �rms with unit

mass. Firms use the following Cobb-Douglas production function to produce output, yt,

yt = Atk
α
t l

1−α
t + νt, 0 < α < 1, (4)

by employing capital, kt, and labour, lt. Output further depends on a productivity shock,

At, and an additive noise shock, νt. This production function is based on Van Nieuwerburgh

and Veldkamp (2006) and is consistent with the notion in Faust et al. (2005) who charac-

terize the preliminary GDP announcement of statistical agencies as the sum of a �nal GDP

announcement and a noise term. The productivity shock takes the form of a Markov process

with two states, high and low At = {AHt , ALt } ∀ t, and a standard deviation σA. The Markov

chain is ergodic and has a symmetric transition matrix, Π, to ensure any asymmetry in the

resulting model dynamics is endogenous. The noise shock is independent and identically

normal distributed with zero mean and standard deviation σν .

The assumptions about agent's information set are such that � even though they know

the underlying shock processes � they cannot separately observe the productivity and noise

shock. Further, agents make decisions about production inputs before they know the level of

output since both shocks are realized only at the end of each period. To make an informed

decision about production inputs, agents use a Bayesian learning technology to infer the level

of current period's productivity based on their noisy observation of output in the previous

period.10

Both, �rms as well as households have the same belief about current productivity since

all agents have the same information set and have access to the same Bayesian updating

10These timing assumptions are consistent with nowcasting in public policy institutions. Bok et al. (2017)
document that the New York Fed Sta� Nowcast for GDP on the last quarter is only observable at about
the beginning of the next quarter. They also describe that nowcasts and forecasts are based on surveys and
limited number of reporting units, i.e. they �lter.
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technology. In the following sections, we will discuss optimal decision making of �rms and

households, given their beliefs about productivity, and show how these agents employ the

Bayesian learning technology to update their beliefs.

4.2 Firms

Firms enter the period with knowledge about their capital stock. They use Bayesian

updating, to be described in detail below, to form a belief about productivity at the beginning

of the period. Given this information, �rms decide about labor demand and investment,

where the latter determines next period's capital stock. Firms own the capital stock, rather

than rent it from households, but issue shares and pay out dividends.

At the beginning of the period, after �rms have formed a belief about productivity, they

expect cash �ow, f̃t, to be

f̃t = Ãtk
α
t l
d
t

1−α
+ ν̃t − wtldt − it,

where Ãt denotes the beliefs about productivity and ν̃t the belief about the noise. Following

the discussion in the section above, agent's expectation about the noise, ν̃t, is zero. wt denotes

the real wage, ldt stands for labor demand, and it for investment. In general, notation x̃t

indicates agent's belief about a particular variable. This belief is formed at the beginning

of the current period, t, given the information set at the beginning of the current period,

It, such that x̃t = Et[xt | It]. Then, xt denotes the realization of this variable at the end of

period t.

Firms have to respect their investment �nancing constraint

it = ỹt − wtldt − d̃tsst + pt(s
s
t+1 − sst), (5)

where the di�erence between sst+1 and sst represents the supplied number of shares to be

traded at price pt between �rms and households. Expected dividends, d̃t, communicated to
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the households at the beginning of the period, are given by

d̃t =
ỹt − wtldt − it + pt(s

s
t+1 − sst)

sst
. (6)

Actual dividends are paid out at the end of the period and will absorb the e�ects of incorrect

beliefs and balance out the investment �nancing constraint. Note that realized cash �ow,

ft = Atk
α
t l
d
t

1−α
+ νt − wtldt − it,

will di�er from expected cash �ow most of the time as they include realized productivity as

well as the realization of the noise term.

The law of motion for capital is

kt+1 =

[
(1− δ) + Φ

(
it
kt

)]
kt, (7)

where δ is the depreciation rate and the capital adjustment cost function Φ
(
it
kt

)
is pos-

itive and concave. The concavity implies that large changes in the investment ratio are

more expensive than gradual adjustments. As in Hayashi (1982) and Jermann (1998), the

adjustment cost has the functional form

Φ

(
it
kt

)
=

a1
1− χ

(
it
kt

)1−χ

+ a2, χ > 1,

where χ is the elasticity of the investment ratio with respect to Tobin's q and parameters a1

and a2 ensure costs are zero in the steady state. The use of these capital adjustment costs

allows us to derive the expression for the return on equity shown as shown in Appendix B.2.

Firms maximize their value, which is equivalent to the sum of discounted expected cash

�ow

max
ldt ,it,kt+1

Et

[
+∞∑
j=0

mt,t+j

(
At+jk

α
t+jl

d1−α
t+j − wt+jldt+j − it+j

) ∣∣∣∣∣ It
]
, (8)

where mt,t+j is the household's discount factor to be speci�ed in the next section. We maxi-
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mize equation (8) with respect to it, kt+1 and l
d
t subject to equation (7) and the constraints

it ≥ 0, kt ≥ 0 to obtain the �rst order conditions

qt =
1

Φ′(it/kt)
, (9)

qt = Et
{
mt,t+1

[
At+1l

d1−α
t+1 αk

α−1
t+1 −

it+1

kt+1

+ qt+1

(
1− δ + Φ

(
it+1

kt+1

))] ∣∣∣∣ It} , (10)

wt = (1− α)Ãtl
d
t

−α
kαt , (11)

where qt denotes the Lagrange multiplier and can be interpreted as Tobin's q. Equation (9)

determines the real price of investment and equation (10) determines optimal investment.

The labor supply function (11) states that the real wage is equal to the expected marginal

productivity of labour, since the actual marginal productivity is unobservable.

4.3 Households

There is a continuum of identical households with unit mass. At the beginning of each

period, households decide how much labor to supply and how many shares to buy. Based on

their expected cash �ow, �rms also inform households on the amount of dividends, d̃t, they

expect to pay. When �rms observe their realized cash �ow at the end of the period, they

pay dividends, dt, which may di�er from the expected dividends. At this point, households

update their views about their income which they subsequently use for consumption, ct. In

other words, consumption expenditures absorb any unexpected realizations due to incorrect

beliefs to satisfy the households' budget at the end of the period. At the beginning of the

period, the households' expected budget constraint is

c̃t + pt(s
d
t+1 − sdt ) = wtl

s
t + d̃ts

d
t , (12)

where c̃t is the expected consumption level, labor supply is lst , and the di�erence between

sdt+1 and s
d
t represents the demand for the number of new shares.

Households have preferences as in Epstein and Zin (1989) so that recursive utility is a
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CES aggregate of their period utility function and a certainty equivalent for next period

utility,

Ut =

[
(1− β)ut(c̃t, l

s
t )

1− 1
ψ + β

(
Et
[
U1−γ
t+1

∣∣ It]) 1− 1
ψ

1−γ

] 1

1− 1
ψ

, (13)

where ψ > 1 is the elasticity of inter-temporal substitution, γ ∈ [0,+∞) \ {1} is the relative

risk aversion, and β ∈ (0, 1) is the discount factor. Period utility takes the form

ut(c̃t, l
s
t ) = c̃κt (1− lst )1−κ, (14)

with κ ∈ (0, 1) which controls labor supply.

Households maximize equation (13) subject to (12) and to the interiority conditions

c̃t ≥ 0, ct ≥ 0 and 0 ≤ lst ≤ 1. We obtain the following labor supply function from the

household's maximization problem (details are provided in Appendix B.1)

c̃t =
κ

1− κ
(1− lst )wt, (15)

which provides an intratemporal link between labor supply, the real wage and the beginning

of period belief about consumption. Combining the �rst order condition with respect to sdt+1

and the Envelope Theorem for sdt (shown in Appendix B.1) we obtain the Lucas equation

1 = Et
[
mt,t+1

dt+1 + pt+1

pt

∣∣∣∣ It] , (16)

where

mt,t+1 = β

(
U1−γ
t+1

Et
[
U1−γ
t+1

∣∣ It]
)1− 1

θ (
ct+1

c̃t

)κ(1−γ)
θ
−1(1− lst+1

1− lst

) (1−γ)(1−κ)
θ

, (17)

is the stochastic discount factor, using θ := (1 − γ)/(1 − 1
ψ

). The risk-free rate between

period t and t+ 1 is thus de�ned as

Rf
t,t+1 =

1

Et[mt+1,t | It]
, (18)
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and the expected return on equity between period t and t+ 1 is

Et[Re
t,t+1 | It] = Et

[
dt+1 + pt+1

pt

∣∣∣∣ It] . (19)

Then the expected risk premium is given by

Et[ERPt,t+1 | It] = Et[Re
t,t+1 | It]−R

f
t,t+1.

Note that, as for example in Heer and Mauÿner (2012), we do not explicitly take into

account equation (5) in the maximization programme of the representative �rm. This is

because irrespective of the choice of labour and investment, it is always possible to �nd a

combination of dividends and number of shares that satis�es equation (5). Since we also

do not impose a speci�c dividend policy, we cannot directly compute the return on equity

based on dividends and share prices. However, as shown in Appendix B.2, we can recover

the expected return on equity to be

Et
[
dt+1 + pt+1

pt

∣∣∣∣ It] = Et
[
qt+1kt+2 + yt+1 − wt+1lt+1 − it+1

qtkt+1

∣∣∣∣ It] . (20)

Variables on the right hand side of this equation can be recovered using household's and

�rm's programmes, given expectations about future productivity. We will discuss in the

next section how these expectations about productivity can be formed. Using the right

hand side of equation (20) to compute the expected return on equity has the advantage

that it limits the state space of the dynamic programming problem and thereby keeps our

computational problem tractable.

4.4 Bayesian learning

We now turn to a description of the Bayesian learning mechanism which agents use

to form a belief about current technology, Ãt. Information set It contains all information
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available to the agents at the beginning of period t

It := {yt−1, ct−1, dt−1, pt, wt, ldt, lst, it, kt, sdt+1
, sst+1},

where xt denotes the history of variable x up to time t. The technology and the noise

shocks are never individually observed, but agents have information about their underlying

processes. This includes the transition matrix, Π, which consists of the probabilities of a

state change as detailed in Section 4.1.

Agents use the following Bayesian �lter to forecast At given information set It

P (At−1 = AH | It) =

φ(yt−1 | AH , It−1)P (At−1 = AH | It−1)
φ(yt−1 | AH , It−1)P (At−1 = AH | It−1) + φ(yt−1 | AL, It−1)P (At−1 = AL | It−1)

, (21)

[P (At = AH | It), P (At = AL | It)] = [P (At−1 = AH | It), P (At−1 = AL | It)]Π. (22)

This �lter comprises a Bayesian updating formula, equation (21), and an adjustment for

the possibility of a state change, equation (22), where φ is the normal probability density

function. In equation (21) Bayes' law gives the posterior probability at time t for productivity

to be in a high state in the previous period. The reciprocal posterior probability for a low

state, P (At−1 = AL|It), is obtained analogously. Then, agents adjust for the possibility

of a state change from period t − 1 to t using equation (22) by multiplying the vector of

posterior probabilities with the transition matrix, to obtain a prior belief about the current

state of productivity. Agents can subsequently form a belief about the productivity level in

the current period by multiplying the vector of priors with the vector of productivity states

Ãt = [P (At = AH | It), P (At = AL | It)][AH , AL]′. (23)

Note that for agents to compute the risk-free rate and the return on equity they need to

form expectations about several variables in period t + 1. To do so, they need to estimate

the probability that productivity will be in the high or low state in t+ 1, given their beliefs
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about the current state of productivity, P (At = AH | It) and P (At = AL | It). Then they

multiply the vector of prior probabilities with the transition matrix,

[P (At+1 = AH | It), P (At+1 = AL | It)] = [P (At = AH | It), P (At = AL | It)]Π, (24)

so that agents employ part of the learning technology analogously to the case described

above.

4.5 Equilibrium and social planner problem

Equilibrium. At the end of each period the equilibrium in the decentralized economy

presented above is a sequence of quantities {ct, lst , ldt , it, dt, kt, sdt , sdt }∞t=0 and prices {wt, pt}∞t=0,

given k0, s0, and A0, such that the problem of �rms is solved, the problem of households is

solved, the markets for goods, labour and �rm's shares clear

yt = it + ct, lst = ldt = lt, sst = sdt = st.

Social Planner Problem. The decentralized economy has a social planner analogue

which can be solved in a recursive fashion. At the beginning of each period the planner

maximizes the utility of the representative household, equation (13), subject to the capital

accumulation constraint (7), the aggregate resource constraint ỹt = it + c̃t (which is the

combination of the households' budget constraint (12) and the �rms' investment �nancing

constraint (5)), and the interiority conditions ct ≥ 0, c̃t ≥ 0, 0 ≤ lt ≤ 1, kt ≥ 0 and it ≥ 0.

The benevolent planner enters the period with knowledge about two state variables:

the capital stock, kt, and a belief about current period's productivity, Ãt. The belief is

established by using the Bayesian updating mechanism in equations (21)-(23). Given these

state variables, the planner chooses hours worked, lt, and investment, it, which then implies

beliefs for the levels of output, ỹt, and consumption, c̃t. The planner uses this information

together with the technology (24) to derive the risk-free rate, the expected return on equity

and subsequently the risk premium. Then, the actual productivity shock At and the noise

21



νt are realized, but not observed separately. The realization of these shocks implies that the

planner can observe the actual level of output, yt, which will typically di�er from the belief

about output, ỹt. Subsequently, actual consumption, ct is realized as a residual.

Formally, the planner solves the following Bellman equation, where V denotes the value

function:

V (kt, Ãt) = max
lt,it,kt+1

[
(1− β)(c̃κt (1− lt)1−κ)

1−γ
θ + β(EtV 1−γ(kt+1, Ãt+1

∣∣∣ It)) 1
θ

] θ
1−γ

s.t. kt+1 =

(
1− δ + Φ

(
it
kt

))
kt,

c̃t = ỹt − it,

it ≥ 0, kt ≥ 0, c̃t ≥ 0, ct ≥ 0, 0 ≤ lt ≤ 1, and k0, A0 given,

where

Φ

(
it
kt

)
=

b1
1− κ

(
it
kt

)1−κ

+ b2 and ỹt = Ãtk
α
t l

1−α
t + ν̃,

and the updating rules (21)-(24) are taken as given.

The social planner equilibrium is achievable in the decentralized economy since the plan-

ner uses information that is available to all agents at no cost, the constraints and �rst order

conditions of the planner are consistent with those of the agents, technology is convex and

the preferences are insatiable.11

11It is important to note that the formulation with a social planning economy rules out agent's active
experimentation. In our setup there is no feedback between actions and beliefs and learning is passive. This
is a common assumption in the literature, see e.g. Van Nieuwerburgh and Veldkamp (2006), Ordoñez (2013)
and Saijo (2017). Active learning would invalidate the Welfare Theorems in the social planning economy
and hence there would be no decentralized counterpart to the planner's equilibrium. The passive learning is
re�ected in the planner's recursive problem above: the state variables, including beliefs about productivity,
are determined before optimal production decisions are made, after which subsequently beliefs are updated
again. This process can be repeated until beliefs about productivity coincide with its actual realization.
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5 Calibration and computation

5.1 Calibration

Table 3 summarizes the parameter values used to calibrate the model. Consistent with

the empirical sections above the model is calibrated at quarterly frequency. Several values

are standard in the literature. We calibrate the share of capital in production, α = 0.36, the

discount factor, β = 0.98, and the capital depreciation rate, δ = 0.025 (see e.g. Kydland and

Prescott (1982)). We set the steady state labour supply to 1/3 which then implies κ = 0.37

for equation (15) to hold in steady state. The capital adjustment cost parameter is set to

χ = 4, consistent with the value in Jermann (1998). The two parameters related to the

adjustment costs, a1 and a2, ensure zero capital adjustment costs in steady state and can be

expressed as functions of other parameters (derivations of their functional forms are shown

in Appendix B.3).

Given these parameters, we calibrate the elasticity of inter-temporal substitution, ψ, to

be 0.01, so that the mean risk premium in the model matches the equivalent moment in

the data. This calibration is also consistent with the empirical estimates in Yogo (2004)

and Gomes and Paz (2011) for the elasticity of inter-temporal substitution. We use the risk

premium based on the historical average measure as a benchmark to calibrate our model

as it relies on a minimum of assumptions while at the same time we observe a long time

series. We consider this measure at an investment horizon of one quarter, which is consistent

with the setup of our model. While the model is calibrated to match the level of the mean

risk premium in the data (0.063 vs. 0.069), it is reassuring that given the above parameters

the model also delivers levels for the expected return on equity (0.103 vs. 0.088) and the

risk-free rate (0.042 vs. 0.045) that are comparable to their data equivalents.12 Based on

Caldara et al. (2012), we calibrate the degree of relative risk aversion, γ, to be 5 as our

benchmark, which is also in line with the value used in Gourio (2012). Empirical evidence

on the degree of relative risk aversion is scarce. For robustness we verify γ ∈ {1, 10} which
12The di�erence between statistics for the expected return on equity and the risk-free rate do not exactly

match the ones provided for the risk premium. The reason is that the risk premium is computed for every
period before the average is taken across all simulations.
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does not signi�cantly alter our results.13

The model's learning technology relies on three parameters that require calibrating. We

set the states of the two-state Markov chain to be AH = 1 + 0.032 and AL = 1 − 0.032 so

that the standard deviation of the technology process, σA, is consistent with the �ndings

in Cooley and Prescott (1995) and Fernald (2019) based on estimates of Solow residuals.

Note that the distance between the two states matters for the volatility of the process,

but since we evaluate deviations from the steady state, the absolute level of the technology

process is not important. Let pij denote the probability for a change from state i = {H,L}

to state j = {H,L}, then the ergodicity of the Markov chain implies pij ∈ (0, 1) and

piH + piL = 1. In combination with the symmetry assumption on the transition matrix this

implies pLH = pHL and pHH = pLL = (1 − pLH). Hence, the autocorrelation for technology

can be pinned down by the probability of a state change, pLH , which we set to 0.05. This

implies an auto-correlation for productivity of 0.95, which is consistent with the estimate

in Cooley and Prescott (1995), and gives an autocorrelation for output in the model (0.93)

that is in line with the corresponding statistic in the data (0.84). Finally, we calibrate

the standard deviation of the noise shock to be σν = 0.01, so that our model matches the

negative correlation between the median absolute nowcast error for GDP growth and real

GDP growth in the data.14 The variance of the noise shock a�ects the signal-to-noise ratio

and thereby determines the speed of learning. If the volatility of the noise shock is too large,

it becomes impossible to extract any information from the signal received. If the volatility

of the noise shock is too small, it becomes straightforward to infer real productivity and

learning is trivial. Our value for σν is between these extreme cases so that learning is neither

impossible nor trivial.

13These results are available upon request.
14The nowcast data is from the Survey of Professional Forecasters (SPF). The SPF provides quarterly

nowcasts over a horizon 1968Q4-2019Q2. The nowcasts are on GNP growth, up to 1991Q4, and GDP
growth, from 1992Q1. Throughout the paper we compute nowcast errors using the corresponding series for
GNP and GDP growth from the Bureau of Economic Analysis.
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Table 3: Calibrated Parameters

Description Parameter Value

Income share of capital α 0.36

Discount factor β 0.98

Depreciation rate of capital δ 0.025

Probability of state change in transition matrix pLH 0.05

Standard deviation of productivity shock σA 0.032

Standard deviation of noise shock σν 0.01

Relative risk aversion γ 5

Elasticity of inter-temporal substitution ψ 0.01

Capital adjustment cost parameter χ 4

Period utility parameter κ 0.37

5.2 Computational details

We solve the model using Value Function Iteration. Epstein and Zin (1989) show that

a version of the contraction mapping theorem still holds with recursive preferences. The

algorithm requires the choice of two grids, for hours and for capital. We use 1000 grid points

for capital and 500 grid points for hours. The upper and lower bounds of the grids are equal

to 125% and 75% of the respective steady state values of the variables. These values ensure

that the choices of the representative agent are not constrained by the boundaries, while

maintaining a high grid density for precision of the solution. During simulations we do not

visit the grid points at the boundaries of the state space. Consumption and the belief about

consumption do not require a speci�c grid, as their values can be recovered using the grids for

capital and labour. We use the policy functions to simulate 500 time series of 248 quarters

after 50 periods are discarded. This is consistent with the length of the time horizon in the

empirical sections above.
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6 Results

6.1 Nowcasting, uncertainty and asymmetry

We have documented in Section 3.4 that there is substantial growth asymmetry across

a variety of measures for the risk premium. In this section, we show that our model can

resemble this asymmetry due to endogenous variations in agent's nowcasting precision about

productivity.15 The key for this mechanism is the formulation for output (4), which consists

of the product of TFP and the function of production inputs, as well as the additive noise

term. Agents employ output realized at the end of the previous period in the Bayesian

learning technology to infer the current state of productivity. When production inputs are

low, agents learn slowly about productivity because the noise variance is relatively large in

comparison to the variance of the signal. A recession is hence a time of high uncertainty

and low nowcast accuracy. During a recovery, intensi�ed use of production inputs ampli�es

changes in technology so that the variance of the signal increases. Given our assumption of

a constant noise variance this implies a rising signal-to-noise ratio during a recovery. This

decline in uncertainty raises nowcast precision so that agent's speed of learning increases with

output and the risk premium declines gradually. At the peak, a situation of low uncertainty

and high output, a decline in the state of productivity can be observed relatively precisely.

The result is a strong negative adjustment in production inputs, an increase in uncertainty,

and a sharp rise in the risk premium. Hence, procyclical �uctuations in the signal-to-noise

ratio lead to endogenous variations in nowcasting accuracy which generate asymmetries in

the risk premium and the other macroeconomic aggregates.

Important for the functionality of the learning mechanism is a procyclical signal-to-

noise ratio resulting from endogenous variations in nowcast accuracy and the degree of

uncertainty.16 Empirical evidence supports this model mechanism. We employ the median

15Enders et al. (2017) �nd that productivity shocks have a statistically and economically signi�cant impact
on nowcast errors and report evidence for Granger causality. They also investigate potential links between a
variety of other non-technology shocks and nowcast errors, but cannot �nd signi�cant e�ects of such shocks
on nowcast accuracy.

16In Section 4.1 we assumed the variance of the noise to be constant. This assumption has been made for
simplicity to keep the computational problem tractable. In principle, we can relax this assumption so that
the noise variance can even rise when the use of production inputs increases. As long as it rises at a rate
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Table 4: Nowcast accuracy, economic contractions and surges in risk pre-
mia

Negative GDP GDP growth Positive risk premium
growth dummy rate growth dummy

α̂ 1.436 (0.000) 2.160 (0.000) 0.753 (0.034)

β̂ 2.537 (0.000) -0.177 (0.000) 1.638 (0.000)
Adjusted R2 0.23 0.09 0.02

Results of the time series regression yt = α+ βxt + ε where yt is the median absolute nowcast error
for real GDP growth from the Survey of Professional Forecasters (SPF), and xt is either the quarter-
on-quarter growth rate of real GDP, or a dummy variable equal to one when the quarter-on-quarter
growth of real GDP is negative, or a dummy variable equal to one when the quarter-on-quarter growth
rate of risk premium exceeds 2%. The sample is limited to 1968Q4-2019Q2 by the availability of the
SPF. P-values are reported in parenthesis.

absolute nowcast error for GDP growth from the Survey of Professional Forecasters (SPF)

as a measure for nowcast accuracy and hence the speed of learning. Table 4 shows results

from a regression of this median absolute nowcast error on either GDP growth or a dummy

indicating a contraction of the economy. We �nd a positive relationship between GDP growth

and nowcast accuracy and we document that nowcast errors are particularly large during

contractions. Our results based on nowcasting accuracy are consistent with �ndings in the

literature on procyclical forecast precision, see e.g. evidence in Jaimovich and Rebelo (2009)

based on the Livingston Survey. Table 4 also provides evidence on the relationship between

nowcast accuracy and growth of expected risk premia. We regress the median absolute

nowcast error for GDP growth on a dummy for large increases in risk premia � indicating

a quarter-on-quarter growth rate of expected risk premia of at least to 2%.17 The result of

this regression indicates that surges in risk premia coincide with times of a slow speed of

learning.

Next, we turn to regressions where we employ the dispersion of nowcasts for GDP growth

from the SPF as dependent variable. Dispersion is de�ned as the di�erence between the 75th

and the 25th percentile of the projections for quarter-on-quarter growth. Disagreement of

less than kαt l
1−α
t , this still guarantees a procyclical signal-to-noise ratio.

17This is a conservative classi�cation for a period to exhibit a large increase in the risk premium. The
dummy is one in 71 out of a total of 203 quarters. Results in Tables 4 and 5 are robust also when we apply
a tighter threshold that includes surges in risk premia above about 4%. This implies the dummy is unity in
25 periods which is the same number of quarters covered by the dummy indicating a contraction in GDP.
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Table 5: Uncertainty, economic contractions and surges in risk premia

Negative GDP GDP growth Positive risk premium
growth dummy rate growth dummy

α̂ 1.267 (0.000) 1.570 (0.000) 1.352 (0.000)

β̂ 1.139 (0.000) -0.069 (0.000) 0.369 (0.034)
Adjusted R2 0.19 0.05 0.02

Results of the time series regression yt = α+βxt+ε where yt is the dispersion of individual nowcasts
for real GDP growth from the Survey of Professional Forecasters (SPF), and xt is either the quarter-
on-quarter growth rate of real GDP, or a dummy variable equal to one when the quarter-on-quarter
growth of real GDP is negative, or a dummy variable equal to one when the quarter-on-quarter growth
rate of risk premium exceeds 2%. The dispersion of nowcasts is measured as the di�erence between the
75th percentile and the 25th percentile of the nowcasts for quarter-on-quarter GDP growth nowcasts,
expressed in annualized percentage points. The sample is limited to 1968Q4-2019Q2 by the availability
of the SPF. P-values are reported in parenthesis.

private sector expectations, as reported in the SPF, are a widely used proxy for uncertainty.18

Considering GDP growth as independent variable, Table 5 reveals a negative link between

output growth and uncertainty. A regression with a dummy � indicating times when the

economy contracts � as independent variable corroborates this �nding, reporting a signi�-

cant positive relationship between contractions and nowcast dispersion. Our results on the

adverse link between uncertainty and economic activity are consistent with �ndings in the

literature (see e.g. Bachmann et al. (2013), Bloom (2014)). Using the dummy for strong

surges in risk premia as independent variable shows that risk premia are heightened at times

of high uncertainty. Investors tend to be more uncertain about the current and future state

of the economy during economic contractions which requires compensation through higher

risk premia. Our results are consistent with evidence in Corradi et al. (2013) who report the

volatility of risk premia to be strongly countercyclicyal and with Baker et al. (2012) who use

�rm level data to document that uncertainty raises stock price volatility.

The evidence from Tables 4 and 5 corroborates the model assumption of a procyclical

signal-to-noise ratio. It further provides empirical support for the key elements to gener-

ate growth asymmetry in risk premia, as it implies a link between uncertainty, strong risk

premium growth, the state of the business cycle and variations in the speed of learning.

18See e.g. Bachmann et al. (2013).
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6.2 Asymmetries in the model

We now evaluate the model's ability to resemble the risk premium's growth asymmetry

observed in the data. We report moments for the risk premium based on the historical

average method at the one-quarter investment horizon as this measure has been employed

to calibrate the model. Table 6 reports a selection of moments for the risk premium in the

data (Panel A) and implied by the model (Panel B). Second moments are computed based

on the cyclical components of HP(1600) �ltered series. The appropriate transformation to

detect growth asymmetry, as shown in Sichel (1993), is by computing the skewness from

log �rst-di�erences. The model matches the countercyclicality of the risk premium and the

autocorrelation observed in the data rather well. Also the risk premium's volatility relative

to output volatility is reasonably close to the statistic reported in the data. Most notable

however is that the model is able to generate positive skewness in the risk premium (0.156)

that comes close to the one observed in the data (0.122). The positive skewness implies

that increases in the risk premium are larger than decreases. Together with the observed

negative correlation with output, this is consistent with the mechanism outlined in Section

6.1 above: the risk premium declines gradually during a recovery and increases sharply when

a recession occurs.

It is interesting to contrast this result with statistics based on a model without the

learning mechanism. The di�erence to the baseline model is that the state of productivity is

revealed at the beginning of the period. The corresponding moments are shown in Table 6,

Panel C. While the baseline model can generate the empirically observed positive skewness

in the risk premium rather well, the model without the learning mechanism fails to generate

this asymmetry. Skewness in this model is not substantially di�erent from zero; in fact it is

slightly negative (-0.054). Concerning the risk premium statistics, this is the main di�erence

to the baseline model with learning. The model without learning nevertheless implies a

countercyclical risk premium, correctly ranks the risk premium to be more volatile than

output, and generates a positive autocorrelation, albeit the latter is somewhat weaker than

in the data.
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We also report in Table 6 moments for macroeconomic aggregates. Overall, our baseline

model (as well as the model without learning) matches the corresponding volatilities and

correlations in the data reasonably well. Consumption is less volatile and investment more

volatile than output.19 A well known issue of real business cycle models is the low volatility of

hours worked which is larger than the volatility of output in the data.20 Our baseline model

is able to replicate the negative skewness of macroeconomic aggregates observed in the data.

The growth asymmetry in macroeconomic aggregates implies that increases are long and

gradual and declines are short and sharp. This is a well documented feature of business

cycles. It is consistent with the evidence in Van Nieuwerburgh and Veldkamp (2006), Görtz

and Tsoukalas (2013) and Ordoñez (2013) who employ signal extraction processes similar

to ours to generate asymmetries in macroeconomic aggregates. Görtz and Tsoukalas (2013)

report asymmetry in these variables is a salient feature of business cycles across G7 countries

and Ordoñez (2013) show it is stronger even in countries with less developed �nancial sectors.

Given the above discussion, it is not surprising that the model without learning fails also

to generate the growth asymmetry in macroeconomic aggregates. Skewness of output and

consumption is close to zero. Investment and hours are only slightly negatively skewed,

of about the size of one standard error, and by far not as much as in the data. It is

hence apparent that the learning mechanism is crucial to align the model outcomes with the

empirically observed asymmetry in the risk premium and the macroeconomic aggregates.

7 Conclusion

The expected risk premium on equity is the expected excess return above the risk-free

rate that investors require as compensation for the higher uncertainty associated with risky

19To make learning non-trivial the variance of the noise shock needs to be large enough to disguise the
true technology state. This however implies an unrealistically low autocorrelation and high volatility of
output. We follow Van Nieuwerburgh and Veldkamp (2006) to resolve this con�ict between learning and
output volatility and report all moments for the model's output based on a �ltered series given public
information available at the end or the period, i.e. the persistent component of end-of-period output ŷt =
Et[At | It+1]k

α
t l

1−α
t . They show that ŷ can be interpreted as revised data which is typically collected by

data agencies who would like to report yt− νt but don't observe the noise. For the national income accounts
to balance also consumption must be �ltered so that ŷt = ĉt − it.

20A remedy discussed in the literature can e.g. be to use the indivisible labor approach of Hansen (1985).
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Table 6: Key moments of the risk premium and macroeconomic aggregates

Relative std Correlation 1st order Skewness
deviation with output auto-cor.

Panel A: U.S. data
Risk premium 2.177 -0.486 0.772 0.122

Output 1.000 1.000 0.836 -0.523

Investment 4.373 0.898 0.817 -0.697

Hours 1.226 0.854 0.909 -0.965

Consumption 0.795 0.872 0.862 -0.672

Panel B: Baseline model (with learning)
Risk premium 2.972 (0.028) -0.511 (0.006) 0.640 (0.007) 0.156 (0.028)

Output 1.000 (0.000) 1.000 (0.000) 0.932 (0.003) -0.591 (0.058)

Investment 2.038 (0.007) 0.735 (0.005) 0.890 (0.004) -0.461 (0.063)

Hours 0.209 (0.001) 0.696 (0.006) 0.859 (0.004) -0.453 (0.067)

Consumption 0.944 (0.004) 0.911 (0.001) 0.825 (0.007) -0.137 (0.040)

Panel C: Model without learning
Risk premium 3.676 (0.057) -0.456 (0.006) 0.185 (0.007) -0.054 (0.018)

Output 1.000 (0.000) 1.000 (0.000) 0.921 (0.004) -0.029 (0.036)

Investment 1.992 (0.005) 0.983 (0.001) 0.908 (0.004) -0.059 (0.049)

Hours 0.205 (0.001) 0.933 (0.003) 0.883 (0.000) -0.071 (0.054)

Consumption 0.725 (0.002) 0.989 (0.000) 0.923 (0.003) 0.042 (0.046)

Values reported in parentheses are standard errors. The sample in panel A is 1957Q3 - 2019Q2. Statistics
shown for the risk premium in Panel A are based on the historical average measure with one quarter investment
horizon. The models in panels B and C are simulated 500 times over 298 periods after which the �rst 50
periods are discarded. Second moments are calculated based on percentage deviations from HP(1600) �lter
trend. Skewness is calculated from log �rst-di�erenced series.
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assets. We estimate a variety of measures for the expected risk premium on equity for the

post-WWII U.S. economy based on models that have been found relevant in the literature.

We document these measures exhibit growth asymmetry in the sense that increases in the

risk premium are sharp and short while declines are more gradual and long. We show this

positive skewness is a salient feature of risk premium growth at di�erent investment horizons

and over di�erent subsamples. A real business cycle model with Epstein-Zin preferences is

consistent with this fact in the data. We demonstrate that the key mechanism to generate

growth asymmetry in risk premia are procyclical variations in nowcast accuracy due to

endogenous changes in the degree of uncertainty about productivity. This mechanism �nds

support in the data using measures for uncertainty and nowcast precision from the Survey

of Professional Forecasters. In addition to matching the growth asymmetry in risk premia,

the model is also successful in generating the empirically observed countercyclicality of risk

premia and the negative skewness in macroeconomic aggregates.
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Appendix

A Additional evidence on the estimation on risk premia

A.1 ADF test results for realized risk premia

Tables 7 and 8 show that ADF tests overwhelmingly reject the null hypothesis of a unit

root in realized ex-post risk premia at the yearly or quarterly horizon. These are computed

as the ex-post di�erence between the stock market return and the risk-free rate. This test

statistic validates the use of the historical mean method to compute the risk premium using

the historical mean method.

Table 7: Yearly risk premia

Test 1% critical 5% critical 10% critical
statistic value value value

-5.247 -3.461 -2.880 -2.570

MacKinnon approximate p-value = 0.000

Table 8: Quarterly risk premia

Test 1% critical 5% critical 10% critical
statistic value value value

-13.401 -3.461 -2.880 -2.570

MacKinnon approximate p-value = 0.000

B Model derivations

B.1 Household's optimality conditions

The recursive structure of the utility function immediately implies the Bellman equation

F (sdt , Ãt) = max
sdt+1,l

s
t ,c̃t

W (u(c̃t, l
s
t ), µt) ,
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where

W (u(c̃t, l
s
t ), µt) =

[
(1− β)u(c̃t, l

s
t )

1−γ
θ + βµ

1−γ
θ

t

] θ
1−γ

,

with

µt =
(
Et
[
F 1−γ
t+1

∣∣ It]) 1
1−γ

and θ := 1−γ
1− 1

ψ

, subject to

c̃t = wtl
s
t + d̃ts

d
t − pt(sdt+1 − sdt ).

To ease notation in the following algebraic derivations, we use the simpli�ed notations ut to

denote the period utility function u(c̃t, lt),Wt to denote the CES aggregationW (u(c̃t, l
s
t ), µt),

and Ft to denote the value function F (sdt , Ãt).

B.1.1 Derivation of the Lucas equation and the SDF

The �rst order condition with respect to st+1 yields

∂Wt

∂ut

∂ut
∂c̃t

∂c̃t
∂sdt+1

+
∂Wt

∂µt

∂µt

∂Et[F 1−γ
t+1 | It]

Et

[
∂F 1−γ

t+1

∂Ft+1

∂Ft+1

∂sdt+1

∣∣∣∣∣ It
]

= 0.

The Envelope theorem for st yields

∂Ft
∂sdt

=
∂Wt

∂ut

∂ut
∂c̃t

∂c̃t
∂sdt

.

Combining both conditions, we obtain

∂Wt

∂ut

∂ut
∂c̃t

∂c̃t
∂sdt+1

+
∂Wt

∂µt

∂µt

∂Et[F 1−γ
t+1 | It]

Et

[
∂F 1−γ

t+1

∂Ft+1

∂Wt+1

∂ut+1

∂ut+1

∂ct+1

∂ct+1

∂sdt+1

∣∣∣∣∣ It
]

= 0. (B.1)

We can then recover

∂Wt

∂ut
= F

1− 1−γ
θ

t (1− β)u
1−γ
θ
−1

t ,

∂Wt

∂µt
= βF

1− 1−γ
θ

t

(
Et[F 1−γ

t+1

∣∣ It]) 1
θ
− 1

1−γ ,

∂µt

∂Et[F 1−γ
t+1 | It]

=
1

1− γ
Et[F 1−γ

t+1 | It]
1

1−γ−1,
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∂c̃t+1

∂sdt+1

= Et[dt+1 + pt+1 | It],

and

∂c̃t
∂sdt+1

= −pt.

Plugging the last 5 equations into equation (B.1) yields after re-arranging

0 = Et
[
mt+1,t

dt+1 + pt+1

pt
− 1

∣∣∣∣ It] ,
where

mt+1,t = β

(
F 1−γ
t+1

Et
[
F 1−γ
t+1

∣∣ It]
)1− 1

θ (
ut+1

ut

) 1−γ
θ
−1 ∂ut+1

∂ct+1

∂ut
∂c̃t

.

These are the Lucas equation (16) and the stochastic discount factor (17).

B.1.2 Optimal labour supply

The �rst order condition with respect to lt yields

∂Wt

∂ut

[
∂ut
∂c̃t

wt +
∂ut
∂lst

]
= 0. (B.2)

We can then recover

∂ut
∂c̃t

= κc̃κ−1t (1− lst )1−κ

and

∂ut
∂lst

= −c̃κt (1− κ)(1− lst )−κ.

Plugging the last 2 equations into equation (B.2) yields after re-arranging

c̃t =
κ

(1− κ)
(1− lst )wt,

which is the labor supply function (15).
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B.2 Derivation of the return on equity

Firm's expected cash �ow at the beginning of the period is de�ned as

f̃t = d̃tst − pt(st+1 − st) = ỹt − wtlt − it.

From equation (11), it holds that wtlt = (1−α)ỹt. Hence we can simplify the above equation

for expected cash �ow to become

f̃t = αỹt − it.

Using equations (10) and (7), and due to the speci�c capital adjustment costs we apply, we

can write

qtkt+1 =Et
{
mt,t+1

[
At+1l

1−α
t+1 αk

α
t+1 − it+1 + qt+1

(
1− δ + Φ

(
it+1

kt+1

))
kt+1

] ∣∣∣∣ It}
⇔ qtkt+1 =Et [mt,t+1(αyt+1 − it+1 + qt+1kt+2) | It]

⇔ qtkt+1 =Et [mt,t+1(ft+1 + qt+1kt+2) | It] .

Iterating forward, we obtain

qtkt+1 = Et

[
+∞∑
i=1

mt,t+ift+i

∣∣∣∣∣ It
]
, (B.3)

assuming that limi→+∞ Et[mt,t+iqt+ikt+i+1 | It] = 0. Following Altug and Labadie (2008),

the value of a �rm on the stock market is equal its present value of future discounted cash

�ow. This allows us to rewrite equation (B.3) as

qtkt+1 = ptst+1.

Finally, using the above expressions, we can derive a formulation for the return on equity

which depends on variables that have been pinned down uniquely in �rm's and household's
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maximization problems

Et
[
dt+1 + pt+1

pt

∣∣∣∣ It] =Et
[
st+1dt+1 − pt+1(st+2 − st+1) + st+2pt+1

st+1pt

∣∣∣∣ It]
=Et

[
ft+1 + kt+2qt+1

kt+1qt

∣∣∣∣ It]
=Et

[
qt+1kt+2 + yt+1 − wt+1l

d
t+1 − it+1

qtkt+1

∣∣∣∣ It] ,
which is equation (20) in the main body.

B.3 Derivation of functional forms for parameters a1 and a2

The parameters a1 and a2 are calibrated to ensure that adjustment costs are zero in

steady state, so that steady state investment and Tobin's q are i = δk and q = 1. From

equations (7) and (9), we can see that the latter is satis�ed if

Φ(δ) = δ and Φ
′
(δ) = 1.

Given the functional form of Φ, this implies

a1
1− χ

δ1−χ + a2 = δ and a1δ
−χ = 1,

from where we deduce

a1 = δχ and a2 = − δχ

1− χ
.
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