
Glenk, Gunther; Reichelstein, Stefan J.

Working Paper

Synergistic Value in Vertically Integrated Power-to-
Gas Energy Systems

CESifo Working Paper, No. 7958

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Glenk, Gunther; Reichelstein, Stefan J. (2019) : Synergistic Value in
Vertically Integrated Power-to-Gas Energy Systems, CESifo Working Paper, No. 7958, Center
for Economic Studies and ifo Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/214960

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/214960
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

7958 
2019 

November 2019 

 

Synergistic Value in Vertically 
Integrated Power-to-Gas 
Energy Systems 
Gunther Glenk, Stefan Reichelstein 



Impressum: 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
www.cesifo-group.org/wp 

An electronic version of the paper may be downloaded 
· from the SSRN website:  www.SSRN.com 
· from the RePEc website:  www.RePEc.org 
· from the CESifo website:         www.CESifo-group.org/wp

mailto:office@cesifo.de
http://www.cesifo-group.org/wp
http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.org/wp


CESifo Working Paper No. 7958 
 

 
 
 

Synergistic Value in Vertically Integrated 
Power-to-Gas Energy Systems 

 
 

Abstract 
 
This paper examines the value that can potentially be created by a vertically integrating energy 
system. Integration entails operational gains that must be traded off against the requisite cost of 
capacity investments. In the context of our model, the operational gains are subject to inherent 
volatility in both the price and the output of the intermediate product transferred within the 
vertically integrated structure. Our model framework provides necessary and sufficient 
conditions for the value (NPV) of an integrated system to exceed the sum of two optimized 
subsystems on their own. We then calibrate the model in Germany and Texas for systems that 
combine wind energy with Power-to-Gas (PtG) facilities which produce carbon-free hydrogen. 
Depending on the prices attainable for hydrogen in different market segments, we find that a 
synergistic investment value emerges in certain settings. In the context of Texas, for instance, 
neither electricity generation from wind power nor hydrogen production from PtG is profitable 
on its own in the current market environment. Yet, provided both subsystems are sized 
optimally in relative terms, the attendant operational gains from vertical integration more than 
compensate for the stand-alone losses of the two subsystems. 
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1 Introduction

As the global efforts to reduce carbon dioxide emissions associated with burning fossil fuels gain

urgency, there is a growing sense that a range of industrial processes will need to be decarbonized

in addition to power generation. The production of industrial gases provides a case in point. The

predominant method of producing hydrogen, for instance, is through steam methane reforming

which relies on natural gas as its energy feedstock and results in significant carbon dioxide emissions

(Davis et al., 2018). A decarbonized alternative to steam methane reforming is to obtain hydrogen

via a Power-to-Gas (PtG) process based on water electrolysis whereby electricity infused in water

instantly splits the water molecule into oxygen and hydrogen.1

The widely reported rapid decline in the cost of renewable electricity through wind or solar

photovoltaic installations naturally raises the question as to whether a PtG system combined with

an upstream renewable power source is becoming cost competitive with traditional, carbon-intensive

ways of producing hydrogen. A PtG system that is vertically integrated with a renewable power

source will also have the financial advantage of avoiding the transaction cost typically reflected in

the mark-up of electricity prices for buying rather than selling electricity.2

The intermittency of power generated from wind or solar photovoltaic sources presents a well-

known problem in balancing electricity supply and demand in real-time.3 One potential remedy

suggested is to divert surplus energy from renewable power sources to the production of energy

storing products like hydrogen. At the same time, though, the inherent intermittency of renewable

power generation negatively affects the economics of a vertically integrated PtG system due to the

high opportunity cost of “starving” the expensive PtG system at times of low output from the

renewable power source; see Glenk and Reichelstein (2019). That bottleneck can be alleviated by

allowing the PtG system to also draw power from the grid, though the resulting hydrogen will then

become more expensive on account of facing the buying rather than the selling price of electricity.

Furthermore, the hydrogen produced will be decarbonized only to the extent that grid power is

decarbonized.

1Hydrogen can then be used in a wide range of applications including fuel for transportation, feedstock in chemical
and processing industries, and energy storage for power generation.

2The costs and benefits of vertical integration have long been central issues in the theory of the firm (Williamson,
1975, 1985). Much of the literature in economics has approached these issues from an incentive and management
control perspective; see, for instance, Grossman and Hart (1986), Melumad et al. (1995), and Gilbert and Riordan
(1995). Our approach in this paper is in line with recent perspectives in the operations literature, e.g. Kazaz
(2004), van Mieghem (2003), and Hu et al. (2015). In these studies, the benefits of vertically integrated production
systems generally stem from operational gains, while costs arise from the need for additional upfront investments in
productive capacity.

3See, for instance, Zhou et al. (2016); Broneske and Wozabal (2016); Wozabal et al. (2016).
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The front-part of this paper presents and analyzes a generic model of a vertically integrated

production system. The downstream unit requires an intermediate production input (e.g., power)

that can be sourced from the external market, or alternatively from an upstream unit. The output

of the upstream unit is inherently volatile as it fluctuates in an exogenous fashion across the hours of

the year. Depending on the current market price of the intermediate input, the vertically integrated

system can decide on a real-time basis to what extent the intermediate input is sold on the external

market or transferred to the downstream unit. In contrast to some of the recent work on production

synergies, we capture volatility not by random shocks, but by predictable variations in both the

level of the intermediate input produced and its market price (Kouvelis et al., 2018; de Véricourt

and Gromb, 2018; Hekimoglu et al., 2017).

The main question posed in the modeling part is whether a vertically integrated energy system

exhibits synergistic investment value. Our criterion for such synergies is that the net present

value (NPV) of the vertically integrated system exceeds the sum of the optimized NPVs of the

two stand-alone facilities that would either sell or buy the intermediate input exclusively on the

external market. In this comparison, zero will always be a lower bound for the optimized NPV

of the two stand-alone entities because of the option not to invest in capacity in the first place.

If either or both energy systems have negative NPVs on their own, the presence of a synergistic

investment value must entail operational gains that more than compensate for the cost of capacity

investments that would be uneconomical on their own in case the two subsystems were to operate

in stand-alone mode.4 The conditions for a synergistic investment value are straightforward to

identify in a hypothetical stationary environment where electricity prices and output do not vary

over time. Our analysis demonstrates how these conditions extend to production environments

that are subject to operational volatility.

Our model analysis shows that the emergence of a synergistic investment value hinges critically

on the two subsystems being sized optimally in terms of their relative capacity.5 The need for this

optimization reflects that in settings where the value of capacity investments is large relative to

the annual operating costs, overall profitability is highly sensitive to trading off volatile revenue

4Recent work on vertical integration has confined to settings where one subsystem can be added to the other and
only exist in an integrated fashion (Kazaz, 2004; Dong et al., 2014; Boyabatli et al., 2017).

5Our results are also related to the real option literature where the value of a flexible system must exceed the value of
a rigid system in order to justify investment in the flexible system, e.g. Kogut and Kulatilaka (1994); van Mieghem
(1998); Trigeorgis (1993). In these studies output is assumed to be fully dispatchable. By including exogenous
output fluctuations, our study is partly in the spirit of the hedging literature. McKinnon (1967) and Rolfo (1980)
examine when farmers can effectively hedge by selling a share of their crops on the futures market instead of selling
everything on the spot market. The analogy with our setting is that, instead of hedging with a price future, farmers
could also invest in an optimally sized equipment that turns the crops into products with a stable market price.
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opportunities against temporary idle capacity. We demonstrate that the optimal relative capacity

size of two subsystems can be expressed in terms of a few aggregate variables. These comprise the

life-cycle cost of the intermediate and the final product, and the time-averaged price and output

levels, with the latter two averages adjusted by covariance terms that reflect the extent to which

intertemporal variations in prices correlate with variations in output from the upstream unit.

The back-end of our analysis calibrates our model in the context of PtG hydrogen production

facilities that are co-located with wind parks. We provide a numerical evaluation for vertically

integrated energy systems in both Germany and Texas, two jurisdictions that have installed sub-

stantial amounts of wind power in recent years. On a stand-alone basis, wind parks are currently

unprofitable in Texas, though they entail positive NPVs in Germany, in large part due to public

subsidies for renewable energy. The stand-alone value of investments in PtG facilities depends on

the attainable market price of hydrogen. For medium-scale supply settings, hydrogen sales prices

tend to be relatively high, making stand-alone PtG facilities marginally profitable in both Germany

and Texas. In contrast, such facilities entail negative NPVs in both jurisdictions relative to the

lower prices associated with industrial-scale hydrogen supply arrangements.

Since the integrated system generally experiences some operational gains from the avoided trans-

action costs that arise in the intermediate input market, one would expect a synergistic investment

value to emerge if both wind power and hydrogen production are cost competitive (profitable)

on their own. We confirm this for the setting of Germany and medium-scale hydrogen supply.

Conversely, it may intuitively appear difficult for the synergistic effect to be sufficiently large so

as to outweigh stand-alone losses if those occur in both subsystems. Nonetheless, we do identify

such a synergistic investment value in the context of Texas where neither wind power nor hydrogen

production is economically viable by itself.

An instructive metric for quantifying the gains from vertical integration is what we term the

break-even price of hydrogen for a vertically integrated energy system. The break-even price is

defined as the lowest downstream (i.e., hydrogen) price at which the vertically integrated system

achieves a synergistic investment value. By construction, the break-even hydrogen price of the

vertically integrated system is always lower than the price at which hydrogen production turns

profitable on its own. In the context of Texas and industrial-scale hydrogen supply, we find that

the break-even price of hydrogen for a vertically integrated energy system is about 30% lower than

the critical price at which hydrogen would become viable on its own. This difference illustrates the

relative magnitude of the synergistic gains in that particular market context.
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We finally project likely improvements in the economics of combined energy systems that inte-

grate wind power with hydrogen production. Several factors are likely to contribute to more robust

synergistic investment values in the future. These include sustained price reductions for both wind

turbines and PtG facilities as well as greater operational volatility in terms of fluctuating market

prices for electricity. The latter trend is mainly a consequence of the trend towards time-of-use

pricing. Overall, our projections indicate that even relative to the benchmark of the low hydrogen

prices associated with large-scale industrial supply, synergistic investment value for the integrated

systems will widely emerge in both Texas and Germany within a decade. These projections take

into account that the public support for wind energy, e.g., the production tax credit available in

the U.S., is scheduled to be phased out in the coming years.

For the specific application of wind power combined with hydrogen production, our numerical

assessments point to a more favorable cost structure than other recent studies (Ainscough et al.,

2014; Bertuccioli et al., 2014; Felgenhauer and Hamacher, 2015; Glenk and Reichelstein, 2019). We

attribute this difference to the fact that our calculations are based on subsystems that have been

sized optimally, an aspect that is of first-order importance when capacity investments account for

a large share of overall production costs. In addition, our calculations take advantage of higher

capacity utilization that results when both renewable and grid electricity are converted to hydrogen.

Finally, our calculations reflect very recent cost and operational inputs for wind energy and PtG.

The remainder of the paper is organized as follows. Section 2 develops the model framework

for the identification of synergistic investment value in vertically integrated energy systems under

conditions of operational volatility. Section 3 applies the model framework to PtG and wind energy.

We first provide an assessment based on most recent data and then project likely changes in

synergistic investment values for the coming decade. Section 5 concludes the paper. Supplemental

materials such as proofs and data sources are provided in the Appendix.

2 Model Framework

Our model framework considers a vertically integrated energy system that comprises two interacting

subsystems. For concreteness, we focus on a renewable energy source, like wind or solar power, that

is connected with a Power-to-Gas (PtG) facility.6 In our applications, the gas will be hydrogen that

6We note in passing that our model is of generic interest. As in Hu et al. (2015), the PtG facility can be substituted
with an electricity customer. Alternatively, the upstream unit can be an olive plantation that faces fluctuating
production and prices for olives while the downstream unit is a press for making olive oil as in Kazaz (2004).
Similarly, an upstream crude oil pump may be combined with downstream refinery systems (Dong et al., 2014).
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is produced via an electrolysis process. The setting in Figure 1 comprises four building blocks: the

renewable energy source, the PtG facility, and external markets for both electricity and hydrogen.

Renewable
energy source

Electricity
market

Power-to-Gas: 
Electrolysis

Hydrogen 
market

electricity
selling

price ele
ctr

ici
ty

bu
yi

ng
pr

ice

hydrogen price

hydrogenelectricity

electricity ele
ctr

ici
ty

Figure 1: Illustration of the vertically integrated energy system.

As a stand-alone operating unit, the renewable energy source can generate electricity that is

sold on the open market at time-varying prices. Figure 1 represents this stand-alone subsystem

through the ellipse on the left. The banana-shaped bubble on the right in Figure 1 represents

the stand-alone PtG facility that can buy electricity from the open market to produce hydrogen

which is sold at a time-invariant price. Integration of the two subsystems enables the transfer

of renewable power to the PtG to facility (red arrow in Figure 1). Such integration will generally

entail operational gains if the buying price of power exceeds the selling price faced by the renewable

source. Any operational gains from vertical integration have to be traded-off against the investment

cost of capacity if one or both subsystems are not profitable on their own. Our analysis examines

this trade-off through the lens of an investor who seeks to maximize the net present value of the

integrated energy system by optimally sizing the relative capacity of the two subsystems.

2.1 Contribution Margins

For given capacity investments, the integrated system shown in Figure 1 will seek to maximize

the periodic contribution margin by optimizing the use of the available capacity in real time. The

key variables in this optimization are the amount of power the renewable system produces at a

particular point in time and the corresponding prices at which electricity can be bought and sold

externally.

Let ps(t) denote the selling price per kilowatt hour (kWh) at which renewable energy can be
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sold on the open market at time t. For modeling purposes, we view time as a continuous variable t

ranging from 0 to 8,760 hours. The magnitude and intertemporal distribution of prices are assumed

to be constant across the T years of the facility. We denote by ke the peak capacity in kilowatt

(kW) of the renewable energy source and by CF (t) the capacity factor at time t. The capacity

factor is a scalar between 0 and 1 reflecting the actual percentage of the maximum power the

system can generate.7 Thus, CF (t) · ke represents the actual amount of power generated at time t,

corresponding an investment in ke kW of peak capacity.

Let pb(t) denote the price per kWh that would have to be paid for electricity procured on the

open market at time t. During hours when electricity trades at a positive price, we posit the no-

arbitrage condition that pb(t) ≥ ps(t). This condition is descriptive of most electricity markets.

Furthermore, wholesale electricity markets increasingly exhibit patterns where at certain hours

surplus electricity is unloaded on the grid and therefore prices become negative. Our analysis

assumes that the renewable energy subsystem can be idled at no cost, as is generally possible

for both wind and solar electricity generation. Instead of an explicit option to curtail production

whenever prices turn negative, we specify equivalently that renewable power is always produced

at full capacity but can be disposed off at no charge (ps(t) = 0), whenever the buying prices turn

negative. Formally, we assume:

ps(t)

≤ pb(t) if pb(t) ≥ 0,

= 0 if pb(t) < 0.
(1)

Given supply of electricity from either the external market or the internal renewable source, the

conversion value per kilogram (kg) of gas (hydrogen) produced is the selling price of the gas minus

the variable operating costs. These costs include water and other variable consumable inputs like

those used to deionize the water. We denote by ph the price per kg of the gas and by wh the

variable operating cost per kg produced. The conversion rate of the PtG process (in kg/kWh) is

represented by the parameter η, reflecting the amount of gas that can be produced from 1 kWh of

electricity. Accordingly, the conversion value is given by:

CVh = η · (ph − wh). (2)

For a stand-alone PtG system based entirely on electricity purchased on the open market, the

7For technical reasons, we assume that CF (t) > 0 and that each value in the range of the function CF (·) is assumed
at most finitely many times. These assumptions appear descriptive for wind turbines, the setting we examine in
Section 4 below.
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contribution margin obtained at time t would therefore be:

CM(t|kh) = [CVh − pb(t)] · kh, (3)

if the PtG system has the capacity to absorb kh kW of power at any point in time.

The contribution margin that can be attained from a vertically integrated system accumulates in

four different phases that differ in terms of electricity prices and the conversion value of hydrogen.

In Phase 1 of the diagram in Figure 2, both the buying and the selling electricity price exceed the

conversion value: pb(t) ≥ ps(t) ≥ CVh ≥ 0. As a consequence, the plant operator will keep the

PtG facility idle. Since the variable operating cost of the renewable energy source is negligible, the

entire electricity generation capacity will be fully exhausted and the contribution margin of the

vertically integrated energy system is equal to:

CM1(t|ke) = ps(t) · CF (t) · ke. (4)

2

0
Conversion value of hydrogen, CVh
Buying price of open market energy, pb(t)
Selling price of renewable energy, ps(t)

Pr
ic

e

Time

Phase 1
sell renewable power, 

idle Power-to-Gas

Phase 3
convert grid and renewable

power to hydrogen

Phase 2
convert renewable
power to hydrogen

Phase 4
convert grid power,

dispose renewable power

Figure 2: Phase diagram.

In Phase 2, the buying price exceeds the conversion value of hydrogen, which, in turn, exceeds

the selling price: pb(t) ≥ CVh > ps(t) ≥ 0. It is then preferable to convert the generated renewable

energy, without further purchases from the external electricity market. Since the electrolyzer of the

PtG plant can absorb renewable electricity up to its peak capacity, kh, we introduce the notation

z(t|ke, kh) to capture the effective conversion capacity at time t. This capacity is the minimum of

the capacity factor of the renewable energy source and the peak capacity of the PtG plant, and

represents the kW of electricity that the PtG processing facility can receive and absorb internally
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from the renewable source at time t:

z(t|ke, kh) ≡ min{CF (t) · ke, kh}. (5)

We shall ignore switching costs associated with ramping the PtG facility up or down, since for most

electrolyzers the associated efficiency losses can be considered negligible (Buttler and Spliethoff,

2018). The contribution margin of the integrated system in Phase 2 is the contribution margin of

renewable energy plus the associated conversion premium:

CM2(t|ke, kh) = ps(t) · CF (t) · ke + [CVh − ps(t)] · z(t|ke, kh). (6)

In Phase 3, both electricity prices are non-negative and less than the conversion value of gas:

CVh > pb(t) ≥ ps(t) ≥ 0. It is then optimal to convert the generated renewable energy and buy

electricity from the market to fully utilize the remaining PtG capacity. The attainable contribu-

tion margin is then the sum of both stand-alone energy systems plus the conversion premium of

renewable energy:

CM3(t|ke, kh) = ps(t) · CF (t) · ke

+ [CVh − ps(t)] · z(t|ke, kh)

+ [CVh − pb(t)] · [kh − z(t|ke, kh)].

(7)

Finally, in Phase 4, the buying price is negative and thus CVh ≥ ps(t) = 0 > pb(t). The facility

will then idle the renewable energy source and exhaust the PtG capacity with negatively priced

electricity from the market. Accordingly, the contribution margin in that scenario equals:

CM4(t|kh) = [CVh − pb(t)] · kh. (8)

For further reference we note that in a stationary environment where prices and output are constant,

the contribution margin of a vertically integrated energy system corresponds to just one of the

four phases illustrated in Figure 2. With time-varying prices and capacity factors, the optimized

contribution margin of a vertically integrated energy system can be expressed as follows.8

8Proofs are shown in the Appendix.
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Lemma 1. The optimized contribution margin of a vertically integrated energy system at time t

is:

CM(t|ke, kh) = ps(t) · CF (t) · ke

+ [pb+(t)− pb(t)] · kh

+ [p+(t)− ps(t)] · z(t|ke, kh),

(9)

where pb+(t) ≡ max{pb(t), CVh} and p+(t) ≡ max{min{pb(t), CVh}, ps(t)}.

Lemma 1 shows that the contribution margin of a vertically integrated energy system can be

expressed as the sum of the contribution margins of the two stand-alone energy systems plus a

third term that captures the economic interaction of the two subsystems. The term pb+(t)−pb(t) =

max{CVh−pb(t), 0} will be referred to as the conversion premium of hydrogen. It reflects the option

for the stand-alone PtG system to idle the electrolyzer at times when the buying price of electricity

exceeds the conversion value of hydrogen. The final term of (9) reflects potential synergies, that

is, the benefit of consuming the intermediate input internally. We refer to

p+(t)− ps(t) = max{min{pb(t), CVh} − ps(t), 0}

as the price premium of the vertically integrated energy system at time t. As shown in the following

sections, a positive price premium, that is, p+(t) − ps(t) > 0 for some t, is necessary but not

sufficient for a vertically integrated system to generate a net present value that exceeds the sum of

the optimized values of the two stand-alone systems.

2.2 Net Present Values

A vertically integrated energy system yields cash inflows in the form of optimized contribution

margins. Such a system will create value if the discounted sum of the cash inflows collectively

covers the initial cash outflow for capacity investments plus the subsequent periodic operating

costs, including corporate income taxes. To identify conditions for the emergence of a synergistic

investment value by the vertically integrated systems, it will prove useful to express the overall

net present value in terms of unit costs and revenues. Specifically, we build on the definition of

the Levelized Cost of Electricity (LCOE), a common unit cost measure for stand-alone electricity

generation systems; see, for instance, Islegen et al. (2011).9

9As shown in Reichelstein and Rohlfing-Bastian (2015), this cost measure is also the relevant unit cost for optimal
capacity investment decisions in the presence of future random shocks to demand.
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The LCOE aggregates all costs occurring over the lifetime of a power plant to deliver one unit

of electricity output. The LCOE of a one kW facility can be expressed as:

LCOE = we + fe + ∆ · ce. (10)

Here, the subscript e stands for electricity; w represents the variable operating cost per kWh, f

the levelized fixed operating cost per kWh, c the levelized capacity cost of the facility per kWh,

and finally ∆ the tax factor covering the impact of income taxes and the depreciation tax shield.

Since the variable operating cost for wind and solar power is negligible, we set we = 0. The LCOE

is determined by the following underlying parameters: the system price, SPe, for the generation

capacity (in $ per kW), the fixed operating cost in year i, Fei (in $ per kW), a discount factor, γ,

based on the cost of capital r such that γ = 1
1+r (scalar). Additional parameters are the useful

economic life, T (in years), and system degradation factor in year i, xi−1 (scalar).

Time-of-use electricity prices prices are frequently measured on an hourly basis. We denote by

m = 24 ·365 = 8, 760 the number of hours per year. The discount factor γ is based on an underlying

cost of capital (interest rate) r. This cost of capital should be interpreted as the weighted average

cost of capital (WACC) if the project is financed through both equity and debt (Islegen et al.,

2011). The scalar x, with 0 < x < 1, denotes the system degradation factor, so that xi−1 represents

the fraction of the initial capacity that is still operating in year i. For notational simplicity, we

assume that prices and all operational parameters, except for the system degradation factor, are

identical across years. The standard definition of the LCOE ignores the hourly fluctuation in

capacity utilization and instead refers to the average capacity factor, CF , that is the average of all

hourly capacity factors: CF = 1
m

m∫
0

CF (t)dt.

To obtain the levelized capacity cost per kWh, the system price per kW is divided by the total

discounted number of kWh that the system produces over its useful life:

ce =
SPe
CF · L

. (11)

We refer to L ≡ m ·
T∑
i=1

xi−1 · γi as the levelization factor which expresses the discounted number

of hours that are available from the facility over its entire lifetime.

Similar to the levelized cost of capacity, we define the levelized fixed operating cost per kWh

as the total discounted fixed costs that are incurred over the lifetime of the facility divided by the
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levelization factor adjusted by the capacity factor.

fe =

T∑
i=1

Fei · γi

CF · L
. (12)

To complete the formulation of the LCOE, we include corporate taxes and the depreciation tax

shield. Depreciation charges for tax purposes and interest payments on debt reduce taxable earn-

ings. The effect of the debt tax shield is already accounted for, provided the cost of capital, r,

is viewed as a weighted average cost of capital. Let di denote the allowable tax depreciation rate

in year i and α the effective corporate income tax rate. The useful life of renewable power plants

for tax purposes is usually shorter than their useful economic life. Therefore, the tax depreciation

charges are set to zero (di = 0) for the remaining years. The tax factor is then given by:

∆ =

1− α ·
T∑
i=1

di · γi

1− α
. (13)

It is readily verified that ∆ is increasing and convex in the tax rate α. ∆ exceeds one in the

absence of tax credits and is bound above by 1/(1 − α). Because of the time value of money,

an accelerated tax depreciation schedule reduces ∆. If the tax code allows a full depreciation

immediately (meaning d0 = 1 and di = 0 for i > 0), the tax factor equals one.

Some countries, including the United States, grant subsidies in form of a tax credit for renewable

energy production. For wind power, this takes the form of a Production Tax Credit (PTC) per

kWh of electricity produced (U.S. Department of Energy, 2016) as:

ptc =

T∑
i=1

PTCi · xi−1 · γi

(1− α)
T∑
i=1

xi−1 · γi
, (14)

where PTCi denotes the tax credit of year i. Since the duration of the PTC is generally shorter

than the useful life of wind turbines, we set PTCi = 0 for the remaining years. The credit adds to

the after-tax cash flow and is therefore divided by (1 − α). Overall, the LCOE in the presence of

production tax credits can be expressed as LCOE = we + fe + ∆ · ce − ptc.

On the revenue side, we need to account for the fact that the capacity factor, CF (t) and

the attainable revenue at time t, ps(t) vary in real time. Accordingly, we denote by ε(t) the

multiplicative deviation of CF (t) from its average value CF and by µ(t) the multiplicative deviation
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of ps(t) from the average selling price, ps:

ε(t) =
CF (t)

CF
and µ(t) =

ps(t)

ps
. (15)

By definition:

1

m

m∫
0

ε(t)dt =
1

m

m∫
0

µ(t)dt = 1. (16)

In the terminology of Reichelstein and Sahoo (2015), the co-variation coefficient captures the vari-

ation between output and price:

Γs =
1

m

m∫
0

ε(t) · µ(t)dt. (17)

Clearly, the co-variation coefficient is non-negative and zero only if the renewable energy source

generates electricity exclusively at times when prices are zero. For a dispatchable energy source,

i.e. when CF (t) ≡ CF , Γs = 1. Similarly, Γs = 1 if ps(t) ≡ ps. As one would expect, the profit

margin of the renewable energy source improves when more power is generated during times of

peak power prices as reflected in an increase in the co-variation coefficient.

The stand-alone NPV of an intermittent power generation system is then given by:

NPV (ke) = (1− α) · L · (Γs · ps − LCOE) · CF · ke. (18)

We refer to Γs ·ps−LCOE as the (pre-tax) profit margin per kWh for the renewable energy source.

If this margin is positive, intermittent power generation is said to be cost competitive on its own.

Consistent with Reichelstein and Sahoo (2015), equation (18) shows that a renewable electricity

generation system is cost competitive (yields a positive NPV) in an environment with time varying

prices if the average sales price adjusted by the co-variation coefficient exceeds the levelized cost of

electricity.

For the hydrogen subsystem, our definition of the conversion value of hydrogen, CVh, already

incorporates the variable operating costs of converting electricity and water into hydrogen. For

investment purposes, the additional relevant cost then is the Levelized Fixed Cost of Hydrogen

(LFCH). On a life-cycle basis, it captures the capacity and fixed operating costs per kWh required

to absorb electricity at the PtG plant (Farhat and Reichelstein, 2016). With subscript h for
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hydrogen, we proceed analogously to the levelized cost of electricity to define the LFCH as:

LFCH = fh + ∆ · ch, (19)

where:10

ch =
SPh
L

, fh =

T∑
i=1

Fhi · γi

L
. (20)

To express the NPV of a power-to-gas facility, we introduce the average conversion premium:

pb+ − pb ≡ 1

m

m∫
0

[pb+(t)− pb(t)]dt.

The NPV of a stand-alone PtG facility can then be stated as:

NPV (kh) = (1− α) · L · (pb+ − pb − LFCH) · kh, (21)

with pb+ − pb − LFCH representing the unit profit margin of PtG. PtG will be referred to as cost

competitive (profitable) if this profit margin is positive.

Similar to the covariance between output and selling price for renewable electricity, we need

to capture the co-variation between hydrogen output and the price premium, p+(t) − ps(t) of a

vertically integrated energy system. Let µ+(t) denote the multiplicative deviation factor of the

price premium of the integrated energy system from the average premium of an integrated energy

system, p+ − ps at time t:

µ+(t) =
p+(t)− ps(t)
p+ − ps

. (22)

As before, the multiplicative deviation factor reflects a normalization so that 1
m

m∫
0

µ+(t) = 1. Finally,

we introduce z(ke, kh) as:

z(ke, kh) ≡ 1

m

m∫
0

z(t|ke, kh) · µ+(t)dt. (23)

10This entails the implicit assumption that the PtG facility can be maintained when it is idle and hence the capacity
factor equals one.
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Proposition 1. The NPV of the vertically integrated energy system of size (ke, kh) is:

NPV (ke, kh) = (1− α) · L · [(Γs · ps − LCOE) · CF · ke

+ (pb+ − pb − LFCH) · kh

+ (p+ − ps) · z(ke, kh)].

(24)

The first two terms of the NPV expression in (24) reflect the value created by the two stand-

alone systems. The third term captures the time-averaged synergistic gains. These gains are a

function of both the average price premium ( p+− ps) and the effective (time-averaged) conversion

capacity (z(ke, kh) which, in turn, is determined by the relative size of the two subsystems.

An immediate consequence of Proposition 1 is that if both stand-alone systems are profitable

on their own, a vertically integrated energy system will generate synergies unless p+ = ps. On

the other hand, if either one or both of the stand-alone systems exhibit a negative NPV, then the

“synergistic” third term in (24) would have to compensate for the losses associated with the stand-

alone system. Formally, a vertically integrated energy system is said to have synergistic investment

value if for some combination (ke, kh):

NPV (ke, kh) > max{NPV (ke, 0), 0}+ max{NPV (0, kh), 0}. (25)

Clearly, if the inequality in (25) is met for some (ke, kh), then our model does not have explicit

constraints that put an upper bound on the attainable net present value because the function

NPV (ke, kh) is homogeneous of degree 1, that is, NPV (θ · ke, θ · kh) = θ · NPV (ke, kh) for any

θ > 0.

3 Synergistic Investment Value

The vertically integrated system may exhibit synergistic investment value in each of the four possible

scenarios that arise depending on whether the two stand-alone systems are cost competitive on

their own or not. If indeed both subsystems are profitable on their own, one would expect a

synergistic investment value that results from being able to by-pass the electricity market and

thereby avoiding the mark-up between selling and buying prices for electricity. For completeness,

we state the following formal result.
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Corollary to Proposition 1. If both stand-alone energy systems are cost competitive on their

own, the vertically integrated energy system has synergistic investment value if and only if for some

t ∈ [0, 8760]:

min{pb(t), CVh} > ps(t). (26)

Clearly, the inequality in (26) can only hold during time intervals that correspond to Phases 2 and

3 in Figure 2. By Proposition 1, a synergistic investment value hinges entirely on p+ − ps > 0.

This inequality will hold unless for all t: min{pb(t), CVh} ≤ ps(t).11 We note that in a hypothetical

stationary environment, where prices and output generation are time-invariant, there will always

be a synergistic investment value if both stand-alone systems are profitable on their own, provided

CVh > pb > ps.

We next turn to the two mixed cases in terms of cost competitiveness of the two stand alone

systems. Similar to the co-variation factor Γs, we denote by Γ+ the co-variation coefficient between

the renewable power capacity factors and the real-time price premia associated with power-to-gas

conversion:

Γ+ =
1

m

m∫
0

ε(t) · µ+(t)dt. (27)

Proposition 2.

i) Suppose renewable power is cost competitive (Γs · ps − LCOE > 0), while stand-alone PtG

is not (pb+ − pb − LFCH < 0). The vertically integrated energy system then has synergistic

investment value if and only if:

p+ − ps > LFCH − (pb+ − pb). (28)

ii) Suppose stand-alone PtG is cost competitive, but renewable power generation is not. The

vertically integrated energy system then has synergistic investment value if and only if:

Γ+ · (p+ − ps) > LCOE − Γs · ps. (29)

Condition (28) in Proposition 2 states that the average price premium associated with PtG conver-

sion must exceed the negative profit margin associated with the PtG system. The average revenue

and life cycle cost associated with power generation are irrelevant since that activity will be under-

taken regardless of the vertical integration decision. If the inequality in (28) were to hold barely,

11Our argument here assumes implicitly that the functions pb(·) and ps(·) are continuous functions.
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the optimal PtG capacity would be small relative to the size of the renewable power source. To see

this, suppose the capacity of the renewable power source is normalized to ke = 1. Differentiating

the expression for NPV (1, kh) in kh, we note that this partial derivative is zero at the unique point

k∗h(ke = 1) given as the solution to the equation:

∂

∂kh
z(1, k∗h(1)) · (p+ − ps) = LFCH − (pb+ − pb), (30)

where
∂

∂kh
z(1, kh) =

1

m

∫
{t|kh≤CF (t)}

µ+(t)dt. (31)

Clearly, ∂
∂kh

z(1, kh) is decreasing in kh with lim
kh→0

∂
∂kh

z(1, kh) = 1, thus identifying the inequality in

(28) as necessary and sufficient for an integrated system to have synergistic investment value.

An analogous argument verifies the necessity and sufficiency of the inequality in (29) for the

presence of a synergistic investment value if the PtG facility is profitable on its own, but renewable

electricity generation is not. Holding the size of the electrolyzer fixed at kh = 1, we obtain the

corresponding optimal size of k∗e(1) as the unique solution to the equation:

∂

∂ke
z(k∗e(1), 1) · (p+ − ps) = (LCOE − Γs · ps) · CF, (32)

where
∂

∂ke
z(ke, 1) =

1

m

∫
{t|CF (t)·ke<1}

µ+(t) · CF (t)dt. (33)

The uniqueness of k∗e(1) follows from the fact that ∂
∂ke

z(ke, 1) is decreasing in ke such that

lim
ke→0

∂
∂ke

z(ke, 1) = CF · Γ+ and lim
ke→∞

∂
∂ke

z(ke, 1) = 0.

Overall, the NPV (·, ·) function is concave in (ke, kh).12 If (28) holds, NPV (ke, ·) is a single-

peaked function of kh, while if (29) holds, NPV (·, kh) is a single-peaked function of ke. Furthermore,

the fact that NPV (ke, kh) is homogeneous of degree 1 implies that, conditional on (28) being

satisfied, the conditional maximizer k∗h(·) will be a linear function of ke. Figure 3 illustrates this

relationship.

In a hypothetical stationary environment where power prices and power generation are time-

invariant, we find if there is synergistic investment value in either one of the two scenarios identified

in Proposition 2, the optimally sized vertically integrated system will be such that all renewable

12To see this, we note that the concavity of the function NPV (·, ·) in (24) hinges on z(ke, kh) being concave in
(ke, kh). For any given t, the concavity argument for min{CF (t) · ke, kh} · µ+(t) follows directly from min{A,B}
being jointly concave in (A,B).
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Figure 3: Linearity of the optimal PtG capacity size

power is consumed internally. For scenario i) in Proposition 2, (28) simplifies to CVh−ps > LFCH,

provided hydrogen conversion is valuable in the first place, that is, CVh > pb > ps. It will then

be optimal to size the PtG facility such that k∗h(ke) = CF · ke and all renewable energy will be

consumed internally. For scenario ii) in Proposition 2, (28) simplifies to max{pb, CVh} > LCOE.

It would then be optimal to size the renewable energy source such that CF · k∗e(kh) = kh and all

renewable energy will again be consumed internally.

If neither stand-alone subsystem is cost competitive on its own, an investor might still be willing

to acquire a combination of the two subsystems provided the synergistic investment value more

than compensates for the losses associated with the two stand-alone systems. Figure 4 illustrates

this possibility. Without loss of generality, we again anchor the size of the two subsystems, such

that ke = 1 and kh is chosen optimally at k∗h(ke = 1) to maximize:

(p+ − ps) · z(1, kh) + (pb+ − pb − LFCH) · kh.

As argued in connection with Proposition 2, k∗h(1) > 0 if and only if p+−ps > LFCH− (pb+−pb).

Proposition 3. If neither PtG nor intermittent renewable power is cost competitive on its own,

a necessary and sufficient condition for a vertically integrated energy system to have synergistic

investment value is that:

(p+ − ps) · z(1, k∗h(1)) + (pb+ − pb − LFCH) · k∗h(1) + (Γs · ps − LCOE) · CF > 0. (34)
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Figure 4: Synergistic investment value for no cost competitive stand-alone energy system.

While the necessary and sufficient condition for synergies identified in (34) is stated in terms of

the endogenously optimized value k∗h, we obtain the following weaker necessary condition in terms

of the average price premia, the levelized fixed cost of hydrogen and the unit profit margin of the

renewable energy source.

Corollary to Proposition 3. Suppose neither PtG nor intermittent renewable power is cost

competitive on its own. The inequality:

p+ − ps + pb+ − pb − LFCH + (Γs · ps − LCOE) · CF > 0. (35)

then provides a necessary condition for the vertically integrated energy system to have synergistic

investment value.

The preceding claim is a direct consequence of Proposition 3 because, by construction, both k∗h

and z(1, k∗h(1)) are less than one. Finally, the inequality in (35) simplifies to CVh > LFCH+LCOE

for a stationary environment with constant prices and output. Thus the synergistic investment value

of the vertically integrated system hinges entirely on its levelized cost and the conversion value of

hydrogen. The corresponding optimal size for PtG is such that kh = CF · ke, so that hydrogen is

produced only from internally generated renewable electricity.
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4 Application: Wind Energy and Power-to-Gas

4.1 Stand-alone Wind Energy

We now apply the preceding model framework to vertically integrated energy systems that combine

wind power with PtG. Our numerical analysis focuses on Germany and Texas, two jurisdictions

that have deployed considerable amounts of wind power in recent years. Wind energy naturally

complements PtG as wind power tends to reach peak production levels at night when demand from

the grid and electricity prices are relatively low (Reichelstein and Sahoo, 2015; Wozabal et al.,

2016). We base our calculations on data inputs from journal articles, industry data, publicly

available reports and interviews with industry sources (see the Appendix for a comprehensive list).

Wind energy is eligible for a federal Production Tax Credit (PTC) in the United States. This

subsidy is a fixed amount per kWh of electricity (U.S. Department of Energy, 2016). As shown in

Section 2, the PTC can be levelized and then effectively subtracted from the LCOE. Beginning in

2017, Germany replaced its traditional fixed feed-in premium for wind energy with a competitive

auction system in which successful bidders are guaranteed a minimum price per kWh, with the

government paying the difference between the successful bid and the actual revenue obtained from

wind energy in the market place (EEG, 2017). We refer to this difference as the Production

Premium (PP).13

Table 1 summarizes the calculation of the unit profit margin for wind energy in both jurisdic-

tions.14 The LCOE of wind energy amounts to 4.83 e¢/kWh in Germany. The substantially lower

LCOE 2.41 $¢/kWh in Texas reflects the impact of the PTC and, to a smaller extent, a higher

capacity factor. The average selling prices of electricity amount to 3.46 e¢/kWh and 2.44 $¢/kWh,

respectively, with corresponding co-variation coefficients are 0.87 and 0.93, indicating that prices

tend to be below their average values during periods of above average wind output. We interpret

the procurement auctions in Germany as competitive and therefore the profit margins are zero

by construction. That means, we infer the production premium (PP) as the difference between

the winning bids and the observed selling prices adjusted with the co-variation coefficients. The

estimates we obtain are corroborated by the observation that the range of observed winning bids

(guaranteed selling prices) in 2017 was between 3.82 and 5.71 e¢/kWh and our independent LCOE

estimate is just about in the middle of that range. Relating these observations back to our model

13In its current form, this premium is only granted for wind energy fed into the grid. Our subsequent calculations
assume that this premium could also be granted for renewable electricity that is converted to hydrogen, i.e., the
renewable energy is effectively stored.

14The profit margin in Germany is given by Γs · ps + PP −LCOE and in Texas by Γs · ps −LCOE. Recall that the
LCOE in Texas includes the PTC reduction.
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framework, the question of synergistic investment value for a vertically integrated system will fall

into the domain of either Proposition 1 or 2 in Germany, and either Proposition 3 or 4 in Texas,

depending on the profitability of stand-alone hydrogen production.

Table 1: Profit margins for wind energy.

Germany Texas

Input variables
System price, SPe 1,180 e/kW 1,566 $/kW
Capacity factor, CF 30.33 % 44.39 %
Levelized PP or PTC 1.81 e¢/kWh 1.31 $¢/kWh
Cost of capital (WACC), r 4.00 % 6.00 %

Profit margins
Levelized cost of electricity, LCOE 4.83 e¢/kWh 2.42 $¢/kWh
Selling price of electricity, ps 3.46 e¢/kWh 2.44 $¢/kWh
Co-variation coefficient, Γs 0.87 0.93
Profit margin 0.00 e¢/kWh -0.15 $¢/kWh

4.2 Stand-alone Power-to-Gas

As a producer of industry gases, a PtG facility in Germany is eligible to purchase electricity at the

wholesale market price plus a relatively small markup for taxes, fees and levies. For Texas, we use

the industrial rate offered by Austin Energy. Because of its grid connection, the PtG facility can

also provide frequency control to the grid by rapidly absorbing excess electricity to balance supply

and demand. Integrating these revenues from frequency control with the price at which the facility

can purchase electricity, the buying price of electricity averages to 3.93 e¢/kWh in Germany and

5.39 $¢/kWh in Texas (see the Appendix for details).

A PtG facility could be installed onsite or adjacent to a hydrogen customer.15 The observed

market prices for hydrogen are clustered in three segments that vary primarily with scale (volume)

and purity. In Germany, prices for large-scale supply amount on average to 2.0 e/kg, for medium-

scale to about 3.5 e/kg, and for small-scale to at least 4.0 e/kg. In Texas, large-scale hydrogen

supply is priced at about 2.5 $/kg, while medium- and small-scale are priced at about 4.0 $/kg or

above 4.5 $/kg, respectively (Glenk and Reichelstein, 2019).

Table 2 summarizes the calculation of the unit profit margin for PtG in both jurisdictions. The

LFCH of PtG amounts to 2.36 e¢/kWh in Germany and 2.22 $¢/kWh in Texas. For medium-

scale supply, the conversion premium of hydrogen amounts to 2.93 e¢/kWh in Germany and

15Our calculations are based on a Polymer Electrolyte Membrane (PEM) electrolyzer, which is the most flexible
electrolyzer technology in terms of ramping delays (Buttler and Spliethoff, 2018).
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2.67 $¢/kWh in Texas, with corresponding profit margins of 0.57 e¢/kWh and 0.44 $¢/kWh,

respectively. For large-scale hydrogen supply, the conversion premium equals 1.12 e¢/kWh in

Germany and 0.54 $¢/kWh in Texas and the corresponding profit margins are -1.24 e¢/kWh and

-1.69 $¢/kWh respectively. In terms of our model, we thus have the scenarios of Proposition 1 or

3 in Germany depending on the scale of hydrogen supply, while the setting in Texas corresponds

to either Proposition 2 or 4.

Table 2: Profit margins for Power-to-Gas.

Germany Texas

Input variables
System price, SPh 2,074 e/kW 1,822 $/kW
Conversion rate, η 0.019 kg/kWh 0.019 kg/kWh
Buying price of electricity, pb 3.93 e¢/kWh 5.39 $¢/kWh
Medium-scale hydrogen price, ph 3.50 e/kg 4.00 $/kg
Large-scale hydrogen price, ph 2.00 e/kg 2.50 $/kg

Profit margins
Levelized fixed cost of hydrogen, LFCH 2.36 e¢/kWh 2.22 $¢/kWh
Medium-scale conversion premium, pb+ − pb 2.93 e¢/kWh 2.67 $¢/kWh
Medium-scale profit margin 0.57 e¢/kWh 0.44 $¢/kWh
Large-scale conversion premium, pb+ − pb 1.12 e¢/kWh 0.54 $¢/kWh
Large-scale profit margin -1.24 e¢/kWh -1.69 $¢/kWh

4.3 Vertical Integration of Wind Energy and Power-to-Gas

Given the hydrogen market prices for medium- and large-scale supply shown in Table 2 in Texas and

Germany, our analysis covers the four possible scenarios that can arise in terms of the stand-alone

profitability of the two subsystems. Figure 5 indicates the presence of a synergistic investment value

for the vertically integrated PtG system. As one might expect, there is a synergistic investment

value in Germany relative to the scenario of high hydrogen prices in the medium-scale supply

segment. Since both subsystems are profitable on their own in that scenario, the low threshold for

the presence of a synergistic investment value, that is, a conversion premium that is positive rather

than zero (Corollary to Proposition 1), is indeed met.

In the setting of low hydrogen prices (large-scale supply) in Germany, PtG exhibits a highly

negative profit margin of -1.24 e¢/kWh on its own. The synergistic price premium, p+ − ps, at

0.42 e¢/kWh is insufficient to compensate for the PtG losses, and thus there is no synergistic

investment value. Arguably, the most surprising finding occurs for the scenario of low hydrogen

prices in Texas. Despite the negative profit margins of the two stand-alone subsystems, we find that

for a wind power capacity normalized to 1 kW the corresponding optimal size of the PtG facility
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is k∗h = 0.27 kW and z(1, k∗h) = 0.24. The profit margin of PtG multiplied with k∗h then amounts

to -0.46 $¢/kWh and the profit margin of wind energy multiplied with the average capacity factor

to -0.07 $¢/kWh. Yet, the price premium, p+ − ps, at 2.24 $¢/kWh delivers a sufficiently strong

synergistic effect which more than compensates for the two stand-alone losses (Proposition 3).

Power-to-Gas
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Figure 5: Synergistic investment value of vertically integrated wind energy and PtG system.

An instructive approach for quantifying the synergistic investment value of an integrated wind

energy and PtG system is obtained by calculating the break-even price of hydrogen. In stand-alone

production mode, this is the lowest price at which the PtG system breaks even, i.e., the price ph

for which pb+ − pb − LFCH = 0. In contrast, for a vertically integrated system the break-even

price of hydrogen is the lowest value of ph such that the inequality in (25) holds as an equality.

Figure 6 shows by how much the break-even price falls as a consequence of integrating the two

energy systems.16 This drop is particularly pronounced in Texas where the difference between

the two break-even prices is $1.33 per kg, reflecting the significant price premium in Texas that

yields a synergistic investment value even if both subsystems are unprofitable on their own. More

broadly, the break-even values reported in Figure 6 are consistent with current market activity for

early deployments of large-scale PtG facilities in connection with refineries and steel plants; see,

for instance, Bloomberg (2017); ITM Power (2018); Voestalpine (2018); GTM (2018).

Break-even analysis can also quantify the value of giving the vertically integrated energy system

access to buying electricity from the open market. Cutting off that supply branch would effectively

yield a measure for the cost of renewable hydrogen, i.e., hydrogen produced exclusively from wind

16We note in passing that the numbers reported in Figure 6 are consistent with our claims above where the medium-
scale supply price of hydrogen in Texas was benchmarked at 4.00 $/kg (3.50 e/kg in Germany), while the large-scale
supply prices were set at 2.50 $/kg in Texas and 2.00 e/kg in Germany.
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energy.17 Figure 6 reports the break-even prices for renewable hydrogen as “renewable” prices. By

construction, these prices must be higher than those of the vertically integrated system. The price

difference is relatively large for Germany, indicating that access to the open electricity market is

particularly important there for the economics of hydrogen production.

Texas ($/kg)

3.77 stand-alone2.44 integrated

2.75 renewable

Germany (€/kg)

3.17 stand-alone

3.18 renewable

2.59 integrated

Figure 6: Break-even prices for hydrogen production.

To conclude this section, we solve for the optimal (relative) size of the PtG capacity for a given

wind power facility the size of which has been normalized to 1 kW. The blue lines in Figure 7

display the NPV of the vertically integrated system as a function of the size of the PtG facility for

alternative hydrogen prices ranging from 1.0 to 4.0 e or $ per kg. Red circles mark the optimal

PtG capacity size for a particular hydrogen price. Circles at 0.0 kW indicate that no PtG capacity

should be installed, while a red circle at 1.0 kW indicates that PtG is cost competitive on its own.

As shown in Section 3, the NPV is a single-peaked function of kh for any hydrogen price.

In comparison to other recent studies on the economics of hydrogen, our results point to generally

lower hydrogen prices (Ainscough et al., 2014; Bertuccioli et al., 2014; Felgenhauer and Hamacher,

2015). We attribute this discrepancy to several factors. Most importantly, our calculations are

based on vertically integrated energy systems that are sized optimally for highly capital-intensive

capacity investments. In addition, our vertically integrated PtG facility is assumed to be connected

to the grid and therefore obtains higher capacity utilization by converting renewable and grid

electricity than it could achieve if it was to convert only renewable energy (Glenk and Reichelstein,

2019). Finally, our calculations are based on most recent data reflecting the rapidly falling cost of

producing wind energy as well as recent changes in the acquisition cost of electrolyzers.

17This is the perspective taken in Glenk and Reichelstein (2019). We note that the question of a synergistic investment
value cannot be posed in such a context since, by construction, hydrogen can only be produced at an integrated
facility.

23



0.0 0.2 0.4 0.6 0.8 1.0
Power-to-Gas capacity [kW]

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0
Germany

NPV of any PtG capacity
NPV of optimal PtG capacity

0.0 0.2 0.4 0.6 0.8 1.0
Power-to-Gas capacity [kW]

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

N
P

V
 o

f h
yd

ro
ge

n 
pr

od
uc

tio
n 

[$
ct

/k
W

h]

Texas

NPV of any PtG capacity
NPV of optimal PtG capacity

Figure 7: Optimal Power-to-Gas capacity size.

4.4 Prospects for Synergistic Investment Value

The preceding numerical findings provide a snapshot of the economics of wind energy combined

with PtG based on recent data points. Going forward, multiple trends appear to be underway that

suggest further improvements in the economics of such vertically integrated energy systems. In this

subsection, we integrate these trends to identify a trajectory of break-even prices for hydrogen in

future years. The break-even hydrogen prices for a vertically integrated system reported in Figure 6

are the starting points of this trajectory.

Regarding the cost structure of wind energy, we follow Wiser et al. (2016) who project that the

system prices for wind turbines will decline at a rate of 4.0% per year. At the same time, these

authors project an increase in the average capacity factor at an annual rate of 0.7% per year. For

the acquisition cost of electrolyzers, we rely on the regression results of Glenk and Reichelstein

(2019), yielding an annual 4.77% decrease in the system price of PEM electrolyzers.

Our projections also assume that wind power in Germany and Texas will have a “driving role” in

future changes of the selling prices of electricity in the wholesale market (Ketterer, 2014; Paraschiv

et al., 2014; Woo et al., 2011). Specifically, the difference between the LCOE in year i, LCOE(i),

and the adjusted average selling price, Γ·ps(i), is assumed to decline to zero at a constant adjustment

rate such that:

LCOE(i)− Γ · ps(i) = D(0) · βi,

where β < 1 denotes the adjustment rate and D(0) ≡ max{LCOE(0) − Γ · ps(0), 0}. Since in
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Germany the production premium is determined through a competitive auction mechanism, we

expect the auction in year i to yield a premium of PP (i) = D(i). In Texas, our calculations

anticipate the scheduled phase-out of the PTC by 20.0% per year (U.S. Department of Energy,

2016) which will by itself raise the LCOE(i) for those years.

Figure 8 shows the trajectory of break-even prices for hydrogen from a vertically integrated

wind power and PtG system through 2030. Such hydrogen is projected to become widely cost

competitive with industrial-scale hydrogen supply, that is currently produced from fossil fuels, in

the coming decade. The values shown by the solid line in Figure 8 assume an adjustment rate of

β = 0.95. The “hump” in the findings for Texas reflects the scheduled phase-out of the production

tax credit. The values covered by the areas shaded in blue color illustrate the impact of slower and

faster adjustment rates ranging from 0.975 to 0.925.
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Figure 8: Trajectory of future hydrogen break-even prices.

Finally, we seek to capture the idea that further increases in renewable energy are likely to in-

crease the variance in daily and seasonal electricity prices. As noted in Section 2, higher operational

volatility will generally tend to accentuate the synergistic investment value of a vertically integrated

system. We incorporate the possibility of increased volatility in the selling price of electricity by

assuming that ps(t) increases by ξ% whenever ps(t) exceeds the average ps and to decrease ps(t) by

a corresponding percentage at all other times so that ps remains unchanged. The dotted red lines

represent the effect of ξ values set equal to 2.5, 5.0 and 7.5%, respectively.
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5 Conclusion

This paper has examined the synergistic investment value of vertically integrated production sys-

tems. Synergies arise because of market imperfections for an intermediate input (electricity in our

context) and because of operational volatility in the form of temporal fluctuations in output and

prices. While vertically integrated systems will generally experience some synergistic benefit, we

attribute a synergistic investment value only if a negative net present value for one or both of the

stand-alone systems is more than outweighed for by the synergistic effect. In the context of an

energy system that combines renewable energy with hydrogen production, we derive necessary and

sufficient conditions for the presence of the synergistic investment value. These conditions can be

stated in terms of life-cycle unit costs and average prices adjusted for covariance terms that capture

the extent to which price premia and output fluctuations are aligned across the hours of a typical

year.

We rely on recent production price and cost data to assess the magnitude of synergistic effects in

both Texas and Germany. Our empirical focus is on Power-to-Gas facilities that can draw electricity

either from the grid or internally from wind turbines. The policy support for renewable energy in

Germany ensures that wind power is cost competitive on its own. We find that the emergence of a

synergistic investment value in Germany hinges on the market price of hydrogen being above some

break-even value which is currently below the price paid for medium-scale transactions, but above

that obtained for transactions of industrial scale.

Owing to the low wholesale prices of electricity in Texas, we find that, on its own wind energy

is currently not cost competitive despite the production tax credit available to renewable energy

in the United States. Nevertheless we conclude that the synergies between the two subsystems are

sufficiently strong in Texas so that a vertically integrated energy system can create value, despite

the fact that Power-to-Gas facilities will also not be viable on their own.

While our numerical analysis is based on the most recent available data, several factors suggest

a trend towards more favorable economics for vertically integrated systems in the future. We

build our forecast based on the combination of projected reductions in system prices for both wind

turbines and electrolyzers as well as a general trend towards more volatility in electricity prices.

Our paper suggests several promising avenues for future research. With regard to the modeling

part, it would be instructive to add stochastic shocks to prices and output. Such shocks are likely

to increase the call option value of capacity investments, but it remains an open question whether

additional volatility in the form of random shocks will lead to synergistic investment values for a
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broader range of circumstances. We also note that our framework has viewed hydrogen as a final

product. An alternative and promising avenue is to view hydrogen also as a form of electricity

storage. Provided the electrolyzer can also run in the “reverse direction”, hydrogen production

coupled with reconversion to electricity may effectively compete with battery storage for electricity

supply systems characterized by intermittent generation patterns.

Appendix

Proof of Lemma 1

We show that the claim in the statement applies to the four phases identified in Figure 2 of the main text.

In Phase 1, both electricity prices exceed the contribution margin of hydrogen: pb(t) ≥ ps(t) ≥ CVh ≥ 0.

The operator will idle the PtG facility and only sell renewable energy. The optimized contribution margin

of the vertically integrated energy system will be equal to the contribution margin of the renewable energy

source. To see this, note that:

p+(t) = max{min{pb(t), CVh}, ps(t)} = max{CVh, ps(t)} = ps(t). (36)

Furthermore:

pb+(t) = max{pb(t), CVh} = pb(t). (37)

The optimized contribution margin of the vertically integrated energy system in equation (9) thus reduces

to:

CM(t|ke, kh) = ps(t) · CF (t) · ke. (38)

In Phase 2, the buying price exceeds the contribution margin of hydrogen, which, in turn exceeds the

selling price: pb(t) ≥ CVh > ps(t) ≥ 0. The facility will convert the generated renewable energy without

purchases of additional energy from the market. We find that:

p+(t) = max{min{pb(t), CVh}, ps(t)} = max{CVh, ps(t)} = CVh, (39)

and p+(t)− ps(t) = CVh − ps(t). Since pb(t) ≥ CVh, pb+(t)− pb(t) = 0. Consistent with (9), the optimized

contribution margin of the vertically integrated energy system reduces to the contribution margin of the

renewable energy source plus the conversion premium of renewable energy:

CM(t|ke, kh) = ps(t) · CF (t) · ke + [CVh − ps(t)] · z(t|ke, kh). (40)

In Phase 3, both electricity prices are less than the contribution margin of hydrogen and non-negative:

CVh > pb(t) ≥ ps(t) ≥ 0. The plant will convert the generated renewable energy and buy energy from the

market to produce as much hydrogen as possible. Thus:

CM(t|ke, kh) = ps(t) · CF (t) · ke
+ [CVh − ps(t)] · z(t|ke, kh)

+ [CVh(t)− pb(t)] · [kh − z(t|ke, kh)].

(41)

27



Equivalently:

CM(t|ke, kh) = ps(t) · CF (t) · ke
+ [pb(t)− ps(t)] · z(t|ke, kh)

+ [CVh(t)− pb(t)] · kh.

(42)

In this scenario:

p+(t) = max{min{pb(t), CVh}, ps(t)} = max{pb(t), ps(t)} = pb(t), (43)

and therefore p+(t)− ps(t) = pb(t)− ps(t). Furthermore:

pb+(t) = max{pb(t), CVh} = CVh, (44)

so that pb+(t)− pb(t) = CVh − pb(t) and (42) coincides with (9).

Finally, the buying price is negative in Phase 4. By assumption, pb(t) ≤ 0 = ps(t). The plant operator

will only buy energy from the market to convert it to hydrogen and refrain from selling renewable energy.

We find that:

p+(t) = max{min{pb(t), CVh}, ps(t)} = max{pb(t), ps(t)} = ps(t), (45)

and p+(t)− ps(t) = 0. Furthermore:

pb+(t) = max{pb(t), CVh} = CVh, (46)

and pb+(t) − pb(t) = CVh − pb(t). The expression in (9) therefore reduces to the contribution margin of a

stand-alone PtG plant running on grid electricity only:

CM(t|ke, kh) = [CVh(t)− pb(t)] · kh. (47)

Proof of Proposition 1

The NPV of a vertically integrated energy system is given by the present value of future operating cash flows

less the initial capacity investment:

NPV (ke, kh) =

T∑
i=1

CFLi(ke, kh) · γi − (ke · SPe + kh · SPh), (48)

with CFLi(ke, kh) as the after-tax operating cash flow in year i. It is given by the difference between the

pre-tax cash flow in year i, CFLo
i (ke, kh), and current corporate income taxes, given by the tax rate, α,

applied to the taxable income, Ii(ke, kh):

CFLi(ke, kh) = CFLo
i (ke, kh)− α · Ii(ke, kh). (49)

The pre-tax operating cash flow in year i comprises the optimized contribution margin of a vertically inte-
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grated energy system less the fixed operating costs:

CFLo
i (ke, kh) = xi−1

m∫
0

CM(t|ke, kh)dt− (ke · Fei + kh · Fhi), (50)

with x < 1 denoting the degradation factor, that is, the percentage by which capacity declines in each

subsequent year. The firm’s taxable income in year i is then given by the pre-tax cash flow less depreciation,

with di denoting the allowable depreciation percentage in year i. For simplicity, we assume that the same

depreciation schedule applies to all components of the vertically integrated energy system:

Ii(ke, kh) = CFLo
i (ke, kh)− (ke · SPe + kh · SPh) · di. (51)

Combining the expressions in (49), (50), and (51), the net present value becomes:

NPV (ke, kh) =(1− α) ·
[ T∑
i=1

γi ·
(
xi−1

m∫
0

CM(t|ke, kh)dt− (ke · Fei + kh · Fhi)

)]

− (1− α
T∑

i=1

di · γi) · (ke · SPe + kh · SPh).

(52)

Since the tax factor was defined as:

∆ =

1− α ·
T∑

i=1

di · γi

1− α
, (53)

the expression for the NPV reduces to:

NPV (ke, kh) =(1− α) ·
[ T∑
i=1

γi ·
(
xi−1

m∫
0

CM(t|ke, kh)dt− (ke · Fei + kh · Fhi)

)

−∆ · (ke · SPe + kh · SPh)

]
.

(54)

It will be convenient to pull out the “levelization” factor L ≡ m ·
T∑

i=1

xi−1 · γi:

NPV (ke, kh) =(1− α) · L ·
[

1

m

m∫
0

CM(t|ke, kh)dt

−

T∑
i=1

γi · (ke · Fei + kh · Fhi)

m ·
T∑

i=1

xi−1 · γi
−∆ · ke · SPe + kh · SPh

m ·
T∑

i=1

xi−1 · γi

]
.

(55)

The paper introduced the levelized cost of electricity of the renewable energy source as LCOE = fe + ∆ · ce
(assuming a zero variable cost for generating renewable electricity), and LFCH = fh + ∆ · ch. Here, fe and

fh refer to the time-averaged operating fixed costs and ce and ch to the unit costs of capacity of the two
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subsystems. We thus obtain:

NPV (ke, kh) = (1− α) · L ·
[

1

m

m∫
0

CM(t|ke, kh)dt− CF · ke · LCOE − kh · LFCH
]
. (56)

Lemma 1 allows us to substitute the following expression for the optimized contribution margin:

NPV (ke, kh) =(1− α) · L ·
[

1

m

(
ke

m∫
0

ps(t) · CF (t)dt

+

m∫
0

[p+(t)− ps(t)] · z(t|ke, kh)dt+ kh

m∫
0

(pb+(t)− pb(t)) dt
)

− CF · ke · LCOE − kh · LFCH
]
.

(57)

The final step accounts for the temporal co-variations in prices and capacity factors. We recall from the

main text that ε(t) denotes the multiplicative deviation factor of CF (t) from the yearly average CF and

µ(t) as the multiplicative deviation factor of ps(t) from the yearly average ps so that:

ε(t) =
CF (t)

CF
and µ(t) =

ps(t)

ps
. (58)

The average capacity factor is given by CF = 1
m

m∫
0

CF (t)dt and the average selling price is given by

ps = 1
m

m∫
0

ps(t)dt. The covariation between output and the price can then be captured by the Co-Variation

coefficient:

Γs =
1

m

m∫
0

ε(t) · µ(t) dt. (59)

We further recall that, by definition, µ+(t) · (p+ − ps) = p+(t)− ps(t) and

z(ke, kh) ≡ 1

m

m∫
0

z(t|ke, kh) · µ+(t) dt. (60)

Taken together, the expression for the NPV simplifies to:

NPV (ke, kh) =(1− α) · L · [(Γs · ps − LCOE) · CF · ke
+ (pb+ − pb − LFCH) · kh
+ (p+ − ps) · z(ke, kh)].

(61)
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Proof of Corollary to Proposition 1

If both stand-alone systems are cost competitive, the vertically integrated energy system has synergistic

investment value whenever:

p+ − ps > 0. (62)

It follows directly from the definition of p+(t) that:

p+(t) = max{min{CVh, pb(t)}, ps(t)} ≥ ps(t), (63)

and that (62) is fulfilled if and only if it holds that:

min{CVh, pb(t)} > ps(t) for some t. (64)

Proof of Proposition 2

(i) For sufficiency, we show that given ke = 1 the partial derivative:

∂

∂kh
NPV (ke = 1, kh)

∣∣∣∣
kh=0

> 0, (65)

if the inequality in equation (28) holds.

∂

∂kh
NPV (1, kh)

∣∣∣∣
kh=0

= (p+ − ps) · ∂

∂kh
z(1, 0) + (pb+ − pb)− LFCH (66)

= (p+ − ps) + (pb+ − pb)− LFCH > 0. (67)

For necessity, suppose the condition in (28) is not met, yet the vertically integrated energy system exhibits

synergistic investment value and thus NPV (1, kh) ≥ NPV (1, 0) for some kh. We obtain:

NPV (1, kh)−NPV (1, 0) =

kh∫
0

∂

∂kh
NPV (1, u)du (68)

=

kh∫
0

[(p+ − ps) · ∂

∂kh
z(1, u) + (pb+ − pb)− LFCH] du (69)

≤
kh∫
0

[(p+ − ps) + (pb+ − pb)− LFCH] du (70)

= kh · [(p+ − ps) + (pb+ − pb)− LFCH] (71)

< 0, (72)

a contradiction.

If there is synergistic investment value, the first-order condition for the optimal k∗h(1) is:

∂

∂kh
NPV (1, k∗h(1)) =

∂

∂kh
z(1, k∗h(1)) · (p+ − ps) + (pb+ − pb)− LFCH = 0. (73)
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The value of k∗h(1) is unique because ∂
∂kh

z(1, ·) is monotone decreasing in kh. Furthermore, NPV (1, ·) is

increasing in kh up to k∗h(1) and decreasing thereafter.

The proof of part (ii) is entirely symmetric.

Proof of Proposition 3

If neither stand-alone system is cost competitive, the vertically integrated energy system has synergistic

investment value whenever:

NPV (1, k∗h(1)) ≥ 0. (74)

It follows directly from the characterization of the NPV (ke, kh) in Proposition 2 that

NPV (1, k∗h(1)) is proportional to:

(p+ − ps) · z(1, k∗h(1)) + (pb+ − pb − LFCH) · k∗h(1) + (Γs · ps − LCOE) · CF, (75)

thus establishing the claim.

Proof of Corollary to Proposition 3

Suppose the vertically integrated system has synergistic investment value, that is, NPV (1, k∗h(1)) > 0.

Proposition 2 established that k∗h(1) > 0 if only if p+ − ps + pb+ − pb − LFCH > 0. Now suppose that,

contrary to the claim, p+ − ps + pb+ − pb −LFCH + (Γs · ps −LCOE) ·CF < 0. It would then follow that:

NPV (1, k∗h(1)) = (1− α) · L
[
(p+ − ps) · z(1, k∗h(1)) + (pb+ − pb − LFCH) · k∗h(1) (76)

+ (Γs · ps − LCOE) · CF
]

≤ (1− α) · L
[
(p+ − ps) · k∗h(1) + (pb+ − pb − LFCH) · k∗h(1) (77)

+ (Γs · ps − LCOE) · CF
]

≤ (1− α) · L
[
(p+ − ps) + pb+ − pb − LFCH (78)

+ (Γs · ps − LCOE) · CF
]

< 0. (79)

The first inequality follows from the observation that, by definition, z(1, k∗h(1)) ≤ k∗h(1), while the second

inequality relies on k∗h(1) ≤ 1 due to the fact that lim
kh→1

∂
∂kh

z(1, kh) = 0.
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List of Valuation Parameters

Germany Texas Source

General
Economic lifetime, T 30 years 30 years Michalski et al. (2017)
Corporate income tax rate, α 35.00 % 21.00 % German and U.S. Tax Code
Degradation rate, xi 0.80 % 0.80 % Deutsche WindGuard (2013);

Fraunhofer ISE (2013);
Depreciation rate, di 6.25 % (16y linear) 100 % Bonus Bundesfinanzhof (2011); U.S. Congress (2017)
Cost of capital (WACC), r 4.00 % 6.00 % Fraunhofer ISI (2016); Moné et al. (2015)
Subsidy lifetime 20 years 10 years EEG (2017); U.S. Department of Energy (2016)

Wind energy
Capacity factor, CF 30.33 % 44.39 % Own data; Wallasch et al. (2016); ABB (2017)
Variable operating cost, we 0.00 e/kWh 0.00 $/kWh Negligible cost, ABB (2017)
Fixed operating cost, Fe 38.00 e/kW 21.70 $/kW Wallasch et al. (2016); ABB (2017)
Acquisition cost, SPe 1,180 e/kW 1,566 $/kW Fraunhofer IWES (2017); ABB (2017)

Power-to-Gas
Conversion rate, η 0.019 kg/kWh 0.019 kg/kWh Bertuccioli et al. (2014)

Variable operating cost, wh 0.10 e/kg 0.08 $/kg Estimation of water cost.*

Fixed operating cost, Fh 45.00 e/kW 39.50 $/kW Glenk and Reichelstein (2019)
Acquisition cost, SPh 2,074 e/kW 1,822 $/kW Glenk and Reichelstein (2019)

Prices
Selling price of electricity, ps 3.42 e¢/kWh 2.45 $¢/kWh www.eex.com; www.ercot.com
Buying price of electricity, pb 3.93 e¢/kWh 5.39 $¢/kWh See below

*Conversion to $ with average exchange rate of 2015 (1.1104 $/e, see European Central Bank) and U.S. state
index (0.7910, Comello et al. (2018)).

Structures of Electricity Buying Prices

In Germany, the PtG facility can buy electricity from the wholesale market with a markup of several taxes,

fees and levies:

Price Unit Value Source

Trading cost e¢/kWh 1.0000 Industry experts
Transmission charge e¢/kWh 0.0000 EnWG (2005, §118 (6))
Concession charge e¢/kWh 0.1100 KAV (1992, §2 (3) 1.)
EEG-Levy e¢/kWh 0.1000 EEG (2014, §64 with A.4)
CHP markup e¢/kWh 0.0830 KWKG (2016, §9 (7))
§19 StromNEV levy e¢/kWh 0.0510 StromNEV (2016, §19 (2))
Offshore liability levy e¢/kWh 0.0270 EnWG (2005, §17f)
Levy for interruptible loads e¢/kWh 0.0000 AbLaV (2012, §18)
Electricity tax e¢/kWh 0.0000 StromStG (2016, §9a (1) 1.)

Total industry price markup e¢/kWh 1.3710
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In Texas, we use the industrial rate “Primary <3MW” by Austin Energy (2014) without time-of-use prices

since they have been suspended for new customers. Water electrolysis is exempted from state and local sales

tax (Texas Tax Code, 2016, §2.151.317 (a) (6)). Thus, the rate is:

Price Unit Summer Winter

Customer charge $/month 236.00 236.00
Electric delivery $/kW 2.36 2.36
Demand charge $/kW 9.44 8.44
Regulatory charge $/kW 6.75 6.75
Energy charge $¢/kWh 1.1920 0.7200
Power supply adjustment $¢/kWh 2.7200
CBC: Customer assistance Program $¢/kWh 0.0650
CBC: Energy efficiency services $¢/kWh 0.2520
Gross Receipt Tax % 1.997
State and local Tax % 0

A PtG facility offering frequency control can provide ”regulation down”, as it is called in Texas, and the

equivalent ”negative Sekundärregelleistung” in Germany (ERCOT, 2017; Regelleistung.net, 2017). In both

jurisdictions, frequency control is compensated with a capacity price per kW that the facility is in standby.

In Germany, the facility is also paid a price per kWh of energy absorption. Since both compensations reflect

negative buying prices, we assume the facility always offers regulation energy. The buying price for open

market energy can then be expressed as the weighted average of the energy price for frequency control and

the market price:

pb(t) = φ(t) · pc(t) + (1− φ(t)) · pm(t), (80)

where pc(t) denotes the price for calling energy per kWh, φ(t) the share of called capacity in hour t, and

pm(t) the price for market energy per kWh. The capacity price, on the other hand, adds to the conversion

premium of hydrogen. Since the price is paid per kW, we divide it by the hours of standby to receive a

price per kWh. With psb denoting the time-averaged standby capacity price, the NPV of stand-alone PtG

becomes:

NPV (kh) = (1− α) · L · (pb+ − pb − psb − LFCH) · kh. (81)

Offering frequency control requires the PtG facility to absorb electricity when called, which effectively reduces

the capacity to convert renewable energy. Thus, z(t|ke, kh) becomes:

z(t|ke, kh) ≡ min{CF (t) · ke, (1− φ(t)) · kh}. (82)
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