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Non-technical summary

Research Question

In the paper the impact of house price bust shocks on economic activity and consumption

is analyzed. To this end statistical models of the aggregate housing sectors are estimated

for euro area countries in order to quantify the damage to be expected from sudden falls in

house prices. As a byproduct, the approach delivers a dissimilarity measure of countries’

real estate markets.

Contribution

In a novel statistical approach, cross-country information is employed in order to mitigate

the small-sample problem. An estimator for countries’ real estate market dissimilarities

is proposed which, on the one hand, considers country specificities, and on the other

hand, allows for general cross-country economic mechanisms. The model parameters

are determined based on data information which contain consistent time series for the

countries under consideration. This yields a stabilization of estimates.

Results

The model predicts negative effects of house price bust shocks on economic activity and

consumption which vary in size across countries. That is, while the general economic

transmission mechanisms of the shocks are similar, the severity of their respective damage

differs. It appears that in a low-interest rate environment the effect of shocks is larger.



Nichttechnische Zusammenfassung

Fragestellung

In dem Papier wird der Einfluss von Hauspreisschocks auf die Wirtschaftstätigkeit und

den Konsum analysiert. Dazu werden statistische Modelle der aggregierten Immobilien-

sektoren für Länder der Eurozone geschätzt, um damit den zu erwartenden Schaden eines

plötzlichen Verfalls der Immobilienpreise zu quantifizieren. Als Nebenprodukt liefert der

Ansatz ein Maß für die Unterschiedlichkeit der Immobilienmärkte einzelner Länder.

Beitrag

In einem neuartigen statistischen Ansatz werden länderübergreifende Informationen ver-

wendet, um das Problem kleiner Stichproben zu mildern. Es wird ein Schätzverfahren für

die Unterschiedlichkeit der Immobilienmärkte in den betrachteten Ländern vorgeschla-

gen, welches auf der einen Seite Besonderheiten der Länder berücksichtigt und auf der

anderen Seite generelle länderübergreifende ökonomische Mechanismen abbildet. Die Mo-

dellparameter werden mit Hilfe von Informationen eines Datensatzes bestimmt, welcher

konsistente Zeitreihen für die betrachteten Länder beinhaltet. Das führt dazu, dass die

Schätzergebnisse stabilisiert werden.

Ergebnisse

Das Modell sagt negative Effekte von Hauspreisschocks auf die Wirtschaftstätigkeit und

den Konsum voraus, wobei sich die Größenordnung der Effekte über die Länder hinweg

unterscheidet. Das heißt, während sich die generellen ökonomischen Transmissionsmecha-

nismen der Schocks im Querschnitt der Länder ähneln, ist die Schwere des zugehörigen

Schadens unterschiedlich. Auch zeigt sich, dass der Einfluss der Schocks bei niedrigen

Zinsen größer ist.
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1 Introduction

The US housing bubble bust in 2007 and its consequences for the economy underlined the
important role of house prices1 for the real sector (see e.g. Piazzesi and Schneider, 2016;
Lambertini, Mendicino, and Punzi, 2017). In a speech, Praet (2019) emphasizes the role
of house prices for financial stability in the euro area.

“The effects of residential real estate [RRE] bubbles on financial stability are
also well known. More than two-thirds of the past 46 systemic banking crises
were preceded by boom-bust patterns in house prices. And recessions coinciding
with house price busts have been found to yield a cumulative loss in GDP that
is around three times greater than in recessions without such busts.”

Since housing market shocks, potentially initiated by sudden reversals in households’ con-
fidence in future macroeconomic conditions, helped to ignite the recent financial crisis, (see
e.g. Lambertini, Mendicino, and Punzi, 2013), house price developments are being given
particular attention by most macroprudential authorities. Especially in a low-interest rate
environment, their growth rates may accelerate and decouple from fundamentals. With
respect to regulation, the European Systemic Risk Board (see ESRB, 2016) identifies the
residential real estate market to be an important segment, writing that

“vulnerabilities in the residential real estate [RRE] market is a key responsi-
bility of macroprudential authorities”.

Similarly, Bernanke (2010) notes that

“[a]lthough a number of developments helped trigger the crisis, the most promi-
nent one was the prospect of significant losses on residential mortgage loans
to subprime borrowers that became apparent shortly after house prices began
to decline.”

He considers a fall in house prices to be a potential trigger of financial crises. In this
respect, interest regularly centers on early-warning tools, i.e. assessments of the appropri-
ateness of price or mortgage developments, where “abnormal” dynamics imply warning
signals which potentially trigger the use of regulatory instruments. However, a macro-
prudential authority might also be interested in quantifying the benefits of regulation in
terms of damage from sudden house price drops avoided. The analysis focuses on the
losses caused by, as opposed to the likelihood of, a sudden deterioration in the housing
market and proposes a model with which to estimate the impact of house price shocks
on economic activity as measured by gross domestic product (GDP) and consumption.
Considering the household sector at an aggregate level illustrates the transmission channel
of adverse shocks to house prices.

Housing markets are usually expected to feature regional specificities which call for
a country-based assessment. However, general economic mechanisms should not depend
on national peculiarities. For instance, the ESRB (2016) highlights the importance of
national specificities that coexist with market commonalities. Consequently, I estimate

1Instead of using the comprehensive term “residential real estate prices”, the term “house prices” is
used for convenience.
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a dynamic multivariate model at the country level which incorporates information from
other countries in order to obtain an econometrically robust model and economically
meaningful results. The underlying assumption is that, while unspecified, there exist
common economic mechanisms across countries but their relative importance is unknown.
Even though similar estimation strategies are available, the procedure is novel to the
literature. It combines the advantages of Bayesian hierarchical approaches with a dummy
observations prior distribution informed by the cross section.

This paper makes a technical contribution by describing a novel way to consider panel
data-based information. In contrast to previous approaches, variation in the cross section
is fully processed. The estimation procedure offers a balanced way to account for obser-
vations of foreign countries. It outlines a simple and convenient method to form sensible
prior distributions if data at the country level is scarce but observations are available
along the cross section. The setup allows me to estimate extensive models imposing a
well-chosen prior distribution tightness. It documents the degree of cross-country het-
erogeneity, which mainly shows up in the magnitude of effects. Qualitatively, countries’
impulse response functions feature similar patterns. The effects on GDP and consump-
tion are quite substantial, ranging from -0.2 to about -1.2 percent after one year given a
particular one percent drop in house prices on impact. Second-round mechanisms seem
important because the initial reactions are considerably smaller. The approach shares
many similarities with existing methods. It contains average cross-country information in
the form of dummy observations which are weighted with a tightness parameter. A hierar-
chical Bayesian model averaging (BMA) approach is used to estimate the prior tightness
parameter. The posterior distribution of this parameter may further be used to illustrate
heterogeneity in the sample.

Similar approaches have been surveyed by Canova and Ciccarelli (2013), who conclude
that “partial pooling” may impose an appropriate degree of homogeneity. Estimation
strategies that follow their suggestion identify improvements with respect to out-of-sample
prediction or estimation precision.2 The model frameworks probably most closely related
to the present study are those of Jarociński (2010) and Koop and Korobilis (2016). The
former comprises shrinkage of the posterior slope coefficients to a cross-country common
mean. The latter allows for cross-sectional homogeneity3 as well as interdependencies.
Previous approaches typically feature prior distributions with diagonal covariance matri-
ces on the slope coefficients; they might overemphasize unreasonable combinations of the
slope coefficients, as argued by Del Negro and Schorfheide (2011). Similarly, it is common
not to impose beliefs on the residual covariance matrix. In contrast, the present approach
features a prior distribution fully considering the coefficient covariance matrix as well as
the residual covariance matrix. The proposed method is easily implemented and offers a
plausible and transparent treatment of cross-country heterogeneity.

Most macro models covering the housing sector focus on the effects of monetary policy
on house prices or mortgage credit. In this respect, only a few studies investigate empiri-
cally the impact of shocks to house prices on the economy. Ahamada and Sanchez (2013)
show for US data that a one-percent decrease in house prices has a substantial impact on

2See for instance Zellner and Hong (1989), Rickman (1995), Canova (2005), Jarociński (2010), Calza,
Monacelli, and Stracca (2013), or Koop and Korobilis (2016).

3Frey and Mokinski (2016) propose a related concept in a non-panel context. They show that imposing
prior beliefs about the similarity of coefficients may improve forecasting performance.
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consumption and GDP of about -0.5 to -1 percent after ten quarters. They identify inten-
sified effects in subsamples following housing market deregulation. Disney, Gathergood,
and Henley (2010) estimate a microeconometric model of household savings and infer a
marginal propensity to consume with respect to housing wealth shocks of 0.01. In a euro
area panel analysis, Nocera and Roma (2017) find that positive housing demand shocks
increase GDP by 0.09 percent.4 Gustafsson, Stockhammar, and Österholm (2016) employ
a conditional forecasting exercise and show that a fall in house prices has an adverse effect
on the economy, especially if the shock is combined with an international recession. Calza
et al. (2013) show that contractionary monetary policy shocks have more pronounced
effects on residential investment and house prices if mortgage markets are more flexible.
They employ a “stochastic pooling” approach in order to account for cross-country sim-
ilarities as well as specificities in the impulse response functions. Since the econometric
setup of studies is hardly comparable, the literature documents a large variety of results,
where macroeconometric approaches seem to identify more severe effects. The present
study confirms those findings and attributes them to the expectations and the interest
rate.

The remainder of this paper is organized as follows. Section 2 lays out the empirical
strategy and discusses identifying assumptions. Section 3 summarizes the data. Results
are discussed in section 4, and section 5 concludes.

2 Model

This section provides an overview of the empirical technique with respect to the implemen-
tation of the prior distribution, the model averaging procedure, and the structural shock
identification. The approach involves a standard vector autoregression (VAR) model with
a hierarchical cross-sectional prior specification5 which is used to estimate the impact of
house price adjustments on the real economy. The prior distribution is used as a device
for partial pooling, i.e. for merging observations across countries to an appropriate degree.
In fact, the model brings together existing building blocks which are well-understood but
have not yet been combined in this particular way in one unified model framework.

2.1 Reduced form

Interest centers on a VAR model with respect to a particular country indexed by c

yc,t =

p∑

j=1

Bc,jyc,t−j + ec,t, for t = 1, . . . , Tc (1)

where yc,t is an n×1 vector containing the endogenous model variables, the n×n matrices
Bc,j contain the slope parameters of the model, and ec,t ∼ N (0,Σc) is a n× 1 vector of
reduced-form residuals.6 All variables considered enter the model in first differences. Time

4The authors use a mean-group average estimate according to Pesaran and Smith (1995).
5For a typical hierarchical approach in the context of Bayesian VARs see Giannone, Lenza, and

Primiceri (2015).
6Note that the model does not allow for interdependencies across countries while the prior distribution

proposed below accounts for potential cross-sectional homogeneity. I argue that, with respect to the
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series {yc,t}Tt=1 are standardized ex ante country-by-country, which allows the omission of
an intercept term in the model.7 Equation (1), together with the distributional assumption
on the reduced form error vector ec,t, defines a likelihood function and describes my
assumption about the data generating process (DGP).

Given the panel structure of the data, depending on the appropriateness of priori ho-
mogeneity assumptions there are two strategies to estimate a VAR model. First, one may
assume a country-level perspective and estimate the model for each of the c = 1, . . . , C
countries separately, ignoring information in the cross section. Second, observations are
pooled across countries carrying the assumption of homogeneous models. The former ap-
proach has the advantage of providing results for each cross-sectional unit. If the number
of coefficients is large, the number of observations may be insufficient in order to estimate
the model properly. While it is generally possible to obtain coefficients that minimize the
in-sample fit, they may feature poor out-of-sample performance. The so-called problem
of “overfitting” delivers misleading results in small samples. Pooling the observations
sacrifices cross-sectional specific results for an extended dataset. Attention centers on
inference at a country level, yet I seek to overcome the overfitting problem in a more
careful way using a sensible prior distribution.

One representation of the VAR model (1) likelihood function is

f (Y c|βc,Σc) = (2π)−
nTc

2 det (Σc)
−

Tc

2 exp

{
−1

2
tr
[
Σ−1

c (Y c −XcBc)
′ (Y c −XcBc)

]}
,

(2)
where Bc ≡ [Bc,1, · · · ,Bc,p]

′ is (n ·p)×n, Y c ≡ [yc,1, · · · ,yc,T ]
′, xc,t ≡ [y′

c,t−1, · · · ,y′
c,t−p],

Xc ≡ [x′
c,1, · · · ,x′

c,T ]
′, and βc ≡ vec(Bc). The Bayesian strategy allows me to specify

a prior distribution which contains information about the model before analyzing the
data in Y c. A well-chosen prior addresses the problem of overfitting. In the context of
VAR models, most frequently the so-called Minnesota prior (see Litterman, 1979; Doan,
Litterman, and Sims, 1984; Sims and Zha, 1998), which in its basic representation, shrinks
the posterior distribution to a simple random walk model, is used. Alternatively, I propose
the likelihood function of the cross-country pooled observations to serve as a reasonable
device to form a priori beliefs.

Consider a panel model that pools the observations with respect to all countries except
country c. The corresponding (non-country-c) likelihood function reads

f(Y ∗
c |β∗

c ,Σ
∗
c) = (2π)−

nT
∗

c

2 det (Σ∗
c)

−
T
∗

c

2 · · ·

· · · × exp

{
−1

2
tr
[
(Σ∗

c)
−1 (Y ∗

c −X∗
cB

∗
c)

′ (Y ∗
c −X∗

cB
∗
c)
]}

, (3)

where Y ∗
c ≡ [Y ′

1, · · · ,Y ′
c−1,Y

′
c+1, · · · ,Y ′

C ]
′, X∗

c ≡ [X ′
1, · · · ,X ′

c−1,X
′
c+1, · · · ,X ′

C ]
′, and

T ∗
c ≡ T1 + · · · + Tc−1 + Tc+1 + · · · + TC . Merging both likelihood functions (2) and (3)

results in a panel VAR model where observations are pooled across countries and country
specificities are washed out. As the focus is on inference at a country level, “full” pooling
is not a sensible option. However, one can still interpret the likelihood in equation (3)

economic application, potential homogeneity between housing markets should be more relevant.
7Variables are rescaled according to their standard deviations in order to ensure meaningful magnitudes

of impulse response functions.
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as a priori information which may be appropriately discounted by a tightness parameter
λc.

8 In other words, I propose a prior distribution for Bc and Σc that fulfills

p(βc,Σc|λc) ∝ [f(Y ∗
c |βc,Σc)]

λc . (4)

Note that the likelihood function on the right hand side corresponds to the one in equation
(3), where β∗

c and Σ∗
c have been replaced by βc and Σc respectively. In order to avoid

double-counting of data, the prior distribution does not contain any observations with
respect to country c. This ensures disjoint information sets of prior distribution and
likelihood.

It has to be noted that the framework presented here still generates inference that is
specific to the cross-sectional unit. The country-c model description in equation (1) or
its respective likelihood function in equation (2) define the researcher’s belief about the
DGP. The introduction of a particular prior distribution does not question this belief.
Rather it serves as a device to account for possibly insufficient sample sizes at the country
level. Unspecified similarities between countries’ models may prove useful in this context.

Following the mixed estimation strategy of Theil and Goldberger (1961), the prior
distribution is implemented via dummy observations, i.e. by appending discounted obser-
vations to the sample of country c.9 This procedure describes a partial pooling approach
because merging country-c data with a non-country-c data is limited by λc. Section B
of the appendix shows that the dummy observations prior may be expressed in terms of
a conjugate normal-inverse-Wishart distribution to the likelihood function (2).10 As a
consequence, the corresponding posterior distribution inherits the well-established prop-
erties derived with respect to the conjugate prior distribution, e.g. it belongs to the same
distributional family, sampling can be done in an efficient way, and a closed-form solution
for the marginal data density exists.

The posterior distribution originates from the product of the likelihood (2) and the
prior distribution (4). Following Del Negro and Schorfheide (2011), it is of a normal-
inverse-Wishart form

(βc,Σc) |Y c, λc ∼ NIW
[
βc,

(
X

′

cXc

)−1

,Sc, T c − n · p
]
, (5)

with

T c ≡ Tc + T c, Y c ≡
[
Y c

Y c

]
, Xc ≡

[
Xc

Xc

]
,

Bc ≡
(
X

′

cXc

)−1 (
X

′

cY c

)
, βc ≡ vec

(
Bc

)
, Sc ≡

(
Y c −XcBc

)′ (
Y c −XcBc

)
,

and
T c ≡ T ∗

c λc, Y c ≡ Y ∗
c

√
λc, Xc ≡ X∗

c

√
λc.

8Before estimating the model I standardize the variables to have mean zero and standard deviation
one. It follows that the relative volatilities of the variables do not appear with respect to the specification
of the prior distribution tightness parameter. Still, the standard deviations are considered with respect
to impulse response analyses.

9In the context of multivariate time series models this technique has been applied by Sims and Zha
(1998), amongst others.

10A similar representation of this prior distribution has been used by, e.g., Koop and Korobilis (2010).
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The particular specification used in the present paper follows the exposition by Del Negro
and Schorfheide (2003) and Del Negro and Schorfheide (2004). The authors construct
a dummy observations prior distribution weighted by a tightness parameter. Making
reference to Zellner (1971), they show that the corresponding posterior distribution is of a
normal-inverse-Wishart form. Del Negro and Schorfheide (2011) argue that implementing
priors via dummy observations helps to formulate reasonable a priori beliefs about the
covariance matrix of the slope coefficients.11 Section D shows that the slope coefficient
covariance matrix is generally non-diagonal with respect to stationary VARs and a Monte
Carlo exercise demonstrates the benefit not setting the respective off-diagonal elements
to zero.

The posterior reduces to the likelihood of the country-specific VAR model if λc = 0
and it reduces to the likelihood of the pooled model if λc = 1.12 Any convex combination
in the range [0, 1] constitutes a reasonable “intermediate” value. The Bayesian model
averaging approach outlined in section 2.2 offers the possibility of estimating the prior
tightness parameter λc within those bounds.

The specification of the prior distribution shares some similarities with the model of
Jarociński (2010) as it shrinks the posterior distribution towards a cross-sectional aver-
age. However, the posterior distribution in equation (5) and the respective parameter
definitions formulate a more general approach as (i) the prior covariance matrix of βc is
not restricted to be diagonal and (ii) the prior distribution is informative with respect
to the residual covariance matrix Σc as well. A possibly minor advantage results from
the dummy observations approach. Implementation of prior information becomes rather
simple because the researcher only has to pool country c’s observations with λc-discounted
observations of the remaining countries instead of specifying each diagonal element of the
prior covariance matrix of βc separately.

The prior distribution shrinks the country-cmodel towards a discounted non-country-c
average model. The non-country-c model is discounted by assuming a common tightness
parameter λc for the remaining C − 1 countries. Alternatively, the researcher might want
to define a separate tightness parameter for each country entering the prior distribution.
This would allow the role to be discriminated for each country separately. While conceptu-
ally straightforward, this approach adds additional layers of complexity to the procedure
because the distribution of the tightness parameters becomes multidimensional. Such an
approach would represent a separate research question and is therefore not pursued any
further at this point.

2.2 Bayesian model averaging

In terms of the BMA concept, the choice of a particular value for the hyperparameter λc

defines an econometric model. Probabilities are assigned to each model, i.e. to each value

11The proposed dummy observations prior is a “data-based” quantity because it is constructed from
actual observations. In this respect it shares similarities with the so-called g-prior proposed by Zellner
(1986). Setting the slope covariance proportional to the observed X ′

cXc matrix, off-diagonal elements
are generally non-zero.

12Note that for too loose priors, i.e. sufficiently small values of λc, the prior distribution is not well-
defined. For this reason, the prior on λc assigns zero probability to that range. Section 2.2 provides a
more formal description and section F of the appendix demonstrates results with an alternative prior
specification.
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of λc, considered. Model statistics which depend on the choice of λc are weighted according
to their respective model probabilities. A prior distribution on the hyperparameter is
combined with the marginal data density13 in order to obtain a posterior distribution over
the models indicated by λc. The posterior distribution constitutes the models’ weights in
the BMA procedure. The hierarchical approach described above allows the researcher to
treat hyperparameters as objects to be estimated.

In brief, the marginal data density measure is interpreted in terms of the likelihood and
is combined with a (hyperprior) distribution over λc. The posterior distribution fulfills

p (λc|Y c) ∝ p (Y c|λc)× p(λc).

Conveniently, a closed-form representation of the marginal data density corresponding to
the posterior (5) is available and documented by Del Negro and Schorfheide (2011); it
reads

p (Y c|λc) = (2π)−nTc

det
(
X

′

cXc

)−n

2

det
(
Sc

)−Tc−k

2

det (X ′
cXc)

−n

2 det (Sc)
−

Tc−k

2

×
2

n(Tc−k)
2

∏n

i=1 Γ
(

T c−k+1−i
2

)

2
n(Tc−k)

2

∏n

i=1 Γ
(

T
c
−k+1−i

2

) .

The existence of an exact closed-form solution for the marginal data density makes the
hierarchical BMA approach tractable and accurate. It remains to specify the hyperprior
distribution. As the two polar cases λc = 0 and λc = 1 limit the hyperparameter in a
reasonable way, it seems sensible to choose the prior of λc to follow a Beta distribution

λc ∼ Beta (α, β) .

The support of the Beta distribution features λc ∈ [0, 1] which implicitly bounds the
posterior draws of the tightness parameter to this range.14 In order to impose a relatively
uninformative prior, α = β = 1 is chosen for the analysis. In fact, this specification
reduces the Beta distribution to a uniform distribution bounded between zero and one.

The posterior distribution of the tightness parameter p(λc|Y c) is used to weight a
particular posterior statistic of interest S(Bc,Σc). Inference is based on the average of
the weighted statistic

p(S[Bc,Σc]|Y c) =
∑

λc

p (λc|Y c)× p (S[Bc,Σc]|Y c, λc) . (6)

In particular, a fixed number of draws from the posterior distribution of the VAR model
depending on the tightness parameter are generated. In the following, based on the draws,
the statistics of interest, e.g. percentiles of impulse response functions, are calculated. The
final estimate of a particular percentile of the impulse response function is computed as

13The marginal data density is a common measure of fit in Bayesian analyses. Jarociński and
Maćkowiak (2013) provide a discussion on the appropriateness of the marginal data density and alterna-
tive measures. A later version of this study (see Jarociński and Maćkowiak, 2017) omits the respective
paragraph.

14In order to yield a well-defined prior distribution it is required that λc ≥ (p + 1)n/T ∗

c . As a conse-
quence, the indicator function I(λc ≥ [p+ 1]n/T ∗

c ) which equals one for “large enough” values of λc and
zero otherwise is multiplied to the probability density function of the Beta distribution to yield p(λc).
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the (posterior model probability) weighted average over a predefined set of possible values
for λc. BMA describes a sensible treatment because it considers uncertainty with respect
to the “correctness” of the model.15

2.3 Structural form

The reduced-form model of equation (1) is not sufficient to draw clear economic conclu-
sions. I am more interested instead in the effects of structural shocks and the correspond-
ing structural model

Ac,0yc,t =

p∑

j=1

Ac,jyc,t−j + uc,t, for t = 1, . . . , Tc, (7)

where Ac,j ≡ Ac,0Bc,j and uc,t ≡ Ac,0ec,t with uc,t ∼ N (0n,1,In).
16 In order to identify a

structural house price bust shock, a combination of sign and zero restrictions is imposed
on the impulse response functions.

The exceptional importance of expectations with respect to house price developments
has been shown by empirical and theoretical analyses.17 Similarly, the ESRB (2016)
states that boom-bust housing cycles may be particularly fueled by excess optimism.
For instance, Lambertini et al. (2017) argue that, in the run-up to the crisis, optimistic
expectations led to an increased demand for housing, feeding into a rise in house prices.
Borrowing capacity improved along with mortgage financing, thus ultimately causing the
house price boom to become self-reinforcing. Similar forces may operate along downturns.

The above considerations are summarized by identifying assumptions that include a
sudden drop in confidence in future economic developments accompanied by a decline in
house prices. The corresponding innovation is denoted a “house price bust” shock. Table
1 depicts the identifying assumptions of the baseline shock (S1) as well as of alternative
versions (S2)-(S4).18 Other variables in the system remain unaffected on impact, which
orthogonalizes the shock from standard economic driving forces like aggregate demand
or aggregate supply shocks. In fact, the identified house price shock may equally well be
called a particular housing demand shock that originates from households’ expectations.
The fact that the baseline identification scheme (S1) contains the assumption of a decline
in households’ economic outlook defines a very particular type of a housing demand shock
which is expected to have more severe consequences for the economy compared to an
(“ordinary”) shock that does not contain this additional assumption (S3). The shock is
said to capture a decline in prices which may have the potential to cause a deep recession

15There are two alternatives to the model averaging approach. First, the researcher selects the model at
the posterior mode of λc (“Bayesian Model Selection”). If inference is based on the posterior mode, it rests
upon a generally incorrect point estimate of λc. Second, the researcher samples the pair (S[Bc,Σc], λc)
in order to obtain draws from the respective joint distribution (“MC3”). Koop (2003, ch. 11) mentions
that MC3 is useful if the number of models considered is too huge which is not the case with respect to
the present application.

160n,k denotes an n× k matrix of zeros and In denotes the n× n identity matrix.
17See for instance Piazzesi and Schneider (2009), Lambertini et al. (2013), Towbin and Weber (2016),

and Lambertini et al. (2017).
18Note that, while generally possible, I do not identify the shocks jointly. Rather, depending on the

type of analysis, I select one of the three alternatives and estimate the respective structural model.
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Shock gc,t rc,t xc,t pc,t zc,t

(S1) House price bust (baseline) 0 0 ↓ ↓ 0
(S2) House price bust (flexible rate) 0 ↓ ↓ ↓ 0
(S3) House price (w/o outlook) 0 0 0 ↓ 0
(S4) House price (agnostic) unrestricted

Table 1: The following abbreviations are used: gc,t: gross domestic product, rc,t: mortgage
rate, xc,t: economic outlook, pc,t: real residential property prices, zc,t: consumption.

or a even a crisis. Since it depends on households’ expectations with respect to future
economic conditions, the shock may also be labeled a “confidence shock” which should be
related to actual future economic activity.

The identifying assumptions on the structural shock represent very specific beliefs
about the house price shock. In order to define an agnostic benchmark, (S4) represents a
house price decline without any identifying assumptions. In particular, this specification
resembles a shock in a recursively identified VAR model, where house prices are ordered
first. Equivalently, it is akin to the so-called “generalized” impulse response functions
approach proposed by Pesaran and Shin (1998). This measure has the advantage of
not requiring arguably subjective identifying assumptions. Given the model, the impulse
responses of all variables are computed from the data alone and do not contain further
beliefs of the researcher. The flipside of this agnostic measure is that it produces responses
of shocks without a proper economic interpretation. Even though a meaningful assessment
is rarely appropriate, I use (S4) as a benchmark in order to evaluate the responses of the
baseline identification scheme.

From a technical perspective, sign and zero restrictions are imposed on Ac,0 (see e.g.
Uhlig, 2005, 2017). Given draws from the reduced-form VAR, Arias, Rubio-Ramirez,
and Waggoner (2014) 19 propose an efficient way to obtain rotations of the model that
satisfy a set of sign and zero restrictions. In section 2.1 it was shown that the posterior
distribution of the reduced-form model (1) is standard. Sampling follows Del Negro and
Schorfheide (2011) who describe an algorithm with respect to the matricvariate-normal-
inverse-Wishart distribution.20

Algorithm (Reduced-form sampling and identifying restrictions).

1. Draw Σ(s)
c ∼ IW

(
Sc, T c − k

)
.

2. Draw β(s)
c |Σc ∼ N

(
βc,Σ

(s)
c ⊗

(
X

′

cXc

)−1
)
.

3. Draw a proposal for A
(s)
c,0 according to Arias et al. (2014).

19Arias, Rubio-Ramirez, and Waggoner (2018) clarify that the algorithm in the earlier version of their
paper is not invariant to the ordering of structural shocks. Since I identify only one structural shock for
each model this disadvantage should not apply at this point.

20Equivalently, the distributions in terms of the normal as opposed to the matricvariate-normal dis-
tribution may be formalized. In fact, draws from the normal distribution can be rearranged to serve as
draws from the respective matricvariate-normal distribution.
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4. Generate impulse response functions based on zero restrictions and a candidate
{Σ(s)

c ,β(s)
c ,A

(s)
c,0}. If sign restrictions are fulfilled, keep the candidate and iterate

s, otherwise discard the draw and generate another candidate.

5. Return to 1. until the required number of draws has been obtained.21

3 Data

The model considered is estimated on quarterly data for a set of 1622 euro area countries.
The maximum time span ranges from 2003:Q1 to 2019:Q1 but is not available for all
countries in the sample. It is important to note that the sample size varies over countries
as the number of observations is relevant with respect to the discussion of the prior
tightness.23 Table 2 in the results section provides an overview.

Importantly, the definition of the time series should be as consistent as possible across
countries. Variables considered for the model are expected to illustrate the effects of
sudden house price shocks at a macroeconomic level. Obviously, a description of the
household sector is crucial with respect to the transmission of house price shocks to GDP.
Consequently, variable selection particularly focuses on the behavior of this sector at an
aggregate level. The system is generally conformable with the empirical macro literature
(see e.g. Calza et al., 2013 or Ahamada and Sanchez, 2013).

The analyses employ publicly available series of real residential property prices from
the Bank for International Settlements (BIS) Residential Property Price database. While
the respective original data sources may differ and the definitions of the time series do
not match perfectly across countries, they constitute a relatively homogeneous collection
of house price series. With respect to the time series properties, a notable degree of
cross-sectional heterogeneity is identified. The column entitled “100 × σc” of table 2 in
section 4 covers the standard deviation as a measure of the series’ volatility. It shows
considerable heterogeneity, ranging from 0.97 in Germany to 6.14 in Lithuania. The
role of the consumer outlook has been discussed in section 2.3. The respective data is
taken from the OECD and covers consumer expectations over the future tendency of the
general economic situation. As mentioned in section 2.3, expectations play a crucial role
with respect to sudden price drops. The indicator represents the balance of answers to
a survey and is generally bounded between -100 and 100. Finally, the object of study is
the impact of house price bust shocks on output or consumption. In the analysis they
serve as a measure of damage to the economy if sudden price drops occur. Data on real
GDP and real individual consumption expenditures is taken from the European Central
Bank (ECB) Statistical Data Warehouse. The mortgage rate is taken from the Monetary
Financial Institutions (MFI) Interest Rate Statistics of the ECB which is provided by the
ECB Statistical Data Warehouse as well.

21For each value of λc 1,000 draws from the posterior distribution are generated. This amounts to a
total of 100,000 draws for country c to be considered for the model averaging procedure.

22The selection of euro area countries is based on the availability of time series data.
23In general it is not necessary for the prior to cover the same sample as the likelihood. With respect to

Bayesian analyses it is common practice in applied research (see e.g. Primiceri, 2005 or Jarociński, 2010)
to employ a pre-sample analysis in order to construct or calibrate the prior distribution. This method
has also been mentioned by Koop (2003, ch. 12) and Canova (2007, ch. 10).
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A detailed description of the time series may be obtained from the respective data
sources. Data identifiers are provided in section A of the appendix. Except for the
mortgage rate and the consumer outlook indicator, natural logarithms are applied to the
variables before calculating first differences. The consumer outlook series are divided by
100 in order to rescale their magnitude.

4 Results

4.1 Prior tightness

The tightness parameter λc is an important component of the model because it sets the
degree of partial pooling with the cross section. The hierarchical approach generates as
a by-product the corresponding posterior distribution. The respective prior distribution
reflects the belief that λc should be located in the range between zero and one. The
lower bound represents a very loose prior on Bc and Σc that does not include any ob-
servations of other countries, and the upper bound represents a tight prior which fully
incorporates other countries’ observations. The posterior results with respect to λc ei-
ther contain valuable information about the informativeness of cross-country mechanics
for each country-specific VAR model or reflect a degree of cross-country heterogeneity.
In fact, it is not possible to disentangle whether country c’s data is relatively informa-
tive such that cross-sectional information is not required or whether the country-c model
differs strongly from the (non-country-c) pooled model.

Figure 1 illustrates the mode and two credible sets of the posterior distribution of λc.
24

The boxplots document considerable differences across countries. In fact, there are some
countries for which the model devotes relatively small weights to average cross-country
information like Finland, France, Germany, Latvia, and Luxembourg with mode estimates
below 0.2.25 At the other extreme, the VAR models of Estonia, Greece, Portugal, and
Spain require very tight priors, which shifts their respective posterior results towards the
pooled VAR model. In fact, the upper bound of the hyperprior distribution seems to be
binding for three countries in the sample. Still, values of λc > 1 are hardly interpretable
and, while econometrically possible, relaxation of the restrictive bounds would appear
to be unreasonable. The posterior distribution of λc seems to vary with the degree the
respective countries’ housing market has been hit by the global financial crisis. Styl-
ized facts of Rodrigues and Lourenço (2015) show that countries like Spain, Greece, the
Netherlands, or Portugal experienced declines in terms of the price-to-rent ratio or the
price-to-income ratio whereas for Austria, Belgium, Germany, Finland, and France those
figures remained fairly stable. Ireland26 marks an exceptionally low estimate of λc while

24With respect to the lag length, the analyses generally assume the baseline specification p = 4 to cover
at least one year. An additional exercise in section 4.4 demonstrates the impact of p on the tightness
parameter.

25It has to be noted that credible intervals cannot reach zero because I assign zero probability to models
where λc is too small, i.e. where the prior distribution is not well-defined.

26It is well-known that the time series of Irish GDP growth rates exhibits an unusual out-
lier value. Notes of the European Commission (see https://ec.europa.eu/eurostat/documents/

24987/6390465/Irish_GDP_communication.pdf) and the OECD (see http://www.oecd.org/sdd/na/

Irish-GDP-up-in-2015-OECD.pdf) state that the reason for this data anomaly follows from a relocation
with respect to multinational corporations. Results from a robustness exercise, where the exceptional
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Figure 1: Posterior distribution of the tightness parameters λc across countries. The
gray shaded areas denote the 68 percent and the 90 percent Bayesian (highest probability
density) credible intervals, respectively.

the country has experienced considerable declines in both ratios.
In a similar context, Calza et al. (2013) focus on mortgages and distinguish country

groups along a set of mortgage market indicators. As results depicted in figure 1 hardly
align with their heterogeneity pattern, λc does not (or at least not exclusively) seem to
capture differences in the mortgage market. My results resemble the ones of Koop and
Korobilis (2016) in the sense that findings with respect to model homogeneity cannot
be related to “simple narratives” that divide the euro zone into core and periphery re-
gions. The ESRB (2016) confirms that it is difficult to relate country-specific results to
certain parameters. One reason may be that interaction of different aspects is important.
Moreover, as hinted above, λc does not only capture the degree of heterogeneity,27 it also
reflects the relative informativeness of country-c data compared to the rest of the sample.
In other words, if the estimate of λc is small, country c’s model either is very different
from the other countries’ or its data is sufficiently informative.

Table 2 provides further description regarding the prior importance. The column
entitled Tc lists the number of actual observations for the respective country while column
T

m

c contrasts the number of artificial dummy observations28 used for the construction of
the prior distribution

T
m

c = λm
c T

∗
c .

growth rate is replaced by the sample mean, are virtually indistinguishable from the baseline analysis.
The respective figures are available upon request.

27Note that the unqualified interpretation of λc in terms of a measure of homogeneity is not correct
because samples are not fully congruent across countries. The corresponding bias in interpretation should
be more relevant if the number of observations was considerably lower than average (see table 2). It is
still valid to interpret the tightness parameter in terms of the prior distribution informativeness.

28In contrast to actual observations, I define the number of artificial dummy observations as a contin-
uous variable. The point estimate is calculated as the product of the mode of λc and the actual sample
size of the dummy observations T ∗

c .
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100× σc Tc T
m

c T
m

c /Tc λm
c

AT 2.22 60 216.08 3.60 0.28
BE 1.37 60 162.06 2.70 0.21
DE 0.97 60 131.19 2.19 0.17
EE 5.87 52 772.00 14.85 1.00
ES 2.54 60 764.00 12.73 1.00
FI 1.31 60 131.19 2.19 0.17
FR 1.76 60 115.76 1.93 0.15
GR 2.23 23 728.18 31.66 0.91
IE 3.46 60 154.34 2.57 0.20
IT 1.12 60 254.67 4.24 0.33
LT 6.14 53 443.91 8.38 0.58
LU 1.50 43 126.22 2.94 0.16
LV 2.98 29 144.55 4.98 0.18
NL 1.58 60 470.75 7.85 0.62
PT 2.04 40 784.00 19.60 1.00
SI 2.46 44 315.15 7.16 0.40

Table 2: Descriptive statistics of the data and the cross-country VAR models. σc is the
standard deviation of the house price growth series pc,t, Tc denotes the sample length of
country c, and T

m

c denotes the effective number of prior dummy observations at the mode
λm
c .

The superscript “m” indicates the posterior mode estimate. Apparently, even countries
with relatively low estimates of λc feature quite a substantial degrees of cross-country
prior information. Consider the case of Finland, which receives a relatively loose prior
tightness parameter but still contains more than twice as many observations from the cross
section compared to country c’s sample size. One might explain this finding by a stable
relationship between house prices and the macro variables across countries. It seems that
the general economic mechanism prevails in the sample. While it is not straightforward to
compare the numerical estimate of λc with the corresponding measures of heterogeneity
in Jarociński (2010), his estimates seem to support considerable degrees of partial pooling
as well. Unfortunately, Canova (2005), who employs a similar approach, does not cover a
detailed analysis with respect to the consequences of heterogeneity on his results.

In order to illustrate the impact of the prior tightness on impulse response functions,
figure 2 depicts impulse response functions for each value of λc considered in the range
[0, 1]. The graphs show cumulated impulse response functions of GDP growth for the
case of Austria and Italy. The countries serve as representative examples.29 Darker lines
indicate λc → 1, i.e. responses that feature a tighter prior. In order not to overload the
graph, the focus lies on the median impulse response function over the posterior draws.
Note that a fully loose prior distribution (λc = 0) generates impulse response functions of
a single-country maximum likelihood VAR model. In fact, for Austria the prior tightness
has a marked effect on the dynamics as the reaction of output becomes to some extent

29The two countries are chosen in order to show distinctive patterns with respect to the impact of
the tightness parameter on the simulation results. Selection is meant to avoid any suggestive motives.
Results with respect to other countries are available upon request.
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Figure 2: Median impulse response functions for λc ∈ [0, 1] for the examples of Austria
and Italy. Light gray lines indicate small values (closer to single country model) and
darker lines indicate greater values (closer to pooled model) of λc.

more gradual. It seems that tighter priors induce stability in the response dynamics,
which enhances the reliability of the results. As the tightness parameter approaches its
maximum, the model converges to the pooled VAR rescaled with respect to the standard
deviations of Austria. With respect to the second example, Italy, the prior works in
another direction and amplifies the estimated effects. Still, responses seem to converge
to more stable dynamics. Figure 2 should be regarded as an illustrative example for the
general impact of the tightness parameter. While the quantitative effects might be diverse
across countries, the feature of stabilizing the responses prevails.

A sensible prior distribution is designed to reduce estimation uncertainty. In order to
evaluate the usefulness of my approach, I attempt to quantify the degree to which cross-
sectional correlations improve upon the precision of impulse response function estimates.
Relatively wide credible intervals indicate dispersed posterior distributions and vice versa.
I construct a precision measure by computing the distance between predefined percentiles
of the posterior distributions of the respective impulse response functions. In fact, I
compute the 16 to 84 (q = 68) as well as the 5 to 95 (q = 90) interpercentile ranges IPRq

of impulse response functions with respect to output and consumption h = 5 quarters
after the shock

∆(yj,t+h) ≡ 100× [IPRq (yj,t+h|λc = λm
c )− IPRq (y,jt+h|λc = 0)] .

Figures 3 and 4 depict the percentage point difference ∆ between one standard deviation
shock responses at the posterior mode λm

c and a model estimated without cross-sectional
prior information, i.e. where λc = 0.30 Negative values indicate that credible intervals
of the model with prior information are tighter than the respective model estimated on
country-specific data only. Results strongly indicate that cross-country information helps

30The model with λc = 0 essentially reflects the respective maximum likelihood estimate.

14



AT BE DE EE ES FI FR GR IE IT LT LU LV NL PT SI
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(G
D

P)
 (

in
 p

p)

Figure 3: Difference ∆ between interpercentile ranges of posterior impulse response func-
tions 4 quarters after the shock with respect to GDP. Black bars correspond to the 68
percent and gray bars to the 90 percent Bayesian credible intervals, respectively.
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Figure 4: Difference ∆ between interpercentile ranges of posterior impulse response func-
tions 4 quarters after the shock with respect to GDP. Black bars correspond to the 68
percent and gray bars to the 90 percent Bayesian credible intervals, respectively.
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Figure 5: Quarterly cumulative impulse response functions for Austria. Solid lines de-
pict medians, gray-shaded areas denote 68 percent and dashed lines 90 percent Bayesian
credible intervals, respectively.

to improve precision with respect to estimates of impulse response functions. Accordingly,
the vast majority of countries exhibit tighter credible intervals. Improvements are more
pronounced with respect to the 90 percent credible interval.

Figures 3 and 4 refer to one particular horizon only. Inspection of the complete
patterns of ∆31 shows that the advantage with respect to the precision tends to improve
with horizon h.

4.2 Adverse shocks to house prices

The impact of house price bust shocks is investigated with an impulse response analysis.
Weighted averages of median response functions are reported for the baseline house price
bust shock (S1) defined in table 1. In particular, a predetermined grid that defines
possible values of λc is used and 1,000 draws from the structural VAR impulse response
functions are generated for each λc. According to equation (6), percentiles of responses
are calculated and averages across λc are computed using weights obtained from the
respective posterior distribution p(λc|Y c) as discussed in section 4.1. The shock hits the
economy in period 0. The shapes of the impulse response functions are very similar across
countries. Therefore for a qualitative discussion, it shall suffice to analyze a particular
country example in figure 5. It depicts responses of all variables in the VAR system with
respect to the model of Austria. Since the model is estimated in first differences, quarterly
impulse responses of all model variables are cumulated over the horizon considered. The
house price bust shock is rescaled such that the median drop in house prices on impact is

31Results are not depicted but are available upon request.
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one percent.32

The identified shock has a negative impact on output and consumption. Results
show that it induces a gradual decay of real GDP over the first year. The responses
subsequently persist at the new and lower level. Theoretically, a drop in house prices
should have a direct effect on household wealth and probably on household lifetime wealth
as well. The latter crucially determines the potential of households to obtain credit to
finance their expenditures. In addition, it increases lenders’ losses in the case of a default
which may activate a precautionary savings motive. Consequently, a weakened wealth
situation should reduce aggregate consumption and housing investment (ESRB, 2016).
Aggregate demand contracts. Accordingly, consumption shrinks for about 8 quarters
and remains at the new lower level. A decrease in house prices reduces households’
nominal housing wealth which presumably limits consumption possibilities. Mortgage
rates show a tendency to decrease subsequently. The economic outlook worsens according
to the restriction and improves along the first two years. In the following, the response,
surprisingly, remains at a level below zero. It may not fully revert to zero due to its
positive relationship to GDP. Results are robust and quite homogeneous across countries.
Credible sets of GDP and consumption responses are almost exclusively different from
zero, which emphasizes the unambiguity of the effects. During the dynamic simulation
experiment, house prices subsequently tend to fall further, which may in turn accelerate
the responses of the other variables. This finding is important because it documents
considerable second-round effects in this context. Furthermore, the house price bust
shock features a decline in consumers’ economic outlook. Section 4.4 shows that this
particular sign restriction intensifies the amplitude of the impulse response functions.

While the general pattern of the responses is very similar across countries, quantita-
tive differences are to be noticed. Figure 6 condenses information from impulse response
functions with respect to GDP. It shows percentiles of cumulated responses after one
year.33 Results illustrate heterogeneity with respect to a one-percent house price shock.
Responses of output are similarly sharp for about 2/3 of the countries considered. The
response with respect to Finland, Germany, Greece, Ireland, and Luxembourg are excep-
tionally different as they feature a decline in GDP of more than one percent after one
year. The majority of countries exhibit more moderate effects of between about -0.2 and
-0.6 percent. GDP reactions are distinctly negative as none of the credible sets considered
contains zero.

The magnitude of the GDP reaction is relatively pronounced compared to what one
would expect with respect to an “ordinary” housing demand shock.34 The identified house
price bust shock, as noted in section 2.3, contains a decline in households’ expectations
on future economic developments. In this respect, the responses do capture an effect on
consumers’ confidence as well, which may have an additive negative impact on future

32Due to the linear nature of the model, effects of positive house price shocks are easily obtained by
reversing the impulse response functions.

33Section C in the appendix illustrates the effects after one quarter. One quantifies a relevant ampli-
fication effect over time but the cross-country comparison yields results comparable to those after one
year.

34Berger, Guerrieri, Lorenzoni, and Vavra (2018) note that, compared to the effects predicted by
theoretical models, empirical estimates of the elasticity of consumption to changes in house price are
quite large. Case, Quigley, and Shiller (2013) find that theoretical models that account for the relevant
frictions predict much higher elasticities.
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Figure 6: Impulse response functions of GDP 4 quarters after the shock. Solid lines depict
medians and the gray shaded areas denote 68 percent and 90 percent Bayesian credible
intervals, respectively.

economic activity. Section 4.4 sheds some light on the role of consumers’ expectations.
Comparing the estimation uncertainty in figure 6 with the posterior distributions

of λc in figure 1 suggests conclusions with respect to the informativeness of country-
specific data. Consider Finland, Germany, and Luxembourg, which exhibit loose prior
distributions (small values of λc) that may either indicate that those countries’ models
are relatively different from the “average” model or that their data is highly informative.
Considering their respective impulse response functions’ credible sets, which are relatively
wide, rejects the latter hypothesis and rather indicates less informative country-specific
data in those cases.

A similar conclusion may be drawn when considering the responses of consumption
to the house price shock, which are depicted in figure 7. While the general effect on
consumption is negative across all countries, the quantitative effect differs along similar
groups of countries. Again one observes quite strong drops for Finland and Greece in
excess of -0.75 percent. The effect seems to be about three to four times higher than for
countries with more moderate responses ranging between about -0.25 and -0.5 percent.

Instead of simulating one-standard-deviation shocks, the above analyses consider im-
pulse response functions rescaled to a negative one-percent decrease in house prices. The
transformation makes the shocks comparable across countries but disregards the likelihood
of the shocks occurring. Assuming a normal distribution, one-standard deviation shocks
appear with a probability of about 15.87 percent. Since negative one-percent shocks may
be more or less likely than the standard deviation shock, figure 8 contrasts the percentile
of a negative standard deviation with the respective percentiles for the shocks (S1), (S3),
and a negative one-percent quarterly growth rate of house prices. This illustration shows
that the house price bust shock is quite unlikely to occur for some countries. For ex-
ample, the German negative one-percent house price bust shock induces large declines
in economic activity but seems to be rather rare. Furthermore, the figure confirms that
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Figure 7: Impulse response functions of consumption 4 quarters after the shock. Solid
lines depict medians and the gray shaded areas denote 68 percent and 90 percent Bayesian
credible intervals, respectively.
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Figure 8: Black bars indicate the percentiles of a negative one-percent shock with respect
to the baseline identification scheme (S1), dark gray bars indicate respective percentiles for
the identification scheme (S3) and the light gray bars indicate the percentile of a negative
one-percent quarterly growth in house prices assuming normally distributed growth rates.
The dashed line represents one standard deviation.
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Figure 9: Amplification effect for Austria. Solid lines depict medians, gray shaded areas
denote 68 percent and dashed lines 90 percent Bayesian credible intervals, respectively.

the identification scheme (S1; black bars) which contains a decline in consumer economic
outlook is generally less likely than the shock with a zero restriction on that variable (S3;
dark gray bars). Both shocks are also less likely than an almost unrestricted35 fall in
house prices (light gray bars).

4.3 Restriction on the mortgage rate

It stands to reason that the mortgage rate has a particular effect on house price reactions.
Episodes of low interest rates constitute easy financing conditions and allow borrowers to
afford more expensive homes which, in turn, may drive up house prices. Conversely, a
monetary authority can use the short-term interest rate as a policy instrument in order
to dampen economic downturns. In a situation where the nominal interest rates and the
respective policy instrument are close to the zero lower bound, the potential to stabilize
the economy becomes limited. In this respect, one may argue that the zero restriction on
the mortgage rate is crucial for the magnitude of the output and consumption responses.
This leads to a quantification of an amplification effect that may arise from the fact that
interest rates are not allowed to be adjusted in response to the shock. Corresponding
impulse response functions feature the same identifying assumptions except for the mort-
gage rate which is assumed to carry the effects of accommodative monetary policy. As an
example, figure 9 contains the amplification effect for the case of the Austrian economy.
In particular, draws of the baseline shock (S1; see table 1) responses are subtracted from
the corresponding responses of the “flexible rate” shock (S2).36 The current experiment
tries to capture at least the effect of initially low mortgage rates and probably defines

35The only underlying model assumption is that house price growth rates are normally distributed with
variance σ2

c .
36Note that the responses are obtained from two independent simulations. The efficiency of this exercise

may be improved by jointly identifying both shocks for one model.
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Figure 10: Amplification effect with respect to output 4 quarters after the shock. Solid
lines depict medians and the gray shaded areas denote 68 percent and 90 percent Bayesian
credible intervals, respectively.

a lower bound of the true effect.37 Subsequently, the same BMA approach as for the
impulse response functions of section 4.2 is applied to the differences between impulse re-
sponse functions. With respect to the dynamics of output and GDP, simulations feature
a gradual decline over about two years followed by a persistent behavior remaining at a
lower level. The effect on house prices does not appear to vary distinctly between (S1)
and (S2).

In order to illustrate potential cross-country differences, analogously to the impulse
response analysis, the amplification effects with respect to the responses of output and
consumption one year after the shock are depicted for each country in the sample. Figure
10 contains the effect with respect to the response of output. Across countries, results
show a quite homogeneous pattern of consistently negative point estimates with respect
to the amplification effect. Quantitatively, the point estimate of the GDP response is
lower if mortgage rates are restricted to zero on impact. The impact ranges from about
-0.25 percentage point to about -1 percentage point. A closer look at the results reveals
the importance of the restriction on the mortgage rate. Accommodative rates seem to
fully terminate the adverse effects. The experiment shows that house price shocks are
particularly amplified if mortgage rates are restricted to adjust accordingly.

Considering the responses of consumption, figure 11 shows a similar picture. Quanti-
tatively, the amplification is in most cases less than half the size as in the corresponding
exercise with respect to GDP. However, the effects with respect to consumption are less
clear because some uncertainty bands partially cover the zero line.

37In section 4.4 the zero lower bound issue is approximated by conditional forecasts.
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Figure 11: Amplification effect with respect to consumption 4 quarters after the shock.
Solid lines depict medians and the gray shaded areas denote 68 percent and 90 percent
Bayesian credible intervals, respectively.

4.4 Additional exercises

Prior tightness and lag length

Generally, the BMA approach can be used to address the problem of choosing an ap-
propriate number of lags p in the VAR model. In particular, one may add a lag length
dimension to the set of models considered which increases the level of computational com-
plexity. While it is not the focus of this paper to determine the optimal lag length, one
may be interested in the effect of p on the tightness parameter λc. Ceteris paribus, a
positive impact may be expected because, as p increases, so does the number of param-
eters to be estimated. Larger models should require more observations or tighter prior
distributions. Figure 12 plots the posterior distribution of λc for an otherwise unchanged
VAR model with a lag length of p = 6. The results confirm the hypothesis. In terms of
the lag length, more complex models yield a tighter prior distribution but the effect differs
in magnitude. Comparing the posterior mode estimates, λm

c is roughly between 0.05 and
0.2 higher if 6 instead of 4 lags are considered. There are some outliers; Latvia, where the
mode estimate remains virtually unchanged and Lithuania, the Netherlands, and Slove-
nia, where the mode estimate is more than 0.4 higher for the 6-lag model. The mode
estimate with respect to Estonia, Portugal, and Spain still represent corner solutions.

Prior tightness and the number of variables

The general conclusion of the previous section – that more complex models require tighter
prior distributions – should also carry over to other extensions, e.g. for models with more
endogenous variables. Though it might be difficult to identify the effect of model com-
plexity in this setup, a small model with three instead of six variables is estimated. The
VAR model employs the baseline specification but contains only GDP, consumption and
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Figure 12: Posterior distribution of the tightness parameter λc for a model with p = 6
lags. The gray shaded areas denote the 68 percent and the 90 percent Bayesian (highest
probability density) credible intervals, respectively.

house prices as endogenous variables. Again, interest centers on the posterior distribution
of λc which is depicted in figure 13. The point estimate, represented by the mode of pos-
terior distribution, consistently indicates a lower prior tightness parameter if the number
of variables in the model is reduced. Some countries feature posterior distributions where
the mass concentrates close to zero. While this experiment cannot constitute a proper
ceteris paribus analysis, it may still be interpreted in terms of the above hypothesis of a
negative relationship between prior distribution tightness and model complexity. In fact,
as this result is in line with general Bayesian wisdom, it strengthens the plausibility of
the current hierarchical approach. Similarly, section E of the appendix shows that the
tightness parameter seems to be a negative function of the sample size. This finding il-
lustrates that if less information (shorter sample) is available from the likelihood, more
information is required from the prior distribution.

The role of expectations

One may argue that results are crucially affected by the negative sign restriction on busi-
ness expectations. Figures 14 and 15 show impulse responses of output and consumption
for a housing price bust shock without an initial reaction of households’ expectations.
The respective restrictions are labeled (S3) in table 1. Qualitatively, the results are akin
to the baseline analysis in section 4.2. Quantitatively, the impact of the shock is more
muted, which does not come as a surprise since business confidence is usually positively
correlated with the business cycle. Compared to the baseline identification (S1), the pre-
cision of the estimates seems to improve slightly as the error bands narrow a little bit.
Generally, the results do not question the baseline identification scheme as the qualitative
results are similar.
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Figure 13: Posterior distribution of the tightness parameter λc across countries for a
model with a reduced number of variables. The gray shaded areas denote the 68 percent
and the 90 percent Bayesian (highest probability density) credible intervals, respectively.
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Figure 14: Impulse response functions of output 4 quarters after the shock. Alternative
identification with business outlook unaffected on impact. Solid lines depict medians
and the gray shaded areas denote 68 percent and 90 percent Bayesian credible intervals,
respectively.
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Figure 15: Impulse response functions of consumption 4 quarters after the shock. Alter-
native identification with business outlook to be unaffected on impact. Solid lines depict
medians and the gray shaded areas denote 68 percent and 90 percent Bayesian credible
intervals, respectively.

Prolonged restrictions on the mortgage rate

The analysis in section 4.3 attempts to quantify the effect of an interest rate that is not
allowed to adjust in response to a house price bust shock. It inherits the disadvantage
that the interest rate assumption applies to the impact quarter only. However, it might be
interesting to see impulse response functions given an active restriction on the mortgage
rate which lasts for the entire horizon. Identification of this shock would require as many
zero restrictions on the mortgage rate as quarters considered for the analysis, which is
generally infeasible. However, it is possible to define a scenario path which features a zero
condition on the mortgage rate. In general, conditional projections may be a suitable tool
when considering prolonged zero restrictions. Gustafsson et al. (2016) employ a scenario
analysis in order to estimate the impact of a decline in house prices at the zero lower
bound with respect to the Swedish economy. Figures 16 and 17 contrast the baseline
impulse response functions with the median scenario paths. Simulations with respect to
the Austrian and the Italian economy serve as representative examples. The scenario
assumes that the baseline shock (S1) hits the economy in period 0 while the mortgage
rate remains unchanged from quarter 1 onwards. Technically, implementation is accom-
plished via a conditional forecasting exercise according to Camba-Mendez (2012). The
results show a relatively homogeneous pattern across countries. The impact of the house
price bust shock on consumption is generally amplified if mortgage rates cannot adjust
accordingly. With respect to GDP, the conclusion is less clear. In some countries such as
Finland, Germany, Greece, Ireland, and Luxembourg, the restricted responses are close to
the baseline case. Interestingly, the fall in the economic outlook of consumers seems to be
dampened by the restricted mortgage rate. One may conjecture that consumers interpret
a decrease in the mortgage rate to signal recessions. Consequently, higher mortgage rates
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Figure 16: Quarterly cumulative impulse response functions for Austria contrasted with
the zero mortgage scenario. Solid lines depict medians, circles indicate the median scenario
path, and gray shaded areas denote 68 percent and dashed lines 90 percent Bayesian
credible intervals, respectively.
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Figure 17: Quarterly cumulative impulse response functions for Italy contrasted with the
zero mortgage scenario. Solid lines depict medians, circles indicate the median scenario
path, and gray shaded areas denote 68 percent and dashed lines 90 percent Bayesian
credible intervals, respectively.
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enhance the economic outlook.
It has to be noted that, except for the impact period (quarter h = 0), all shocks

are unrestricted, whereas the mortgage rate is restricted to zero thereafter (for quarters
h = 1, . . . , 20). The latter restriction implicitly defines paths for all shocks in the model in
order to ensure that the required path of the mortgage rate is met. This includes the five
non-identified shocks. In general, the composition of shocks that generate the scenario is
non-unique, which implies that the paths of all other variables except for the mortgage
rate may depend on the particular choice of shocks. However, the non-identified shocks
may most likely constitute random disturbances that should not influence point estimates.
If one were interested in the explicit sources of the scenario, it would be mandatory to
identify the remaining 4 structural shocks in the VAR system, which is beyond the scope of
this paper. Other techniques that try to account for the zero lower bound may circumvent
this problem. Baumeister and Benati (2013) proposes a “zeroing out” approach where the
coefficients in the structural interest rate rule are set to zero. Still the authors note that
this procedure may be subject to the Lucas critique as parameters of the structural model
are adjusted ex post. In general, the linear VAR model cannot capture zero lower bound
episodes in a fully coherent way. As my results seem mostly plausible, the approximation
error should not be substantial and I deem them reliable.

Agnostic identification

In order to put the identifying assumptions with regard to the structural shocks into
perspective, I compute generalized impulse response functions (S4) with respect to a
median one-percent change in house prices. Results for the GDP and the consumption
response 4 quarters after the shock in figures 18 and 19 merely serve as an atheoretical
benchmark for the structural analysis. Compared to the baseline experiment (S1),
responses of GDP and consumption are more muted because variables are unrestricted.
Across countries and compared to the baseline results, the effect on the GDP response is
positive by about 0.1 to 0.5 percentage point and for consumption it is roughly between
0.03 and 0.1 percentage point higher. The difference with respect to impulse response
functions seems to be more pronounced for countries that exhibit stronger effects of the
shock, such as Finland, Germany, Greece, Ireland, or Luxembourg. The shape of the
impulse response functions is also quite similar to the baseline case.38 In fact, only the
effect on the economic outlook seems to be more transitory and (the median) even turns
positive during the second year after the shock. This may counteract the adverse nature
of the shock a little bit whereas output and the mortgage rate, even without an explicit
restriction, remain close to zero on impact. This finding supports the conclusion that
adverse expectations considerably amplify the impact of house price declines.

5 Conclusion

This study employs a Bayesian structural vector autoregression model in order to quantify
the impact of house price bust shocks on real economic activity and consumption for 16
euro area countries. Since one may conjecture that country specificities are important with

38Because of the limited value added, I have refrained from depicting the full paths of the responses.
Results are available upon request.
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Figure 18: Impulse response functions of output 4 quarters after the shock. Alternative
identification without restrictions (generalized impulse response functions). Solid lines
depict medians and the gray shaded areas denote 68 percent and 90 percent Bayesian
credible intervals, respectively.
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Figure 19: Impulse response functions of consumption 4 quarters after the shock. Alter-
native identification without restrictions (generalized impulse response functions). Solid
lines depict medians and the gray shaded areas denote 68 percent and 90 percent Bayesian
credible intervals, respectively.
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respect to real estate market developments, the analysis is based on a novel econometric
approach which overcomes the small-sample problem by considering an appropriate degree
of homogeneity for each country-specific model.

Economically, the effect of a one-percent house price bust shock on output and con-
sumption is substantial, as the GDP response after one year is in the range of -0.2 percent
to -1.2 percent and that of consumption between -0.25 percent and about -1.2 percent.
The shock likewise captures a deterioration of consumers’ economic outlook which inten-
sifies the severity of effects substantially. It incorporates properties of confidence shocks
that may also reinforce negative effects in the emergence of crises. The respective dy-
namics show a quite persistent pattern. Both variables decline for about one year before
stabilizing at the new lower level. Cross-country heterogeneity mainly impacts on the
quantitative effects as opposed to the qualitative transmission channels. House price
busts reduce household wealth and induce households to consume less and to demand
less mortgage credit. House prices subsequently drop further, which amplifies the initial
effect. Second-round effects seem to be important because the initial reactions are dis-
tinctly smaller. Flexible interest rates dampen the effect of house price shocks, whereas
consumers’ economic outlook implies a small amplification effect.

Econometrically, the partial pooling approach delivers robust estimates of impulse re-
sponse functions, which confirm the reliability of the results. With respect to the prior
distribution tightness parameter, the hierarchical Bayesian formulation delivers plausible
results and enhances precision with respect to the posterior distribution of impulse re-
sponse functions. Estimates increase with model complexity, which is approximated by
the model’s lag length and the number of variables included.

In terms of potential extensions to the approach, one generalization may be used to
investigate cross-country heterogeneity in more detail. The econometric strategy assigns
a single tightness parameter to the set of pooled cross-country observations. It appears
promising to relax this assumption and to place a separate tightness parameter for each
country represented in the prior distribution. The posterior distributions of those tightness
parameters contain information on potential cross-country clusters in the sample.
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Jarociński, M. and B. Maćkowiak (2017). Granger causal priority and choice of variables
in vector autoregressions. The Review of Economics and Statistics 99 (2), 319–329.

Kadiyala, K. R. and S. Karlsson (1997). Numerical methods for estimation and inference
in Bayesian VAR-models. Journal of Applied Econometrics 12 (2), 99–132.

Koop, G. (2003). Bayesian Econometrics (1st ed.). John Wiley & Sons.

Koop, G. and D. Korobilis (2010). Bayesian multivariate time series methods for empirical
macroeconomics. Foundations and Trends(R) in Econometrics 3 (4), 267–358.

Koop, G. and D. Korobilis (2016). Model uncertainty in panel vector autoregressive
models. European Economic Review 81 (C), 115–131.

Lambertini, L., C. Mendicino, and M. T. Punzi (2013). Expectation-driven cycles in
the housing market: Evidence from survey data. Journal of Financial Stability 9 (4),
518–529.

Lambertini, L., C. Mendicino, and M. T. Punzi (2017). Expectations-driven cycles in the
housing market. Economic Modelling 60 (C), 297–312.

Litterman, R. B. (1979). Techniques of forecasting using vector autoregressions. Working
Papers 115, Federal Reserve Bank of Minneapolis.

Nocera, A. and M. Roma (2017). House prices and monetary policy in the euro area:
evidence from structural VARs. Working Paper Series 2073, European Central Bank.

Pesaran, H. H. and Y. Shin (1998). Generalized impulse response analysis in linear
multivariate models. Economics Letters 58 (1), 17–29.

Pesaran, M. H. and R. Smith (1995). Estimating long-run relationships from dynamic
heterogeneous panels. Journal of Econometrics 68 (1), 79–113.

Piazzesi, M. and M. Schneider (2009). Momentum traders in the housing market: Survey
evidence and a search model. American Economic Review 99 (2), 406–411.

Piazzesi, M. and M. Schneider (2016). Housing and Macroeconomics, Volume 2 of Hand-
book of Macroeconomics, Chapter 0, pp. 1547–1640. Elsevier.

Praet, P. (2019, February). On the importance of real estate statistics. Speech at the
International Conference on Real Estate Statistics, Luxembourg, 21 February 2019.

31



Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary
policy. Review of Economic Studies 72 (3), 821–852.

Rickman, D. S. (1995). A Bayesian analysis of the use of pooled coefficients in a structural
regional economic model. International Journal of Forecasting 11 (3), 477–490.

Rodrigues, P. M. and R. F. Lourenço (2015). House prices: bubbles, exuberance or
something else? Evidence from euro area countries. Working Papers w201517, Banco
de Portugal, Economics and Research Department.

Sims, C. A. and T. Zha (1998). Bayesian methods for dynamic multivariate models.
International Economic Review 39 (4), 949–968.

Theil, H. and A. S. Goldberger (1961). On pure and mixed statistical estimation in
economics. International Economic Review 2 (1), 65–78.

Towbin, P. and S. Weber (2016). Price expectations and the US housing boom. Working
Paper 6, Swiss National Bank.

Uhlig, H. (2005). What are the effects of monetary policy on output? Results from an
agnostic identification procedure. Journal of Monetary Economics 52 (2), 381–419.

Uhlig, H. (2017). Shocks, signs, restrictions, and identification. In B. Honoré, A. Pakes,
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Series Source Mnemonic

GDP ECB SDW MNA.Q.Y.*.W2.S1.S1.B.B1GQ. Z. Z. Z.EUR.LR.N

Mortgage rate (outstanding) ECB SDW MIR.M.*country*.B.A22.A.R.A.2250.EUR.O

Business outlook indicator OECD MEI.M.*.CSESFT02.STSA

Residential property prices BIS Q:*:N:628

Consumption ECB SDW MNA.Q.Y.*.W0.S1M.S1.D.P31. Z. Z. T.EUR.LR.N

Table A.1: Listing of the data used for the analyses. “*” replaces the country abbreviation.

Appendix

A Additional data description

As the analysis employs a panel dataset with 5 × 16 = 80 time series, a direct graphical
illustration seems lavish and is omitted. For the sake of transparency regarding the time
series used, table A.1 references the data series and the respective sources.

B Dummy observations and the natural conjugate prior

For notational convenience the following derivation omits the country index. Consider
the weighted likelihood of the dummy observations

f(Y |β,Σ) = (2π)
nT

2 det (Σ)−
T

2 exp



−1

2
tr


Σ−1 (Y −XB)′ (Y −XB)︸ ︷︷ ︸

≡R





 . (B.1)

The prior distribution’s tightness parameter is implicitly contained in equation (B.1).
Recall from the main text, that λ enters the model as follows

T ≡ T ∗λ, Y ≡ Y ∗
√
λ, X ≡ X∗

√
λ.

Let us first rewrite the term in curly brackets

R = (Y −XB +XB −XB)′ (Y −XB +XB −XB)

= (Y −XB)′ (Y −XB) + (B −B)′ X ′X (B −B)

+ (Y −XB)′ X (B −B)︸ ︷︷ ︸
≡F

+(B −B)′ X ′ (Y −XB)︸ ︷︷ ︸
≡F ′

Set
B ≡ (X ′X)

−1
(X ′Y )

in order to show

F = (Y −XB)′ X (B −B)

=
[
Y ′ − Y ′X (X ′X)

−1
X ′

]
X (B −B)

= (Y ′X − Y ′X) (B −B)

= 0n,n.
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Define further

S ≡ (Y −XB)′ (Y −XB) , V −1 ≡ X ′X, and ν ≡ T − n− 1

and substitute back R. This yields
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,

where β ≡ vec(B). This expression translates to the probability density function of a
normal-inverse-Wishart distribution

(β,Σ) |λ ∼ NIW
(
β,V ,S, ν

)
. (B.2)

with
V −1 = X ′X, B = V X ′Y , S = (Y −XB)′ (Y −XB) , ν = T

It can be shown that the normal-inverse-Wishart distribution serves as a natural conjugate
prior distribution with respect to the VAR model likelihood function. The respective
posterior distribution reads

(β,Σ) |Y , λ ∼ NIW
(
β,V ,S, ν

)
. (B.3)

where

V
−1

= V −1 +X ′X

B = V
(
V −1 +X ′XB̂

)

S = Ŝ + S + B̂
′
X ′XB̂ +B′V −1B −B

′
(V ′ +X ′X)B

ν = T + ν

Equation (B.3) has been derived from the likelihood of a dummy variables prior distribu-
tion (B.1) and defines a natural conjugate prior distribution to the VAR model in equation
(1).

The natural conjugate representation of the dummy observations prior in equation
(B.2) gives us an additional perspective on the impact of the tightness parameter on the
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posterior distribution. It is well-understood and documented, e.g. by Koop and Korobilis
(2010), that the prior distribution (B.2) yields the posterior distribution

(β,Σ) |Y , λ ∼ NIW
(
β,V ,S, ν

)
,

where

V
−1

= V −1 +X ′X

= λX∗′X∗ +X ′X

B = V
(
V −1B +X ′XB̂

)

= V
(
λX∗′X∗B∗ +X ′XB̂

)

S = Ŝ + B̂
′
X ′XB̂ + S +B′V −1B −B

′ (
V −1 +X ′X

)
B

= Ŝ + B̂
′
X ′XB̂ + λS∗ + λB∗′V ∗−1

B∗ −B
′ (
λX∗′X∗ +X ′X

)
B

ν = T + T

= T + λT ∗.

This representation confirms that the impact of the prior vanishes as the tightness pa-
rameter λ → 0 and its impact increases as λ → ∞. However, the analysis in the main
text imposes λ ∈ [0, 1] via the respective prior distribution, where λ = 1 resembles the
pooled panel VAR model.

C Short-run effects

Section 4.2 depicts the effects of house price bust shocks on output and consumption four
quarters after the shock hits the economy. A comparison of those variables’ responses at
shorter horizons may help to quantify dynamic amplification mechanisms. Figures C.1
and C.2 illustrate the respective reactions one quarter after the impact quarter. While
the magnitude of the reaction is distinctly lower, the relative effect across countries is
quite similar. With respect to output, the responses after one year are about four times
the effect after one quarter. With respect to consumption, the responses are amplified by
an even higher factor.

D Non-diagonal prior covariance

Previous approaches39 proposed prior distributions for VAR models which feature a di-
agonal structure of the slope coefficient covariance matrix. One reason for this strategy
may be that, as argued by Koop (2003, ch. 11), it is not obvious to formulate sensible
a priori beliefs with respect to the covariance elements. Prior distributions implemented
via dummy observations, like the one described in section 2.1, do not suffer from this
disadvantage. In the following I show that given the DGP is a stationary VAR model (i)
the covariance matrix of the slope coefficient matrix is a function of the autocovariance of
the endogenous variables and (ii) the autocovariance is represented by a matrix Γ with

39See e.g. Jarociński (2010) or Koop and Korobilis (2016).
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Figure C.1: Impulse response functions of GDP 1 quarter after the shock. Solid lines
depict medians and the gray shaded areas denote 68 percent and 90 percent Bayesian
credible intervals, respectively.

AT BE DE EE ES FI FR GR IE IT LT LU LV NL PT SI
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

C
on

su
m

pt
io

n 
(i

n 
%

)

Figure C.2: Impulse response functions of consumption 1 quarter after the shock. Solid
lines depict medians and the gray shaded areas denote 68 percent and 90 percent Bayesian
credible intervals, respectively.
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non-zero off-diagonal elements. A Monte Carlo analysis shows that the posterior slope
coefficient covariance matrix is closer to the true matrix if the prior off-diagonal elements
are derived from the cross section. The experiment shows that a slope covariance matrix
with zero off-diagonal elements assigns more probability mass to unreasonable dynamics
as mentioned by Del Negro and Schorfheide (2011).

D.1 Slope covariance matrix in autoregressive models

Assume the true DGP is known to be a stationary VAR with p lags as defined by equation
(1). If data was simulated from that model, the corresponding likelihood function reads

f(Y |B,Σ) = (2π)
nT

2 det (Σ)−
T

2 exp

{
−1

2
tr
[
Σ−1 (Y −XB)′ (Y −XB)

]}

The function may be rewritten in a similar way as has been done in section B

f(Y |B,Σ) = (2π)
nT

2 det (Σ)−
T

2 exp

{
−1

2

(
β − β̂

)′ (
Σ−1 ⊗X ′X

) (
β − β̂

)}
. (D.1)

Equation (D.1) defines a multivariate normal distribution with respect to the maximum

likelihood estimate of the slope coefficients β̂

β ∼ N
(
β̂,Σ⊗ V̂

)
,

with β̂ ≡ vec(B̂) = vec[(X ′X)−1X ′Y ] and V̂ ≡ (X ′X)
−1
. Assume that the covariance

matrix of the reduced form residuals Σ is known; then X ′X crucially determines the
covariance matrix with respect to the coefficient estimate β̂. In particular, since X

exclusively contains the first p lags of yt, X
′X/T represents an estimate of the covariance

matrix
Γ ≡ E

(
Y t−1Y

′
t−1

)
= E (Y tY

′
t) ,

where Y t ≡ [y′
t, · · · ,y′

t−p+1]
′. Consequently, Γ contains the autocovariance function of yt

up to lag p− 1. In fact as t → ∞ the estimator converges X ′X/T → Γ.
In the following, I derive an expression for Γ that depends on the underlying DGP’s

coefficient matrices, B and Σ. Recall, E(yt) = 0 such that the companion form represen-
tation of the model reads

Y t = FY t−1 + E t,

where

E t ≡




et

et−1
...

et−p+1


 , F ≡

[
B′

I(p−1)n 0(p−1)n,n

]
, and Ω ≡ E(E tE

′
t) =

[
Σ 0n,(p−1)n

0(p−1)n,n 0n,n

]
.

37



The covariance matrix of Y t is given by

Γ = E
[
(FY t−1 + E t) (FY t−1 + E t)

′
]

= E
(
FY t−1Y

′
t−1F

′ + E tE
′
t + FY t−1E

′
t + E t +Y ′

t−1F
′
)

= FE
(
Y t−1Y

′
t−1

)
F ′ + E (E tE

′
t)

= FΓF ′ +Ω.

The solution to this equation can be found in Hamilton (1994, ch. 10). It reads

vec (Γ) =
[
I(np)2 − (F ⊗ F )

]−1
Ω. (D.2)

Equation (D.2) directly relates Γ to the VAR matrices B and Σ and implies that the

off-diagonal elements of V̂ are generally non-zero.

D.2 Monte Carlo exercise

A simulation experiment shows the impact of the prior covariance on its posterior coun-
terpart. The model is chosen as simple as possible in order to keep the exposition clear.
“Home country’s” data is generated from an AR(2) model of the form

yt = ρ1yt−1 + ρ2yt−2 + et,

with et ∼ N (0, σ2). The specification is chosen such that the parameters feature a sta-
tionary model, in particular ρ1 = 0.5, ρ2 = 0.2, and σ2 = 1.

An artificial sample of T observations is generated from the above DGP. At the same
time another “foreign country” model

y∗t = ρ∗1y
∗
t−1 + ρ∗2y

∗
t−2 + e∗t

with e∗t ∼ N (0, σ2) is simulated. Its coefficients are similar to the “home country” model,
i.e. ρj∗ = w · ρj for j = {1, 2},40 where w is a parameter that controls the degree of
heterogeneity. In the following, three estimates with respect to the coefficient covariance
are computed with expanding sample size

1. “Maximum likelihood”: X ′X/T

2. “Full posterior”: X ′X/T + λ (X∗)′ X∗/T

3. “’Diagonal posterior”: X ′X/T + λdiag
[∑T

t=1

(
y∗
t−1

)2
,
∑T

t=1

(
y∗
t−2

)2]

Note that case 2 “full posterior” represents the strategy proposed in the main text. The
respective derivation can be found in section B of the appendix. The tightness parameter is
chosen λ = 0.5. The reference point is the true covariance matrix which can be computed
from equation (D.2)

Γ =

[
1.7094 1.0684
1.0684 1.7094

]
.

40Other types of heterogeneity, e.g. ρ∗j = w + ρj and alternative calibrations (e.g. ρ1 = 0.3, ρ2 = 0.4)
have been considered. Results are similar and available upon request.
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Figure D.1: Log of average norm of the difference between estimates of the coefficient
covariance matrix and Γ as a function of the sample size for λ = 0.5. The solid line
denotes the maximum likelihood estimator, the dashed line depicts the estimate according
to strategy 2, and the dotted line represents the estimate with respect to strategy 3.

Within the exercise a total of 10,000 samples are generated and results are presented in
terms of averages over those samples. In order to evaluate the estimates, the difference to
the theoretical counterpart Γ is computed and the natural logarithm41 of the Euclidean
norm serves as the respective deviation measure. Figure D.1 shows that the maximum
likelihood estimator approaches the true covariance matrix as the sample size T increases.
The estimates with respect to strategies 2 and 3 generally do not approach Γ as T → ∞
because the prior distorts the maximum likelihood estimate according to the heterogeneity
of both country models. Consequently, the prior tightness parameter λ should, ceteris
paribus, decrease in T . However, the “full posterior” estimate seems to be advantageous
in small samples if the foreign country model is not too different from the home country
model. In addition, the dashed line (“full posterior”) provides better estimates compared
to its “diagonal posterior” counterpart. The latter result is important because it illustrates
the advantage of prior covariances which are not restricted to diagonal matrices.

A second exercise considers the role of the tightness parameter λ given a particular
degree of heterogeneity w = 0.4. Figure D.2 depicts the respective results. Simulations
show that setting λ > 0 improves the estimate of the covariance if the sample length
is limited. However, in larger samples the researcher should probably choose a smaller
values of λ. The intuition is that if there is “enough” data available, additional foreign
country data tends to bias results. It follows that an “optimal” value with respect to the

41In order for the differences between lines to be better visible to the reader, I decided to depict the
respective natural logarithm. The non-logarithmic counterpart of the maximum likelihood estimator
converges towards zero as expected.
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Figure D.2: Log of average norm of the difference between estimates of the coefficient
covariance matrix and Γ as a function of the sample size for w = 0.4. The solid line
denotes the maximum likelihood estimator, the dashed line depicts the estimate according
to strategy 2 and the dotted line represents the estimate with respect to strategy 3.

tightness parameter should depend negatively on both the degree of heterogeneity and
the sample size. This finding is confirmed by an additional exercises in section E of the
appendix, where the baseline model is estimated with only T = 40 observations.

The calibration of the DGPmay illustrate the point raised by Del Negro and Schorfheide
(2011) who criticize the fact that diagonal covariance matrices of slope coefficients implic-
itly allocate more weight to unreasonable dynamics of the endogenous variables. Figure
D.3 plots contours of the bivariate normal distribution N ([ρ1, ρ2]

′,Γ) (left panels) and
contours of the same distribution except that covariances are set to zero (right panels).
The upper panels depict the boundaries with respect to the dynamic properties of the
AR(2) model (see e.g. Hamilton, 1994, ch. 1). Within the solid triangle, dynamics are non-
explosive. The region above the dashed line indicates non-oscillating behavior. Dynamics
might be called “unreasonable” if parameter combinations (ρ1, ρ2) imply explosiveness.
In order to evaluate which of the two distributions features more reasonable dynamics,
a sample of 108 observations is simulated. Draws that fulfill the non-explosiveness con-
ditions (illustrated by the dots in the lower panels) are counted. It turns out that the
distribution that implies non-zero correlations between ρ1 and ρ2 generates about 17.5%
more draws within the solid triangle implying reasonable dynamics. Similar results are
obtained for alternative calibrations (e.g. ρ1 = 0.3, ρ2 = 0.4) of the AR(2) model as well
as if non-complexity of eigenvalues is an additional requirement.
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Figure D.3: Contours (gray lines) of bivariate normal distributions with respect to [ρ1, ρ2].
Panels to the left assume the theoretical covariance Γ and panels to the right set the off-
diagonal elements of Γ to zero. The upper panels depict non-explosiveness regions and
the lower panels illustrate non-explosive draws from the respective distributions.

E Short sample

In order to shed more light on the determinants of the tightness parameter posterior
distribution p(λc|Y c), the following exercise uses only the first 40 observations to estimate
the baseline VAR model from the main text. The Monte Carlo study in section D.2
suggested that the estimate for λc should be a decreasing function in the sample size.
Figure E.1 shows percentiles of the posterior distribution of λc. Comparing those estimates
with figure E.1 in the main text shows that the short sample analysis requires tighter
prior hyperparamters λc. This finding supports the above hypothesis and improves the
plausibility and reliability of the econometric approach.

F Loose tightness parameters

As mentioned in the main text, if the value of λc is chosen too small, i.e. below the
threshold λ̃c = (p+1)n/T ∗

t , the prior distribution ends up being not well-defined. Analyses

were conducted allocating zero prior weight with respect to λc < λ̃c. If the researcher
wants to explicitly allow for smaller values of λc, the prior distribution has to be modified
accordingly. Equation (4) becomes

p(βc,Σc|λc) ∝ [f(Y ∗
c |βc,Σc)]

λc × det (Σ)−
n+1

2 .
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Figure E.1: Posterior distribution of the tightness parameters λc across countries. The
gray shaded areas denote the 68 percent and the 90 percent Bayesian (highest probability
density) credible intervals, respectively. Only the first 40 observations are used in the
estimation procedure.

As λc → 0, this specification leads to a diffuse prior distribution for the VAR model
(see e.g. Kadiyala and Karlsson, 1997). Results with respect to the prior tightness are
reported in figure F.2. The modified prior distribution generates similar results compared
to the baseline analysis depicted in figure 1. With respect to most countries λc is only
mildly lower. Estonia and and Lithuania represent examples where the model estimate is
affected more strongly.
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Figure F.2: Posterior distribution of the tightness parameters λc across countries. The
gray shaded areas denote the 68 percent and the 90 percent Bayesian (highest probability
density) credible intervals, respectively. Prior distribution accounts for low values of λc.
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