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Abstract

This paper examines the role of various socioeconomic factors in mediating the local and

cross-city transmissions of the novel coronavirus 2019 (COVID-19) in China. We implement

a machine learning approach to select instrumental variables that strongly predict virus trans-

mission among the rich exogenous weather characteristics. Our 2SLS estimates show that the

stringent quarantine, massive lockdown and other public health measures imposed in late Jan-

uary significantly reduced the transmission rate of COVID-19. By early February, the virus

spread had been contained. While many socioeconomic factors mediate the virus spread, a

robust government response since late January played a determinant role in the containment of

the virus. We also demonstrate that the actual population flow from the outbreak source poses

a higher risk to the destination than other factors such as geographic proximity and similarity in

economic conditions. The results have rich implications for ongoing global efforts in containment

of COVID-19.
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1 Introduction

Several clusters of patients with pneumonia of unknown cause were reported in late December 2019

in Wuhan, the capital city of Hubei Province, China. It was later identified to be caused by a new

coronavirus (severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2) (Zhu et al., 2020)

and the disease is named by the World Health Organization (WHO) as Coronavirus Disease 2019

(COVID-19)1. Since mid January 2020, it has rapidly spread throughout China and other countries.

The first confirmed case outside Wuhan in China was reported on January 19 (Shenzhen) (Li et al.,

2020). Similar to SARS-CoV and MERS-CoV, the COVID-19 can be transmitted from person to

person. As of January 30, a total of 9976 cases had been reported in at least 21 countries2. Early

detection of COVID-19 importation and prevention of onward transmission are crucial to all areas

at risk of importation from areas with active transmissions (Gilbert et al., 2020). To contain the

virus, Wuhan was placed under lockdown with residents not allowed to leave the city on January

23. On the same or the next day, most public transportation stopped in Wuhan and other cities in

Hubei province. In addition, most cities in Hubei province had adopted blockade measures for Class

A infectious diseases by January 283. Residents in those areas are highly encouraged to stay at

home and not to attend any gathering activity. Besides, at least 207 cities in China have adopted

similar though softer measures by February 12. People are frequently reminded by media and

community workers to maintain safe social distance. Furthermore, many cities require that recent

visitors to high COVID-19 risk areas quarantine themselves at home or in designated facilities for

14 days. Residents who have symptoms of fever or dry cough are required to report the situation to

community, and are quarantined and treated in special medical facilities. Governments also trace

and isolate contacts of those patients.

As multiple nations have implemented mandatary quarantine or even massive lockdown, such as

South Korea, Italy and China, and more countries are expected to join as the coronavirus outbreak

becomes a global pandemic, examining the influencing factors of the transmission of COVID-19 and

the effectiveness of the large-scale quarantine measures in China not only adds to our understanding

of the containment of COVID-19 but also provides insights into future prevention work against

similar infectious diseases. In this paper, we estimate how the number of confirmed COVID-19

cases in a city is influenced by the number of new COVID-19 cases in the same city, other cities,

and Wuhan in the preceding first and second weeks, respectively. China’s large scale quarantine

policy takes effect in late January. We also test whether this policy succeeds in delaying the spread

of COVID-19 using a 14-day rolling window analysis between January 19 and February 15.

For infectious diseases, the number of infected people usually increases first before reaching a

peak and then drops. This pattern implies that for a linear equation of new cases on the number

of cases in the past, the unobserved determinants of new infections are serially correlated. The

1COVID-19 is previously known as novel coronavirus pneumonia or 2019-nCoV acute respiratory disease.
2https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
3According to Law of the People’s Republic of China on Prevention and Treatment of Infectious Diseases, Class

A infectious diseases only include plague and cholera.
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unobserved determinants of new cases may be serially correlated, also because they measure per-

sistent factors, such as people’s habit and government policy. Serial correlations in errors give rise

to correlations between the lagged number of cases and the error term, and ordinary least square

(OLS) estimator may be biased. Combining insights in Adda (2016) and the existing knowledge

of the incubation period of COVID-19, we construct instrumental variables for the number of new

COVID-19 cases in the preceding two weeks. Weather characteristics in the previous third and

fourth weeks do not directly affect today’s number of new COVID-19 cases after controlling for the

number of new COVID-19 cases and weather conditions in the preceding first and second weeks.

Therefore, our estimated impacts have causal interpretations. We use the Lasso method to select

instrumental variables among eleven weather characteristics that have the highest predictive power

for the average number of new confirmed cases during each of the past two weeks. Furthermore, we

examine the moderator effects of socioeconomic factors on the transmission of COVID-19 in China,

which include population flow out of Wuhan, the distance between cities, GDP per capita, number

of doctors, and contemporaneous weather characteristics. We focus on the effect of population

flows from the origin of the COVID-19 outbreak, because data on real time travel between cities

have recently become available and we examine whether it can explain the disease spread, and that

Wuhan is a major city and a transportation hub with significant population movements.

We find that the stringent quarantine and public health measures imposed in late January

significantly decreased the transmission rate of COVID-19. By early February, the spread of the

virus had been contained in China. While many socioeconomic factors moderate the spread of the

virus, the actual population flow from the source poses a higher risk to the destination than other

factors such as geographic proximity and similarity in economic conditions.

Our analysis contributes to the existing literature in two aspects. First, our analysis is connected

to the economics and epidemiologic literature on the influencing factors of and ways of preventing

the spread of infectious diseases. Existing studies find that reductions in interpersonal contact

from holiday school closings (Adda, 2016), reactive school closure (Litvinova et al., 2019), public

transportation strikes (Godzinski and Suarez Castillo, 2019), strategic targeting of travelers from

high-incidence locations (Milusheva, 2017), and paid sick leave to keep contagious workers at home

(Barmby and Larguem, 2009, Pichler and Ziebarth, 2017) can reduce the prevalence of influenza.

Additionally, literature find that epidemics spread faster during economic booms (Adda, 2016),

increases in employment are associated with increased incidence of influenza (Markowitz et al.,

2010), and growth in trade can significantly increase the spread of influenza (Adda, 2016) and

HIV (Oster, 2012). Vaccination (Maurer, 2009, White, 2019) and sunlight exposure (Slusky and

Zeckhauser, 2018) are also found effective in reducing the spread of influenza. In the case of

COVID-19, the quarantine policy takes effect throughout China within few days in late January.

Thus, we directly compare the transmission effects in the pre and post February 1 subsamples

to examine its effectiveness in preventing the transmission of COVID-19. Interestingly, within

one week, population flow from Wuhan significantly increased the spread of virus in the early

subsample, but decreased its transmission rate in the later subsample, suggesting that people have

3



been taking more cautious measures from high COVID-19 risk areas. Besides, following the previous

literature on the moderator effect of economic development and environmental characteristics on

virus transmission, our analysis further reveal that COVID-19 transmission is positively moderated

by GDP per capita and negatively moderated by the number of doctors, while the effects of the

environmental factors and population density are mixed.

Second, our paper complements the epidemiologic studies on the basic reproduction number of

COVID-19. Using data on the first 425 COVID-19 patients by January 22, Li et al. (2020) estimate

a basic reproduction number of 2.2. Based on time-series data on the number of COVID-19 cases

in mainland China from January 10 to January 24, Zhao et al. (2020) estimate that the mean

reproduction number ranges from 2.24 to 3.58. Given the short time since the beginning of the

COVID-19 outbreak, more research in this area is required to assess the dynamics of transmission

and its implications on how the COVID-19 outbreak will evolve (Wu and McGoogan, 2020, Wu

et al., 2020b). Several recent studies have examined the effect of population movement on the spread

of COVID-19 (Zhan et al., 2020, Zhang et al., 2020). Our analysis relies on spatially disaggregated

data in a longer period, and the instrumental variable approach we use imposes fewer restrictions on

the relationship between the unobserved determinants of new cases and the number of cases in the

past. Using exogenous temperature, wind speed and precipitation in the preceding third and fourth

weeks as the instruments, we find that in the January 19 - February 1 subsample, one new infection

leads to 1.465 more cases within one week and the effect on the second week is not definitive.

While this causal estimate is slightly lower than the above epidemiologic studies, the rolling window

analysis shows that the infection rate increases first in late January, then stabilizes and drops. Our

paper also adds to the epidemiologic studies on effective ways of containing COVID-19. Using a

stochastic transmission model that is parameterized to the COVID-19 outbreak, Hellewell et al.

(2020) find that highly effective contact tracing and case isolation is enough to control a new

outbreak of COVID-19 within three months in most scenarios. Our empirical estimation based on

real numbers of newly confirmed COVID-19 cases suggests that one new infection case can decrease

the number of new cases by 0.097 (0.438) in the following first (second) week in the February 2-15

subsample, corroborating the effectiveness of China’s large-scale quarantine policy.

This paper is organized as follows. Section 2 introduces the empirical model. Section 3 discusses

our data and the construction of key variables. The results are presented in Section 4. Section 5

concludes.

2 Empirical Model

Our analysis sample includes 303 prefecture-level cities in China. We exclude Wuhan from our

analysis because the epidemic patterns in Wuhan are significantly different from those in other

cities. Some confirmed cases in Wuhan contracted the virus through exposure to Huanan Seafood

Wholesale Market, which is the most probable origin of the virus4. In other cities, infections arise

4Li et al. (2020) document the exposure history of the first 425 cases. It is suspected that the initial cases were
linked to the Huanan Seafood Wholesale Market in Wuhan.
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from human to human transmissions. The health care system in Wuhan faced the challenge of

previously unknown virus infections in early January and became overwhelmed as the number of

new cases increased exponentially from mid-January. These factors may cause severe delay and

measurement error issues in the number of cases reported in Wuhan. We alleviate the measurement

error problem using variations in the infections caused by exogenous changes in weather conditions

which is discussed in detail in Section 3.2.

To model the spread of the virus, we consider simultaneously within city spread and between

city transmissions, as in Adda (2016). The baseline model is

yct =

2∑
τ=1

αwithin,τ ȳ
τ
ct +

2∑
τ=1

αbetween,τ

∑
r 6=c

d−1cr ȳ
τ
rt +

2∑
τ=1

ρτ z̄
τ
t + xctβ + εct, (1)

where c is a city other than Wuhan, yct is the number of new confirmed cases of COVID-19

in city c and date t. τ denotes the preceding first or second week. dcr is the distance between

cities c and r in log, and
∑

r 6=c d
−1
cr ȳ

τ
rt is the inverse distance weighted average of new infections in

other cities. We include lagged yct up to 14 days based on the estimates of the durations of the

infectious period and the incubation period in the literature5. We take average of lagged yct by

week, as ȳτct = 1
7

∑7
s=1 yct−7(τ−1)−s and z̄τt = 1

7

∑7
s=1 zt−7(τ−1)−s. In addition, a notable feature of

the COVID-19 epidemic is that it was originated in one city (Wuhan) and most of the early cases

outside Wuhan can be traced to previous contacts with persons in Wuhan. To model how the virus

spreads to other cities from its source, we include the number of new confirmed cases in Wuhan

in the model (z̄τt ). xct includes weather controls, city, and day fixed effects6. εct is the error term.

Standard errors are clustered within provinces. In a simplified model, we consider only within city

transmissions,

yct =
2∑

τ=1

αwithin,τ ȳ
τ
ct + xctβ + εct. (2)

There are several reasons that ȳτct, ȳ
τ
rt and z̄τt may be correlated with the error term εct. The

unobserved determinants of new infections such as local residents’ and government’s preparedness

are likely correlated over time, which causes correlations between the error term and the lagged

dependent variables. Therefore, the coefficients are estimated by two-stage least squares in order

to obtain consistent estimates. For the yct equation (2), the instrumental variables include average

temperature, maximum wind speed and precipitation for city c for the past three and four weeks.

The selection of weather variables as instruments is discussed in detail in Section 3.2. The timeline of

key variables are displayed in Appendix Figure A.1. The primary assumption on the instrumental

5The 2019-nCoV epidemic is still ongoing and the estimates are revised from time to time in the literature as
new data become available. The current estimates include the following. The incubation period is estimated to be
between 2 and 10 days (World Health Organization, 2020b), 5.2 days (Li et al. (2020)), or 3 days (median, Guan
et al. (2020)). The average infectious period is estimated to be 1.4 days (Wu et al., 2020a).

6On February 12, cities in Hubei province include clinically diagnosed cases in the confirmed cases, in addition to
cases that are confirmed by nucleic acid tests, which results in a sharp increase in the number of confirmed cases for
cities in Hubei on February 12. The common effect on other cities is controlled for by the day fixed effect.
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variables is that weather conditions before two weeks do not affect the likelihood that a person

susceptible to the virus contracts the disease, conditional on weather conditions within two weeks.

On the other hand, they affect the number of other persons who have become infectious within

the two-week window, because they may have contracted the virus earlier than two weeks. These

weather variables are exogenous to the error term and affect the spread of the virus, and have been

used by Adda (2016) to instrument flu infections7.

A main objective of this paper is to quantify the effect of various social and economic factors

in mediating the transmission rates of the virus, which may help identify potential behavioral and

socioeconomic risk factors for infections. For within city transmissions, we consider the mediating

effect of population density, degree of economic development, number of doctors, and environmental

factors such as temperature, wind and rain. To measure the spread of the virus from Wuhan, we

include an estimate of the number of people traveling from Wuhan. The empirical model including

these mediating variables is as follows,

yct =

2∑
τ=1

Kwithin∑
k=1

αkwithin,τ h̄
kτ
ct ȳ

τ
ct +

2∑
τ=1

Kbetween∑
k=1

∑
r 6=c

αkbetween,τm̄
kτ
crtȳ

τ
rt +

2∑
τ=1

KWuhan∑
k=1

ρkτm̄
kτ
c,Wuhan,tz̄

τ
t

+ xctβ + εct, (3)

where h̄kτct , m̄kτ
crt and m̄kτ

c,Wuhan,t are the mediating factor for within city transmissions, between

city transmissions and imported cases from Wuhan.

3 Data

3.1 Variables

January 19, 2020 is the first day that COVID-19 cases were reported outside of Wuhan, so we

collect the daily number of new cases of COVID-19 for 303 cities from January 19 to February 15.

All these data are reported by 32 provincial Health Commissions in China8. Figure 1 shows the

time patterns of daily confirmed new cases in Wuhan, in Hubei province outside Wuhan, and in

mainland China but outside Hubei province.

For the explanatory variables, we calculate the number of new cases of COVID-19 in the pre-

ceding first and second weeks for each city on each day. To estimate the impacts of new COVID-19

cases in other cities on a city’s own COVID-19 new case, we first calculate the geographic distance

between a city and all other cities using the latitudes and longitudes of the centroids of each city,

and then calculate the weighted sum of the number of COVID-19 new cases in all other cities using

the inverse of log distance between a city and each of the other cities as the weight.

7Flu viruses are easier to survive in cold weather. Adverse weather conditions also limit outdoor activities which
can decrease the chance of contracting the virus. For details, see Adda (2016) and Section 3.2.

8Hong Kong and Macao are excluded from our analysis due to the lack of some socioeconomic variables.
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Figure 1: Number of Daily New Confirmed Cases of COVID-19 in Mainland China

Since the COVID-19 outbreak starts from Wuhan, we also calculate the weighted number of

COVID-19 new cases in Wuhan using the inverse of log distance as the weight. Furthermore, to

explore the mediating impact of population flow from Wuhan, we collect the daily population flow

index from Baidu that proxies for the total intensity of migration from Wuhan to other cities9.

Figure 2 plots the Baidu index of population flow out of Wuhan and compares its values this year

with those in 2019. We then interact with the flow index the share that a destination city takes

(Figure 3) to construct a measure on the population flow from Wuhan to a destination city. Other

mediating variables include population density, GDP per capita, and the number of doctors at the

city level, which we collect from the most recent China city statistical yearbook. Table 1 presents

the summary statistics of these variables.

We rely on meteorological data to construct instrumental variables for the endogenous variables.

The National Oceanic and Atmospheric Administration (NOAA) provides average, maximum and

minimum temperatures, air pressure, average and maximum wind speeds, precipitation, snowfall

amount, and dew point for 362 weather stations at the daily level in China. To merge the mete-

orological variables with the number of new cases of COVID-19, we first calculate daily weather

variables for each city on each day from 2019 December to 2020 February from station-level weather

records following the inverse-distance weighting method. Specifically, for each city, we draw a circle

of 100 km from the city’s centroid and calculate the weighted average daily weather variables using

9Baidu Migration, qianxi.baidu.com.
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Figure 2: Baidu Index of Population Flow from Wuhan

Figure 3: Destination Share in Population Flow from Wuhan

8



Table 1: Summary Statistics
Variable N Mean Std dev. Min. Median Max.

Non Hubei cities
City characteristics

GDP per capita, 10,000RMB 287 5.236 3.024 1.141 4.334 21.549
Population density, per km2 287 430.247 374.071 9.049 332.180 3444.092
# of doctors, 10,000 287 1.089 1.139 0.030 0.808 10.938

Time varying variables, Jan 19 - Feb 1
Daily # of new confirmed cases 4018 1.307 3.614 0 0 60
Weekly average temperature, ◦C 4018 3.287 9.182 -29.825 3.862 23.099
Weekly average maximum wind speed, m/s 4018 3.728 1.274 1.095 3.520 10.392
Weekly average precipitation, mm 4018 0.239 0.559 0 0.033 5.570

Time varying variables, Feb 1 - Feb 15
Daily # of new confirmed cases 4018 1.708 3.539 0 0 49
Weekly average temperature, ◦C 4018 4.339 8.865 -29.881 5.881 23.340
Weekly average maximum wind speed, m/s 4018 3.889 1.310 1.227 3.777 9.789
Weekly average precipitation, mm 4018 0.175 0.493 0.000 0.022 5.432

Cities in Hubei province, excluding Wuhan
City characteristics

GDP per capita, 10,000RMB 16 4.932 1.990 2.389 4.306 8.998
Population density, per km2 16 416.501 220.834 24.409 438.820 846.263
# of doctors, 10,000 16 0.698 0.436 0.017 0.702 1.393

Time varying variables, Jan 19 - Feb 1
Daily # of new confirmed cases 224 22.165 35.555 0 7 276
Weekly average temperature, ◦C 224 4.450 1.674 -1.849 4.651 7.950
Weekly average maximum wind speed, m/s 224 3.179 0.888 1.178 3.066 6.026
Weekly average precipitation, mm 224 0.261 0.313 0.000 0.160 1.633

Time varying variables, Feb 1 - Feb 15
Daily # of new confirmed cases 224 53.013 63.654 0 33.5 424
Weekly average temperature, ◦C 224 7.052 1.937 -0.952 7.264 11.634
Weekly average maximum wind speed, m/s 224 3.237 1.018 1.132 3.184 6.827
Weekly average precipitation, mm 224 0.156 0.224 0.000 0.094 1.306

Variables of the city characteristics are obtained from City Statistical Yearbooks. Time varying variables are observed

daily for each city. Weekly average weather variables are averages over the proceeding week.
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stations within the 100 km circle10. We use the inverse of the distance between the city’s centroid

and each station as the weight. Second, we match the daily weather variables to the number of

new cases of COVID-19 based on city name and date.

3.2 Selection of Instrumental Variables

The transmission rate of COVID-19 may be affected by many environmental factors. Human-

to-human transmission of COVID-19 is mostly through droplets and contacts (National Health

Commission of the PRC, 2020). Weather conditions such as rainfall, wind speed, and temperatures

may play a key role in shaping infections via influencing social activities and virus transmissions.

For instance, more precipitation increases humidity that may weaken virus transmissions (Lowen

and Steel, 2014). Both more rainfall and lower temperature may reduce social activities. Lower

temperatures may also enhance the infectiousness of the virus in the environment (Wang et al.,

2020). Higher wind speed and therefore ventilated air may disturb virus transmissions. Current new

cases arise from contracting the virus in the past, and for the case of COVID-19, typically within

two weeks. The extent of human-to-human transmission is determined by the number of people

who already contracted the virus and the environmental conditions within two weeks. Conditional

on the number of confirmed cases and environmental conditions within two weeks, it is plausible

that weather conditions further in the past should not affect current new cases.

There are many potentially relevant weather characteristics, including daily average, maximum

and minimum temperature, average and maximum wind speed, precipitation, air pressure, visibility,

dew point, snow depth, and the presence of extreme weather. We use Lasso method to select

environmental variables that have the highest predictive power for the average number of daily new

confirmed cases during each of the past two weeks, with provincial and day fixed effects already

included.The penalty parameters are given by the plugin method of Belloni et al. (2014). There are

four variables selected, including average maximum wind speed and average precipitation during the

past third and fourth weeks.We also include average temperature during the past third and fourth

weeks because temperature is known to affect the transmissions of flu virus and is conjectured to

affect COVID-19 as well (Wang et al., 2020). We then regress the endogenous variables on the one

to four week lags of the instrumental variables, city, and date fixed effects. Table 2 shows that

F-tests on the coefficients of the three and four week lags of the instrumental variables all strongly

reject joint insignificance, which confirms that the selected instrumental variables are not weak.

The coefficients of the first stage regressions are reported in Table B.1 in the appendix.

10The 100km circle is consistent with the existing literature. Most studies on the socioeconomic impacts of climate
change have found that estimation results are insensitive to the choice of the cutoff distance (Zhang et al., 2017). We
also used other cutoff distances (e.g., 150km) for robustness checks, and the main results remain unchanged. These
results are available upon request.
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Table 2: First Stage Results
Jan 19 - Feb 15 Jan 19 - Feb 1 Feb 2 - Feb 15

Own city
Average # of new cases, 1 week lag F statistic 3.78 15.90 4.20

p value 0.0000 0.0000 0.0000
Average # of new cases, 2 week lag F statistic 6.38 4.88 7.94

p value 0.0000 0.0000 0.0000

Other cities, inverse distance weighted
Average # of new cases, 1 week lag F statistic 58.51 146.96 75.43

p value 0.0000 0.0000 0.0000
Average # of new cases, 2 week lag F statistic 59.46 101.84 86.72

p value 0.0000 0.0000 0.0000

This table reports the F-tests on the joint significance of the coefficients of the instrumental variables that are

excluded from the structural equation, which include average temperature, average maximum wind speed and average

precipitation during the past third and fourth weeks, and the inverse log distance weighted averages of these variables

in other cities. For each F statistic, the variable in its row is the dependent variable, and the time window in its

column indicates the time span of the sample. Besides these instrumental variables, each regression also includes one

and two week lags of these weather variables, city, date and city by week fixed effects. Coefficients of the instrumental

variables for the full sample are reported in Table B.1 in the appendix.

4 Results

4.1 Within City Transmission

Our sample starts from January 19, when the first COVID-19 case was reported outside Wuhan.

The sample spans four weeks in total and ends on February 15. We also estimate the model

separately for each half sample (January 19 to February 1, and February 2 to February 15). The

first two weeks witnessed the virus infections quickly spread throughout the country with every

province reporting at least one confirmed case, and the number of cases also increased at increasing

speed (Figure 1). During these two weeks, the government response has become more robust. On

January 20, COVID-19 was classified as a Class B statutory infectious disease and treated as a Class

A statutory infectious disease. The city of Wuhan was placed under lockdown on January 23, with

road closures and residents not allowed to leave the city. Many other cities also imposed restrictions

on travel, ranging from canceling public events, stopping public transportation to limiting how

often residents can leave home. On February 8, the State Council issued The Notice on Orderly

Resuming Work and Production in Enterprises, which is a defining event for the second phrase of

the prevention and control measures in China (World Health Organization, 2020c). By comparing

the dynamics of virus transmissions in these two half samples, we can evaluate the effectiveness of

these public health measures.

Table 3 reports the estimation results of the OLS and IV regressions of Eq.(2), where only

within city transmission is considered. After controlling for time-invariant city-specific effects and

time effects common to all cities, on average, one new infection leads to 1.566 more cases in the next

week, but 1.299 fewer cases one week later. The negative effect can be the result of both the local
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Table 3: Within City Transmission of COVID-19
Jan 19 - Feb 15 Jan 19 - Feb 1 Feb 2 - Feb 15
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

All Cities Excluding Wuhan
Average # of new cases, 1 week lag 0.834*** 1.566*** 1.695*** 1.966*** -0.459*** 0.490***

(0.00632) (0.111) (0.0376) (0.0889) (0.0598) (0.0788)
Average # of new cases, 2 week lag -0.389*** -1.299*** 0.731 -1.678 -0.757*** -0.847***

(0.00371) (0.124) (2.007) (2.558) (0.0310) (0.0478)

Observations 8,484 8,484 4,242 4,242 4,242 4,242
Number of cities 303 303 303 303 303 303
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

All Cities Excluding Cities in Hubei Province
Average # of new cases, 1 week lag 0.745*** 1.129*** 1.045*** 1.345*** 0.0470 0.344

(0.0275) (0.250) (0.0827) (0.194) (0.126) (0.231)
Average # of new cases, 2 week lag -0.472*** -0.748*** 0.149 -1.751 -0.810*** -0.758***

(0.0156) (0.231) (0.683) (2.502) (0.0746) (0.188)

Observations 8,036 8,036 4,018 4,018 4,018 4,018
Number of cities 287 287 287 287 287 287
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

The dependent variable is the number of daily new confirmed cases. Lagged average temperature, maximum wind

speed and precipitation are used as instrumental variables in the IV regressions. Standard errors in parentheses are

clustered by provinces. *** p<0.01,** p<0.05, * p<0.1.
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authorities and residents taking more protective measures in response to a higher perceived risk of

contracting the disease. Releasing official information on newly confirmed cases at the daily level

as well as exchanging information via social media throughout China may promote more timely

actions to slowdown virus transmissions. Comparing containment effects over time, in the first half

sample, one new infection leads to 1.966 more cases within a week, implying a fast growth in the

number of cases. However, in the second half sample, the effect decreases to 0.490, suggesting that

public health measures imposed in late January are effective in limiting a further spread of the

virus.

Besides Wuhan, a large number of cases are also reported in other cities in Hubei province, where

6 of them reported over 1000 cumulative cases by February 1511. Their overstretched health care

system exacerbates the concern over delayed reporting of confirmed cases in these cities. To mitigate

such potential measurement errors in our estimates, we exclude all cities in Hubei province from

the regression. The bottom panel of Table 3 reports the estimates. Comparing the IV estimates

in columns (4) and (6), we observe that in the first two weeks, on average, one new case leads to

1.345 more cases in the following week, while the chain of infections is broken in the second half

sample.

4.2 Between City Transmission

People may contract the virus via interacting with people who are infected and live in the same

city or other cities. The severity of virus infections in other cities may influence the awareness of

local public health authorities and residents. The rate of spread of the virus can be reduced if more

protective measures are taken. In Eq.(1), we consider the effect of the infections in other cities

and the epicenter of the epidemic, Wuhan, using inverse log distance as weights. The lockdown

in Wuhan on January 23 significantly reduced the population flow from Wuhan to other cities,

and geographic proximity may not describe well the level of social interactions between residents

in Wuhan and other cities. To alleviate this concern, we use a measure of the size of population

flow from Wuhan to a destination city, which is constructed by multiplying the daily migration

index on the population flow out of Wuhan (Figure 2) with the share of the flow that a destination

city receives provided by Baidu (Figure 3). During days before January 25, we use the average

destination shares between January 10 and January 24. For days on or after January 24, the

average destination shares between January 25 and February 23 are used12.

Table 4 reports the estimates from IV regressions of Eq.(1), and Table 5 reports the results

where we exclude cities in Hubei province from the analysis. Column (4) of Table 4 indicates

that in the first half sample, one new case leads to 1.465 more cases within one week, and the

effect is not statistically significant between one and two weeks. In the second half sample, one

new case actually decreases future number of new cases, which indicates that the responses by the

11These cities are Xiaogan, Huanggang, Jingzhou, Suizhou, Ezhou, and Xiangyang.
12The shares of top 100 destinations are available. The starting and ending dates of the average shares released by

Baidu do not precisely match the period of the analysis sample.
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Table 4: Within and Between City Transmission of COVID-19
Jan 19 - Feb 15 Jan 19 - Feb 1 Feb 2 - Feb 15
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

Average # of new cases, 1 week lag
Own city 0.412*** 0.804*** 0.939*** 1.465*** -0.316*** -0.0971***

(0.0276) (0.0741) (0.102) (0.144) (0.0614) (0.0258)
Other cities -0.0143*** -0.0755** 0.0895 0.0215 -0.0483** -0.201***
weight = inverse distance (0.00442) (0.0328) (0.0717) (0.0583) (0.0223) (0.0628)
Wuhan -0.0695* 0.397 -0.852 -1.769* -0.0294 0.118
weight = inverse distance (0.0395) (0.310) (0.743) (0.928) (0.0243) (0.160)
Wuhan -0.00110** 0.00334*** 0.00460*** 0.00490*** -0.00420*** -0.00337***
weight = population flow (0.000493) (0.000575) (0.000342) (0.000470) (0.000711) (0.000727)

Average # of new cases, 2 week lag
Own city -0.259*** -0.714*** 2.547 1.539 -0.434*** -0.438***

(0.0173) (0.0594) (2.332) (2.502) (0.0364) (0.0755)
Other cities 0.0477*** 0.152*** -0.358 0.464 0.0923** 0.456***
weight = inverse distance (0.0173) (0.0483) (0.374) (0.397) (0.0390) (0.158)
Wuhan 0.138 -0.987 2.883 6.327* 0.124* -0.916*
weight = inverse distance (0.0900) (0.707) (2.870) (3.482) (0.0715) (0.519)
Wuhan 0.0134*** 0.0116*** 0.00714*** 0.00146 0.00716*** 0.00883***
weight = population flow (0.000537) (0.000831) (0.00214) (0.00224) (0.000384) (0.000476)

Observations 8,484 8,484 4,242 4,242 4,242 4,242
Number of cities 303 303 303 303 303 303
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

The dependent variable is the number of daily new confirmed cases. Lagged average maximum wind speed and

precipitation are used as instrumental variables in the IV regressions. Standard errors in parentheses are clustered

by provinces. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Within and Between City Transmission of COVID-19, Excluding Cities in Hubei Province
Jan 19 - Feb 15 Jan 19 - Feb 1 Feb 2 - Feb 15
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

Average # of new cases, 1 week lag
Own city 0.617*** 1.164*** 0.793*** 1.517** -0.0355 -0.0752

(0.0334) (0.240) (0.0827) (0.661) (0.149) (0.191)
Other cities 0.00266 -0.0176 -0.0167 0.0418 3.30e-05 -0.0429***
weight = inverse distance (0.00183) (0.0143) (0.0199) (0.179) (0.00234) (0.0111)
Wuhan 0.00608 0.0629 0.160 2.173* 0.00785 0.110**
weight = inverse distance (0.0131) (0.0513) (0.130) (1.303) (0.00752) (0.0430)
Wuhan 0.00463*** 0.00184 0.00636*** 0.00105 -0.0135** -0.00688
weight = population flow (0.00147) (0.00164) (0.00197) (0.00350) (0.00643) (0.00758)

Average # of new cases, 2 week lag
Own city -0.400*** -0.724*** 0.256 0.0862 -0.714*** -0.724***

(0.0264) (0.142) (0.584) (1.848) (0.0435) (0.0650)
Other cities -0.000654 0.0409 0.183 -0.218 0.00805 0.0728***
weight = inverse distance (0.00422) (0.0309) (0.119) (1.473) (0.00517) (0.0172)
Wuhan -0.0177 -0.205 -0.777 -9.917* -0.0432** -0.297***
weight = inverse distance (0.0311) (0.150) (0.881) (5.656) (0.0207) (0.102)
Wuhan 0.00935*** 0.00246 0.00974*** -0.00476 0.00352*** 0.00645***
weight = population flow (0.00165) (0.00394) (0.00328) (0.0106) (0.00118) (0.00150)

Observations 8,036 8,036 4,018 4,018 4,018 4,018
Number of cities 287 287 287 287 287 287
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

The dependent variable is the number of daily new confirmed cases. Lagged average maximum wind speed and

precipitation are used as instrumental variables in the IV regressions. Standard errors in parentheses are clustered

by provinces. *** p<0.01, ** p<0.05, * p<0.1.
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Figure 4: Rolling Window Analysis of Within and Between City Transmission of COVID-19

This table shows the estimated coefficients and 95% CIs from instrumental variable regressions of daily number of

new confirmed COVID-19 cases on average numbers of new cases in the preceding one and two weeks, in the same

city, nearby cities (weighted by inverse log distance) and Wuhan (weighted by inverse log distance or population

flow). Each estimation sample contains 14 days with the starting date indicated on the horizontal axis.
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government and the public effectively contain the risk of additional infections. The time varying

patterns in local transmissions are evident using the rolling window analysis (Figure 4). The top

left panel shows the estimated local transmission coefficients for various 14-day samples with the

starting date indicated on the horizontal axis. After an initial increase in the local transmission

rate, one case leads to fewer and fewer additional cases from late January onwards. Comparing

Table 4 with Table 3, we observe that the results are not sensitive to the inclusion of terms on

between-city transmissions.

As a robustness test, Table 5 reports the estimation results if the analysis sample does not

include cities in Hubei province. Column (4) of Table 5 indicates that in the first half sample, one

new case leads to 1.517 more cases within a week, and this becomes small and statistically not

significant in the second half sample. Besides, in the second half sample, one new case decreases

new infections by 0.724 between 1 and 2 weeks, which is larger than the estimate (0.438) with cities

in Hubei province included. Overall, the spread of the virus has been effectively contained between

February 2 and February 15, particularly for cities outside Hubei province.

In the epidemiology literature, the estimates on the basic reproduction number of COVID-19 is

approximately within the range 2 ∼ 2.5 (World Health Organization, 2020c). Its value depends on

the model used and factors that affect disease transmissions such as the behavior of the susceptible

and infected population. Intuitively, it can be interpreted as measuring the expected number of

new cases that are generated by one existing case. It is of interest to note that our estimates are at

the lower end of the range. One more case leads to 1.465 more cases in the same city in the next

week (1.517 if cities in Hubei province are excluded). The effects on further lags or in the second

half sample (February 2 - February 15) are small, negative, or not precisely estimated, suggesting

that factors such as public health measures and people’s behavior may play an important role in

containing the transmission of COVID-19.

For the between-city transmission from Wuhan, we observe that the population flow better

explains the contagion effect than geographic proximity (Table 4). In the first half sample, one new

case in Wuhan leads to more cases in other cities which receive more population flows from Wuhan

within one week. In the second half sample, more arrivals from Wuhan one week earlier can still

be a risk. A back of the envelope calculation indicates that one new case in Wuhan leads to 0.067

(0.120) more cases in the destination city per 10,000 travelers from Wuhan within one (two) week

between January 19 and February 1 (February 2 and February 15)13. Note that while the effect

is statistically significant, it should be interpreted in context. It was estimated that 15, 000, 000

people would travel out of Wuhan during the Lunar New Year holiday14. If all had gone to one

city, this would have directly generated about 280.5 cases within two weeks. The risk of infection

is likely very low for most travelers except for few who have previous contacts with sources of

13It is estimated that 14,925,000 people traveled out of Wuhan in 2019 during the Lunar New Year holiday (http:
//www.whtv.com.cn/p/17571.html). The sum of Baidu’s migration index for population flow out of Wuhan during
the 40 days around the 2019 Lunar New Year is 203.3, which means one index unit represents 0.000013621 travelers.
The destination share is in percentage. With one more case in Wuhan, the effect on a city receiving 10,000 travelers
from Wuhan is 0.00490 × 0.000013621 × 100 × 10000 = 0.067.

14http://www.whtv.com.cn/p/17571.html
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infection, and person-specific history of past contacts may be an essential predictor for infection

risk, in addition to the total number of population flows15.

Besides spillovers from Wuhan, a city may also be affected by infections nearby. We observe

that in the second half sample, one new case in a neighboring city that is 100km away generates

0.099 more cases after between one and two weeks16. This indicates that by February, while within

city transmissions are effectively contained, new infections caused by between-city transmissions

can still be a risk. For cities outside Hubei province, the results are similar (Table 5), except that

the transmission from Wuhan is not significant in the first half sample.

4.3 Social and Economic Mediating Factors

We investigate the impacts of many social, economic and environmental variables in mediating

the transmission rates (Eq.(3)). For own city transmissions, we consider the mediating effects of

population density, per capita GDP, number of doctors, contemporaneous temperature, wind speed

and precipitation. For between-city transmissions, we consider the mediating effects of distance,

density difference and per capita GDP difference. We also include a measure of population flows

from Wuhan. Table 6 reports the estimation results of the IV regressions using the first half sample,

and Table 7 reports the estimates for the second half sample.

Our main conclusions still hold with these mediating factors included. The effects of past

infections are much smaller in the second half sample, suggesting that the virus outbreak has been

contained. For the between-city transmissions, population flow from Wuhan poses a risk for new

infections in other cities, with one week lag in the first half sample, and with two week lag in the

second half sample. The effects are robust with the inclusion of other measures of proximity, such

as those based on geography and economic similarity.

Table 8 shows variables that affect transmissions within cities and whose coefficients are sta-

tistically significant at 0.1. In order to help compare across variables, we compute the changes in

the variables needed in order for the coefficient of past infections on current cases to be reduced

by 1. The effects of the environmental factors and population density are mixed. We also observe

that the transmission rate is lower in cities with more doctors. Cities with higher per capita GDP

have higher transmission rates, which may be due to more social interactions as a result of more

economic activity17. However, until clearer mechanisms are identified and tested, this should be

interpreted with caution.

15From mid February, individual specific health codes such as Alipay Health Code and WeChat Health Code are
being used in many cities to aid quarantine efforts.

160.099 = 0.456 × 1
log 100

.
17Fogli and Veldkamp (2019) show that income is positively correlated with more closely connected social network,

and a dense network spreads diseases faster.
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Table 6: Social and Economic Factors Mediating the Transmission of COVID-19, Jan 19 - Feb 1

(1) (2) (3) (4) (5)

Average # of new cases, 1 week lag

Own city 1.290 0.741 0.511 0.435 0.0292

(0.984) (0.631) (0.658) (0.656) (0.651)

× population density -0.000735 -0.000890*** -0.00104** -0.00105***

(0.000518) (0.000283) (0.000406) (0.000382)

× per capita GDP 0.154 0.237** 0.230** 0.290***

(0.122) (0.112) (0.114) (0.110)

× # of doctors -0.179* -0.0293 -0.0124 0.00240

(0.0989) (0.141) (0.134) (0.143)

× temperature -0.0781 -0.0173 -0.0186 -0.0307

(0.0531) (0.0705) (0.0732) (0.0772)

× wind speed 0.151 -0.0653 -0.0341 -0.0479

(0.223) (0.0819) (0.0770) (0.0784)

× precipitation -0.575 0.0858 0.102 0.147

(0.440) (0.294) (0.278) (0.307)

Other cities 0.0588 -0.0739 -0.0123 0.00975 0.00741

weight = inverse distance (0.0941) (0.0930) (0.0527) (0.0478) (0.0608)

Other cities -0.00619 0.00132

weight = inverse density ratio (0.00467) (0.00423)

Wuhan -3.518*** -2.192 -2.537** -2.540** -2.190

weight = inverse distance (0.608) (1.744) (1.241) (1.256) (1.363)

Wuhan 0.00639*** 0.00564*** 0.00597*** 0.00589*** 0.00601***

weight = population flow (0.000672) (0.000895) (0.000690) (0.000707) (0.000678)

Wuhan -0.0562

weight = inverse per capita GDP ratio (0.766)

Wuhan 0.0270

weight = inverse density ratio (0.0238)

Average # of new cases, 2 week lag

Own city 16.93* 36.28*** 45.21** 43.77** 45.87**

(10.25) (12.46) (19.15) (18.95) (18.65)

× population density 0.00343 0.00663*** 0.00706** 0.00696***

(0.00335) (0.00252) (0.00281) (0.00248)

× per capita GDP -1.106 -0.151 -0.174 -0.0853

(1.277) (0.639) (0.609) (0.643)

× # of doctors -1.094 -4.050** -3.941** -4.323**

(0.987) (1.897) (1.758) (1.958)

× temperature -0.296 -1.429** -1.379** -1.427**

(0.529) (0.592) (0.565) (0.594)

× wind speed -7.252*** -3.577 -3.557 -3.657

Continued on next page
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Table 6 – continued from previous page (1) (2) (3) (4) (5)

(1.954) (2.547) (2.558) (2.784)

× precipitation -2.604 -23.55*** -22.18*** -20.14***

(10.32) (5.654) (5.412) (4.719)

Other cities -0.188 1.415** 0.305 0.156 0.138

weight = inverse distance (0.926) (0.614) (0.476) (0.458) (0.543)

Other cities 0.0505 -0.0615

weight = inverse density ratio (0.0530) (0.0582)

Wuhan 14.21*** 8.903 11.02** 10.93** 9.217*

weight = inverse distance (2.538) (7.749) (5.492) (5.194) (5.553)

Wuhan -0.000999 0.00236 0.00421 0.00479 0.00718

weight = population flow (0.00408) (0.00205) (0.00490) (0.00492) (0.00468)

Wuhan -3.547

weight = inverse per capita GDP ratio (3.434)

Wuhan -0.0279

weight = inverse density ratio (0.113)

Observations 4,242 4,242 4,242 4,242 4,242

Number of cities 303 303 303 303 303

Weather controls YES YES YES YES YES

City FE YES YES YES YES YES

Date FE YES YES YES YES YES

The dependent variable is the number of daily new confirmed cases. Reported are IV regression coeffi-

cients with lagged average maximum wind speed and precipitation used as instruments. Standard errors in

parentheses are clustered by provinces. *** p<0.01, ** p<0.05, * p<0.1.

Table 7: Social and Economic Factors Mediating the Transmission of COVID-19, Feb 2 - Feb 15

(1) (2) (3) (4) (5)

Average # of new cases, 1 week lag

Own city -0.127 0.745* -0.683 -0.684 -0.672

(0.126) (0.407) (0.718) (0.633) (0.662)

× population density -0.000171 0.000712* 0.000596 0.000609

(0.000222) (0.000416) (0.000396) (0.000490)

× per capita GDP 0.105*** 0.252*** 0.247*** 0.240***

(0.0201) (0.0624) (0.0620) (0.0544)

× # of doctors -0.195* -0.589*** -0.548*** -0.537***

(0.110) (0.227) (0.210) (0.208)

× temperature -0.130*** 0.0220 0.0196 0.0167

(0.0242) (0.0756) (0.0668) (0.0689)

× wind speed 0.0432 -0.148* -0.122 -0.115

(0.0865) (0.0874) (0.0969) (0.0974)

Continued on next page
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Table 7 – continued from previous page (1) (2) (3) (4) (5)

× precipitation 1.748* 2.192* 2.037* 1.869*

(0.915) (1.177) (1.182) (1.125)

Other cities -0.182*** -0.0825*** -0.146 -0.125 -0.128

weight = inverse distance (0.0493) (0.0271) (0.111) (0.0921) (0.0907)

Other cities -0.000483 -0.00330

weight = inverse density ratio (0.00230) (0.00504)

Wuhan 0.0228 0.262 0.360 0.234 0.342

weight = inverse distance (0.165) (0.300) (0.417) (0.315) (0.404)

Wuhan -0.00334** -0.0138*** -0.0112*** -0.0107*** -0.0113***

weight = population flow (0.00134) (0.00398) (0.00413) (0.00388) (0.00404)

Wuhan 0.102

weight = inverse per capita GDP ratio (0.268)

Wuhan -0.00457

weight = inverse density ratio (0.00923)

Average # of new cases, 2 week lag

Own city -0.351 -1.163 -0.819 -0.862 -0.774

(0.234) (0.858) (1.028) (1.003) (0.916)

× population density -0.000442*** 0.000286 0.000181 0.000289

(0.000148) (0.000302) (0.000337) (0.000342)

× per capita GDP 0.0631*** 0.165* 0.163* 0.131

(0.0189) (0.0874) (0.0867) (0.0859)

× # of doctors -0.0364 -0.223*** -0.209*** -0.201**

(0.0709) (0.0763) (0.0748) (0.0863)

× temperature 0.222* 0.166 0.165 0.162

(0.122) (0.134) (0.129) (0.120)

× wind speed -0.195** -0.375** -0.346** -0.332**

(0.0836) (0.150) (0.153) (0.160)

× precipitation 1.671*** 1.619 1.462 1.362

(0.647) (1.295) (1.320) (1.249)

Other cities 0.364*** 0.198*** 0.213 0.194* 0.208*

weight = inverse distance (0.120) (0.0616) (0.134) (0.115) (0.120)

Other cities 0.00181 0.000865

weight = inverse density ratio (0.00390) (0.00263)

Wuhan -0.487* -0.634 -0.963 -0.713 -0.961

weight = inverse distance (0.285) (0.666) (1.003) (0.803) (1.018)

Wuhan 0.00888*** 0.0148*** 0.0132*** 0.0129*** 0.0126***

weight = population flow (0.000398) (0.00151) (0.000774) (0.000742) (0.000721)

Wuhan -0.298

weight = inverse per capita GDP ratio (0.834)

Wuhan 0.0167

weight = inverse density ratio (0.0241)

Continued on next page
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Table 7 – continued from previous page (1) (2) (3) (4) (5)

Observations 4,242 4,242 4,242 4,242 4,242

Number of cities 303 303 303 303 303

Weather controls YES YES YES YES YES

City FE YES YES YES YES YES

Date FE YES YES YES YES YES

The dependent variable is the number of daily new confirmed cases. Reported are IV regression coeffi-

cients with lagged average maximum wind speed and precipitation used as instruments. Standard errors in

parentheses are clustered by provinces. *** p<0.01, ** p<0.05, * p<0.1.

Table 8: A Summary of Factors Mediating Within City Transmissions of COVID-19

for local transmission rate to be reduced by 1 Jan 19 - Feb 1 Feb 2 - Feb 15

lag 1 week precipitation −0.54 mm
population density +952.38 per km2

# of doctors +18, 622
per capita GDP −34, 483 RMB −41, 667 RMB

lag 2 week

wind speed +3.01 m/s
temperature +0.70C
precipitation +0.05 mm

population density −143.68 per km2

# of doctors +2, 313 +49, 751
This table shows changes in the variables needed in order for the impact of past same city infections on current

infections to be reduced by 1, using estimates in Column (5) of Tables 6 and 7, with significance levels of at least 0.1.

5 Conclusion

This paper examines the transmission dynamics of the novel coronavirus 2019, considering both

within- and between-city transmissions. Changes in weather conditions induce exogenous variations

in past infection rates, which allows us to identify the causal impact of past infections on new

cases. We use a machine learning method (Lasso) to select instrumental variables with strong

predictive power for the endogenous variables. The estimates show that the positive effect of an

infection in generating new local infections is observed within one week, and there is evidence that

people’s responses can break the chain of infections. Comparing estimates in two half samples, we

observe that the spread of COVID-19 has been effectively contained by early February, especially

for cities outside Hubei province, the epicenter of the outbreak. Data on real-time population flows

between cities have become available in recent years, after aggregating location data from various

sources of individual mobile phone users. We show that this new source of data is valuable in

explaining between-city transmissions of COVID-19, even after controlling for traditional measures

of geographic and economic proximity.
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At the time of writing, COVID-19 represents a very high risk at the global level, according to

the WHO risk assessment (World Health Organization, 2020a). Countries other than China are

reporting new confirmed cases, and increasingly many cases arise through community transmissions

rather than being imported. Based on case data in China between January 19 and February 15,

we show that public health measures adopted can effectively contain the virus outbreak, and newly

available data on real-time population flows can be a valuable tool for risk assessment by public

health authorities and the general public.

A key limitation of the paper is that we are not able to disentangle the effects from each of

the stringent measures taken, as even within this four-week sampling period China enforced such

a large number of densely timed policies to contain the virus spreading, often simultaneously in

many cities. A second limitation is that these policies fall within each of the two sub-samples.

By the starting date of the official data release for confirmed infected cases throughout China, i.e.

January 2020, a number of stringent measures were already taken, which prevent researchers to

ideally examine and compare a sub-sample period during which no strict policies was enforced. Key

knowledge gaps remain in the understanding of the epidemiological characteristics of COVID-19,

such as individual risk factors for contracting the virus and infections from asymptotic cases. Data

on the demographics and exposure history for those who have shown symptoms as well as those

who have not will help facilitate these research.
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A Data

Figure A.1 illustrates the dependent variable, the instrumental variables, and the exclusion restric-

tion that weather conditions earlier than two weeks from date t affect the number of people who

are infectious within past two weeks, but do not directly affect the number of confirmed new cases

at date t.

Figure A.1: Timeline of Key Variables

B First Stage Regressions

Table B.1 reports results of the first stage of the IV regressions (Table 4). In Columns (1) and (2),

the dependent variables are the numbers of newly confirmed COVID-19 cases in the own city in the

preceding first and second weeks, respectively. In Columns (3) and (4), the dependent variables are

the weighted average numbers of newly confirmed COVID-19 cases in other cities in the preceding

first and second weeks (weighted by the inverse log distance), respectively. The weather variables

in the preceding first and second weeks are included in the control variables. The weather variables

in the preceding third and fourth weeks are the excluded instruments in the IV regressions, and

their coefficients are reported in the table.

Weather conditions affect disease transmissions either directly if the virus can more easily

survive and spread in certain environment, or indirectly by changing human behavior. In our

sample period, higher wind speeds or more precipitation decrease the number of infections in the

future. Higher temperatures increase local infections, but decrease infections in other cities.
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Table B.1: First Stage Regressions
Dependent variable Average # of new cases

Own city Other cities
1 week lag 2 week lag 1 week lag 2 week lag

(1) (2) (3) (4)

Own city
Weekly average temperature, 3 week lag 0.194 -0.163 -2.542*** -2.597***

(1.080) (0.410) (0.940) (0.477)
Weekly average maximum wind speed, 3 week lag 0.582 -0.177 -0.712 0.131

(2.066) (0.785) (1.798) (0.912)
Weekly average precipitation, 3 week lag -0.305 0.180 -5.022 -4.309**

(4.304) (1.636) (3.745) (1.900)
Weekly average temperature, 4 week lag 0.650 0.390 0.436 -0.0727

(0.894) (0.340) (0.778) (0.395)
Weekly average maximum wind speed, 4 week lag 0.767 0.0529 -0.828 -0.247

(1.568) (0.596) (1.364) (0.692)
Weekly average precipitation, 4 week lag -6.467 -3.572** -3.852 -3.780**

(3.982) (1.514) (3.465) (1.758)

Other cities, weight = inverse distance
Weekly average temperature, 3 week lag 0.592 0.385** 2.832*** 2.036***

(0.469) (0.178) (0.408) (0.207)
Weekly average maximum wind speed, 3 week lag -3.624*** -1.725*** -12.49*** -6.751***

(1.041) (0.396) (0.906) (0.460)
Weekly average precipitation, 3 week lag -4.574** -2.019** -16.40*** -6.457***

(2.210) (0.840) (1.923) (0.976)
Weekly average temperature, 4 week lag 0.283 0.184 1.366*** 1.050***

(0.390) (0.148) (0.339) (0.172)
Weekly average maximum wind speed, 4 week lag -2.102** -1.047*** -6.425*** -3.681***

(0.822) (0.313) (0.715) (0.363)
Weekly average precipitation, 4 week lag -0.0551 -0.0585 -6.355*** -3.597***

(1.856) (0.705) (1.615) (0.819)

F statistic 3.78 6.38 58.51 59.46
p value 0.0000 0.0000 0.0000 0.0000

Observations 8,512 8,512 8,512 8,512
Number of cities 304 304 304 304
Weather controls YES YES YES YES
City FE YES YES YES YES
Date FE YES YES YES YES
City by Week FE YES YES YES YES

This table shows the results of the first stage IV regressions. Coefficients of the weather variables which are

used as excluded instrumental variables are reported. *** p<0.01, ** p<0.05, * p<0.1.
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