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Abstract

Under rotation-equivariant decision theory, sample covariance matrix eigenvalues can be

optimally shrunk by recombining sample eigenvectors with a (potentially nonlinear) function

of the unobservable population covariance matrix. The optimal shape of this function reflects

the loss/risk that is to be minimized. We solve the problem of optimal covariance matrix

estimation under a variety of loss functions motivated by statistical precedent, probability

theory, and differential geometry. A key ingredient of our nonlinear shrinkagemethodology is

a new estimator of the angle between sample and population eigenvectors, without making

strong assumptions on the population eigenvalues. We also introduce a broad family of

covariance matrix estimators that can handle all regular functional transformations of the

population covariance matrix under large-dimensional asymptotics. In addition, we compare

via Monte Carlo simulations our methodology to two simpler ones from the literature, linear

shrinkage and shrinkage based on the spiked covariance model.

KEY WORDS: Large-dimensional asymptotics, random matrix theory, rotation equivariance.
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1 Introduction

Ever since Stein (1956) proved that the usual estimator of the mean is inadmissible in

dimensions greater than three, decision theory has taken the edge over likelihood maximization

in multivariate statistics. This leaves open the question of which loss function to minimize in a

practical application. In this respect, the more loss functions available the better, as different

researchers may pursue different goals. Regarding the second moments, that is, covariance

matrix estimation, six loss functions have been investigated so far within the framework of

large-dimensional asymptotics by Ledoit and Wolf (2018) and Engle et al. (2019), yielding a

grand total of three different optimal nonlinear shrinkage formulas.

This paper delivers the technology to double the number of loss functions that can be handled

from six to 12, without making strict assumptions. The six new loss functions considered are

potentially attractive to applied researchers, as they have been promoted before by statisticians

for decision-theoretical estimation of the covariance matrix. In order to achieve this degree of

generality, we identify a formula from random matrix theory (RMT) that enables us to develop

a new estimator of the angle of any sample eigenvector with any population eigenvector, in

the large-dimensional limit. Using this new technique opens the door to addressing a large set

of loss functions that were previously unattainable within the framework of large-dimensional

asymptotics with the techniques of Ledoit and Wolf (2018): In addition to the six specific new

loss functions considered, we can also handle two infinite general families of loss functions based

on all regular transformations of the population covariance matrix.

Before starting to develop our methodology, it will be useful to give a brief review of

the relevant literature Likelihood maximization has done wonders for statistics in general;

however, in the particular context of multivariate statistics when the number of parameters

to be estimated is large, it tends to overfit in-sample data, at the expense of good out-of-sample

performance. In reaction to that, decision theory favors estimators that perform well out-of-

sample with respect to some given loss function. These estimators critically depend on the loss

function selected by the end-user.

For covariance matrix estimation, we place ourselves firmly within the paradigm pioneered

by Stein (1975, 1986): (i) no assumption on the eigenvalues of the population covariance

matrix apart from positive definiteness; (ii) equivariance with respect to rotation of the original

orthonormal basis of variables; and (iii) full flexibility to modify the eigenvalues of the sample

covariance matrix as deemed necessary.

This is a tall order, and even Stein’s finite-sample mathematical prowesses achieved limited

progress. It was only after cross-pollination from RMT, a field originated by Nobel Prize-winning

physicist Eugene Wigner (1955), and specifically the notion of large-dimensional asymptotics,

that conclusive strides forward could be made. Charles Stein himself was well aware, as early

as 1969, of the potential of large-dimensional asymptotics to unlock the multivariate application

problems that preoccupied him (Stein, 1969, pp. 79–81). However, he left some work on the

table for his intellectual successors in this respect.
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There are currently three ‘simplified’ large-dimensional asymptotic strands of literature that

fall short of Stein’s ambitious program in one way or another. Sparsity (Bickel and Levina,

2008) violates point (ii) because it assumes a priori knowledge of a specific orthonormal basis

where (unlike for most other bases) the proportion of covariances equal to zero approaches

100%. Linear shrinkage (Ledoit and Wolf, 2004) violates point (iii) because it can only modify

the eigenvalues of the sample covariance matrix through a linear transformation. The spiked

covariance model of Johnstone (2001) violates point (i) because it assumes that all population

eigenvalues are equal to each other, except for a vanishingly small proportion of them (called

‘spikes’).

By contrast, the present paper inscribes itself in a strand of literature called nonlinear

shrinkage (Ledoit and Wolf, 2012, 2015, 2018) which does not compromise on any of these three

points, and so remains in line with Stein’s original ambitious paradigm. A key ingredient is

consistent estimation of the eigenvalues of the population covariance matrix. This was not even

deemed possible until El Karoui (2008) proved otherwise. Since then, it has been more of a

discussion of which estimation scheme to use, such as El Karoui’s own numerical procedure or a

more modern approach based on supersymmetry (Jun, 2017); in this paper, we use the QuEST

function of Ledoit and Wolf (2015).

In recent related work, the spiked covariance model of Johnstone (2001) has been used

by Donoho et al. (2018) to derive shrinkage covariance matrix estimators for a ménagerie of

26 different loss functions. They promote the spiked model because, as they state in their

Section 10,

the simple shrinkage rules we propose here may be more likely to be applied correctly

in practice, and to work as expected, even in relatively small sample sizes.

It is, therefore, of interest to study whether our ‘more complicated’ nonlinear shrinkage rules

actually lead to improved performance or whether applied researchers are just as well served by

the rules of Donoho et al. (2018) according to their implicitly alluded to KISS (Keep it simple,

statistician!) principle.

The remainder of this paper is organized as follows. Section 2 presents an intuitively

understandable analysis in finite samples. Section 3 defines the large-dimensional asymptotics

under which our results are derived. Section 4 investigates a wide variety of loss functions and,

for each one, finds a bona fide covariance matrix estimator that is asymptotically optimal.

Section 5 extends the analysis to the challenging yet empirically relevant case when the

dimension exceeds the sample size. Section 6 presents Monte Carlo simulations. Section 7

concludes. An appendix collects various mathematical results to keep the presentation of the

main paper compact.
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2 Analysis in Finite Samples

2.1 Basic Setup

Assumption 1. Y is an n × p matrix of n independent and identically distributed (i.i.d.)

observations on a system of p < n random variables with mean zero and positive definite

covariance matrix Σ with eigenvalues (τ1, . . . , τp), sorted in nondecreasing order without loss

of generality (w.l.o.g.), and corresponding eigenvectors (v1, . . . , vp).

(The case p > n is treated in Section 5.)

The sample covariance matrix is S ..= Y ′Y/n. Its spectral decomposition is S =.. UΛU ′, where

Λ is a diagonal matrix and U is orthogonal. Let Λ =.. Diag(λ) where λ ..= (λ1, . . . , λp)
′, with the

eigenvalues again sorted in nondecreasing order w.l.o.g. The ith sample eigenvector is ui, the ith

column vector of U , so that S =
∑p

i=1 λi · uiu′i. Note that it holds similarly Σ =
∑p

i=1 τi · viv′i.

Definition 2.1. We consider rotation-equivariant covariance matrix estimators of the type

S̃ ..= UD̃U ′, where D̃ is a diagonal matrix: D̃ ..= Diag(d̃1, . . . , d̃p).

This class assumes no a priori information about the orientation of the orthonormal basis of

(unobservable) population covariance matrix eigenvectors; this is different from the sparsity

literature, which requires a priori knowledge of an orthonormal basis in which most covariances

are zero. For many loss functions, there exists a finite-sample optimal (FSOPT) ‘estimator’ in

this class of the form

S̃ ..=

p∑

i=1

d̃i · uiu′i, with d̃i ..= γ−1
[
u′iγ(Σ)ui

]
∀i = 1, . . . , p , (2.1)

where γ denotes some smooth invertible function mapping of (0,+∞) onto R. As is standard,

applying a univariate function γ to a diagonalizable matrix means preserving its eigenvectors

and applying γ to each eigenvalue individually; for example, log(Σ) ..=
∑p

i=1 log(τi) · viv′i.

Remark 2.1. S̃ in Equation (2.1) is obviously not feasible in practice, hence the single quotation

marks around the word ‘estimator’.

Remark 2.2. To simplify the notation, we assume that all variables have mean zero. In many

applications, variables do not have mean zero, or at least it is not known whether they do. In

such a setting, it is more common to base the sample covariance matrix on the demeaned data

instead: Sn
..= Ỹ ′

nỸn/(n − 1), where Ỹn is obtained from Yn by the operation of columnwise

demeaning. In this case, n needs to be replaced everywhere with the ‘effective’ sample size

n − 1. As shown at the beginning of Section 3 of Silverstein and Bai (1995), demeaning is a

rank-one perturbation which in turn, thanks to Lemma 2.5a of the same paper, implies that it

has no impact on large-dimensional asymptotic convergence results.
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2.2 A Brief Summary of Known Results on Nonlinear Shrinkage

So far, only six loss functions have been solved in the very general rotation-equivariant

framework of Assumption 1 and Definition 2.1. In the second column of Table 2.1, the loss

functions are streamlined for readability; the actual ones could be squared and have various

constants added or multiplied in ways that are irrelevant to estimator optimality. The way to

read the fourth column is that the ith sample eigenvalue λi = u′iSui (i = 1, . . . , p) should be

replaced by the quantity in the fourth column, optimally with respect to the same-row loss

function, in finite samples: so it is the optimally ‘shrunk’ eigenvalue. We use the standard

notation for the Frobenius norm of M , a square matrix: ‖M‖F ..=
√
Tr[MM ′].

Name Stylized Loss Function Reference Shrinkage

Frobenius
∥∥S̃ − Σ

∥∥
F

Leung and Muirhead (1987) u′iΣui

Inverse Stein Tr
[
S̃−1Σ

]
− log

[
det
(
S̃−1Σ

)]
Ghosh and Sinha (1987) u′iΣui

Minimum Variance Tr
[
S̃−1ΣS̃−1

]/(
Tr
[
S̃−1

])2
Engle et al. (2019) u′iΣui

Stein Tr
[
S̃Σ−1

]
− log

[
det
(
S̃Σ−1

)]
James and Stein (1961) 1

u′iΣ
−1ui

Inverse Frobenius
∥∥S̃−1 − Σ−1

∥∥
F

Haff (1979a) 1

u′iΣ
−1ui

Symmetrized Stein Tr
[
S̃Σ−1 + S̃−1Σ

]
Kubokawa and Konno (1990)

√
u′iΣui

u′iΣ
−1ui

Table 2.1: Existing set of finite-sample optimal (FSOPT) nonlinear shrinkage formulas.

Table 2.1 shows that the six loss functions really only yield three different nonlinear shrinkage

formulas. The first two are of the type (2.1), with γ(x) = x and γ(x) = 1/x, respectively, and

the third one is simply their geometric mean.

2.3 Additional Loss Functions

The easiest way to start this investigation is to look for different loss functions that give rise

to the same nonlinear shrinkage formulas as the ones in Section 2.2. Table 2.2 presents two

of them.

Name Stylized Loss Function Reference Shrinkage

Weighted Frobenius Tr
[(
S̃ − Σ

)2
Σ−1

]
Sharma and

Krishnamoorthy (1985)

1

u′iΣ
−1ui

Disutility Tr
[(
S̃−1 − Σ−1

)2
Σ
]

Appendix A u′iΣui

Table 2.2: Two more loss functions leading to existing nonlinear shrinkage formulas.

The second loss function is new. It is derived from the Sharma and Krishnamoorthy (1985)

loss in the same way that the Inverse Frobenius loss is derived from the Frobenius loss, or that
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the Inverse Stein’s loss of Ghosh and Sinha (1987) is derived from the original Stein’s loss: by

substituting the covariance matrix with its inverse, the precision matrix. At the same time,

it has a more interesting justification as minus the quadratic utility function of Markowitz

(1952) in large dimensions, as argued in Appendix A (hence the name disutility). It is a close

cousin of the Minimum Variance loss function, with a tighter grip on the scale of the estimator.

Reassuringly, both of them give rise to the same optimal nonlinear shrinkage formula.

There are three interlocking reasons for bringing up these loss functions, even though they

fall back on the known estimators of Section 2.2. First, to avoid the well-known ‘file-drawer

problem’ (also called publication bias), whereby results that are deemed less interesting remain

unpublished. Second, some applied researcher may well look at one of these three loss functions

and recognize that it suits his or her objective perfectly, in which case it does not matter whether

the shrinkage formula is old or new. Third, in the end, the choice of estimator is a choice of

shrinkage formula, and the best way to know what a specific shrinkage really means is to list as

many loss functions as possible that lead to it.

2.4 New Shrinkage Formulas

The main point of the paper is to go beyond the two cases γ(x) = x±1 and thereby to study

other functions of the population covariance matrix (through the prism of sample eigenvectors).

We introduce four more:
√
x, log(x), x2, and 1/x2. Hence, we triple the number of functions

that can be utilized for this purpose, from two to six. We could have introduced as many new

functions as we wanted, but this should be enough to make the point. Nor is this frivolous

or arbitrary: these four functional transformations arise naturally in the study of four well-

regarded loss functions that have remained as open problems. In what follows, the symbol I

denotes a conformable identity matrix.

Type of Loss Loss Function Reference Shrinkage

Log-Euclidian
∥∥∥log(S̃)− log(Σ)

∥∥∥
F

Arsigny et al. (2006) exp[u′i log(Σ)ui]

Fréchet
∥∥∥S̃1/2 − Σ1/2

∥∥∥
F

Dowson and Landau (1982)
(
u′iΣ

1/2ui
)2

Quadratic
∥∥∥Σ−1S̃ − I

∥∥∥
F

LF,3 in Donoho et al. (2018)
u′iΣ

−1ui
u′iΣ

−2ui

Inverse Quadratic
∥∥∥S̃−1Σ− I

∥∥∥
F

LF,4 in Donoho et al. (2018)
u′iΣ

2ui
u′iΣui

Table 2.3: New set of finite-sample optimal (FSOPT) nonlinear shrinkage formulas.

Log-Euclidian It is defined as the Euclidian distance on the logarithm of the manifold

of symmetric positive-definite matrices, hence the name. It is a close cousin of the

geodesic distance on the smooth Riemannian manifold of positive-definite matrices. It has

essentially the same properties, but is much more tractable for statistical applications. In

particular, it is invariant with respect to matrix inversion, so eigenvalues close to zero are
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treated like eigenvalues close to infinity.

Fréchet The Fréchet discrepancy, named after the French mathematician Maurice Fréchet

(1878–1973), is originally a measure of distance between two probability distributions. In

the multivariate normal case, it directly implies a notion of distance between any two

symmetric positive-definite matrices. Intuitively, we should think of it as a measure of

‘how far apart’ are the distributions that these two covariance matrices generate.

Quadratic This is a recent variant of the quadratic-type loss function that can be traced

back to pioneers in the field such as Selliah (1964, Section 2.2.4) and Haff (1979b, loss

function L2). Its signature is that it promotes accuracy in the direction of the smallest

principal components of the population covariance matrix.

Inverse Quadratic Same as above, but with the inverse sample covariance matrix. Mechan-

ically, it promotes accuracy in the direction of the largest principal components of the

population covariance matrix.

The logarithm and the square root are directly embedded into the first two shrinkage formulas

(Log-Euclidian and Fréchet), but the square and inverse-square functions only appear in the

last two loss formulas as part of combinations, echoing what happened with the Symmetrized

Stein’s loss. Proof that the loss functions in the second column of the tables give rise to the

FSOPT formulas in the fourth column can be found in Appendix B.

These seven nonlinear shrinkage formulas given rather different results. Researchers may

wonder how they compare to each other. One interesting mathematical observation is that they

do not cross, but one is always above (or below) the other across the whole spectrum — with

the sole exception of Symmetrized Stein vs. Log-Euclidian shrinkage. The following proposition

reveals the ordering.

Proposition 2.1. Under Assumption 1, with probability one, for all i = 1, . . . , p,

u′iΣ
2ui

u′iΣui
> u′iΣui >

(
u′i
√
Σui

)2
> exp

[
u′i log (Σ)ui

]
>

1

u′iΣ
−1ui

>
u′iΣ

−1ui
u′iΣ

−2ui
(2.2)

(
u′i
√
Σui

)2
>

√
u′iΣui

u′iΣ
−1ui

>
1

u′iΣ
−1ui

(2.3)

Proof. Follows from Jensen’s inequality and the Cauchy-Schwarz inequality once we remark

that u′iγ(Σ)ui =
∑p

j=1 γ(τi) ·
(
u′ivj

)2
for γ(x) = x, 1/x, x2, 1/x2,

√
x, or log(x), and that

∑p
j=1

(
u′ivj

)2
= 1, for every i = 1, . . . , p.

2.5 Preview of General Result

FSOPT ‘estimators’ of the form (2.1) cannot be used directly because they depend on the

population covariance matrix Σ, which is unobservable. So it stands to reason to ask: How is

it even possible that this approach leads anywhere? First of all, note that we do not need to
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estimate all p(p+ 1)/2 entries of the symmetric matrix Σ, we only need p quantities: u′iγ(Σ)ui,

for i = 1, . . . , p, which is much more manageable. When the matrix dimension p is large, it is

possible to approximate these quantities by the general formula

u′iγ(Σ)ui ≈
1

p

p∑

j=1

γ(τ̂j) ·
{

p
n λi τ̂j∣∣τ̂j

[
1− p

n − p
n λi m̆τ̂

n,p(λi)
]
− λi

∣∣2

}
, (2.4)

where τ̂ ..= (τ̂1, . . . , τ̂p)
′ is an estimator of the population eigenvalues, and m̆τ̂

n,p(·) is the complex-

valued function of real argument due to Ledoit and Wolf (2015, Section 2). Formula (2.4)

generates bona fide covariance matrix estimators of the type (2.1) for all the loss functions

in Table 2.3 by setting γ(x) equal to log(x),
√
x, x−2, or x2. Given that u′iγ(Σ)ui =

1
p

∑p
j=1 γ(τj) ·

{
p(u′ivj)

2
}
, the term between curly brackets in (2.4) is simply an estimator of the

dimension-normalized squared dot product of the ith sample eigenvector with the jth population

eigenvector.

3 Large-Dimensional Asymptotic Framework

We now move on to formally establishing that plugging the approximation (2.4) into the

generic nonlinear shrinkage formula (2.1) yields optimal rotation-equivariant covariance matrix

estimators under large-dimensional asymptotics with respect to the loss functions listed. First

of all, to make the paper self-contained, we need to restate some sets of assumptions that have

been used a number of times before. We shall do so in a condensed fashion; any unfamiliar

reader interested in getting more background information should refer to some earlier paper

such as, for example, Ledoit and Wolf (2018, Section 3.1), and the references therein.

In a nutshell: The dimension p goes to infinity along with the sample size n, their ratio p/n

converges to some limit c ∈ (0, 1), and we seek to asymptotically optimize the way to nonlinearly

shrink sample eigenvalues. Also, from now on, all dimension-dependent objects are subscripted

by the sample size n.

3.1 Large-Dimensional Asymptotic Framework

Assumption 2 (Dimension). Let n denote the sample size and p ..= p(n) the number of

variables. It is assumed that the ratio p/n converges, as n → ∞, to a limit c ∈ (0, 1) called the

limiting concentration (ratio). Furthermore, there exists a compact interval included in (0, 1)

that contains p/n for all n large enough.

Assumption 3 (Population Covariance Matrix).

a. The p× p population covariance matrix Σn is nonrandom symmetric positive-definite.

b. Let τn
..= (τn,1, . . . , τn,p)

′ denote a system of eigenvalues of Σn, and Hn their empirical

distribution function (e.d.f.): Hn(x) ..=
∑p

i=1 1[τn,i,+∞)(x)/p, where 1 denotes the

indicator function of a set. It is assumed that Hn converges weakly to some limit law H,

called the limiting spectral distribution (function).
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c. Supp(H), the support of H, is the union of a finite number of closed intervals in (0,+∞).

d. There exists a compact interval [h, h] ⊂ (0,∞) that contains
{
τn,1, . . . , τn,p

}
for all n large

enough.

Note that this includes Johnstone’s (2001) spiked covariance model as a special case where the

limiting population spectral distribution H is a step function with a single step.

Assumption 4 (Data Generating Process). Xn is an n×p matrix of i.i.d. random variables with

mean zero, variance one, and finite 12th moment. The matrix of observations is Yn ..= Xn

√
Σn.

Neither
√
Σn nor Xn are observed on their own: only Yn is observed.

Note that this includes Johnstone’s (2001) spiked covariance model as a special case where the

variates are assumed to be normal.

Remark 3.1 (Moment Condition). The existence of a finite 12th moment is assumed to prove

certain mathematical results using the methodology of Ledoit and Péché (2011). However,

Monte Carlo studies in Ledoit and Wolf (2012, 2015) indicate that this assumption is not needed

in practice and can be replaced with the existence of a finite fourth moment. This is a generic

requirement that does not depend on any particular loss function.

The sample covariance matrix is defined as Sn
..= n−1Y ′

nYn = n−1
√
ΣnX

′
nXn

√
Σn. It admits a

spectral decomposition Sn =.. UnΛnU
′
n, where Λn is a diagonal matrix, and Un is an orthogonal

matrix: UnU
′
n = U ′

nUn = In, where In (in slight abuse of notation) denotes the identity matrix of

dimension p× p. Let Λn
..= Diag(λn) where λn

..= (λn,1, . . . , λn,p)
′. We can assume w.l.o.g. that

the sample eigenvalues are sorted in increasing order: λn,1 ≤ λn,2 ≤ · · · ≤ λn,p. Correspondingly,

the ith sample eigenvector is un,i, the ith column vector of Un. Under Assumptions 2–4,

the e.d.f. of sample eigenvalues Fn(x) ..=
∑p

i=1 1[λn,i,+∞)(x)/p converges almost surely to a

nondeterministic cumulative distribution function F that depends only on H and c:

Fn(x)
a.s.−→ F (x) ∀x ∈ (0,+∞) .

How to go from (H, c) to F is determined by the following equation, due to Silverstein

(1995): for all z in C
+, the half-plane of complex numbers with strictly positive imaginary part,

m ..= mF(z) is the unique solution in the set
{
m ∈ C : −1−c

z + cm ∈ C
+
}
to the equation

m =

∫
1

τ
[
1− c− c z m

]
− z

dH(τ) , (3.1)

where mF denotes the Stieltjes (1894) transform of F , whose standard definition is:

∀z ∈ C
+ mF(z) ..=

∫
1

λ− z
dF (λ) .

The Stieltjes transform admits a well-known inversion formula:

G(b)−G(a) = lim
η→0+

1

π

∫ b

a
Im
[
mG(ξ + iη)

]
dξ
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if G is continuous at both a and b. Although the Stieltjes transform of F , mF, is a function

whose domain is the upper half of the complex plane, it admits an extension to the real line,

since Silverstein and Choi (1995) show that: ∀x ∈ (0,+∞), limz∈C+→xmF(z) =.. m̆F(x) exists

and is continuous. The imaginary part of m̆F is the derivative of F , up to rescaling by π;

therefore, (3.1) enables us to pin down the location of the sample eigenvalues, a fact exploited

by the QuEST function; see Section 3.2. Furthermore, the support of the limiting distribution

of the sample eigenvalue Supp(F ) is the union of a finite number κ ≥ 1 of compact intervals:

Supp(F ) =
⋃κ

k=1[ak, bk], where 0 < a1 < b1 < · · · < aκ < bκ < ∞.

Definition 3.1 (Rotation-Equivariant Estimators). We consider covariance matrix estimators

of the type S̃n
..= UnD̃nU

′
n, where D̃n is a diagonal matrix: D̃n

..= Diag(ϕ̃n(λn,1) . . . , ϕ̃n(λn,p)),

and ϕ̃n is a (possibly random) real univariate function which can depend on Sn.

Assumption 5 (Nonlinear Shrinkage Function). We assume that there exists a nonrandom

real univariate function ϕ̃ defined on Supp(F ) and continuously differentiable on
⋃κ

k=1[ak, bk]

such that ϕ̃n(x)
a.s−→ ϕ̃(x) for all x ∈ Supp(F ). Furthermore, this convergence is uniform over

x ∈ ⋃κ
k=1[ak + η, bk − η], for any small η > 0. Finally, for any small η > 0, there exists a

finite nonrandom constant K̃ such that almost surely, over the set x ∈
⋃κ

k=1[ak − η, bk + η],

|ϕ̃n(x)| is uniformly bounded by K̃, for all n large enough.

3.2 The QuEST Function

Once again, to make the paper self-contained, we need to restate the definition of a key

mathematical object called the QuEST (quantized eigenvalues sampling transform) function.

We shall do so in condensed fashion; the interested reader is referred to Ledoit and Wolf (2015,

2017) for full background information.

In a nutshell: QuEST is a multivariate deterministic function mapping population

eigenvalues into sample eigenvalues, valid asymptotically as p and n go to infinity together.

Definition 3.2 (QuEST). For any given n and p, Qn,p maps t ..= (t1, . . . , tp) ∈ [0,+∞)p into

Qn,p(t) ..= (q1n,p(t), . . . , q
p
n,p(t)) where qin,p(t)

..= p

∫ i/p

(i−1)/p

(
F t

n,p

)−1
(u) du ,

(
F t

n,p

)−1
is the inverse function of F t

n,p(v)
..=

1

π

∫ v

−∞

Im
[
m̆t

n,p(x)
]
dx ,

and, for all x in R, m̆t

n,p(x) is the unique solution m ∈ C
+ to the fundamental equation:

m =
1

p

p∑

j=1

1

tj

(
1− p

n
− p

n
xm

)
− x

. (3.2)

Theorem 3.1 (Ledoit and Wolf (2015)). Suppose Assumptions 2–4 are satisfied. Define

τ̂n
..= argmin

t∈(0,+∞)p

1

p

p∑

i=1

[
qin,p(t)− λn,i

]2
, (3.3)
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where Qn,p(t) is the QuEST function from Definition 3.2; both τ̂n and λn are assumed sorted

in nondecreasing order. Let τ̂n,j denote the jth entry of τ̂n (j = 1, . . . , p), and let τn
..=

(τn,1, . . . , τn,p)
′ denote the population covariance matrix eigenvalues sorted in nondecreasing

order w.l.o.g. Then

1

p

p∑

j=1

[τ̂n,j − τn,j ]
2 a.s.−→ 0 .

The function m̆τ̂n
n,p featured in the approximation (2.4) is a by-product of the QuEST function

constructed by combining Equations (3.2)–(3.3). It estimates the complex-valued deterministic

function of real argument m̆F.

3.3 Dot Product of Population Eigenvalues with Sample Eigenvalues

Of much importance in this paper is the random bivariate cumulative distribution function

∀x, t ∈ R Θn(x, t) ..=
1

p

p∑

i=1

p∑

j=1

(u′n,ivn,j)
2
1[λn,i,+∞)(x) · 1[τn,j ,+∞)(t) (3.4)

first introduced in Equation (6) of Ledoit and Péché (2011) under the notation ΦN . From Θn

we can extract precise information about the relationship between sample and population

eigenvectors. In theory, the dot product u′n,ivn,jwould be something worth looking at. However,

the sign is irrelevant, so we focus on the square (u′n,ivn,j)
2 instead. Even then, we have to

bear in mind that we operate under large-dimensional asymptotics, so all quantities need to be

normalized by the ever-increasing matrix dimension p in appropriate fashion. In this particular

instance, (u′n,ivn,j)
2 vanishes at the speed 1/p, as can be seen from the following identities:

1

p2

p∑

i=1

p∑

j=1

(u′n,ivn,j)
2 =

1

p2

p∑

i=1

u′n,i




p∑

j=1

vn,jv
′
n,j


un,i =

1

p2

p∑

i=1

u′n,iun,i =
1

p
, (3.5)

so it is more convenient to study p(u′n,ivn,j)
2 instead. The average of the quantities of interest

p(u′n,ivn,j)
2 over the sample (respectively population) eigenvectors associated with the sample

(respectively population) eigenvalues lying in the interval [λ, λ] (respectively [τ , τ ]) is equal to

∑p
i=1

∑p
j=1 p(u

′
n,ivn,j)

2
1[λ,λ](λn,i) · 1[τ ,τ ](τn, j)∑p

i=1

∑p
j=1 1[τ ,τ ](τn, j)

=
Θn(λ, τ)−Θn(λ, τ)−Θn(λ, τ) + Θn(λ, τ)[

Fn(λ)− Fn(λ)
]
·
[
Hn(τ)−Hn(τ)

] .

Thus, the object of interest is the Radon-Nikodym derivative of (the limit of) Θn(x, t) with

respect to the cross-product F (x)H(t); which is exactly what Equation (3.6) delivers.

Theorem 3.2 (Ledoit and Péché (2011)). Under Assumptions 2–4, ∀λ, τ ∈ R, Θn(λ, τ) con-

verges almost surely to some nonrandom bivariate c.d.f. Θ(λ, τ) ..=
∫ λ
−∞

∫ τ
−∞

θ(x, t) dH(t) dF (x),

where

∀x, t ∈ R θ(x, t) ..=
cxt

∣∣∣t
[
1− c− c x m̆F(x)

]
− x
∣∣∣
2 . (3.6)
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The Radon-Nikodym derivative θ(λn,i, τn,j) is ‘essentially like’ the squared dot product

p(u′n,ivn,j)
2 for large p and n. In order to operationalize Equation (3.6), we need bona fide

estimators for its ingredients, and they are provided by Section 3.2’s QuEST function:

θ̂n(λn,i, τ̂n,j) ..=
p
nλn,iτ̂n,j∣∣∣τ̂n,j

[
1− p

n − p
n λn,i m̆

τ̂n
n,p(λn,i)

]
− λn,i

∣∣∣
2 . (3.7)

Although the expression may seem a bit unusual, it is just what comes out of RMT, and we

should count ourselves lucky to have any closed-form solution at all. This ‘luck’ is first and

foremost due to the pioneering efforts of probabilists who came before. If Equations (3.1), (3.2),

(3.6), and (3.7) appear to be descendents from each other, it is because they are. A graphical

illustration in the case where the population eigenvalues are evenly spread in the interval [1, 5],

with concentration ratio p/n = 0.5, is given by Figure 3.1.
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Figure 3.1: Absolute value of the cosine of the angle between population and sample eigenvectors.

On the horizontal axes, eigenvectors are indexed by their respective eigenvalues.

One can see that the spread of sample eigenvalues is much wider: from 0.2 to 10.2.

Top-ranked sample eigenvectors are more aligned with top-ranked population eigenvectors,

and bottom-ranked sample eigenvectors are more aligned with bottom-ranked population

eigenvectors. The overall pattern is complicated and can only be captured by the function θ of

Theorem 3.2.

4 Asymptotically Optimal Nonlinear Shrinkage Estimators

The two loss functions from Table 2.2 are easy to handle using the techniques of Ledoit and Wolf

(2018): The nonlinear shrinkage estimator that they call Ŝ∗
n is optimal with respect to the

12



Weighted Frobenius loss under large-dimensional asymptotics; and the estimator that they

call Ŝ◦
n is optimal with respect to the Disutility loss. These results are stated without proof, as

they are just minor extensions of the arguments put forward by Ledoit and Wolf (2018).

Regarding the loss functions of Table 2.3, they are vastly more challenging, and cannot be

handled with existing techniques. Instead, they can only be handled by using the new technique

of angle estimation introduced in Section 3.3 above, as we shall now proceed to demonstrate.

4.1 Four Specific Loss Functions

All remaining theorems are proven in Appendix C. We start with asymptotically optimal

bona fide estimators based on Table 2.3.

Theorem 4.1 (Log-Euclidian). For any estimator S̃n in Definition 3.1, the Log-Euclidian loss

L
LE
n (S̃n,Σn) ..=

1

p
Tr

[{
log
(
S̃n

)
− log

(
Σn

)}2
]

, (4.1)

converges under Assumptions 2–5 almost surely to a deterministic limit that depends only on H,

c, and ϕ̃. This limit is minimized if ϕ̃n(λn,i) is equal to

ϕ̂LE
n (λn,i) ..= exp


1

p

p∑

j=1

log(τ̂n,j) · θ̂n(λn,i, τ̂n,j)


 , (4.2)

where τ̂n =
(
τ̂n,j
)
j=1,...,p

denotes the estimator of population covariance matrix eigenvalues

in Theorem 3.1, and θ̂n(λn,i, τ̂n,j) is the estimator of the (dimension-normalized) squared dot

product of the ith sample eigenvector with the jth population eigenvector in Equation (3.7). The

resulting covariance matrix estimator is ŜLE
n

..=
∑p

i=1 ϕ̂
LE
n

(
λn,i

)
· un,iu′n,i.

Theorem 4.2 (Fréchet). The Fréchet loss LFRÉ
n (S̃n,Σn) ..=

∥∥S̃1/2
n −Σ

1/2
n

∥∥2
F

/
p converges almost

surely to a deterministic limit that is minimized if ϕ̃n(λn,i) is equal to

ϕ̂FRÉ
n (λn,i) ..=


1

p

p∑

j=1

√
τ̂n,j · θ̂n(λn,i, τ̂n,j)




2

. (4.3)

The resulting covariance matrix estimator is ŜFRÉ
n

..=
∑p

i=1 ϕ̂
FRÉ
n

(
λn,i

)
· un,iu′n,i.

Theorem 4.3 (Quadratic). The Quadratic loss L
Q
(
S̃n,Σn

)
..=
∥∥Σ−1

n S̃n − In

∥∥2
F

/
p converges

almost surely to a deterministic limit that is minimized if ϕ̃n(λn,i) is equal to

ϕ̂Q
n (λn,i) ..=

1

p

p∑

j=1

1

τ̂n,j
· θ̂n(λn,i, τ̂n,j)

1

p

p∑

j=1

1

τ̂2n,j
· θ̂n(λn,i, τ̂n,j)

. (4.4)

The resulting covariance matrix estimator is ŜQ
n

..=
∑p

i=1 ϕ̂
Q
n

(
λn,i

)
· un,iu′n,i.
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Theorem 4.4 (Inverse Quadratic). The Inverse Quadratic loss function, which is defined as

L
QINV

(
S̃n,Σn

)
..=
∥∥S̃−1

n Σn − In

∥∥2
F

/
p, converges almost surely to a deterministic limit that is

minimized if ϕ̃n(λn,i) is equal to

ϕ̂QINV
n (λn,i) ..=

1

p

p∑

j=1

τ̂2n,j · θ̂n(λn,i, τ̂n,j)

1

p

p∑

j=1

τ̂n,j · θ̂n(λn,i, τ̂n,j)

. (4.5)

The resulting covariance matrix estimator is ŜQINV
n

..=
∑p

i=1 ϕ̂
QINV
n

(
λn,i

)
· un,iu′n,i.

4.2 Two Infinite Families of Loss Functions

We have so far covered 12 loss functions, including many of the classic ones, from which we

have derived a total of 7 different optimal nonlinear shrinkage formulas (as there are some

commonalities). It is tedious to keep adding more by hand. Most applied researchers should

have already been able to find ‘the shoe that fits’ in this rather extensive list by now.

If not, the only systematic method is to study an (uncountably) infinite number of loss

functions, and to find the nonlinear shrinkage formula exactly optimized with respect to each

of them. To the best of our knowledge, an ambitious project on this scale has never been

envisioned before. In doing so, we will meet again some old acquaintances: 6 of the 12 loss

functions already analyzed manually are special cases of the two general theorems presented

below. The first infinite family of loss functions is what we call Generalized Frobenius.

Theorem 4.5 (Generalized Frobenius). For any invertible and continously differentiable func-

tion γ defined on (0,+∞), the Generalized Frobenius loss Lγ,F
n (S̃n,Σn) ..=

∥∥∥γ
(
S̃n

)
− γ
(
Σn

)∥∥∥
2

F

/
p

converges almost surely to a deterministic limit that is minimized if ϕ̃n(λn,i) is equal to

ϕ̂γ
n(λn,i) ..= γ−1


1

p

p∑

j=1

γ (τ̂n,j) · θ̂n(λn,i, τ̂n,j)


 . (4.6)

The resulting covariance matrix estimator is Ŝγ
n

..=
∑p

i=1 ϕ̂
γ
n

(
λn,i

)
· un,iu′n,i.

The Frobenius, Inverse Frobenius, Log-Euclidian, and Fréchet losses are special cases of the

General Frobenius family, corresponding, respectively, to γ(x) equal to x, 1/x, log(x), and
√
x.

A second infinite family of loss functions is based on the Kullback and Leibler (1951)

divergence. Given two multivariate normal distributions N(0, Ai) with zero mean and covariance

matrix Ai, for i ∈ {1, 2}, their dimension-normalized Kullback-Leibler divergence is:

DKL

(
N(0, A1)‖N(0, A2)

)
..=

1

2p

{
Tr
[
A−1

2 A1

]
− log

[
det(A−1

2 A1)
]
− p
}

. (4.7)

Stein’s loss and the Inverse Stein loss are special cases of the Generalized Kullback-Leibler

family defined below, obtained by setting γ(x) equal to 1/x and x, respectively.
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Theorem 4.6 (Generalized Kullback-Leibler). For any invertible and continously differentiable

function γ defined on (0,+∞), the Generalized Kullback-Leibler loss function

L
γ,KL
n (S̃n,Σn) ..=

1

2p

{
Tr
[
γ
(
S̃n

)−1
γ
(
Σn

)]
− log det

[
γ(S̃n)

−1γ(Σn)
]
− p
}

(4.8)

converges almost surely to a deterministic limit that is minimized if ϕ̃n(λn,i) is equal to the

quantity ϕ̂γ
n(λn,i) defined in Equation (4.6) (for i = 1, . . . , p).

Both infinite families of loss functions confirm the asymptotic optimality of the same infinite

family of nonlinear shrinkage estimators Ŝγ
n. The Frobenius norm is important because it is

just the Euclidian distance on the space of matrices, and the Kullback-Leibler divergence is

important in a completely different field: information theory. Two justifications coming from

such different perspectives combine to give strong backing to the covariance matrix estimator

Ŝγ
n, no matter which function γ the end-user is interested in.

Remark 4.1. The three other nonlinear shrinkage formulas that do not fit into the mold of

Equation (4.6) are just elementary combinations of ϕ̂γ
n(·) for two different γ functions.

Remark 4.2. It should be pointed out that, apart from the two special cases γ(x) = x±1, these

two infinite families of loss functions can also only be handled by using the new technique of

angle estimation introduced in Section 3.3 above.

5 Singular Case: p > n

This is a case of great practical importance. When it happens, the sample covariance matrix

is singular: It has p − n eigenvalues equal to zero; therefore, it is only positive semi-definite.

There then exist some linear combinations of the original variables that falsely appear to have

zero variance when ones only looks in-sample. In a sense, the sample covariance matrix, with

its p(p+ 1)/2 degrees of freedom, ‘overfits’ the data set of dimension n× p.

5.1 Finite-Sample Analysis

With respect to the loss functions studied in this paper, the optimal nonlinear shrinkage formula

applied to the n non-zero sample eigenvalues remains the same as in the case p < n, so no need to

revisit. The only item to be determined is how to shrink the p−n null sample eigenvalues. Recall

that we sort the sample eigenvalues in nondecreasing order w.l.o.g., so the null eigenvalues are

the first p−n ones. To build intuition, we start as before with the finite-sample case: Table 5.1

presents a counterpart to Tables 2.1–2.3, listing how to optimally shrink null sample eigenvalues.

The pattern is clear: compute how all the eigenvectors in the null space of the sample

covariance matrix relate to (a function of) the population covariance matrix, and take the

average. There is a rotational indeterminacy in this null space of dimension p − n, but the

formulas in the last column are invariant to rotation of the basis of null eigenvectors, so it does

not matter.
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Type of Loss Stylized Loss Function Null Shrinkage

Frobenius
∥∥S̃ − Σ

∥∥
F

1
p−n

∑p−n
i=1 u′iΣui

Inverse Stein Tr
[
S̃−1Σ

]
− log

[
det
(
S̃−1Σ

)]
1

p−n

∑p−n
i=1 u′iΣui

Minimum Variance Tr
[
S̃−1ΣS̃−1

]/(
Tr
[
S̃−1

])2
1

p−n

∑p−n
i=1 u′iΣui

Stein Tr
[
S̃Σ−1

]
− log

[
det
(
S̃Σ−1

)] (
1

p−n

∑p−n
i=1 u′iΣ

−1ui

)−1

Inverse Frobenius
∥∥S̃−1 − Σ−1

∥∥
F

(
1

p−n

∑p−n
i=1 u′iΣ

−1ui

)−1

Symmetrized Stein Tr
[
S̃Σ−1 + S̃−1Σ

]
√√√√

1
p−n

∑p−n
i=1 u′iΣui

1
p−n

∑p−n
i=1 u′iΣ

−1ui

Weighted Frobenius Tr
[(
S̃ − Σ

)2
Σ−1

] (
1

p−n

∑p−n
i=1 u′iΣ

−1ui

)−1

Disutility Tr
[(
S̃−1 − Σ−1

)2
Σ
]

1
p−n

∑p−n
i=1 u′iΣui

Log-Euclidian
∥∥∥log(S̃)− log(Σ)

∥∥∥
F

exp
[

1
p−n

∑p−n
i=1 u′i log(Σ)ui

]

Fréchet
∥∥∥S̃1/2 − Σ1/2

∥∥∥
F

(
1

p−n

∑p−n
i=1 u′iΣ

1/2ui

)2

Quadratic
∥∥∥Σ−1S̃ − I

∥∥∥
F

1
p−n

∑p−n
i=1 u′iΣ

−1ui
1

p−n

∑p−n
i=1 u′iΣ

−2ui

Inverse Quadratic
∥∥∥S̃−1Σ− I

∥∥∥
F

1
p−n

∑p−n
i=1 u′iΣ

2ui
1

p−n

∑p−n
i=1 u′iΣui

Table 5.1: Formulas for shrinking null eigenvalues.
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5.2 Large-Dimensional Asymptotic Framework

Assumption 6 (Singular). The ratio p/n converges, as n → ∞, to a finite limit c > 1.

Furthermore, there exists a compact interval included in (1,+∞) that contains p/n for all n

large enough.

Given that the first p−n sample eigenvalues are devoid of informational content, it is judicious

to focus on the e.d.f of the n other ones: ∀x ∈ R Fn(x)
..= 1

n

∑p
i=p−n+1 1[λn,i,+∞)(x) . Under

Assumptions 3–6, it admits a nonrandom limit:

∀x ∈ R Fn(x)
a.s.−→ F (x) ..= (1− c)1[0,+∞)(x) + cF (x) . (5.1)

Of particular interest will be its Stieltjes transform: ∀z ∈ C
+ mF (z) ..=

∫
1

λ−z dF (λ), which

admits a continuous extension onto the real line: ∀x ∈ R m̆F (x) ..= limz∈C+→xmF (z).

5.3 Optimal Shrinkage of Null Sample Eigenvalues

At this stage, what we need is an equivalent of Equation (2.4) that pertains to the shrinkage of

the null sample eigenvalues. It comes from Theorem 9 of Ledoit and Péché (2011):

1

p− n

p−n+1∑

i=1

u′n,iγ(Σn)un,i ≈
1

p

p∑

j=1

γ(τ̂n,j) ·
1(

1− n
p

) [
1 + m̆τ̂n

n,p(0)τ̂n,j

] , (5.2)

where τ̂n
..= {τ̂n,j}pj=1 is, as before, the estimator of population eigenvalues obtained by

numerically inverting the QuEST function, and m̆τ̂n
n,p(0) is a strongly consistent estimator

of m̆F (0) which is another by-product of the QuEST function (when p > n). As per

Ledoit and Wolf (2015, Section 3.2.2), m̆τ̂n
n,p(0) is the unique solution m ∈ (0,∞) to the equation

1

m
=

1

n

p∑

j=1

τ̂n,j
1 + τ̂n,j m

. (5.3)

Equation (5.2) enables us to extend the squared-dot-product function θ(x, t) presented in

Section 3.3 to handle x = 0. The next figure graphs

θ(0, t) ..=
1(

1− 1
c

) [
1 + m̆F (0) t

] (5.4)
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as a function of t for various values of the concentration ratio p/n. We use the same baseline

scenario as in Figure 3.1: the population eigenvalues are evenly spread in the interval [1,5].
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Figure 5.1: The Radon-Nykodym derivative θ(0, t) as a function of the population eigenvalues.

This plot shows how aligned the null-space sample eigenvectors are with the population

eigenvectors.

Eigenvectors in the null space of the sample covariance matrix tend to be more (less) aligned

with population eigenvectors corresponding to small (large) population eigenvalues, which makes

intuitive sense. The degree of preferential alignment is inversely related to the concentration

ratio, as a high ratio p/n disorients the sample eigenvectors. The overall pattern is highly

nonlinear, and could only be pinned down through Equations (5.3)–(5.4) from RMT. Note that,

by construction, the dimension-normalized density of the squared dot-product averages to 1, so

it is deviations from the baseline number of 1 that are informative.

5.4 Covariance Matrix Estimation in the Singular Case

Theorems 4.1–4.6 remain valid when c > 1, with the understanding that the estimator of the

squared dot-product in the null space of the sample covariance matrix (i = 1, . . . , p− n) is

∀j = 1, . . . , p θ̂n(λn,i, τ̂n,j) = θ̂n(0, τ̂n,j) ..=
1(

1− n
p

) [
1 + m̆τ̂

n,p(0)τ̂n,j

] . (5.5)

In order to show how this works, we need only state and prove the singular-case counterpart of

Theorem 4.5, as the other theorems are adapted from p < n to the p > n case in similar fashion.

Theorem 5.1. Under Assumptions 3–6, the Generalized Frobenius loss admits an almost sure

(deterministic) limit, which is minimized by the nonlinear shrinkage formula

ϕ̂γ
n(λn,i) ..= γ−1


1

p

p∑

j=1

γ (τ̂n,j) · θ̂n(λn,i, τ̂n,j)


 , (5.6)
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where the bivariate function θ̂n(x, t) is given by Equation (3.7) for x > 0, and θ̂n(0, t) is given

by Equation (5.5). The resulting covariance matrix estimator is Ŝγ
n

..=
∑p

i=1 ϕ̂
γ
n

(
λn,i

)
· un,iu′n,i.

6 Monte Carlo Simulations

The goal of this section is to illustrate on simulated data that there is generally great benefit

in using the shrinkage estimator that is tailored to the loss function one has selected.

6.1 General Setup

The population eigenvalues are distributed as follows: 20% are equal to 1, 40% are equal to 3, and

40% are equal to 10. This is a challenging problem originally introduced by Bai and Silverstein

(1998). We use the 12 loss functions from Tables 2.1–2.3. For each one, we compute the FSOPT

‘estimator’ specific to the particular loss function, as well as all 7 bona fide shrinkage estimators

presented in the paper. We use the same notation as Ledoit and Wolf (2018): Ŝ◦
n is the estimator

optimal with respect to Frobenius, Inverse Stein and Minimum Variance losses; Ŝ∗
n is the one

optimal with respect to Stein and Inverse Frobenius losses; and Ŝ⊛

n the one optimal with respect

to the Symmetrized Stein’s loss. In addition, the identity matrix (rescaled to have same trace as

the sample covariance matrix), the sample covariance matrix, and the linear shrinkage estimator

of Ledoit and Wolf (2004) are also computed for reference purposes. The results are averaged

over 1,000 simulations.

6.2 Nonsingular Case

To produce the results of Table 6.1, the matrix dimension is p = 100 and the sample size is

n = 200.

In each row, the performance of the best bona fide estimator is printed in bold. One can

see that the winner is always the estimator tailor-made for the loss function of the given row.

Sometimes the difference with the other estimators is quite stark. Obviously, the FSOPT always

dominates, but usually the excess loss of the best bona fide estimator is quite small. This finding

reinforces the message that the asymptotically optimal estimators listed in the present paper

perform as well as they ought to, even in finite samples.

Regarding the other (reference) estimators, linear shrinkage does better than the two

ingredients that it interpolates, the scaled identity matrix and the sample covariance matrix,

with respect to all but one of the 12 loss functions. This is good news because in theory

its shrinkage intensity is optimized with respect to the Frobenius loss only. Linear shrinkage

performs honorably across the board for such a simple estimator: it even manages to beat some

nonlinear shrinkage estimators in almost every row, typically a couple of them. Needless to say,

linear shrinkage never beats the nonlinear shrinkage formula optimized to the loss function

in the given row, which shows that it ‘leaves some money on the table’ and that shrinking
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Loss Function FSOPT Identity Sample Linear Ŝ◦
n Ŝ∗

n Ŝ⊛

n ŜLE
n ŜFRÉ

n ŜQ
n ŜQINV

n

Frobenius 5.755 14.644 14.771 7.382 5.925 7.747 6.441 6.297 6.016 16.094 8.226

Inverse Stein 0.152 0.326 0.710 0.184 0.157 0.216 0.171 0.174 0.161 0.464 0.226

Minimum Variance 1.095 2.721 2.757 1.370 1.138 1.162 1.144 1.163 1.148 1.172 1.359

Stein 0.150 0.690 0.310 0.289 0.213 0.154 0.168 0.168 0.186 0.222 0.513

Inverse Frobenius 0.048 0.144 0.852 0.098 0.069 0.051 0.055 0.054 0.060 0.069 0.126

Symmetrized Stein 0.329 1.016 1.020 0.473 0.370 0.371 0.339 0.342 0.347 0.686 0.739

Weighted Frobenius 0.228 1.016 0.504 0.377 0.317 0.233 0.251 0.256 0.281 0.336 0.743

Disutility 0.290 0.504 5.257 0.342 0.298 0.442 0.329 0.343 0.311 0.919 0.405

Log-Euclidian 0.291 0.859 0.756 0.427 0.329 0.324 0.301 0.300 0.307 0.598 0.637

Fréchet 0.286 0.772 0.585 0.367 0.300 0.347 0.302 0.299 0.294 0.703 0.504

Quadratic 0.292 4.212 1.013 1.289 0.978 0.462 0.647 0.668 0.803 0.298 2.927

Inverse Quadratic 0.260 0.503 9.490 0.376 0.449 1.104 0.685 0.737 0.576 2.642 0.264

Table 6.1: Average losses computed for various estimators when p = 100 and n = 200. Best numbers are in bold face.
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nonlinearly (in the appropriate way) delivers yet another round of improvement over and above

linear shrinkage.

6.3 Comparison of Shrinkage Formulas

Confirming the ordering of Proposition 2.1, Figure 6.1 gives further insight into the loss functions

by showing how the 7 estimators shrink the sample eigenvalues in this case.
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Figure 6.1: Comparison of 7 nonlinear shrinkage formulas.

The Quadratic and the Inverse Quadratic shrinkage formulas stand out as ‘outliers’, as shown by

Proposition 2.1. In Table 6.1, the estimators ŜQ
n and ŜQINV

n display erratic performances when

measured against other loss functions than their own. The other estimators are better able to

deliver respectable performance across foreign loss functions. The estimators Ŝ◦
n and Ŝ∗

n have

strong backing, from the Minimum-Variance and Stein’s loss, respectively; the Log-Euclidian

estimator ŜLE
n represents an excellent ‘neutral’ compromise that has strong foundations in the

differential geometry of the manifold of tensors (a.k.a. positive definite matrices).

6.4 Singular Case

Table 6.2 presents further results when p = 200 and n = 100. Once again, the pattern is

confirmed overall, except for one violation: ŜLE
n beats Ŝ⊛

n both ‘home’ and ‘away’: with respect

to the Log-Euclidian loss and, unexpectedly, with respect to the Symmetrized Stein’s loss also.

(In other simulations not reported here, we double-checked that Ŝ⊛

n does beat ŜLE
n with respect to

the Symmetrized Stein’s loss when dimension is high enough, as implied by large-dimensional

asymptotic theory.) Both of these estimators plow the same narrow but interesting field of

21



Loss Function FSOPT Identity Linear Ŝ◦
n Ŝ∗

n Ŝ⊛

n ŜLE
n ŜFRÉ

n ŜQ
n ŜQINV

n

Frobenius 11.250 14.644 11.774 11.360 15.343 12.590 12.559 11.688 22.044 17.560

Inverse Stein 0.274 0.326 0.280 0.275 0.418 0.308 0.315 0.285 0.729 0.358

Minimum Variance 2.221 2.721 2.271 2.232 2.255 2.239 2.253 2.241 2.301 2.362

Stein 0.290 0.690 0.510 0.496 0.299 0.356 0.347 0.407 0.339 1.071

Inverse Frobenius 0.091 0.144 0.128 0.126 0.094 0.107 0.104 0.114 0.102 0.163

Symmetrized Stein 0.656 1.016 0.789 0.772 0.716 0.665 0.662 0.693 1.068 1.428

Weighted Frobenius 0.397 1.015 0.707 0.697 0.406 0.475 0.470 0.557 0.463 1.933

Disutility 0.453 0.504 0.459 0.455 0.691 0.501 0.516 0.469 1.292 0.530

Log-Euclidian 0.587 0.859 0.687 0.672 0.636 0.595 0.592 0.614 0.914 1.123

Fréchet 0.572 0.772 0.610 0.595 0.697 0.592 0.593 0.577 1.032 1.012

Quadratic 0.395 4.210 2.718 2.648 0.803 1.422 1.367 1.895 0.490 8.418

Inverse Quadratic 0.321 0.503 0.517 0.525 1.851 0.947 1.033 0.726 4.148 0.322

Table 6.2: Average losses computed for various estimators when p = 200 and n = 100. Best numbers are in bold face.
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estimators that are equivariant with respect to matrix inversion, so it is not completely surprising

that the estimator that beats Ŝ⊛

n on its home turf shares the same desirable property.

Remarks regarding the two simple estimators (scaled identity and linear shrinkage)

essentially go in the same direction as in Section 6.2. We excluded the sample covariance

matrix because it is not invertible, so most of the loss functions return +∞.

6.5 Comparison with Simpler Alternatives: The Matrix as a Whole

We examine two alternative approaches that make compromises in order to obtain formulas that

are simpler than the ones developed in this paper. Linear shrinkage (Ledoit and Wolf, 2004)

compromises by forcing all eigenvalues to be shrunk towards the same target with the same

shrinkage intensity, and by considering only the Frobenius loss. The spiked-model approach

(Donoho et al., 2018) compromises by assuming that the bulk of the population eigenvalues

(meaning: all of them except for a vanishing fraction of them, called spikes) are equal.

In this Monte Carlo simulation, we take both the simpler linear shrinkage and the simpler

spiked model ‘outside of their comfort zone’ by considering 8 different loss functions, and by

considering specifications where the bulk of the population eigenvalues can be different from

each other. Most applied researchers will be interested to know how robust the simplified

formulas are against violations of the framework under which they have been derived.

The 8 loss functions that we consider are all of the ones in the intersection of the 12 that

we consider in the present paper with the 18 for which Donoho et al. (2018) deliver closed-form

spike shrinkage: 1) Frobenius, 2) Stein, 3) Inverse Frobenius, 4) Inverse Stein, 5) Symmetrized

Stein, 6) Fréchet, 7) Quadratic, and 8) Inverse Quadratic. The code for spike shrinkage was

taken directly from Donoho et al. (2016). As far as the population eigenvalues are concerned,

the initial specification is to have a single spike at 10, and the p− 1 bulk eigenvalues equal to 1.

From this base, we will allow for heterogeneity in the bulk by keeping half of the bulk equal to

1, while setting the other half equal to τ ∈ [1, 5]. It is only fair to allow bulk eigenvalues to not

all be equal: after all, this is the generic case, and the special case where all bulk eigenvalues

are equal is a measure-zero subset of the set of all possible eigenvalue combinations, so it is not

necessarily representative of real-world applications. We put 100 eigenvalues in the bulk, plus

(as mentioned above) a single spike, for a total of p = 101 eigenvalues. We take the (limiting)

concentration ratio to be c = 1/2, which implies n = 202.

Figure 6.2 displays the Percentage Relative Improvement in Average Loss (PRIAL):

PRIAL
(
L
i
n, S̃n

)
..=

E
[
L
i
n

(
Sn,Σn)

]
− E

[
L
i
n

(
S̃n,Σn)

]

E
[
Li
n

(
Sn,Σn)

]
− E

[
Li
n

(
Ŝ∗,i
n ,Σn)

] × 100% , (6.1)

where Li
n denotes one of the eight loss functions listed above, Ŝ∗,i

n denotes the FSOPT ‘estimator’

tailored to each specific loss function as per Tables 2.1–2.3, S̃n denotes the estimator under

consideration (whether linear shrinkage, spike shrinkage, or nonlinear shrinkage), and the

expectation is approximated by the average of 1,000 Monte Carlo simulations. By construction,
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the PRIAL of the sample covariance matrix is 0% whereas the PRIAL of the FSOPT ‘estimator’

is 100%. The PRIAL measures how much of the potential for improvement relative to the sample

covariance matrix is attained by a given estimator S̃n.

One can see that, even though the dimension is not overly large (p ≈ 100), nonlinear

shrinkage captures nearly 100% of the potential improvement with respect to all loss functions,

regardless of how spread out are the bulk population eigenvalues. Linear shrinkage has more of

a mixed performance, but still manages to capture at least 50% of the potential improvement

most of the time. It beats the sample covariance matrix with respect to all 8 loss functions,

which shows that its attractiveness extends far beyond the Frobenius loss under which it was

originally derived. It beats spike shrinkage as long as τ ≥ 2.5 in all cases but one (the Quadratic

loss, where they are essentially identical). Also worth noting is that linear shrinkage is the only

estimator that keeps the same formula in all 8 subplots of Figure 6.2, so it is ‘fighting with one

hand tied behind the back’ when it has to compete against the other two shrinkage estimators

under the 7 loss functions different from Frobenius loss.

As expected, the performance of spike shrinkage is near-perfect when its specification

matches reality (τ = 1: all bulk eigenvalues are equal), but it monotonically degrades as soon

as the bulk population eigenvalues become heterogeneous. This drop in performance is not so

pronounced with the Inverse Frobenius, Inverse Stein and Inverse Quadratic losses, but it is

very pronounced with the 5 other loss functions. There is even a case (τ = 5 and Fréchet loss)

where spike shrinkage underperforms the sample covariance matrix, which results in a negative

PRIAL. This is a result that should be expected purely from theory: Unlike linear and nonlinear

shrinkage, spike shrinkage can actually be worse than the sample covariance matrix even in the

large-dimensional asymptotic limit.

Compared to the two simpler alternatives, nonlinear shrinkage does better across the board.

In particular, there are scenarios where the optimal nonlinear shrinkage formula is (nearly) linear;

and, even then, nonlinear shrinkage performs just as well as linear shrinkage, for all practical

purposes. Similarly, there are scenarios where the spiked covariance model holds perfectly true

(bulk maximum equal to one); and, even then, nonlinear shrinkage performs just as well as spike

shrinkage, for all practical purposes.

The overall conclusion is that, among the simpler formulas, linear shrinkage can ‘leave some

money on the table’ when the optimal shrinkage is highly nonlinear whereas spike shrinkage is

vulnerable to the risk that its stringent specification of bulk-eigenvalue equality is violated by

reality. Only the full-blown nonlinear shrinkage formulas derived in this paper avoid both pitfalls

and deliver state-of-the-art enhancement of the sample covariance matrix across the board.

6.6 Comparison with Simpler Alternatives: Focus on the Spike

There might be a perception that nonlinear shrinkage does better on the bulk, whereas spike

shrinkage does better on the spike. This is hard to justify formally, as the loss functions used

in the spike literature pertain to the whole covariance matrix, placing no special over-weight on
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Figure 6.2: PRIAL as a function of the spread of the bulk of population eigenvalues for 4 bona fide estimators under 8 loss functions.
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the spike. Nonetheless, in Table B.1 we isolate the spike’s contribution to overall risk, for the

8 loss functions from Section 6.5. This is easy to do because every one of these loss functions can

be decomposed as a sum of contributions attributable to each of the p eigenvalues. Figure 6.3

displays the Monte Carlo simulation results.

The performance of the sample covariance matrix can be so erratic as to not even be on

the same scale as the other estimators in many scenarios. The risk contribution of the FSOPT

is zero by construction. The pattern is that spike shrinkage and nonlinear shrinkage estimate

the spike equally well when the spike model’s assumption of equal bulk eigenvalues is satisfied,

or nearly satisfied. However, as the bulk spreads out, nonlinear shrinkage estimates the spike

more accurately than spike shrinkage for all 8 loss functions where methods overlap.

7 Conclusion

In this paper, we have

• developed a new estimator of the angle between any sample eigenvector and any population

eigenvector by exploiting a sophisticated equation from random matrix theory (RMT);

• doubled the number of loss functions that can be handled from 6 to 12 (compared to related

earlier work), which can only be achieved by the new technique of angle estimation;

• proposed a classification of loss functions by their finite-sample optimal shrinkage formulas;

• increased the number of asymptotically optimal nonlinear shrinkage formulas from 3 to 7

(compared to related earlier work);

• established an ordering of the nonlinear shrinkage formulas (from largest to smallest);

• delivered two infinite families of loss functions and their (correspondingly infinite family of)

optimal nonlinear shrinkage formulas, which can only be achieved by the new technique

of angle estimation;

• and introduced a new loss function founded on the economic concept of utility maximiza-

tion.

As a simpler alternative approach, Donoho et al. (2018) consider aménagerie of 26 loss functions

under the spiked covariance model of Johnstone (2001). The key distinction in this model is

between the bulk, which is comprised by eigenvalues packed shoulder-to-shoulder like sardines,

and the spikes, which are a few select eigenvalues large enough to separate from the bulk.

Donoho et al. (2018) treat the spikes carefully, but they just collapse the bulk. This approach

is perfectly legitimate under the assumption that they make, namely, that all bulk population

eigenvalues are equal. However, in many applications, such an assumption is unrealistic or may

not be known to hold. In the general case, bulk population eigenvalues are nonequal, so valuable

information can be gleaned from the angle between sample and population eigenvectors, and

from applying differentiated shrinkage inside the bulk. Monte Carlo simulations show that the

resulting nonlinear shrinkage performs, for all practical purposes, just as well as spike shrinkage
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Figure 6.3: Normalized contribution of the spike to the overall risk of the covariance matrix for 8 loss functions, as a function of the spread

of the bulk of population eigenvalues. The setup is the same as in Section 6.5, except that we run 10,000 simulations.
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when bulk population eigenvalues are equal, but is often much better when they are unequal.

Therefore, the KISS (Keep it simple, statistician!) principle does not seem to benefit applied

researchers: by upgrading instead from spike shrinkage to full-blown nonlinear shrinkage, they

have, basically, nothing to lose but much to gain. (In addition, at least currently, spike shrinkage

is only available for the case where the dimension is smaller than the sample size, which limits

practical applications.)

Having said this, Donoho et al. (2018) roll out a clever technology that convincingly

documents three closely interrelated facts that have not garnered sufficient attention in this

field:

1. The choice of loss function has a profound effect on optimal estimation.

2. Eigenvalue inconsistency: The sample eigenvalues are spread, biased, and shifted away

from their theoretical (population) counterparts by an asymptotically predictable amount.

3. Eigenvector inconsistency: The angles between the sample eigenvectors and the corre-

sponding population eigenvectors have nonzero asymptotic limits.

Such fundamental truths need to be hammered in again and again, in every possible way.

Finally, we may say a word about the choice of loss function. 12 of them have been solved

already, yielding 7 different nonlinear shrinkage formulas, in addition to the infinite families,

which should be more than enough to satisfy any reasonable need. By definition it is the duty

of the end-user to pick the loss function, but perhaps some light-touch guidance can help orient

readers through a forest with so many trees. For anyone interested in using a covariance matrix

estimator to minimize variance, risk, or noise in any sense, then certainly the Minimum Variance

loss function is the appropriate one. An additional advantage is that a new technology has arisen

for this purpose that is no more complex than kernel density estimation, and so is extremely

fast and scalable to ultra-high dimensions (Ledoit and Wolf, 2020). For researchers concerned

with the decision-theoretic aspects of the problem, a loss function based on the Kullback-Leibler

divergence (also called relative entropy), such as Stein’s loss, is the natural candidate. For other

applications, such as fMRI tensors, where it is important to regard eigenvalues close to zero

as being ‘as distant’ as eigenvalues close to infinity, then the Log-Euclidian loss function is

well suited: It appears a good compromise because it produces shrunken eigenvalues that lie in

between the ones from the Minimum-Variance loss and the ones from Stein’s loss.
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A Portfolio Selection and the Disutility Loss

Here we explain how the Weighted Frobenius loss of Sharma and Krishnamoorthy (1985) applied

to the precision matrix can be interpreted as quadratic disutility. Consider the standard mean-

variance optimization problem with quadratic utility function:

max
w

w′µ− 1

2
ρw′Σw , (A.1)

where µ denotes some vector of expected return selected by the end-user, and ρ > 0 the risk

aversion parameter (cf. Markowitz (1952)). The first-order condition is µ − ρΣw = 0, and the

solution is w = Σ−1µ/ρ. In practice, we only observe an estimator S̃ of the unobservable

population covariance matrix Σ, so the plug-in estimator for the optimal weight vector is

w̃ = S̃−1µ/ρ. The quadratic utility associated with this vector is

w̃′µ− 1

2
ρw̃′Σw̃ =

1

ρ
µ′S̃−1µ− 1

2ρ
µ′S̃−1ΣS̃−1µ . (A.2)

At this point, the risk aversion coefficient ρ becomes irrelevant because, regardless of ρ, all

investors want to find a covariance matrix estimator S̃ that maximizes

µ′S̃−1µ− 1

2
µ′S̃−1ΣS̃−1µ . (A.3)

As argued in further detail in Engle et al. (2019, Section 4.3), under large-dimensional

asymptotics in conjunction with RMT, there is a key approximation:

µ′Aµ ≈ ‖µ‖2Tr[A] . (A.4)

From this we can streamline the objective function so as to make it equally adept at fitting the

needs of all users who may have different views on the choice of vector µ:

‖µ‖2Tr
[
S̃−1

]
− 1

2
‖µ‖2Tr

[
S̃−1ΣS̃−1

]
. (A.5)

The squared Euclidian norm of the linear constraint vector µ becomes irrelevant to the

estimation process, so we are left with just maximizing Tr
[
S̃−1

]
− 1

2Tr
[
S̃−1ΣS̃−1

]
.1 This is

obviously equivalent to minimizing with respect to the rotation-equivariant estimator S̃ the

shifted loss function

− Tr
[
S̃−1

]
+

1

2
Tr
[
S̃−1ΣS̃−1

]
+

1

2
Tr
[
Σ−1

]
=

1

2
Tr
[(
S̃−1 − Σ−1

)2
Σ
]
. (A.6)

We recognize immediately the Weighted Frobenius loss function applied to the precision matrix

L
D
(
S̃,Σ

)
..=

Tr
[(
S̃−1 − Σ−1

)2
Σ
]

Tr
[
Σ
] , (A.7)

up to some multiplicative renormalizations. This approach nicely dovetails with the Minimum

Variance loss function of Engle et al. (2019), as it gives the same optimal nonlinear shrinkage

formula, but pins down the scaling factor internally rather than by appealing to the external

argument of trace preservation.

1Note the close connection with the Minimum Variance loss function, which was essentially based on

Tr
[
S̃

−1ΣS̃−1
]/(

Tr
[
S̃

−1
])2

. So, instead of dividing, we are subtracting here. Given that both of them are

based on mean-variance portfolio optimization, it is reassuring to observe that they do not contradict each other.

32



B Finite-Sample Optimal Estimators for Various Losses

In this section, all loss functions are normalized by dimension so they admit an almost sure limit

under large-dimensional asymptotics. Given that the objective is to optimize over the rotation-

equivariant covariance matrix estimator S̃, we call ‘constant’ any quantity that does not depend

on S̃. In addition, for the eight loss functions that overlap with Table 2 of Donoho et al. (2018),

we indicate how to partial out the incremental contribution to loss attributable to imperfect

shrinkage of the largest eigenvalue, in order to be able to focus on the spike in some of the

simulations in Section 6.

B.1 Frobenius

L
F(S̃,Σ) ..=

1

p
Tr
[(
S̃ − Σ

)2]
=

1

p
Tr
[(
Σ− S̃

)2]
(B.1)

=
1

p
Tr
[(
Σ− UD̃U ′

)(
Σ− UD̃U ′

)]
(B.2)

=
1

p
Tr
[
U ′
(
Σ− UD̃U ′

)
UU ′

(
Σ− UD̃U ′

)
U
]

(B.3)

=
1

p
Tr
[(
U ′ΣU − D̃

)2]
=

1

p

p∑

i=1

(
u′iΣui − d̃i

)2
+ constant , (B.4)

which is clearly minimized when d̃i = u′iΣui for all i = 1, . . . , p. It is clear from Equation (B.4)

that the incremental contribution to Frobenius loss due to imperfect shrinkage of the largest

eigenvalue is
(
u′pΣup− d̃p

)2
. By the adjective ‘imperfect’, we mean worse than the unattainable

FSOPT. Note that here, and for subsequent loss functions, we do not divide by p because there

is only a single eigenvalue (the largest one) under consideration.
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B.2 Inverse Stein

L
SINV(S̃,Σ) ..=

1

p
Tr
[
S̃−1Σ

]
− 1

p
log
[
det
(
S̃−1Σ

)]
− 1 (B.5)

=
1

p
Tr
[
ΣS̃−1

]
− 1

p
log
[
det
(
ΣS̃−1

)]
− 1 (B.6)

=
1

p
Tr
[
ΣUD̃−1U ′

]
− 1

p
log

[
det(Σ)

det(S̃)

]
− 1 (B.7)

=
1

p
Tr
[
U ′ΣUD̃−1

]
− 1

p
log
[
det(Σ)

]
+

1

p
log
[
det(D̃)

]
− 1 (B.8)

=
1

p

p∑

i=1

[
u′iΣui

d̃i
− log

(
u′iΣui

d̃i

)
− 1

]
+ constant (B.9)

∂LSINV(S̃,Σ)

∂d̃i
= −u′iΣui

pd̃2i
+

1

pd̃i
(∀i = 1, . . . , p) (B.10)

∂LSINV(S̃,Σ)

∂d̃i
= 0 ⇔ d̃i = u′iΣui . (B.11)

From Equation (B.9), we can see that the incremental contribution to Inverse Stein loss due to

imperfect shrinkage of the largest eigenvalue is equal to

u′pΣup

d̃p
− log

(
u′pΣup

d̃p

)
− 1 . (B.12)
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B.3 Minimum Variance

L
MV(S̃,Σ) ..=

Tr
[
S̃−1ΣS̃−1

]
/p

(
Tr
[
S̃−1

]
/p
)2 − 1

Tr
[
Σ−1

]
/p

(B.13)

= p
Tr
[
UD̃−1U ′ΣUD̃−1U ′

]
(
Tr
[
UD̃−1U ′

])2 + constant (B.14)

= p
Tr
[
D̃−2U ′ΣU

]
(
Tr
[
D̃−1

])2 + constant (B.15)

= p

∑p
i=1 d̃

−2
i u′iΣui(∑p

i=1 d̃
−1
i

)2 + constant (B.16)

∂LMV(S̃,Σ)

∂d̃i
= p

−2d̃−3
i u′iΣui

(∑p
j=1 d̃

−1
j

)2
+ 2d̃−2

i

(∑p
j=1 d̃

−1
j

)(∑p
j=1 d̃

−2
j u′jΣuj

)

(∑p
j=1 d̃

−1
j

)4

(B.17)

∂LMV(S̃,Σ)

∂d̃i
= 0 ⇔ d̃−3

i u′iΣui




p∑

j=1

d̃−1
j




2

= d̃−2
i




p∑

j=1

d̃−1
j






p∑

j=1

d̃−2
j u′jΣuj


 (B.18)

⇔ d̃i = scalar · u′iΣui , (B.19)

where the scalar is independent of i = 1, . . . , p. Any cursory inspection of the Minimum Variance

loss function L
MV(S̃,Σ) immediately reveals that the scalar cannot be determined internally,

because multiplying the estimator S̃ by any strictly positive scalar just washes out. Therefore,

we have to invoke other arguments to make a choice. By preservation of the trace, the scalar

should be set equal to one.
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B.4 Stein

L
S(S̃,Σ) ..=

1

p
Tr
[
S̃Σ−1

]
− 1

p
log
[
det
(
S̃Σ−1

)]
− 1 (B.20)

=
1

p
Tr
[
Σ−1S̃

]
− 1

p
log
[
det
(
Σ−1S̃

)]
− 1 (B.21)

=
1

p
Tr
[
Σ−1UD̃U ′

]
− 1

p
log

[
det(S̃)

det(Σ)

]
− 1 (B.22)

=
1

p
Tr
[
U ′Σ−1UD̃

]
− 1

p
log
[
det(S̃)

]
+

1

p
log
[
det(Σ)

]
− 1 (B.23)

=
1

p

p∑

i=1

[
u′iΣ

−1uid̃i − log(d̃i)
]
+ constant (B.24)

∂LS(S̃,Σ)

∂d̃i
=

1

p
u′iΣ

−1ui −
1

pd̃i
(∀i = 1, . . . , p) (B.25)

∂LS(S̃,Σ)

∂d̃i
= 0 ⇔ d̃i =

1

u′iΣ
−1ui

. (B.26)

From Equation (B.24), we can see that the incremental contribution to Stein’s loss due to

imperfect shrinkage of the largest eigenvalue is equal to u′pΣ
−1up · d̃p − log

(
u′pΣ

−1up · d̃p
)
− 1.

B.5 Inverse Frobenius

L
FINV(S̃,Σ) ..=

1

p
Tr
[(
S̃−1 − Σ−1

)2]
=

1

p
Tr
[(
Σ−1 − S̃−1

)2]
(B.27)

=
1

p
Tr
[(
Σ−1 − UD̃−1U ′

)(
Σ−1 − UD̃−1U ′

)]
(B.28)

=
1

p
Tr
[
U ′
(
Σ−1 − UD̃−1U ′

)
UU ′

(
Σ−1 − UD̃−1U ′

)
U
]

(B.29)

=
1

p
Tr
[(
U ′Σ−1U − D̃−1

)2]
=

1

p

p∑

i=1

(
u′iΣ

−1ui −
1

d̃i

)2

+ constant , (B.30)

which is clearly minimized when d̃i =
(
u′iΣ

−1ui
)−1

for all i = 1, . . . , p. From Equation (B.30),

we can see that the incremental contribution to Inverse Frobenius loss due to imperfect shrinkage

of the largest eigenvalue is equal to

(
u′pΣ

−1up −
1

d̃p

)2

. (B.31)
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B.6 Symmetrized Stein

L
SSYM(S̃,Σ) ..=

1

p
Tr
[
S̃Σ−1 + S̃−1Σ

]
− 2 =

1

p
Tr
[
Σ−1S̃ +ΣS̃−1

]
− 2 (B.32)

=
1

p
Tr
[
Σ−1UD̃U ′ +ΣUD̃−1U ′

]
− 2 (B.33)

=
1

p
Tr
[
U ′Σ−1UD̃ + U ′ΣUD̃−1

]
− 2 (B.34)

=
1

p

p∑

i=1

(
u′iΣ

−1uid̃i + u′iΣuid̃
−1
i

)
− 2 (B.35)

∂LSSYM(Σ, S̃)

∂d̃i
=

1

p
u′iΣ

−1ui −
u′iΣui

pd̃−2
i

(B.36)

∂LSSYM(Σ, S̃)

∂d̃i
= 0 ⇔ d̃i =

√
u′iΣui

u′iΣ
−1ui

. (B.37)

From Equation (B.34), we can see that the incremental contribution to Symmetrized Stein loss

due to imperfect shrinkage of the largest eigenvalue is equal to

u′pΣ
−1up · d̃p +

u′pΣup

d̃p
− 2
√
u′pΣup · u′pΣ−1up . (B.38)

Note that the last term, which is a constant in the sense that it does not depend on the shrunken

eigenvalue d̃p, has been artificially added so that (B.38) is equal to zero when Equation (B.37)

is satisfied, and strictly positive otherwise.

B.7 Weighted Frobenius

L
FW
(
S̃,Σ

)
..=

Tr
[(
S̃ − Σ

)2
Σ−1

]

Tr[Σ]
=

Tr
[(
UD̃U ′ − Σ

)2
Σ−1

]

Tr[Σ]
(B.39)

=
Tr
[
UD̃2U ′Σ−1 − 2UD̃U ′ +Σ

]

Tr[Σ]
=

Tr
[
D̃2U ′Σ−1U ′ − 2D̃ +Σ

]

Tr[Σ]
(B.40)

=

∑p
i=1

(
d̃2iu

′
iΣ

−1ui − 2d̃i + τi

)

Tr[Σ]
(B.41)

∂LFW
(
S̃,Σ

)

∂d̃i
=

2d̃iu
′
iΣ

−1ui − 2

Tr[Σ]
(B.42)

∂LFW
(
S̃,Σ

)

∂d̃i
= 0 ⇔ d̃i =

1

u′iΣ
−1ui

(B.43)
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B.8 Disutility

L
D
(
S̃,Σ

)
..=

Tr
[(
S̃−1 − Σ−1

)2
Σ
]

Tr[Σ−1]
=

Tr
[(
UD̃−1U ′ − Σ−1

)2
Σ
]

Tr[Σ−1]
(B.44)

=
Tr
[
UD̃−2U ′Σ− 2UD̃−1U ′ +Σ−1

]

Tr[Σ−1]
(B.45)

=
Tr
[
D̃−2U ′ΣU ′ − 2D̃−1 +Σ−1

]

Tr[Σ−1]
(B.46)

=

∑p
i=1

(
d̃−2
i u′iΣui − 2d̃−1

i + τ−1
i

)

Tr[Σ−1]
(B.47)

∂LD
(
S̃,Σ

)

∂d̃i
=

−2d̃−3
i u′iΣui + 2d̃−2

i

Tr[Σ]
(B.48)

∂LD
(
S̃,Σ

)

∂d̃i
= 0 ⇔ d̃i = u′iΣui (B.49)

B.9 Log-Euclidian

L
LE(S̃,Σ) ..=

1

p
Tr
[{

log(S̃)− log(Σ)
}2]

(B.50)

=
1

p
Tr
[{

log(Σ)− log(S̃)
}2]

=
1

p
Tr
[{

log(Σ)− log(UD̃U ′)
}2]

(B.51)

=
1

p
Tr
[{

log(Σ)− U log(D̃)U ′
}2]

=
1

p
Tr
[{

U ′ log(Σ)U − log(D̃)
}2]

(B.52)

=
1

p

p∑

i=1

{
u′i log(Σ)ui − log(d̃i)

}2
+ constant , (B.53)

which is clearly minimized when d̃i = exp
[
u′i log(Σ)ui

]
for all i = 1, . . . , p.

B.10 Fréchet

L
FRÉ(S̃,Σ) ..=

1

p
Tr
[(
S̃1/2 − Σ1/2

)2]
=

1

p
Tr
[(
Σ1/2 − S̃1/2

)2]
(B.54)

=
1

p
Tr
[(
Σ1/2 − UD̃1/2U ′

)(
Σ1/2 − UD̃1/2U ′

)]
(B.55)

=
1

p
Tr
[
U ′
(
Σ1/2 − UD̃1/2U ′

)
UU ′

(
Σ1/2 − UD̃1/2U ′

)
U
]

(B.56)

=
1

p
Tr
[(
U ′Σ1/2U − D̃1/2

)2]
=

1

p

p∑

i=1

(
u′iΣ

1/2ui −
√
d̃i

)2

+ constant , (B.57)
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which is clearly minimized when d̃i =
(
u′iΣ

1/2ui
)2

for all i = 1, . . . , p. From Equation (B.57),

we can see that the incremental contribution to Fréchet loss due to imperfect shrinkage of the

largest eigenvalue is equal to
(
u′iΣ

1/2ui −
√
d̃i

)2
.

B.11 Quadratic

L
Q
(
S̃,Σ

)
..=

1

p

∥∥∥Σ−1S̃ − I

∥∥∥
2

F
=

1

p
Tr

[(
Σ−1S̃ − I

)(
Σ−1S̃ − I

)′]
(B.58)

=
1

p
Tr
[(

Σ−1S̃ − I

)(
S̃Σ−1 − I

)]
=

1

p
Tr
[(

S̃Σ−1 − I

)(
Σ−1S̃ − I

)]
(B.59)

=
1

p
Tr
[
S̃Σ−2S̃ − 2Σ−1S̃ + I

]
(B.60)

=
1

p
Tr
[
UD̃U ′Σ−2UD̃U ′ − 2Σ−1UD̃U ′ + I

]
(B.61)

=
1

p
Tr
[
D̃U ′Σ−2UD̃ − 2U ′Σ−1UD̃ + I

]
(B.62)

=
1

p

p∑

i=1

d̃2i · u′iΣ−2ui −
2

p

p∑

i=1

d̃i · u′iΣ−1ui + 1 (B.63)

The first-order condition (FOC) is obtained as follows:

∂LQ
(
S̃,Σ

)

d̃i
=

2

p
d̃i · u′iΣ−2ui −

2

p
u′iΣ

−1ui (B.64)

FOC: d̃i · u′iΣ−2ui = u′iΣ
−1ui ⇔ d̃i =

u′iΣ
−1ui

u′iΣ
−2ui

. (B.65)

From Equation (B.63), we can see that the incremental contribution to Quadratic loss due to

imperfect shrinkage of the largest eigenvalue is equal to

u′pΣ
−2up · d̃2p − 2u′pΣ

−1up · d̃p +
(
u′pΣ

−1up
)2

u′pΣ
−2up

. (B.66)

As with the Symmetrized Stein loss, we added a term so that (B.66) is zero for the FSOPT.

B.12 Inverse Quadratic

The algebraic manipulations are the same as above, except that Σ−1 becomes Σ and S̃ becomes

S̃−1, so there is no point repeating the intermediary steps.

L
QINV

(
S̃,Σ

)
..=

1

p

∥∥∥S̃−1Σ− I

∥∥∥
2

F
(B.67)

=
1

p
d̃−2
i u′iΣ

2ui −
2

p

p∑

i=1

d̃−1
i u′iΣui + 1 (B.68)

∂LQINV
(
S̃,Σ

)

∂d̃i
= −2

p
d̃−3
i · u′iΣ2ui +

2

p
d̃−2
i · u′iΣui (B.69)

FOC:
∂LQINV

(
S̃,Σ

)

∂d̃i
= 0 ⇔ d̃i =

u′iΣ
2ui

u′iΣui
. (B.70)
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From Equation (B.68), we can see that the incremental contribution to Inverse Quadratic loss

due to imperfect shrinkage of the largest eigenvalue is equal to

u′pΣ
2up

d̃2p
− 2

u′pΣup

d̃p
+

(
u′pΣup

)2

u′pΣ
2up

. (B.71)

B.13 Generalized Frobenius

To defuse a well-known source of confusion, we use the notation γ−1(x) to signify the inverse

function of the invertible function γ, and γ(x)−1 to signify one divided by γ(x). For example,

if γ(x) = x3 then γ−1(x) = 3
√
x and γ(x)−1 = 1/x3.

L
γ,F(S̃,Σ) ..=

1

p
Tr
[{

γ(S̃)− γ(Σ)
}2]

(B.72)

=
1

p
Tr
[{

γ(Σ)− γ(S̃)
}2]

=
1

p
Tr
[{

γ(Σ)− γ(UD̃U ′)
}2]

(B.73)

=
1

p
Tr
[{

γ(Σ)− Uγ(D̃)U ′
}2]

=
1

p
Tr
[{

U ′γ(Σ)U − γ(D̃)
}2]

(B.74)

=
1

p
Tr
[{

U ′γ(Σ)U
}2 − 2U ′γ(Σ)Uγ(D̃) +

{
γ(D̃)

}2]
(B.75)

=
1

p
Tr
[
γ(Σ)2 − 2U ′γ(Σ)Uγ(D̃) + γ(D̃)2

]
(B.76)

=
1

p

p∑

i=1

{
γ(τi)

2 − 2u′iγ(Σ)uiγ(d̃i) + γ(d̃i)
2
}

(B.77)

∂Lγ,F
(
S̃,Σ

)

∂d̃i
= −2u′iγ(Σ)uiγ

′(d̃i) + 2γ′(d̃i)γ(d̃i) ∀i = 1, . . . , p (B.78)

FOC:
∂Lγ,F

(
S̃,Σ

)

∂d̃i
= 0 ⇔ d̃i = γ−1

(
u′iγ(Σ)ui

)
. (B.79)
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B.14 Generalized Kullback-Leibler Divergence

L
γ,KL(S̃,Σ) ..=

1

2p

{
Tr
[
γ
(
S̃
)−1

γ
(
Σ
)]

− log det
[
γ
(
S̃
)−1

γ
(
Σ
)]

− p
}

(B.80)

=
1

2p

{
Tr
[
γ
(
UD̃U ′

)−1
γ
(
Σ
)]

− log det
[
γ
(
S̃
)−1

γ
(
Σ
)]

− p
}

(B.81)

=
1

2p

{
Tr
[
Uγ
(
D̃
)−1

U ′γ
(
Σ
)]

− log det
[
γ
(
S̃
)−1

γ
(
Σ
)]

− p
}

(B.82)

=
1

2p

{
Tr
[
γ
(
D̃
)−1

U ′γ
(
Σ
)
U
]
+ log

[
det
(
γ(S̃)

)]
− log

[
det
(
γ(Σ)

)]
− p
}

=
1

2p

p∑

i=1

{
u′iγ(Σ)ui

γ
(
δ̃i
) + log

[
γ
(
δ̃i
)]

− log
[
γ
(
τi
)]

− 1

}
(B.83)

∂Lγ,KL
(
S̃,Σ

)

∂d̃i
= −u′iγ(Σ)ui

γ(d̃i)2
γ′(d̃i) +

γ′(d̃i)

γ(d̃i)
∀i = 1, . . . , p (B.84)

∂Lγ,KL
(
S̃,Σ

)

∂d̃i
= 0 ⇔ γ(d̃i) = u′iγ(Σ)ui ⇔ d̃i = γ−1

(
u′iγ(Σ)ui

)
. (B.85)

B.15 Summary of Spike Contributions to Loss

To wrap up the finite-sample analysis, Table B.1 isolates the contribution of the largest

eigenvalue to the overall loss, for the eight loss functions studied in Section 6.5. These have

been standardized so that the FSOPT does not contribute to loss, by construction.

Loss Contribution of Spike

Frobenius
(
u′pΣup − d̃p

)2

Inverse Stein
u′pΣup

d̃p
− log

(
u′pΣup

d̃p

)
− 1

Stein u′pΣ
−1up · d̃p − log

(
u′pΣ

−1up · d̃p
)
− 1

Inverse Frobenius

(
u′pΣ

−1up −
1

d̃p

)2

Symmetrized Stein u′pΣ
−1up · d̃p +

u′pΣup

d̃p
− 2
√
u′pΣup · u′pΣ−1up

Fréchet
(
u′iΣ

1/2ui −
√
d̃i

)2

Quadratic u′pΣ
−2up · d̃2p − 2u′pΣ

−1up · d̃p +
(
u′pΣ

−1up
)2

u′pΣ
−2up

Inverse Quadratic
u′pΣ

2up

d̃2p
− 2

u′pΣup

d̃p
+

(
u′pΣup

)2

u′pΣ
2up

Table B.1: Loss contribution of the pth shrunken eigenvalue in excess of FSOPT.
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C Proofs of Theorems in Sections 4 and 5

Theorems 4.1 and 4.2 are special cases of Theorem 4.5 with γ(x) = log(x), resp. γ(x) =
√
x.

C.1 Quadratic

Proposition C.1. Under Assumptions 2–5,

L
Q
n (S̃n,Σn)

a.s.−→
κ∑

k=1

∫ bk

ak

∫ +∞

−∞

[
ϕ̃(x)2

t2
− 2

ϕ̃(x)

t
+ 1

]
· θ(x, t) dH(t) dF (x) (C.1)

Proof. For simplicity, let us assume that the support of F is a single compact interval

[a, b] ⊂ (0,+∞); the generalization to the case κ > 1 is trivial. From Appendix B.11 we have:

L
Q
n (S̃n,Σn) =

1

p

p∑

i=1

d̃2n,i · u′n,iΣ−2
n un,i −

2

p

p∑

i=1

d̃n,i · u′n,iΣ−1
n un,i + 1 (C.2)

=
1

p

p∑

i=1

p∑

j=1

[
d̃2n,i
τ2n,j

− 2
d̃n,i
τn,j

+ 1

]
·
(
u′ivj)

2 (C.3)

=

∫ b

a

∫ +∞

−∞

[
ϕ̃n(λn,i)

2

τ2n,j
− 2

ϕ̃n(λn,i)

τn,j
+ 1

]
d2Θn(x, t) , (C.4)

where Θn is the random bivariate function from Equation (3.4)). By applying the technique

from the proof of Theorem 3.1 of Ledoit and Wolf (2018), and by using Theorem 3.2 to handle

the function Θn, it follows that

L
Q
n (S̃n,Σn)

a.s.−→
∫ b

a

∫ +∞

−∞

[
ϕ̃(x)2

t2
− 2

ϕ̃(x)

t
+ 1

]
θ(x, t) dx dt , (C.5)

where, as per Equation (3.6),

∀x ∈ [a, b] ∀t ∈ R θ(x, t) ..=
cxt

∣∣t [1− c− cxm̆F(x)]− x
∣∣2 . (C.6)

Proposition C.1 lets us characterize the asymptotically optimal nonlinear shrinkage function

under Quadratic loss.

Corollary C.1. Suppose Assumptions 2–5 hold. A covariance matrix estimator S̃n minimizes

in the class of rotation-equivariant estimators the a.s. limit (C.1) of the Quadratic loss if and

only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) = ϕ̂Q(x), where

∀x ∈ Supp(F ) ϕ̂Q(x) ..=

∫ +∞

−∞

1

t
· θ(x, t) dH(t)

∫ +∞

−∞

1

t2
· θ(x, t) dH(t)

. (C.7)

Proof. If we fix x ∈ Supp(F ), then the marginal contribution of ϕ̃(x) to the almost sure

(nonrandom) limit of the loss function L
Q
n (Σn, S̃n) is

∫ +∞

−∞

[
ϕ̃(x)2

t2
− 2

ϕ̃(x)

t
+ 1

]
θ(x, t) dH(t) . (C.8)
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The partial derivative of (C.8) with respect to ϕ̃(x) is

∫ +∞

−∞

[
2ϕ̃(x)

t2
− 2

t

]
θ(x, t) dH(t) . (C.9)

The first-order condition is

ϕ(x)

∫ +∞

−∞

1

t2
θ(x, t) dH(t) =

∫ +∞

−∞

1

t
θ(x, t) dH(t) . (C.10)

The solution is

ϕ(x) =

∫ +∞

−∞

1

t
θ(x, t) dH(t)

∫ +∞

−∞

1

t2
θ(x, t) dH(t)

. (C.11)

The proof of Theorem 4.3 is concluded as follows: To the unobservable quantity c corresponds

the plug-in estimator p/n; to the unobservable quantity H(t) corresponds the plug-in estimator

Ĥn(t) ..=
∑p

i=j 1[τ̂n,j ,+∞](t)/p; and to the unobservable quantity θ(x) corresponds the plug-in

estimator θ̂n(x, t) from Equation (3.7). The fact that these three unobservable quantities can

be replaced with their respective plug-in counterparts at no loss asymptotically is established

in the same way as in the proof of Ledoit and Wolf’s (2018) Theorem 5.2.

C.2 Inverse Quadratic

Proposition C.2. Under Assumptions 2–5,

L
QINV
n (S̃n,Σn)

a.s.−→
κ∑

k=1

∫ bk

ak

∫ +∞

−∞

[
t2

ϕ̃(x)2
− 2

t

ϕ̃(x)
+ 1

]
· θ(x, t) dH(t) dF (x) (C.12)

Proof. As before, we assume that the support of F is a single compact interval [a, b] ⊂ (0,+∞).

From Appendix B.12 we have:

L
QINV
n (S̃n,Σn) =

1

p

p∑

i=1

d̃−2
n,i · u′n,iΣ2

nun,i −
2

p

p∑

i=1

d̃−1
n,i · u′n,iΣnun,i + 1 (C.13)

=
1

p

p∑

i=1

p∑

j=1

[
τ2n,j

d̃2n,i
− 2

τn,j

d̃n,i
+ 1

]
·
(
u′ivj)

2 (C.14)

=

∫ b

a

∫ +∞

−∞

[
τ2n,j

ϕ̃n(λn,i)2
− 2

τn,j
ϕ̃n(λn,i)

+ 1

]
d2Θn(x, t) . (C.15)

By applying the technique from the proof of Theorem 3.1 of Ledoit and Wolf (2018), and by

using Theorem 3.2:

L
QINV
n (S̃n,Σn)

a.s.−→
∫ b

a

∫ +∞

−∞

[
t2

ϕ̃(x)2
− 2

t

ϕ̃(x)
+ 1

]
θ(x, t) dx dt . (C.16)

Corollary C.2. Under Assumptions 2–5, a covariance matrix estimator S̃n minimizes in the

class of rotation-equivariant estimators the a.s. limit (C.12) of the Inverse Quadratic loss if and
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only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) = ϕ̂QINV(x), where

∀x ∈ Supp(F ) ϕ̂QINV(x) ..=

∫ +∞

−∞

t2 · θ(x, t) dH(t)

∫ +∞

−∞

t · θ(x, t) dH(t)

. (C.17)

Proof. If we fix x ∈ Supp(F ), then the marginal contribution of ϕ̃(x) to the almost sure

(nonrandom) limit of the loss function L
QINV
n (Σn, S̃n) is

∫ +∞

−∞

[
t2

ϕ̃(x)2
− 2

t

ϕ̃(x)
+ 1

]
θ(x, t) dH(t) . (C.18)

The partial derivative of (C.18) with respect to ϕ̃(x) is

∫ +∞

−∞

[
−2

t2

ϕ̃(x)3
+ 2

t

ϕ̃(x)2

]
θ(x, t) dH(t) . (C.19)

The first-order condition is

ϕ(x)

∫ +∞

−∞

t θ(x, t) dH(t) =

∫ +∞

−∞

t2 θ(x, t) dH(t) . (C.20)

The solution is

ϕ(x) =

∫ +∞

−∞

t2 θ(x, t) dH(t)

∫ +∞

−∞

t θ(x, t) dH(t)

. (C.21)

The proof of Theorem 4.4 is concluded as before: To the unobservable quantity c corresponds

the plug-in estimator p/n; to the unobservable quantity H(t) corresponds the plug-in estimator

Ĥn(t) ..=
∑p

i=j 1[τ̂n,j ,+∞](t)/p; and to the unobservable quantity θ(x) corresponds the plug-in

estimator θ̂n(x, t) from Equation (3.7). The fact that these three unobservable quantities can

be replaced with their respective plug-in counterparts at no loss asymptotically is established

in the same way as in the proof of Ledoit and Wolf’s (2018) Theorem 5.2.

C.3 Generalized Frobenius

Proposition C.3. Under Assumptions 2–5,

L
γ,F
n (S̃n,Σn)

a.s.−→
∫ +∞

−∞

γ(t)2 dH(t)− 2
κ∑

k=1

∫ bk

ak

∫ +∞

−∞

γ(t) γ
(
ϕ̃(x)

)
· θ(x, t) dH(t) dF (x)

+

κ∑

k=1

∫ bk

ak

γ
(
ϕ̃(x)

)2
dF (x) . (C.22)

44



Proof. For simplicity: Supp(F ) = [a, b] ⊂ (0,+∞). From Appendix B.13:

L
γ,F
n (S̃n,Σn) =

1

p

p∑

i=1

{
γ(τn,i)

2 − 2u′n,iγ(Σn)un,iγ(d̃n,i) + γ(d̃n,i)
2
}

(C.23)

=
1

p

p∑

j=1

γ(τn,j)
2 − 2

p

p∑

i=1

p∑

j=1

γ
(
τn,j
)
γ
(
ϕ̃(λn,i)

)
·
(
u′n,ivn,j

)2
+

1

p

p∑

i=1

γ
(
ϕ̃(λn,i)

)2

=

∫ +∞

−∞

γ(t)2dHn(t)− 2

∫ b

a

∫ +∞

−∞

γ(t)γ
(
ϕ̃n(x)

)
d2Θn(x, t) +

∫ b

a
γ
(
ϕ̃n(x)

)2
dFn(x).

By applying the technique from the proof of Theorem 3.1 of Ledoit and Wolf (2018), and by

using Theorem 3.2:

L
γ,F
n (S̃n,Σn)

a.s.−→
∫ +∞

−∞

γ(t)2 dH(t)− 2
κ∑

k=1

∫ bk

ak

∫ +∞

−∞

γ(t) γ
(
ϕ̃(x)

)
· θ(x, t) dH(t) dF (x)

+
κ∑

k=1

∫ bk

ak

γ
(
ϕ̃(x)

)2
dF (x) . (C.24)

Corollary C.3. Suppose Assumptions 2–5 hold. A covariance matrix estimator S̃n minimizes

in the class of rotation-equivariant estimators the a.s. limit (C.22) of the Generalized Frobenius

loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) = ϕγ(x), where

∀x ∈ Supp(F ) ϕγ(x) ..= γ−1

[∫ +∞

−∞

γ(t) · θ(x, t)dH(t)

]
. (C.25)

This yields an oracle covariance matrix estimator Sγ
n

..= UnDiag
(
ϕγ(λn,1), . . . , ϕ

γ(λn,p)
)
U ′
n.

Proof. If we fix x ∈ Supp(F ), then the marginal contribution of ϕ̃(x) to the almost sure

(nonrandom) limit of the loss function L
γ,F
n (Σn, S̃n) is

− 2

∫ +∞

−∞

γ(t)γ
(
ϕ̃(x)

)
· θ(x, t) dH(t) + γ

(
ϕ̃(x)

)2
. (C.26)

The partial derivative of (C.26) with respect to ϕ̃(x) is

− 2

∫ +∞

−∞

γ(t)γ′
(
ϕ̃(x)

)
· θ(x, t) dH(t) + 2γ′

(
ϕ̃(x)

)
γ
(
ϕ̃(x)

)
(C.27)

The first-order condition is γ
(
ϕ̃(x)

)
=
∫ +∞

−∞
γ(t) · θ(x, t) dH(t), hence the solution is

ϕ̃(x) = γ−1

(∫ +∞

−∞

γ(t) · θ(x, t) dH(t)

)
. (C.28)

The proof of Theorem 4.5 is concluded as before: To the unobservable quantity c corresponds

the plug-in estimator p/n; to the unobservable quantity H(t) corresponds the plug-in estimator

Ĥn(t) ..=
∑p

i=j 1[τ̂n,j ,+∞](t)/p; and to the unobservable quantity θ(x) corresponds the plug-in

estimator θ̂n(x, t) from Equation (3.7). The fact that these three unobservable quantities can

be replaced with their respective plug-in counterparts at no loss asymptotically is established

in the same way as in the proof of Ledoit and Wolf’s (2018) Theorem 5.2.
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C.4 Generalized Kullback-Leibler Divergence

Proposition C.4. Under Assumptions 2–5,

L
γ,KL
n (S̃n,Σn)

a.s.−→1

2

κ∑

k=1

∫ bk

ak

∫ +∞

−∞

γ(t)

γ
(
ϕ̃(x)

) · θ(x, t) dH(t) dF (x)

+
1

2

κ∑

k=1

∫ bk

ak

log
[
γ
(
ϕ̃(x)

)]
dF (x)

− 1

2

∫ +∞

−∞

log
[
γ(t)

]
dH(t)− 1

2
. (C.29)

Proof. For simplicity, Supp(F ) = [a, b] ⊂ (0,+∞). From Appendix B.14:

L
γ,KL
n (S̃n,Σn) =

1

2p

p∑

i=1

{
u′iγ(Σ)ui

γ
(
δ̃i
) + log

[
γ
(
δ̃i
)]

− log
[
γ
(
τi
)]

− 1

}
(C.30)

=
1

2

∫ b

a

∫ +∞

−∞

γ(t)

γ
(
ϕ̃n(x)

) d2Θn(x, t) +
1

2

∫ b

a
log
[
γ
(
ϕ̃n(x)

)]
dFn(x) (C.31)

− 1

2

∫ +∞

−∞

log
[
γ(t)

]
dHn(t)−

1

2
.

By applying the technique from the proof of Theorem 3.1 of Ledoit and Wolf (2018), and by

using Theorem 3.2:

L
γ,KL
n (S̃n,Σn)

a.s.−→1

2

κ∑

k=1

∫ bk

ak

∫ +∞

−∞

γ(t)

γ
(
ϕ̃(x)

) · θ(x, t) dH(t) dF (x)

+
1

2

κ∑

k=1

∫ bk

ak

log
[
γ
(
ϕ̃(x)

)]
dF (x)

− 1

2

∫ +∞

−∞

log
[
γ(t)

]
dH(t)− 1

2
. (C.32)

Corollary C.4. Suppose Assumptions 2–5 hold. A covariance matrix estimator S̃n minimizes

in the class of rotation-equivariant estimators the a.s. limit (C.29) of the Generalized Kullback-

Leibler loss if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) = ϕγ(x),

where ϕγ(x) is defined by Equation (C.25). This results in the same oracle covariance matrix

estimator Sγ
n

..= UnDiag
(
ϕγ(λn,1), . . . , ϕ

γ(λn,p)
)
U ′
n as in Corollary C.3.

Proof. If we fix x ∈ Supp(F ), then the marginal contribution of ϕ̃(x) to the almost sure

(nonrandom) limit of the loss function L
γ,KL
n (Σn, S̃n) is

1

2

∫ +∞

−∞

γ(t)

γ
(
ϕ̃(x)

) · θ(x, t) dH(t) + log
[
γ
(
ϕ̃(x)

)]
. (C.33)

The partial derivative of (C.33) with respect to ϕ̃(x) is

− 1

2

∫ +∞

−∞

γ(t)

γ
(
ϕ̃(x)

)2γ
′
(
ϕ̃(x)

)
· θ(x, t) dH(t) +

γ′
(
ϕ̃(x)

)

2γ
(
ϕ̃(x)

) (C.34)
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The first-order condition is γ
(
ϕ̃(x)

)
=
∫ +∞

−∞
γ(t) · θ(x, t) dH(t), hence the solution is

ϕ̃(x) = γ−1

(∫ +∞

−∞

γ(t) · θ(x, t) dH(t)

)
. (C.35)

The proof of Theorem 4.6 is concluded as before, by showing that replacing the key oracle objects

with their plug-in counterparts comes at no cost under large-dimensional asymptotics.

C.5 Singular Case

There is one small difference with the non-singular case: the support of the limiting sample

spectral distribution F is now Supp(F ) = {0} ∪ (
⋃κ

k=1[ak, bk]), where (as before) 0 < a1 < b1 <

· · · < aκ < bκ < ∞.

Proposition C.5. Under Assumptions 3–6,

L
γ,F
n (S̃n,Σn)

a.s.−→
∫ +∞

−∞

γ(t)2 dH(t)− 2
κ∑

k=1

∫ bk

ak

∫ +∞

−∞

γ(t) γ
(
ϕ̃(x)

)
· θ(x, t) dH(t) dF (x)

− 2
c− 1

c

∫ +∞

−∞

γ(t) γ
(
ϕ̃(0)

)
· θ(0, t) dH(t)

+
κ∑

k=1

∫ bk

ak

γ
(
ϕ̃(x)

)2
dF (x) +

c− 1

c
γ
(
ϕ̃(0)

)2
, (C.36)

where θ(0, t) is given by Equation (5.4).

Proof. For simplicity, we assume that Supp(F ) = {0}∪ [a, b], as the extension to the case κ > 1

is straightforward. Starting from the proof of Proposition C.3:

L
γ,F
n (Σn, S̃n) =

1

p

p∑

j=1

γ(τn,j)
2 − 2

p

p∑

i=1

p∑

j=1

γ
(
τn,j
)
γ
(
ϕ̃n(λn,i)

)
·
(
u′n,ivn,j

)2
+

1

p

p∑

i=1

γ
(
ϕ̃n(λn,i)

)2

=
1

p

p∑

j=1

γ(τn,j)
2 − 2

p

p∑

i=p−n+1

p∑

j=1

γ
(
τn,j
)
γ
(
ϕ̃n(λn,i)

)
·
(
u′n,ivn,j

)2

− 2

p

p−n∑

i=1

p∑

j=1

γ
(
τn,j
)
γ
(
ϕ̃n(0)

)
·
(
u′n,ivn,j

)2

+
1

p

p∑

i=p−n+1

γ
(
ϕ̃n(λn,i)

)2
+

1

p

p−n∑

i=1

γ
(
ϕ̃n(0)

)2
(C.37)

=

∫ +∞

−∞

γ(t)2dHn(t)− 2

∫ b

a

∫ +∞

−∞

γ(t)γ
(
ϕ̃n(x)

)
d2Θn(x, t)

− 2
p− n

p

∫ +∞

−∞

γ(t)γ
(
ϕ̃n(0)

)
dΘn(0, t)

+

∫ b

a
γ
(
ϕ̃n(x)

)2
dFn(x) +

p

p− n
γ
(
ϕ̃n(0)

)2
. (C.38)
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By applying the technique from the proof of Theorem 6.1 of Ledoit and Wolf (2018), and by

using Theorem 3 of Ledoit and Péché (2011) to handle the limit of Θn, it follows that:

L
γ,F
n (Σn, S̃n)

a.s.−→
∫ +∞

−∞

γ(t)2 dH(t)− 2

κ∑

k=1

∫ bk

ak

∫ +∞

−∞

γ(t) γ
(
ϕ̃(x)

)
· θ(x, t) dH(t) dF (x)

− 2
c− 1

c

∫ +∞

−∞

γ(t) γ
(
ϕ̃(0)

)
· 1(

1− 1
c

) [
1 + m̆F (0) t

] dH(t)

+
κ∑

k=1

∫ bk

ak

γ
(
ϕ̃(x)

)2
dF (x) +

c− 1

c
γ
(
ϕ̃(0)

)2
. (C.39)

Corollary C.5. Under Assumptions 3–6, a covariance matrix estimator S̃n minimizes in the

class of rotation-equivariant estimators the a.s. limit (C.36) of the Generalized Frobenius loss

if and only if its limiting shrinkage function ϕ̃ verifies ∀x ∈ Supp(F ), ϕ̃(x) = ϕγ(x), where

∀x ∈ Supp(F ) ϕγ(x) ..= γ−1

[∫ +∞

−∞

γ(t) · θ(x, t)dH(t)

]
. (C.40)

This yields the oracle covariance matrix estimator Sγ
n

..= UnDiag
(
ϕγ(λn,1), . . . , ϕ

γ(λn,p)
)
U ′
n.

For x ∈
⋃κ

k=1[ak, bk], the proof is the same as for Corollary C.3. The only pending matter is

what happens when x = 0. The marginal contribution of ϕ̃(0) to the almost sure (nonrandom)

limit of the loss function L
γ,F
n (Σn, S̃n) is

− 2
c− 1

c

∫ +∞

−∞

γ(t)γ
(
ϕ̃(0)

)
· θ(0, t) dH(t) +

c− 1

c
γ
(
ϕ̃(0)

)2
. (C.41)

The partial derivative of (C.41) with respect to ϕ̃(0) is

− 2
c− 1

c

∫ +∞

−∞

γ(t)γ′
(
ϕ̃(0)

)
· θ(0, t) dH(t) + 2

c− 1

c
γ′
(
ϕ̃(0)

)
γ
(
ϕ̃(0)

)
(C.42)

The first-order condition is γ
(
ϕ̃(0)

)
=
∫ +∞

−∞
γ(t) · θ(0, t) dH(t), hence the solution is

ϕ̃(0) = γ−1

(∫ +∞

−∞

γ(t) · θ(0, t) dH(t)

)
. (C.43)

Proof of Theorem 5.1. The proof is concluded as follows: To the unobservable quantity c

corresponds the plug-in estimator p/n; to the unobservable function H(t) corresponds the plug-

in estimator Ĥn(t) ..=
∑p

i=j 1[τ̂n,j ,+∞](t)/p; to the unobservable function θ(x, t) corresponds the

plug-in estimator θ̂n(x, t) from Equation (3.7) for x > 0; and to the unobservable quantity

θ(0, t) corresponds the plug-in estimator θ̂n(0, t) from Equation (5.5). The fact that these

four unobservables can be replaced with their respective plug-in counterparts at no loss

asymptotically is established in the same way as in the proof of Ledoit and Wolf’s (2018)

Theorem 6.2.

48


	Introduction
	Analysis in Finite Samples
	Basic Setup
	A Brief Summary of Known Results on Nonlinear Shrinkage
	Additional Loss Functions
	New Shrinkage Formulas
	Preview of General Result

	Large-Dimensional Asymptotic Framework
	Large-Dimensional Asymptotic Framework
	The QuEST Function
	Dot Product of Population Eigenvalues with Sample Eigenvalues

	Asymptotically Optimal Nonlinear Shrinkage Estimators
	Four Specific Loss Functions
	Two Infinite Families of Loss Functions

	Singular Case: p>n
	Finite-Sample Analysis
	Large-Dimensional Asymptotic Framework
	Optimal Shrinkage of Null Sample Eigenvalues
	Covariance Matrix Estimation in the Singular Case

	Monte Carlo Simulations
	General Setup
	Nonsingular Case
	Comparison of Shrinkage Formulas
	Singular Case
	Comparison with Simpler Alternatives: The Matrix as a Whole
	Comparison with Simpler Alternatives: Focus on the Spike

	Conclusion
	Portfolio Selection and the Disutility Loss
	Finite-Sample Optimal Estimators for Various Losses
	Frobenius
	Inverse Stein
	Minimum Variance
	Stein
	Inverse Frobenius
	Symmetrized Stein
	Weighted Frobenius
	Disutility
	Log-Euclidian
	Fréchet
	Quadratic
	Inverse Quadratic
	Generalized Frobenius
	Generalized Kullback-Leibler Divergence
	Summary of Spike Contributions to Loss

	Proofs of Theorems in Sections 4 and 5
	Quadratic
	Inverse Quadratic
	Generalized Frobenius
	Generalized Kullback-Leibler Divergence
	Singular Case


