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Product proliferation occurs in supply chains to produce diverse products from a limited variety of raw

materials. In such a setting, manufacturers can establish market responsiveness and/or cost e�ciency in

alternative ways. Delaying the point of the proliferation helps manufacturers improve the responsiveness by

postponing the ordering decisions of the �nal products until partial or full resolution of demand uncertainty.

This strategy can be implemented in two di�erent approaches: (1) redesigning the operations such that

the point of proliferation is swapped with a downstream operation and (2) reducing the lead times. To

establish cost e�ciency, manufacturers can systematically reduce the costs of all operations or postpone

the high-cost operations. We consider a multi-echelon and multi-product newsvendor problem with demand

forecast evolution to analyze the value of each operational lever of the responsiveness and the e�ciency. We

use the multiplicative martingale model of forecast evolution to characterize the demand-updating process,

and develop a dynamic optimization model to determine the optimal order quantities at di�erent echelons.

We show that reducing the lead time of a downstream operation is more bene�cial to manufacturers than

reducing the lead time of an upstream operation by the same amount, whereas reducing the costs of upstream

operations is more favorable than reducing the costs of downstream operations. We also indicate that delaying

the proliferation may cause a loss of pro�t even if it can be achieved with no additional cost. We develop

a decision typology that shows e�ective operational strategies depending on product/market characteristics

and process �exibility.

Key words : Product proliferation; lead-time reduction; process redesign; delayed di�erentiation.
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1. Introduction

Digital transformation in the retail industry (e.g., omni-channel retailing, recommendation systems

and user-oriented product development using social media) has led to an increase in demand for

niche items in almost all product categories (Brynjolfsson et al. 2011). Retailers now carry more

diverse product portfolios than in past decades in both online and physical stores. The expansion

of product portfolios has a negative impact on supply-demand mismatches in the retail industry

(Rajagopalan 2013). Arguably, the challenges associated with diverse product portfolios are not only

limited to downstream sales channels (retailers, online channels), but start with upstream operations

(Atal� and Özer 2012). In fact, it is not uncommon that manufacturers attempt to ful�ll customer

demand for broad product lines by using the same upstream resources and di�erentiating products

over time as they get close to markets. This strategy helps them to bene�t from economies of scale

for upstream resources and to postpone product di�erentiation until acquisition of more accurate

market demand forecasts.

Fashion apparel is perhaps the most celebrated industry where product proliferation is prominent

and has profound impact on pro�tability. Figure 1 depicts the supply chain structure for a typical

fashion-apparel manufacturer serving multiple markets. Global manufacturers like Zara, H&M, and

Uniqlo sell a variety of clothes in each selling season, which are produced by the same textile but

sewn and colored di�erently. After a design team responsible for a product line develops new designs

to be sold in the next season, yarns selected by the design team are ordered. Production occurs

sequentially involving the weaving, sewing, and dyeing processes. First, yarns are transformed into

textile by the weaving process. Then, the textile is sewn into di�erent models and sizes. Finally,

the items are dyed into di�erent colors to complete the production. Product proliferation occurs

sequentially, in three stages. The �rst occurs after the sewing process, the second occurs after the

dyeing process, and the third occurs when the products are labeled and shipped.

The examples of product proliferation are not limited to the fashion-apparel industry. In the

consumer packaged-goods industry, a limited variety of ingredients (e.g., milk, fruits, and yogurt
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Figure 1 Product proliferation in the fashion-apparel industry

bacteria) are used to make a wide variety of products in bulk (e.g., raw milk, raw yogurt, yogurt

drink, �avoured milk and yogurt). The products are �lled in di�erent-sized containers and then sold

in the market. Therefore, product proliferation �rst occurs during production, and again during

the �lling process. It is also common in the process industry, where manufacturers di�erentiate

products along the supply chain to ful�ll the customer demand for alternative �recipes� (each recipe

corresponds to a certain product speci�cation that determines product performance along di�er-

ent dimensions such as thermal resistance, elasticity, etc.). In Figure 2, we present an example

that we observe in a leading global manufacturer of composites used mainly by tyre producers in

the automotive industry. Demand for the manufacturer is both volatile and seasonal due to the

seasonality of the tyre sales. The manufacturer �rst processes some chemicals with polypropylene

to produce polymer materials. These materials are �rst shaped through a twisting operation and

then go through a second-level fabrication process of weaving. Finally, the weaved products enter

a chemical blending process in which they are dipped to chemical liquids to bring the products to

the right level of thermal resistance and elasticity. Although the variety of polymer materials are

limited, there exists a high variety of end products due to product proliferation in the last three

stages.
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Figure 2 Product proliferation in our process industry example

Manufacturers operating in such settings are often exposed to high demand uncertainty for

upstream production orders. As the production moves forward, demand uncertainty is partially

resolved due to additional valuable demand information collected from the market. For downstream

production orders, however, manufacturers are exposed to high product variety. Trading o� the

cost e�ciency against the operational responsiveness, Fisher (1997) indicates that physically e�-

cient supply chains are better aligned with the products with low demand uncertainty, whereas

market-responsive supply chains are better aligned with the products with high demand uncer-

tainty. Due to evolutionary risk structure in a product proliferation model, the utilization of both

market-responsive and cost-e�cient strategies may improve the pro�ts depending on the supply

chain structure along with the cost, the demand, and the lead-time parameters.

Delaying di�erentiation is an e�ective strategy for improving responsiveness in supply chains in

which product proliferation occurs (the terms �di�erentiation� and �proliferation� are used inter-

changeably). It enables manufacturers to take advantage of inventory pooling at upstream echelons,

while ensuring that the proliferation at downstream occurs with more accurate demand information.

There are two practical approaches to operationalizing delayed di�erentiation, both of which have
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been widely popularized by their implementation in the fashion apparel industry. The �rst approach

is to redesign the processes so that the operations that cause proliferation are deferred to a later

stage in the supply chain. Benetton, the Italian clothing company, is the �rst �rm which successfully

implemented this approach and reversed the order of dyeing and knitting operations (Heskett and

Signorelli 1989, Lee and Tang 1997). Traditionally Benetton spun and dyed the yarns �rst and then

knitted the colored yarns. In 1972, the company began dyeing clothes rather than yarns to post-

pone the costly dyeing operation. This allowed Benetton to postpone product di�erentiation until it

could observe accurate market demand information, leading to higher pro�ts due to the decrease in

supply-demand mismatches. Given the success of this approach, many other companies followed the

Benetton's lead (Parsons and Graves 2005, Viswanathan and Allampalli 2012, Kouvelis and Tian

2014).1

The second approach is to reduce lead times for each operation in the supply chain. Zara, the

Spanish fashion apparel company, followed this strategy and became the market leader in 2008

(Ghemawat and Nueno 2006). Demand forecasts are often plagued with high uncertainty when

lead times tend to be long. Reducing lead times allows manufacturers to postpone the point of

proliferation and actual ordering decisions closer to market demand, making it possible to place

production orders based on more accurate demand forecasts. This in turn leads to a decrease in

supply-demand mismatches (Caro and Martínez-de Albéniz 2015).

To establish cost e�ciency, manufacturers can systematically reduce the costs of all the oper-

ations along the supply chain or postpone the high-cost operations to a later stage. The former

helps them reduce the unit product cost, whereas the latter makes it possible to avoid unnecessary

overutilization of expensive resources. The value of each operational lever of the responsiveness and

1We remark that process redesign does not necessarily require swapping of operations; it may also be achieved

by changing the way operations are performed (and associated costs). In the case of our leading process industry

example, it is possible to meet the technical speci�cations requested by a customer by changing either technical grades

used during the fabrication process or the chemical recipes used during the blending process. The latter enables the

postponement of the point of proliferation, but increases production costs.
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the e�ciency depends on the supply chain structure, the cost and the lead-time values of each oper-

ation along the supply chain. Our objective in this paper is to quantify their costs and bene�ts. To

this end, we consider a multi-echelon and multi-product newsvendor model with demand forecast

evolution. We make three important contributions to the extant literature. First, from a model-

ing perspective, we develop an analytical framework for dynamically optimizing inventory/ordering

quantities in a multi-echelon and multi-product newsvendor setting with demand forecast evolution.

This framework extends existing inventory models in the literature that incorporates forecast evo-

lution (Wang et al. 2012, Biçer and Seifert 2017) to multi-product and multi-echelon settings. Our

framework takes the supply chain structure along with lead times and cost values for each echelon

as inputs, incorporates the evolution of demand forecasts using the multiplicative martingale model

of forecast evolution (m-MMFE), and optimizes the ordering decisions at each echelon. We charac-

terize the optimal strategy and investigate the e�ects on the pro�ts of salient parameters�costs,

lead times, proliferation points.

Second, utilizing this framework, we analytically demonstrate the critical impact of cost changes,

lead-time reduction, and postponement points on optimal inventory levels and consequent pro�ts.

For example, we establish that reducing the lead time of a downstream operation is more bene�-

cial to manufacturers than reducing the lead time of an upstream operation by the same amount,

whereas reducing the costs of upstream operations is more favorable than reducing the costs for

downstream operations. The value of delaying the proliferation increases when the downstream

operations (post-proliferation) are more costly. We substantiate our descriptive insights with a com-

prehensive numerical study based on Markovian sampling and �nd that delaying the proliferation

may cause a loss of pro�t for manufacturers if its implementation requires swapping a high-cost

downstream operation with a low-cost upstream operation. This result is counter-intuitive to the

conventional wisdom that the postponement strategy would always help reducing the cost of mis-

matches between supply and demand (please see Zinn (2019) for a historical review of the evolution

of the postponement research).
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Third, we translate the descriptive results into prescriptive insights for practicing managers, in

particular with respect to the implementation of delayed di�erentiation. On one hand, we provide

normative support for redesigning the process when the operation that is causing proliferation is

also more costly. In Benetton's case, dyeing operation is costlier than knitting, and it also causes

a high degree of product di�erentiation. Hence, postponing dyeing to after knitting (by swapping

the order of operations) clearly improves the pro�ts. On the other hand, if the operation causing

product proliferation is less costly than the other operations, it is not clear how to redesign the

process. We show that in such cases delaying di�erentiation may lead to pro�t losses even when

it can be achieved with no additional cost. Our results indicate that a complementary strategy of

deferring high-cost operations to later stages and then focusing on reducing lead times of those

scheduled after the proliferation would e�ectively endow manufacturers with the desired bene�ts.

We also consider the scenario where process sequence cannot be altered, and delineate conditions

under which it makes sense to prioritize lead-time reduction over cost reduction, and vice versa.

Going a step further, we synthesize our prescriptions and map them into a typology that points out

to the most appropriate strategy based on product/market characteristics and process �exibility.

2. Literature review

Our research has natural connections with the works that study postponement strategies for delaying

product di�erentiation. One stream within this literature focuses on the design of supply chain

structures (Johnson and Anderson 2000, Lee and Tang 1997, 1998), capacity investments (Kouvelis

and Tian 2014), and inventory levels at the decoupling points (i.e., vanilla boxes) (Swaminathan and

Tayur 1998, Paul et al. 2015). Common to these papers is that demand is assumed to be random

without an evolutionary form, so the bene�ts of postponement are only attributed to inventory

pooling�bene�ts due to improved forecast accuracy are not incorporated. Another stream focuses

precisely on demand evolution. In particular, Aviv and Federgruen (2001a,b) analyze the value of

order postponement in a multi-period inventory setting where sales occur in each period and demand

forecasts are updated in a Bayesian manner. In a similar vein, Atal� and Özer (2012) develop a two-

stage production model with product di�erentiation occurring at the beginning of the second stage



Biçer, Lücker, and Boyac�: Beyond Retail Stores: Managing Product Proliferation Along the Supply Chain
8

under a Markov-modulated demand model. They show that the value of postponement increases

with higher operational �exibility (as measured by di�erence in minimum and maximum production

limits). Our contribution to this literature is the development of a multi-echelon and multi-product

newsvendor model with demand forecast evolution. Utilizing this model, we quantify the impact

of supply chain structure, the cost and the lead-time values on pro�ts in a product-proliferation

setting. Thus, our results shed light into how to employ the two operational levers of delaying the

proliferation to improve the pro�ts.

Our paper is also connected to the OM literature that focuses on the multi-ordering inventory

models with demand forecast evolution. The closest papers within this literature are Wang et al.

(2012) and Biçer and Seifert (2017) because they also develop integrated dynamic inventory models

with the martingale model of forecast evolution. Wang et al. (2012) model a newsvendor with

multiple ordering opportunities and increasing costs over time, and characterize optimal base-stock

levels. Biçer and Seifert (2017) extend Wang et al. by including capacity limitations and allowing

for multiple products. In both papers, the ordering decisions are made only for the end products,

not for the components or the raw materials at the upstream echelons. We contribute to the extant

literature such that we optimize ordering decisions in a multi-echelon setting in which the order

quantity of a given operation determines the capacity for the immediate downstream echelon. We

also consider the possibility of product proliferation to occur at any echelon in the supply chain. For

the same reasons, our model di�ers from single-item inventory models with evolving demands and

multiple ordering opportunities. Song and Zipkin (2012) study such a setting where order quantities

can be updated downwards (after paying the cost) as new demand information arrives. Cao and So

(2016) consider an assembler ordering from two suppliers (e�ectively two ordering decisions) with

demand forecasts updated over time.

3. Model preliminaries

Consider a supply chain with (n+ 1) echelons, where the most downstream echelon n is closest to

the customer and echelon 0 is the farthest from the customer. Echelon i+ 1 is considered to be the
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downstream and echelon i− 1 the upstream of echelon i. Supply chain activities occur sequentially

such that the operation at echelon i uses the output of echelon i−1 as input and transforms it into

output. The output of echelon i is then used as input for echelon i+ 1. Without loss of generality,

we assume that one unit of input is transferred into one unit of output. The manufacturer has to

make n ordering decisions at the time epoch ti for i∈ {0,1, · · · , n−1}. Hence, there is a positive lead

time at each echelon; ti+1− ti > 0 for i∈ {0,1, · · · , n− 1} and expediting is not allowed. For ease of

exposition, suppose for now that there is a single �nal product, and let Qi denote the order quantity

at echelon i. The order quantity Qi for i ∈ {1, · · · , n− 1} is constrained by the order quantity at

the previous echelon (i.e., Qi ≤ Qi−1), while the �rst order quantity Q0 is unrestricted. We use

Di to denote the demand forecast at time ti for i ∈ {0, · · · , n}, with the end demand forecast Dn

representing the actual market demand. The timeline of ordering decisions for this single-product

model without any product proliferation is depicted in Figure 3.

Time t0 t1 t2 tn-2 tn-1 tn

Q0 Q1≤Q0 Q2≤Q1 Qn-2≤Qn-3 Qn-1≤Qn-2 Sales = min(Qn-1, Dn)
Order 
quantity

Figure 3 Timeline of ordering decisions for a single-product model without product proliferation

We model the evolution of demand forecasts Di from t0 to to tn according to the multiplicative

martingale model (m-MMFE), which is known to �t very well to empirical data of demand-forecast

updates (Heath and Jackson 1994, Wang et al. 2012, Biçer et al. 2018). According to the m-MMFE,

the demand forecasts at t= ti for i ∈ {1, · · · , n} are given by Di =D0 exp(ε1 + ε2 + · · ·+ εi), where

εt follows a normal distribution:

εi ∼N (−σ2(ti− ti−1)/2, σ
√
ti− ti−1), ∀i∈ {1, · · · , n}. (1)

Therefore, the end demand conditional on the demand forecast at ti follows a lognormal distribution:

ln(Dn)|Di ∼N (ln(Di)−σ2(tn− ti)/2, σ
√
tn− ti), ∀i∈ {0, · · · , n− 1}. (2)
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Figure 4 A sample path of the demand forecast according to the m-MMFE with 95% two-sided con�dence intervals.

In Figure 4 we present an example of the evolution of demand forecasts according to the m-

MMFE. We simulate a random path assuming that the initial demand forecast is scaled to one and

the σ value is set to one. The forecast evolves from t0 = 0 until tn = 1. The solid curve represents the

mean forecast, and the shaded area shows the 95% con�dence interval. As the time approaches to

the realization of market demand (t→ 1), the forecast accuracy increases signi�cantly as indicated

by a reduction of the distance between the upper and the lower bounds of the con�dence interval.

The following sequence of events occur at each decision epoch ti for i ∈ {0, · · · , n− 1}: i) man-

ufacturer observes the demand forecast Di; ii) the order quantity of the previous operation Qi−1

is reviewed; iii) the order quantity Qi is determined, and the manufacturer incurs an operational

cost ciQi. In what follows, we formulate the manufacturer's optimization problem and derive its

solution. We do this �rst for the single-product case and then move on to the most general scenario

with product proliferation.

4. Single product model

Consider the single-product model shown in Figure 3, where the �nal product is sold in a single

market. The product is processed from raw materials through a sequence of operations, and sold in

the market at a price of p per unit. We assume that there is no salvage value for the excess inventory.
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Thus, a revenue of pmin(Dn,Qn−1) is collected at time tn. Let ci denote the cost of processing the

ith operation per unit input. This includes all the cost elements such as labor, utility, material, and

other operational costs that the manufacturer incurs only from ti until ti+1.

We formulate the manufacturer's optimization problem as a dynamic program (DP). At each

decision epoch ti, the manufacturer observes the state, which consists of the available supply Qi−1 at

the upstream echelon and demand forecast Di, and then determines the ordering quantity Qi that

maximizes expected pro�ts. For the last decision epoch tn−1, the ordering decision is a constrained

newsvendor problem:

Vn−1(Qn−2,Dn−1) = max
Qn−1≤Qn−2

{
EDn|Dn−1

[
pmin(Dn,Qn−1)

]
− cn−1Qn−1

}
. (3)

The ordering decisions at the previous decision epochs (i.e., ∀i∈ {0, · · · , n− 2}) can be determined

dynamically according to the following Bellman equation:

Vi(Qi−1,Di) = max
Qi≤Qi−1

{
EDi+1|Di

[
Vi+1(Qi,Di+1)− ciQi

]}
. (4)

The order quantity at t0 is not constrained, so we set Q−1 = +∞. Let the functions to be maximized

in Equations (3) and (4) be denoted respectively as:

Gn−1(Qn−1,Dn−1) = EDn|Dn−1

[
pmin(Dn,Qn−1)

]
− cn−1Qn−1, (5)

Gi(Qi,Di) = EDi+1|Di

[
Vi+1(Qi,Di+1)− ciQi

]
, (6)

with gi(Qi,Di) = ∂Gi(Qi,Di)/∂Qi.

Observe that the optimal value of Qi in Equation (4) depends on the demand forecasts in all

future decision epochs. We de�ne a new parameter Dj for j ∈ {i+ 1, · · · , n− 1} to represent the

critical demand forecast values at time tj. If Dj ≥ Dj for all j ∈ {i + 1, · · · , n − 1}, the optimal

order quantities in all the remaining decision epochs become equal to Qi. If Dj <Dj for j > i, the

optimal value of Qj becomes less than Qi. Therefore, Dj values for j ∈ {i+ 1, · · · , n− 1} determine

the lower bounds for demand forecasts that make optimal order quantity at time tj equal to Qi.

Solving the DP model by backward induction, we characterize the optimal ordering policy at each

decision epoch, which is presented in the next theorem.2

2 The proofs of all results are presented in our on-line appendix.
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Theorem 1. The optimal order quantity, denoted by qi for i∈ {0, · · · , n− 1}, satis�es:

qi = min(Qi−1,Q
∗
i ), (7)

where Q∗i is the optimal order quantity for the unconstrained problem (without �Qi ≤Qi−1�), which

is found by the following expressions:

Q∗i = {Qi | gi(Qi,Di) = 0}, (8)

gi(Qi,Di) = pPr(Dn >Qi,D{i+1,n−1} >D{i+1,n−1})− cn−1Pr(D{i+1,n−1} >D{i+1,n−1})

−cn−2Pr(D{i+1,n−2} >D{i+1,n−2})− · · ·− ci+1Pr(Di+1 >Di+1)− ci = 0 (9)

with D{i+1,n−1} denoting the vector of demand forecasts from i + 1 to n − 1 and D{i+1,n−1} =

(Di+1, · · · ,Dn−1) denoting the vector of critical demand forecasts from i+ 1 to n− 1.

It can be easily veri�ed that equation (9) reduces to the newsvendor solution for i= n−1 such that:

gn−1(Qn−1,Dn−1) = pPr(Dn >Qi)− cn−1 = 0. (10)

For i < n−1, the solution is still in spirit the newsvendor solution. The �rst term of the right-hand

side of Equation (9) gives the expected value of the marginal revenue generated by ordering one

additional unit when (Qi−1) units are already ordered. The marginal revenue not only depends on

the �nal demand realization Dn but also on the updated demand forecasts at the remaining decision

epochs. Even when Dn >Qi, the marginal revenue may be zero if the manufacturer decides to reduce

the order quantity in any of the subsequent production stages. The remaining terms of the right-

hand side of Equation (9) give the expected value of the marginal cost of ordering one additional

unit when (Qi − 1) units are already ordered. When the Qi
th unit is ordered, the manufacturer

incurs the cost ci. If the demand forecast at the next decision epoch exceeds the critical value (i.e.,

Di+1 ≥Di+1), the manufacturer orders Qi units at ti+1 and incurs an additional cost of ci+1 per

unit and so forth.

Proposition 1. Optimal order quantity in an upstream echelon is always higher than the expected

(optimal) order quantity in a downstream echelon such that q0 >E[q1|D0]> · · ·>E[qn−1|D0].
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Proposition 1 states that the interdependency between order quantities (due to supply constraints)

and the accumulating cost structure induce the manufacturer to order in large quantities for the

upstream operations even though the manufacturer expects the �nal order quantity to be lower.

Next, we present the impact of cost parameters on optimal order quantities and the expected pro�t.

Proposition 2. A- Let q = {q0, q1, · · · , qn−1} be the vector of optimal order quantities at each

decision epoch. If cj for j ∈ {0, · · · , n− 1} increases, the optimal order quantities are updated

such that q′ = {q′0, q′1, · · · , q′n−1}, where q′i is statistically smaller than qi (i.e., q′i ≺ qi) ∀i ∈

{0, · · · , n− 1}.

B- Let c0 = c1 = · · ·= ci−1 = ci+1 = · · ·= cn−1 = cfixed and ci > cfixed. Then, swapping the operation

i with any operation from the set {i+ 1, · · · , n− 1} increases the total expected pro�t.

Part A of Proposition 2 describes how the order quantities are a�ected by an increase in the

cost of any operation. If the cost of an operation increases, order quantities at all decision epochs

decrease. Part B shows how the sequence of the operations should be redesigned depending on the

operational costs. By postponing an operation with a higher cost later than the other operations, the

manufacturer increases its pro�ts. Swapping the high cost operation with a downstream lower cost

operation increases the upstream order quantity and hence the available supply (upper bounds) for

the downstream operation. An increase in the upper bounds for the downstream quantities provides

the manufacturer with additional �exibility to adjust order quantities according to updated demand

forecasts, leading to higher pro�ts. This result is in line with Lee and Tang (1997) and Cao and

So (2016). Lee and Tang (1997) state that redesigning the production processes such that high

value-added and short operations take place later than low value-added and long operations leads

to higher pro�ts. Cao and So (2016) �nd that a manufacturer can generate high pro�ts if a supplier

with a long lead time supplies a low-value component, whereas another supplier with the short lead

time supplies a high-value component. Part B of Proposition 2 establishes e�ectively the same result

for a more general setting. We now turn our attention to the impact of lead times.
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Proposition 3. Reducing the lead time of operation i for i ∈ {0, · · · , n− 1} by an amount of

∆t≤ ti+1− ti increases expected pro�t more than what can be achieved by reducing the lead time of

operation j < i by the same amount of ∆t.

This proposition states that reducing the lead time of a downstream operation is more bene�cial to

the manufacturer than reducing the lead time of an upstream operation by the same amount.

The analytical results given by Propositions 1�3 provide useful insights and clear guidance on

how a manufacturer should implement process-redesign and lead-time-reduction practices. Even in

the absence of product proliferation at any echelon, manufacturers can still increase the pro�ts by

redesigning their processes to postpone high-cost operations. When a manufacturer aims to reduce

its operational costs, it should �rst focus on the upstream operations and then move sequentially

downstream. However, the manufacturer should start from the downstream operations and then

move upstream if the objective is to reduce the lead time.

5. Product proliferation model

We now extend the single-product model to the multi-product case where the raw materials or semi-

�nished products can be transformed into a variety of products. Product proliferation is allowed

at any decision epoch. Given the resulting supply chain structure with the proliferation points, we

determine the optimal order quantities at each decision epoch.

To facilitate model development, in Figure 5 we present an example where product proliferation

occurs at two epochs: t1 and tn−2. We use Qj
i to denote the order quantity placed for component j

at time ti. We use a unique code to label the component j at ti. The code is a sequence of single

digits, and the length of the code gives how often product proliferation occurs from t0 until ti. In

our example in Figure 5, at t1 three di�erent products are ordered, each taking a di�erent digit

number. The second proliferation occurs at tn−2, where the inventory of each product is allocated to

produce three di�erentiated products, amounting to nine SKUs available in the market. Thus, a new

digit is added to the product code at tn−2. Suppose, for example, a fashion-apparel manufacturer

selling a product line to di�erent markets uses a three-digit product code (e.g., 361). The �rst digit
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Time t0 t1 t2 tn-2 tn-1 tn

Q0 𝑄1
1Order 

quantity

𝑄1
2

𝑄1
3 𝑄𝑛−2
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𝑄𝑛−2
32

𝑄𝑛−2
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𝑄𝑛−2
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Sales = min(𝑄𝑛−1
11 , 𝐷𝑛

11)

Sales = min(𝑄𝑛−1
12 , 𝐷𝑛

12)

Sales = min(𝑄𝑛−1
33 , 𝐷𝑛

33)

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮

⋮
⋮
⋮
⋮

𝑄2
3

𝑄2
2

𝑄2
1

Figure 5 Ordering decisions in a supply chain with the product proliferation at the decision epochs t1 and tn−2

represents the size (e.g., small, medium, or large). The second digit represents the color. The third

digit denotes the market. The three-digit code means that product proliferation occurs three times

along the supply chain (one for size, one for color, and the last for di�erent markets).

The primary challenge in solving the product proliferation problem lies with the need to link

the demand dynamics to the ordering constraints. For each ordering decision, it is necessary to

consolidate the demand updates of di�erent end products and then allocate the limited supply

available from the previous operation to process di�erent semi-�nished or end products. We de�ne

two di�erent sets and their subsets to formalize the problem. To capture the resource constraints, we
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use Θi to denote the set of all components produced at echelon i∈ {1, · · · , n} at time ti. We further

partition the set Θi into k pairwise disjoint subsets such as Θj
i for j ∈ {1, · · · , k} and k = |Θi−1|.

We de�ne Θj
i as the set that contains all components that use the same upstream resource as their

input. We then have by de�nition:

Θi =
⋃

j∈Θi−1

Θj
i and ∅=

⋂
j∈Θi−1

Θj
i . (11)

Recalling our example in Figure 5, Θn−1 = {11,12,13,21,22,23,31,32,33}. There are nine order-

ing decisions in the previous period (i.e., t= tn−2), and therefore the set Θn−1 is partitioned into

nine subsets such that:

Θn−1 = Θ11
n−1 ∪Θ12

n−1 ∪Θ13
n−1 ∪Θ21

n−1 ∪Θ22
n−1 ∪Θ23

n−1 ∪Θ31
n−1 ∪Θ32

n−1 ∪Θ33
n−1,

where Θ11
n−1 = {11}, Θ12

n−1 = {12}, Θ13
n−1 = {13}, Θ21

n−1 = {21}, Θ22
n−1 = {22}, Θ23

n−1 = {23}, Θ31
n−1 =

{31}, Θ32
n−1 = {32}, and Θ33

n−1 = {33}. Likewise, at t= tn−2, Θn−2 = {11,12,13,21,22,23,31,32,33}.

There are three ordering decisions in the previous period (i.e., t= tn−3) so Θn−2 is partitioned into

three subsets: Θ1
n−2 = {11,12,13}, Θ2

n−2 = {21,22,23}, and Θ3
n−2 = {31,32,33}.

With these sets de�ned, we can write down the ordering constraints between echelons. That is,

the sum of the order quantities for the products that use the same input cannot be larger than the

order quantity of the input at the immediate upstream echelon. In mathematical terms:

∑
j∈Θki

Qj
i ≤Qk

i−1. (12)

Returning back to the Figure 5 example, the order quantity constraints at tn−1 are Qj
n−1 ≤Q

j
n−2

for each j ∈Θn−1. At tn−2, we have three ordering constraints:

Q11
n−2 +Q12

n−2 +Q13
n−2 ≤Q1

n−3,

Q21
n−2 +Q22

n−2 +Q23
n−2 ≤Q2

n−3,

Q31
n−2 +Q32

n−2 +Q33
n−2 ≤Q3

n−3.
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We can then formalize the other order quantity constraints at ti as Q
j
i ≤Q

j
i−1 for i∈ {2, · · · , n− 3}

and j ∈Θi. Finally, at t= t1�that is, when the �rst proliferation occurs�we have Q1
1 +Q2

1 +Q3
1 ≤

Q0.

We also de�ne another set Υk
i which represents the set of end products produced by using compo-

nent k at echelon i. Therefore, Υk
i includes the end products (sold in the markets), whose availability

depends on the order quantity decision of Qk
i . In Figure 5, for example, the quantity Q1

1 has a

direct in�uence on the ordering decisions of the end products: Q11
n−1, Q

12
n−1, and Q

13
n−1. Therefore,

Υ1
1 = {11,12,13}. The set Υ0 = Θn−1 since the quantity Q0 has direct in�uence on the �nal inventory

of all end products. Let pj for j ∈Θn denote the price of the products sold in the market.

To determine the maximum expected pro�t at tn−1, we write the following stochastic programming

(SP) model (Shapiro et al. 2009, Ch. 1):

Maximize
Q
j
n−1,∀j∈Θn−1

z =
∑

j∈Θn−1

pjE
(
Wj(Q

j
n−1,D

j
n)
)
− cjn−1Q

j
n−1 (13)

subject to: ∑
j∈Θkn−1

Qj
n−1 ≤Qk

n−2, ∀k ∈Θn−2, (14)

Qj
n−1 ≥ 0, ∀j ∈Θn−1, (15)

where Wj(Q
j
n−1,D

j
n) = min{Qj

n−1,D
j
n} denotes the sales and Dj

n is a random variable. Constraint

(14) guarantees that the sum of order quantities of the items in a set Θk
n−1 is less than the amount

of their parent item k. In the appendix, we provide the solution for the mathematical problem (13)�

(15). Speci�cally, we transform the SP model into a linear programming (LP) model as demonstrated

by Shapiro et al. (2009, Ch. 1�3). By analyzing the LP model and its dual, we partition the demand

space and determine the shadow prices (see Van Mieghem (1998) for a similar method to solve an

SP problem). We then proceed backwards in a similar fashion, using induction, and determine the

optimal ordering policy for upstream echelons. The optimal policy is satis�ed when all products

in a set Θk
i (for all k and i values) have the same marginal value of ordering one additional unit.

If the quantity Qk
i−1 is highly restrictive, the marginal value for all products in the set Θk

i would



Biçer, Lücker, and Boyac�: Beyond Retail Stores: Managing Product Proliferation Along the Supply Chain
18

have a positive value. If the quantity Qk
i−1 is excessive, the marginal value would become zero. This

analysis reveals the structure of the optimal policy as well.

Theorem 2. The optimal ordering policy for all the items in each decision epoch is a resource-

constrained, state-dependent base-stock policy, which depends on the evolution of demand forecasts

and processing costs.

With the characterization of the optimal policy at hand, we can use our framework to analyze the

impact of point of proliferation, costs, and lead times. Clearly, everything else remaining the same,

delaying di�erentiation (moving any point ti with proliferation forward) is bene�cial to the �rm.

Proposition 4. The value of delaying the point of product proliferation increases as the costs of

downstream operations taking place after the point of proliferation increase.

Proposition 4 has important implications. It �rst underpins delaying di�erentiation by swapping

costly operations that cause proliferation with downstream less costly operations. As documented

by the Benetton's case, delaying the point of proliferation and the costly dyeing operation were both

achieved by only swapping two operations. If such an improvement achieved by a single change is

not possible, redesigning processes such that costly operations scheduled before the proliferation are

swapped with less costly post-proliferation operations should precede any attempt to reduce lead

times and postpone the proliferation point.

Proposition 5. There exists a threshold value for the cost of the operation that causes the prolif-

eration such that swapping the point of proliferation with a more costly downstream operation causes

a pro�t loss if the actual cost of the (proliferation) operation is less than the threshold value.

Proposition 5 highlights the important factors that may render the postponement strategy harmful

for manufacturers. If the product di�erentiation is achieved by carrying out a cheap operation,

delaying the di�erentiation by swapping it with a more costly downstream operation may harm the

pro�t. Therefore, practitioners should pay attention to the costs of operations before making any

postponement decision. At the end of Section 6.1, we present an example that shows the breakeven

cost di�erence justifying the value of postponement. Next, we investigate the impact of lead times.
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Proposition 6. Suppose product proliferation occurs once along the supply chain at time ti.

Reducing the lead time of operation j for j ∈ {i, · · · , n−1} by an amount of ∆tj ≤ tj+1− tj increases

the expected pro�t more than what can be achieved by reducing the lead time of operation j for

j ∈ {0, · · · , i− 1}.

This proposition extends the results of Proposition 3 to the multi-product setting. It demonstrates

that giving priority to downstream operations in lead-time reduction is more e�ective than upstream

operations for manufacturers also when there is product proliferation in the supply chain.

6. Numerical analysis

The analytical results derived in the previous two sections provide valuable guidelines in terms of

implementing delayed di�erentiation. Proposition 5 shows that the delayed di�erentiation through

process redesign may harm the pro�ts, which we believe to be counter-intuitive. To better understand

the dynamics of process redesign and to complement our analytical results, we resort to numerical

experiments. We set up a large scale numerical study based on Markovian sampling to limit any

bias that may come from speci�c parameter settings.

We consider a setting with �ve echelons (i.e., n= 4; the �rst ordering decision is made at t0 and

market demand is observed at t4) and two end products. We allow the demands of the two products

to be correlated, and sample the correlation parameter ρ from a uniform distribution, ρ∼U(−1,1).

We assume that both products have the same value of the coe�cient of variation (CV), and sample

the CV value at each iteration from a uniform distribution, CV ∼ U(0,1). Then, we calculate the

volatility parameter for the m-MMFE using the formula: σ =
√

ln(CV 2 + 1). We normalize the

forecasting horizon to one, t4 = 1.We randomly sample the total time length (t4− t0) from a uniform

distribution: t4− t0 ∼U(0,1). We randomly allocate the total time length to di�erent operations so

that the lead times t1 − t0, t2 − t1, t3 − t2, and t4 − t3 are randomly determined at each iteration.

The product proliferation occurs at only one of those echelons, which is randomly selected. Figure

6 shows a small sample of three di�erent supply chain structures that can be generated based on

our random sampling procedure.
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Figure 6 Some potential supply chain structures

We �x the selling price to one and salvage value to zero. We sample the total production cost per

unit from a uniform distribution of U(0,1). We randomly allocate the total production cost to the

operations. After determining the input parameters, we generate demand paths and calculate the

realized pro�ts. We set the demand forecast at time t= 0 to one. Given that the m-MMFE gives

unbiased estimates, the expected revenue (i.e., p×Dt=0) is equal to one. Therefore, the results of

our statistical analysis can be interpreted in terms of percentages of the expected revenue.

For a given set of input parameters, we iteratively sample the demand forecast and optimize

the order quantity at each decision epoch. Demand updating occurs according to the m-MMFE

process, for which we use the conditional distribution given by Equation (2). Once the demand

forecast for a decision epoch is generated, the optimal order quantity is determined using Theorem

2. Then, the �reward" values at each stage are calculated, yielding the total pro�t. We sample the

input parameters 10000 times. Then, we generate ten random demand paths for each set of input

parameters, obtaining 100000 data points for our analysis.
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To analyze the results, we setup a linear regression model as follows:

Profit = β0 +β1c1 +β2c2 +β3c3 +β4c4 +β5ρ+β6CV +β7TimeofDiff

+β8(t1− t0) +β9(t2− t1) +β10(t3− t2) +β11(t4− t3). (16)

The dependent variable is the total pro�t generated. We select the cost parameters, demand param-

eters (correlation between demand for the products, coe�cient of variation), the time and point of

proliferation, and the lead time for each operation as independent variables.

6.1. Analysis of the results

The descriptive statistics of the dependent and independent variables are given in Table 1. The

estimates for the coe�cients and the variance in�ation factors (VIFs) are given in Table 2. The

estimates are found to be robust after separately testing the underlying assumptions of the linear

model (16).

Pearson's Correlation
Mean SD Min Max 1 2 3 4 5 6 7 8 9 10

Pro�t (DV) 0.78 0.65 -1.75 11.23
1. c1 0.13 0.17 0.00 0.99
2. c2 0.13 0.17 0.00 0.98 -0.08
3. c3 0.12 0.16 0.00 0.98 -0.09 -0.07
4. c4 0.12 0.17 0.00 0.97 -0.09 -0.08 -0.07
5. ρ 0.00 0.57 -1.00 1.00 0.00 0.00 0.00 -0.01
6. CV 0.49 0.29 0.00 1.00 0.01 0.01 0.00 0.01 -0.02
7. TimeofDi� 0.45 0.35 0.00 1.00 0.00 0.00 -0.01 0.01 0.00 0.00
8. t1 − t0 0.22 0.24 0.00 1.00 0.00 -0.01 -0.02 0.01 0.00 0.00 0.28
9. t2 − t1 0.21 0.24 0.00 1.00 0.00 0.01 0.00 0.01 0.00 0.02 0.06 -0.29
10. t3 − t2 0.22 0.24 0.00 1.00 0.00 0.00 -0.01 0.01 0.00 0.00 -0.17 -0.30 -0.29
11. t4 − t3 0.22 0.24 0.00 1.00 -0.01 0.01 0.02 -0.02 0.00 -0.02 -0.38 -0.30 -0.29 -0.29

Table 1 Means, Standard Deviations, Minima, Maxima, and Correlations

The intuitive e�ects of demand uncertainty and correlation are readily observed in our numerical

study. Speci�cally, the coe�cient of the correlation parameter (i.e., β5 =−0.0209655) is negative,

meaning that total pro�t increases as the demand for products becomes more negatively correlated.

This result is due to the bene�ts of inventory pooling in the stages before the point of product

proliferation, in a way that the value of pooling inventory increases as demand for the products

gets more negatively correlated. The coe�cient of the CV is also negative (i.e., β6 =−0.3968276),

which is aligned with our expectations since an increase in demand uncertainty leads to higher

supply-demand mismatches and lower pro�ts.
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Estimate VIF

β0 (Intercept) 2.0534208∗∗∗

β1 (c1) −2.0029586∗∗∗ 1.027807

β2 (c2) −1.9264279∗∗∗ 1.022989

β3 (c3) −1.8938598∗∗∗ 1.023589

β4 (c4) −1.8259906∗∗∗ 1.025135

β5 (ρ) −0.0209655∗∗∗ 1.000668

β6 (CV ) −0.3968276∗∗∗ 1.001141

β7 (TimeofDiff) 0.0295013∗∗∗ 4.597373

β8 (t1− t0) −0.0737628∗∗∗ 2.884366

β9 (t2− t1) −0.1125864∗∗∗ 3.287310

β10 (t3− t2) −0.1356525∗∗∗ 4.024351

β11 (t4− t3) −0.1559704∗∗∗ 4.988999

Table 2 Summary statistics. Residual standard error: 0.3194 on 99986 degrees of freedom. R-squared: 0.7579.

The numerical results substantiate our analytical results on costs and lead times. The coe�cients

of the cost parameters satisfy the relationship: |β1|> |β2|> |β3|> |β4|, indicating that the impact

of increasing the cost of an operation is more pronounced for the operations scheduled earlier. This

result is in line with Part B of Proposition 2 and Proposition 4. In a similar vein, the values of β8,

β9, β10, and β11 are all negative, indicating that reducing the time to complete any operation has

a positive impact on the pro�t. Furthermore, consistent with Proposition 3, the value of reducing

lead times is higher for operations scheduled later�that is, |β11|> |β10|> |β9|> |β8|.

Regarding the point of product proliferation, total pro�t increases as the timing of di�erentiation

(TimeofDiff) is delayed, given that β7 has a positive value.3 Interestingly, however, the value of

delaying the point of the proliferation is relatively low compared to process redesign after excluding

the positive impact of reducing lead times. For example, delaying the point of the proliferation fully

from the beginning of the forecast horizon t= 0 to the end t= 1 leads to only a 2.9% increase in

pro�t. This is considerably lower than the bene�ts of swapping an upstream high-cost operation

with a downstream low-cost operation for example. This emphasizes the fact that critical bene�ts of

delayed di�erentiation is generated not so much from simply pushing the proliferation point closer

3We remark that there is no serious multicollinearity problem in our problem. This can be veri�ed by examining

the VIF values. It is generally accepted that VIF values above 5 or 10 indicates a multicollinearity problem, see for

example James et al. (2013, pp.101�102). In our model all independent variables have VIF values less than 5.
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to the market, but rather from the associated process redesign that accrue cost bene�ts and/or

the lead-time reduction that comes along with it. To substantiate this, we note that in Table 2,

β4−β1 >>β7, implying that postponing high-cost operations creates more value than delaying the

point of proliferation.

Next, we compare the e�ects of lead-time reduction with process redesign. We �nd that reducing

the lead time of the last operation leads to an increase in the pro�ts by 15.60% of absolute change

in the lead time. If, for example, the lead time is reduced by 0.2, it helps to increase pro�ts by

0.2× 15.6% = 3.12%. Consistent with our analytical results (Propositions 3 and 6), this percentage

reduces to 13.56%, 11.26%, and 7.38% for the third, second, and �rst operations, respectively.

Although reducing lead times improves pro�ts, its impact may be less than the value generated by

swapping a high-cost operation with a low-cost downstream operation. For example, swapping the

�rst operation with the last one changes the pro�t on average by 2.003− 1.826 = 17.7% of the cost

di�erence.
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Figure 7 Value of lead-time reduction versus process redesign

In Figure 7 we demonstrate the pro�t increase that can be achieved by lead-time reduction on

the left panel and that by swapping the �rst operation with the forth operation on the right panel

(utilizing coe�cients β1, β4, β8, β9, β10, and β11). To generate the left panel, we reduce the lead

time from 100% to a new value given by the x-axis. Initially, we take the same lead-time values for

each operation such that t4 − t3 = t3 − t2 = t2 − t1 = t1 − t0 = 0.25. We then reduce the lead time
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starting from the most downstream operation going upstream. We �nd that the maximum marginal

pro�t achieved through lead-time reduction is around 0.12. To generate the right panel, we varied

the cost di�erence c1− c4 from zero to one and computed the marginal pro�t achieved by swapping

the �rst and fourth operations. We �nd that maximum marginal pro�t achieved by this swapping

of operations is 0.18.

In our numerical setting, we normalize total cost to one such that c1 + c2 + c3 + c4 = 1. Thus,

having c1 − c4 > 0.8 is not practically possible for most manufacturers. When c1 − c4 is relatively

high (e.g., c1− c4 > 0.40), swapping the �rst and last operations helps increase the pro�t by more

than 0.075. To achieve the same pro�t increase, the lead time has to be reduced by 0.55 (from one

to 0.45). Evidently, redesigning the supply chain by swapping the operations has more potential

to improve pro�ts than lead-time reduction when c1 − c4 is relatively high. If c1 − c4 is relatively

low (e.g., c1 − c4 < 0.05), swapping the operations does not have a signi�cant positive impact on

the pro�t. In this case, lead-time reduction is more bene�cial to manufacturers than swapping the

operations.

Exemplifying the Risk of Postponement Strategy: Now we focus on the case in which

c1 < c4, and the proliferation occurs at the �rst echelon. The lead time for each operation is equal

to 0.25. To postpone the proliferation point we consider swapping the �rst and the forth operations.

In Figure 8, we present the original and post-redesign structures of the production system.
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Figure 8 The risky postponement strategy
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Using β1, β4, and β7, we can show that the post-redesign expected pro�t becomes less than that

for the original case when the following inequality holds:

ProfitB <ProfitA.

Plugging the parameter values to Equation (16) yields:

−2.002c4− 1.826c1 + 0.029× 0.75<−2.002c1− 1.826c4 + 0.029× 0,

c1− c4 <−0.123.

If the cost di�erence between the forth and the �rst operations is larger than 12.3% of the total cost

(i.e., c4 − c1 > 0.123), swapping the operations to postpone the proliferation point is not justi�ed.

If c4 − c1 < 0.123, the bene�ts of delaying the proliferation compensate for the negative e�ect of

pre-scheduling the high-cost operation on pro�ts. Therefore, practitioners should be cautious of the

potential negative impact of the postponement strategy on pro�ts if the implementation of such a

strategy requires pre-scheduling a high-cost activity.

6.2. Practical Implications and Insights

Our analytical results, combined with the evidence obtained from the preceding numerical study,

o�er signi�cant insights regarding operational strategies that can be employed to implement delayed

di�erentiation and improve bottom-line performance of supply chains with product proliferation.

We now synthesize these strategies and translate them into managerial prescriptions that describe

the most suitable conditions for implementing them.

Propositions 2 and 4 together with the estimated coe�cients |β1|> |β2|> |β3|> |β4| in our numer-

ical study con�rm that unit cost reductions at an upstream echelon is more bene�cial than a unit

cost reduction at a downstream echelon. Therefore, if changing the sequence of operations is not

possible, manufacturers can still improve pro�ts by systematically reducing costs, starting from

upstream operations and then moving downstream. We call this strategy systematic cost reduc-

tion. Since upstream operations are often related to procurement of raw materials or subassemblies,

systematic cost reduction calls for prioritizing the improvement of the procurement e�ciency via
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consolidating purchasing orders, creating purchase bundles, using low-cost substitutes, or other

policies (Paranikas et al. 2015). Clearly, in the absence of any �exibility to alter the process, cost

reductions do not delay di�erentiation. The only option that makes it possible to bene�t from delay-

ing the point of proliferation is lead-time reduction. Propositions 3 and 6 along with the numerical

�ndings |β11|> |β10|> |β9|> |β8| corroborate that manufacturers should try to reduce �rst the lead

time of downstream operations and then move upstream in the supply chain. We call this strategy

systematic lead-time reduction.

When there is some �exibility in adjusting the process, Propositions 2 and 4 and Figure 7 a�rm

that manufactures can improve pro�ts through a cost-based process redesign strategy, which e�ec-

tively postpones high-cost operations to later stages, ideally post-proliferation. Under cost-based

process redesign manufacturers can strategically increase pro�ts without necessarily squeezing sup-

pliers. If a costly operation also causes a high degree of proliferation, pro�t increase due to cost-based

process redesign is magni�ed. As exempli�ed before, this can be achieved by swapping such a costly

operation with a less costly downstream operation. If this is not possible, our results underscore the

value of conducting cost-based process design before lead-time reduction e�orts. To augment a cost-

based redesign strategy with lead-time reduction, which we refer to as mixed strategy, manufacturers

�rst conduct cost-based process redesign, and then reduce lead times, starting from downstream,

post-proliferation operations and moving upwards in the supply chain.

The strategic value that can be harvested by manufacturers from adopting these four strategies

depends naturally on characteristics of both the industry they operate in as well as the markets

their products serve. Manufacturers not having the process �exibility to conduct re-sequencing or

major process changes is indicative of relatively mature industries where manufacturing processes are

standardized and widely adopted within the industry. Manufacturers in such industries have to rely

on established templates for producing their products. Manufacturers using propriety processes to

produce their products, however, may have the �exibility to change the sequence of their operations

and redesign their processes based on cost and lead time parameters. Such cost-based process
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redesign e�orts will be most e�ective when manufacturing costs constitute a signi�cant portion of

revenues. As our results highlight, cost-based process redesign is particularly e�cient when there is

a large di�erence in production costs between adjacent echelons. These conditions are more likely

to hold for manufacturers selling standard, more commoditized products. Such products have low

gross margins, and total production cost constitutes a signi�cant percentage of the total revenue.

Consistent with the Pareto principle, it is common in practice that around 80% of total cost can

be attributed to 20% of all the activities. Thus, it is more likely to expect a sizeable cost di�erence

between the operations. Manufacturers selling innovative products on the other hand often have

high gross margins because they can command higher prices for their products. When the gross

margin is relatively high, total cost constitutes a small amount of the revenues, and it becomes more

critical to complement cost-driven e�orts with lead-time reduction. Amalgamating these insights,

we derive the typology depicted in Figure 9.
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Figure 9 Decision typology based on product characteristics and process �exibility

In developing the decision typology in Figure 9, we make use of the classi�cation in Ferdows et al.

(2016) that categorizes manufacturers based on two dimensions, namely their product characteristics

and process �exibility. We then align the resulting four quadrants with the most e�ective strategy

for delaying di�erentiation and improving pro�ts, as identi�ed by our preceding analysis.
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1-Bottom-left quadrant (Systematic cost reduction): These manufacturers produce commodity-like

products using industry-standard production methods. Some business units of chemical companies

(e.g., DuPont, BASF, etc) producing commodity-like products fall into this category. Given that

the products are sold at a low pro�t margin, costs represent a signi�cant portion of revenues. Cost-

based process redesign is not possible for these manufacturers since the processes they employ are

highly standardized. Accordingly, delaying di�erentiation is not a real option to cope with product

proliferation. Systematic cost reduction is the only viable strategy for improving the bottom line.

Since the cost of raw materials may constitute up to 80% of total revenue in such industries, it is

not so uncommon that manufacturers try to reduce upstream costs by pressurizing their suppliers.4

2-Bottom-right quadrant (Cost-based process redesign): Some manufacturers excel in process �ex-

ibility while producing standard products. Ferdows et al. (2016) give an example of a US-based steel

manufacturer producing steel rolls that built this �exibility through some advanced processes. Man-

ufacturers in this category can adopt cost-based process design to cope with product proliferation.

This was certainly the case for Benetton at the time when it resequenced its operations to postpone

the costly dyeing operations for its highly standardized sweaters. Our leading process industry man-

ufacturer also falls into this category. Even though the end products are customized to customer

needs, the product is a standard input for tyres and costs take up a large fraction of revenues. In

sharp contrast to the Benetton case, for the process industry manufacturer, the primary point of

proliferation occurs at a low cost operation, namely weaving. Furthermore, swapping this weaving

with downstream blending is not technically possible. Nevertheless, it is possible to limit variety

introduced at the weaving but achieve target speci�cations through more sophisticated blending.

This decreases weaving costs, makes blending more costly, but e�ectively delays proliferation. Our

results advocate the adoption of this cost-based process redesign, which enables the manufacturer

to take more advantage of upstream inventory pooling and improved forecast accuracy downstream.

3-Top-left quadrant (Systematic lead-time reduction): Manufacturers with strong brands, such as

some fashion-apparel manufacturers and pharmaceutical companies fall into this group (Ferdows

4 https://www.mckinsey.com/industries/chemicals/our-insights/pursuing-purchasing-excellence-in-chemicals
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et al. 2016). Although standard processes are used in production, innovative/fashionable nature

of the product and the brand value allow premium pricing and generate higher margins. As stan-

dardized processes leave little room for restructuring, lead time is the only lever for managing

proliferation. Like Zara, manufacturers in this category should systematically reduce lead times to

delay di�erentiation and thereby improve responsiveness and pro�ts.

4-Top-right quadrant (Mixed strategy): Manufacturers with proprietary products and processes,

such as Intel, can di�erentiate themselves through both product design and process technology (Fer-

dows et al. 2016). Their products are sold in the market at a high margin which makes lead-time

reduction appealing. With process �exibility, redesigning the processes to postpone high-cost activi-

ties may also be possible, which ampli�es the value generated by reducing lead times. Manufacturers

in this category are ideally suited for following the mixed strategy of coupling cost-based process

redesign with lead-time reduction. ASML, a Dutch company producing modular lithography sys-

tems for semiconductor manufacturers, has implemented this strategy as part of its value-sourcing

initiative (van Rooy 2010). The company postponed the operations that required expensive compo-

nents to a later stage in production, and reduced their sourcing lead times by paying the suppliers

premiums.5 This mixed strategy enables ASML to delay both the point of proliferation and high

cost operations.

7. Concluding Remarks

In this paper, we develop an analytical model to quantify the impact of supply chain structure

along with the cost, the demand, and the lead-time parameter on the pro�ts in a multi-echelon and

multi-product newsvendor model with the product proliferation occurring at pre-speci�ed echelons.

In such a setting, decision makers can improve the pro�ts by establishing the responsiveness and/or

the cost e�ciency. Delaying the proliferation helps decision makers establish the responsiveness,

which can be implemented though the lead-time reduction or the process redesign. Establishing the

cost e�ciency is also possible through the systematic cost reduction or by postponing the high-cost

5 See also https://staticwww.asml.com/doclib/investor/07_analyst_day_internet_031113.pdf
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operations until partial or full resolution of demand uncertainty. Utilizing our analytical framework,

we develop a decision typology that shows e�ective strategies depending on the product and the

process characteristics.

Our model inherently assumes a make-to-stock supply chain with positive lead times for produc-

tion stages but zero promised lead time for customers (i.e., maximum length of time in which a

customer order is guaranteed to be delivered). When a customer is willing to wait, the manufac-

turer can quote a positive promised lead time at a discounted price and follow a combination of

make-to-order and make-to-stock policies�that is, creating a decoupling point in the supply chain.

Reducing lead time in this context would possibly help companies delay di�erentiation after the

decoupling point, so product proliferation takes place after getting �rm customer orders, completely

eliminating inventory risk at downstream echelons. We believe that the trade-o� between completely

eliminating the downstream inventory risk and pro�t losses due to o�ering price discounts for longer

promised lead times would be an interesting avenue of future research that requires incorporation

of lead-time quotation and product proliferation models.
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Online Appendix

Proof of Theorem 1

At t= tn−1, the expected pro�t can be formalized as a newsvendor problem:

Gn−1(Qn−1,Dn−1) = EDn|Dn−1

(
pmin(Dn,Qn−1)

)
− cn−1Qn−1, (17)

= (p− cn−1)Qn−1− p
Qn−1∫
0

(Qn−1−Dn)f(Dn|Dn−1)∂Dn, (18)

where f(·|·) and F (·|·) denote conditional demand density and distribution functions, respectively. The

optimal order quantity is obtained by:

∂Gn−1

∂Qn−1

= p(1−F (Qn−1|Dn−1))− cn−1 = 0. (19)

With p > cn−1, Gn−1(·,Dn−1) is a concave function for any given Dn−1. Then,

Vn−1(Qn−2,Dn−1) = max
Qn−1≤Qn−2

{
Gn−1(Qn−1,Dn−1)

}
. (20)

For Q∗n−1 = {Qn−1|∂Gn−1/∂Qn−1 = 0},

Vn−1(Qn−2,Dn−1) =


Gn−1(Qn−2,Dn−1) if Q∗n−1 >Qn−2,

Gn−1(Q∗n−1,Dn−1) if Q∗n−1 ≤Qn−2.

(21)

Vn−1(·,Dn−1) is a non-decreasing concave function due to the concavity of Gn−1(·,Dn−1). Then,

Gn−2(Qn−2,Dn−2) = EDn−1|Dn−2

(
Vn−1(Qn−2,Dn−1)

)
− cn−2Qn−2, (22)

which is also concave because Vn−1(·,Dn−1) is concave. Then, Gi(·,Di) is a concave function (by induction)

for i∈ {0,1, · · · , n− 2}, and the optimal policy is:

Q∗i = arg max
Qi

{Gi(Qi,Di}}, ∀i∈ {0,1, · · · , n}. (23)

Suppose in period i+ 1 for i∈ {0,1, · · · , n− 2},

Vi+1(Qi,Di+1) =


Gi+1(Qi,Di+1) if Q∗i+1 >Qi,

G∗i+1(Di+1) if Q∗i+1 ≤Qi,

(24)

where G∗i+1(Di+1) =Gi+1(Q∗i+1,Di+1). Then,

Gi(Qi,Di) = EDi+1|Di
[Vi+1(Qi,Di+1)]− ciQi, (25)

=

+∞∫
Di+1

Gi+1(Qi,Di+1)f(Di+1|Di)∂Di+1 +

Di+1∫
0

G∗i+1(Di+1)f(Di+1|Di)∂Di+1− ciQi, (26)
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where Di+1 is the value of demand forecast at time i+ 1 that makes the optimal order quantity equal to

that of the previous period (i.e., Q∗i+1 =Qi). Taking the �rst derivative, we obtain the following result:

∂Gi

∂Qi

= gi(Qi,Di) =

+∞∫
Di+1

gi+1(Qi,Di+1)f(Di+1|Di)∂Di+1− ci = 0. (27)

Using Equation (27), the optimal value of Qi for i∈ {1, · · · , n− 2} can be found by backward induction.

The optimal value of Qn−1 is given by Equation (19). Combining Equations (19) and (27), the optimal

value of Qn−2 can be calculated by:

gn−2(Qn−2,Dn−2) =

+∞∫
Dn−1

(pPr(Dn >Qn−2|Dn−1)− cn−1)fn−1(Dn−1|Dn−2)∂Dn−1− cn−2,

= pPr(Dn >Qn−2,Dn−1 >Dn−1)− cn−1Pr(Dn−1 >Dn−1)− cn−2. (28)

By induction, we obtain for i∈ {0,1, · · · , n− 1} the following result:

gi(Qi,Di) = pPr(Dn >Qi,D{i+1,n−1} >D{i+1,n−1})− cn−1Pr(D{i+1,n−1} >D{i+1,n−1})

−cn−2Pr(D{i+1,n−2} >D{i+1,n−2})− · · ·− ci+1Pr(Di+1 >Di+1)− ci, (29)

where D{i+1,n−1} is a vector denoting demand forecasts from period i+ 1 to n− 1. Then, the optimal order

quantity in each period can be found by qi = min(Qi−1,Q
∗
i ) such that Q∗i = {Qi|gi(Qi,Di) = 0}.

Proof of Proposition 1

The proof is straightforward from the �nal result of the proof of Theorem 1: qi = min(Qi−1,Q
∗
i ). If the

demand forecast in period i turns out to be high, the order quantity is constrained by qi−1. Otherwise,

qi < qi−1. Therefore, q0 >E[q1|D0]> · · ·>E[qn−1|D0].

Proof of Proposition 2

Part A: For j ∈ {i, · · · , n − 1}, suppose cj is increased by ∆cj , making the cost of processing the jth

operation equal to cj + ∆cj . Suppose Q′i =Qi and gi(Qi,Di) = 0. Then,

gi(Q
′
i,Di)− gi(Qi,Di) = gi(Q

′
i,Di) =−∆cjPr(D{i+1,j} >D{i+1,j}). (30)

If Q′i =Qi, the term gi(Q
′
i,Di) fails to be equal to zero after the cost increase, meaning that setting Q′i =Qi

does not optimize the ordering decision anymore. It follows from Equation (30) that the ordering decision

after the cost increase is optimized for Q′i < Qi such that gi(Q′i,Di) = 0 for Q′i < Qi. Thus, q′i ≺ qi for

i ∈ {0, · · · , j}, meaning that an increase in the cost of an operation leads to a reduction of order quantities
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at upstream echelons. Because the downstream order quantities are constrained by the upstream ones such

that Q0 ≥Q1 ≥ · · · ≥Qn−1, such a reduction of upstream order quantities has a cascading impact of reducing

also the downstream order quantities. Thus, q′i ≺ qi for i∈ {0, · · · , n− 1}.

Part B: Given c0 = · · ·= ci−1 = ci+1 = · · ·= cn−1 = cfixed < ci, the expected pro�t at t= t0 is written as

follows:

G0(Q∗0,D0|i= j) =

Q∗
0∫

0

g0(Q0,D0)dQ0, (31)

where Q∗0 is the optimal order quantity at t0 when i= j for j ∈ {0, · · · , n− 2}. Thus, G0(Q∗0,D0|i= j + 1)

gives a lower bound for the expected pro�t for i= j+ 1. Combining this expression with Equation (9) yields

the following result:

G0(Q∗0,D0|i= j+ 1)−G0(Q∗0,D0|i= j) = −
Q∗

0∫
0

(ci− cfixed)Pr(D{1,i+1} >D{1,i+1})dQ0

+

Q∗
0∫

0

(ci− cfixed)Pr(D{1,i} >D{1,i})dQ0. (32)

Equation (32) has always a non-negative value because Pr(D{1,i} >D{1,i})≥ Pr(D{1,i+1} >D{1,i+1}). Thus,

swapping a high-cost operation with the downstream adjacent one leads to higher pro�ts. It is straightforward

by induction that swapping the operation i with any operation from the set {i+ 1, · · · , n− 1} increases the

pro�t.

Proof of Proposition 3

If the lead time of operation i is reduced by ∆t, the starting times for the �rst i+ 1 operations are updated

as follows:

t0 + ∆t= t1 + ∆t= · · ·= tj + ∆t= · · ·= ti + ∆t. (33)

Then, ordering decisions for the �rst i+ 1 operations are made after a delay of ∆t. Delaying the ordering

decisions leads to improved demand accuracy for the �rst i+ 1 decisions as given by Equation (2), therefore

increasing the expected pro�t.

If the lead time of operation j is reduced by ∆t, the starting times for the �rst j+1 operations are likewise

delayed for ∆t. Reducing the lead-time of i, compared to that of j for i > j, makes it possible to delay

additionally the decision epochs for j+ 1, j+ 2, · · · , i, resulting in a pro�t increase that is higher than what

can be achieved by reducing the lead time of j.
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Proof of Theorem 2

Let Dj
n,r ≥ 0 denote a realization of Dj

n such that r ∈ S, where S = {1,2, · · · } is de�ned as a large �nite set

of positive integers. The values of Dj
n,r ∀r ∈ S constitute the set of all possible demand realizations. We use

Wr
j to denote the sales value for a demand realization of Dj

n,r such that Wr
j =Wj(Q

j
n−1,D

j
n,r). Then, the

SP model (13)�(15) can be written as a large-scale LP model:

Maximize
Q

j
n−1

,∀j∈Θn−1

z =
∑

j∈Θn−1

(
pj
∑
r∈S

Pr(Wr
j )Wr

j − c
j
n−1Q

j
n−1

)
(34)

subject to:

Wr
j −Q

j
n−1 ≤ 0, ∀j ∈Θn−1, ∀r ∈ S, (35)

Wr
j ≤Dj

n,r, ∀j ∈Θn−1, ∀r ∈ S, (36)∑
j∈Θk

n−1

Qj
n−1 ≤Qk

n−2, ∀k ∈Θn−2, (37)

Qj
n−1 ≥ 0, Wr

j ≥ 0, ∀j ∈Θn−1, ∀r ∈ S. (38)

We remark that we add Constraints (35) and (36) to satisfy the condition Wj = min{Qj
n−1,D

j
n} for the

optimal solution. Then, the dual problem is:

Minimize
λj,r,βj,r,γ

w=
∑

j∈Θn−1

∑
r∈S

βj,rD
j
n,r +

∑
k∈Θn−2

γkQ
k
n−2 (39)

subject to:

λj,r +βj,r ≥ Pr(Wr
j )pj , ∀j ∈Θn−1, r ∈ S, (40)∑

r∈S

λj,r − γk ≤ cjn−1, ∀j ∈Θk
n−1, k ∈Θn−2, r ∈ S, (41)

λj,r ≥ 0, βj,r ≥ 0, γk ≥ 0, ∀j ∈Θk
n−1, k ∈Θn−2, , r ∈ S. (42)

The values of λj,r and βj,r for each j ∈Θn−1 are found by the parametric analysis:

1. λj,r = 0 and βj,r = Pr(Wr
j )pj for j ∈Θn−1 when Dj

n,r ≤Q
j
n−1.

2. Likewise, λj,r = Pr(Wr
j )pj and βj,r = 0 for j ∈Θn−1 when Dj

n,r >Q
j
n−1.

Then, the constraint (41) is written as follows:

pjPr(D
j
n >Q

j
n−1)− γk ≤ cjn−1, ∀j ∈Θn−1. (43)

We set a value for the dual variable γk for k ∈Θn−2 such that:

γk = (pj − cjn−1)− pjPr(Dj
n ≤Q

j
n−1) = gjn−1(Qj

n−1,D
j
n−1), ∀j ∈Θk

n−1. (44)
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Then, the objective function value for the dual problem becomes:

w =
∑

j∈Θn−1

[
(pj − cjn−1)Qj

n−1− pj

Q
j
n−1∫

0

(Qj
n−1−Dj

n)f j(Dj
n)∂Dj

n

]
. (45)

Equation (45) is equivalent to the solution of the primal problem for the feasible Qj
n−1 values. It follows

from the strong theorem of duality that the optimal solution satis�es Equation (44). Therefore, we have the

following conditions of optimality:

γk = gjn−1(Qj
n−1,D

j
n−1)≥ 0, ∀j ∈Θk

n−1, k ∈Θn−2 (46)∑
j∈Θk

n−1

Qj
n−1 ≤Qk

n−2, ∀k ∈Θn−2. (47)

If the constraint (37) is not binding for a given k ∈Θn−2, the dual variable γk becomes zero. In this case, the

optimal solution reduces to the solution of |Θk
n−1| independent newsvendor problems in the last period�that

is, the order quantity for each product in the set Θk
n−1 can be found solving an unconstrained newsvendor

problem. Otherwise, the optimal solution exists at the point where the marginal value of producing one unit

is the same for all products in the set Θk
n−1.

In period i∈ {1,2, · · · , n− 2}, the optimization problem is written as follows:

Maximize
Q

j
i
,∀j∈Θi

z =
∑
j∈Θi

G
Υj

i
i (Qj

i ,D
Υj

i
i ) (48)

subject to: ∑
j∈Θk

i

Qj
i ≤Qk

i−1, 0≤Qj
i , ∀k ∈Θi−1, ∀j ∈Θk

i . (49)

The term G
Υj

i
i (Qj

i ,D
Υj

i
i ) is the total expected pro�t generated from all the products in the set Υj

i , and D
Υj

i
i is

the vector of demand forecasts of the products in Υj
i at time ti. We recall that Υj

i is the set of end products

sold in the market whose availability depends on the order quantity decision of Qj
i . We will discuss the

derivation of G
Υj

i
i (Qj

i ,D
Υj

i
i ) in detail below.

The dual problem (48)�(49) is formulated as:

Minimize
λj ,βj ,γk

w=
∑

k∈Θi−1

γkQ
k
i−1 (50)

subject to:

g
Υj

i
i (Qj

i ,D
Υj

i
i )≤ γk, ∀j ∈Θk

i , ∀k ∈Θi−1, (51)
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with ∂G
Υj

i
i (Qj

i ,D
Υj

i
i )/∂Qj

i = g
Υj

i
i (Qj

i ,D
Υj

i
i ). Then, the optimal solution in each period i ∈ {1, · · · , n− 2} sat-

is�es the following equations:

γk = g
Υj

i
i (Qj

i ,D
Υj

i
i )≥ 0, ∀j ∈Θk

i , k ∈Θi−1 (52)∑
j∈Θk

i

Qj
i ≤Qk

i−1, ∀k ∈Θi−1. (53)

Following the steps similar to the proof of Theorem 1, we obtain the following expression for t= tn−2:

G
Υj

n−2

n−2 (Qj
n−2,D

Υj
n−2

n−2 ) =

+∞∫
D

Υ
j
n−2

n−1

G
Υj

n−2

n−1 (Qj
n−2,D

Υj
n−2

n−1 )f(D
Υj

n−2

n−1 |D
Υj

n−2

n−2 )∂D
Υj

n−2

n−1

+

D
Υ

j
n−2

n−1∫
0

G∗
Υ

j
n−2

n−1 (Q∗
j

n−2)f(D
Υj

n−2

n−1 |D
Υj

n−2

n−2 )∂D
Υj

n−2

n−1 − c
j
n−2Q

j
n−2, (54)

where D
Υj

n−2

n−1 is a random variable denoting the sum of demand forecasts of the items in the set Υj
n−2 at

t= tn−1 (i.e.,
∑

k∈Υj
n−2

Dk
n−1). D

Υj
n−2

n−1 is the value of demand forecast at t= tn−1 that makes the optimal order

quantity at tn−1 equal to that of the previous period (i.e., Qj
n−2). Then,

g
Υj

n−2

n−2 (Qj
n−2,D

Υj
n−2

n−2 ) =

+∞∫
D

Υ
j
n−2

n−1

g
Υj

n−2

n−1 (Qj
n−1,D

Υj
n−2

n−1 )f(D
Υj

n−2

n−1 |D
Υj

n−2

n−2 )∂D
Υj

n−2

n−1 − c
j
n−2, (55)

where g
Υj

n−2

n−1 (Qj
n−1,D

Υj
n−2

n−1 ) = gkn−1(Qk
n−1,D

k
n−1) for any k ∈Υj

n−2 as given by Equation (46). Using the last

expression, we obtain the following result by induction:

g
Υj

i
i (Qj

i ,D
Υj

i
i ) =

+∞∫
D

Υ
j
i

i+1

g
Υj

i
i+1(Qj

i+1,D
Υj

i
i+1)f(D

Υj
i

i+1|D
Υj

i
i )∂D

Υj
i

i+1− c
j
i = γk, ∀j ∈Θk

i . (56)

If the constraint (49) for a given k is not binding, the dual variable γk becomes zero. In this case, the optimal

solution reduces to the solution of |Θk
i | unconstrained problems using Equation (9). Let Qj∗

i denote the

order quantity for j ∈Θk
i and k ∈Θi−1 satisfying Equation (9) and Q̂j

i denote the order quantity satisfying

Equation (56). Then, the optimal order quantity is found by a state-dependent base-stock policy:

qji =


Qj∗

i if
∑
j∈Θk

i

Qj∗

i <Qk
i−1,

Q̂j
i if

∑
j∈Θk

i

Qj∗

i ≥Qk
i−1.

(57)



Biçer, Lücker, and Boyac�: Beyond Retail Stores: Managing Product Proliferation Along the Supply Chain
7

Proof of Proposition 4

Suppose product proliferation occurs once at time ti along the supply chain. The mathematical model given

by (48)�(49) is then rewritten as follows with an objective function of maximizing the expected pro�t at

time ti:

Maximize
Q

j
i
,∀j∈Θi

z =
∑
j∈Θi

Gj
i (Q

j
i ,D

Θi
i ) (58)

subject to: ∑
j∈Θk

i

Qj
i ≤Qk

i−1, ∀k ∈Θi−1. (59)

Then, the value of postponing the point of the proliferation is calculated by ∂z/∂ti.

As the next step, we �x cji = cji+1 = · · · = cjn−1 = 0 ∀j ∈ Θi and analyze the impact of incrementally

increasing cji on the expected pro�t. Since cji = cji+1 = · · · = cjn−1 = 0, manufacturer orders the maximum

amount in all the remaining periods (i.e., {i, i+ 1, · · · , n− 1}) such that:

Qj
i−1 =Qj

i = · · ·=Qj
n−1. (60)

And,

Gj
i (Q

j∗

i ,D
j
i ) = Gj

i (Q
j
i−1,D

j
i ) ∀j ∈Θi, (61)

Given that the order quantity at ti is set equal to Qi−1, the expected pro�t is not a�ected by the ordering

decision and we have the following relationship:

∂Gj
i (Q

j
i ,D

j
i )/∂ti = 0 → ∂z/∂ti = 0. (62)

Having set cji = cji+1 = · · ·= cjn−1 = 0 ∀j ∈Θi implies that the constraint (59) is binding. Now, we slightly

increase cji such that cji > 0 and cji+1 = · · ·= cjn−1 = 0 ∀j ∈Θi. Then, we obtain:

Gj
i (Q

j
i ,D

j
i ) = (pj − cji )Qj

i − pj

Q
j
i∫

0

(Qj
i −Dj

n)f(Dj
n|D

j
i )∂D

j
n, (63)

= (pj − cji )Qj − pjQjΦ
( ln(Qj

i/D
j
i )

σ
√
tn− ti

+σ
√
tn− ti/2

)
+pjD

j
iΦ
( ln(Qj

i/D
j
i )

σ
√
tn− ti

−σ
√
tn− ti/2

)
. (64)

From Equation (64), we obtain:

∂Gj
i (Q

j
i ,D

j
i )/∂ti > 0 → ∂z/∂ti > 0. (65)

Therefore, ∂z/∂ti increases as ci increases, which completes the proof of Proposition 4.
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Proof of Proposition 5

The proof has a similar �avor to the proof of Proposition 4. Without loss of generality we consider a simple

structure with two ordering decisions taking place at t0 and t1, and sales occur at t2. Suppose product

proliferation occurs once at time t1. Then, the expected pro�t at time t1 is:

Maximize
Q

j
1,∀j∈Θ1

z =
∑
j∈Θ1

Gj
1(Qj

1,D
Θ1
1 ) (66)

subject to: ∑
j∈Θk

1

Qj
1 ≤Q0. (67)

The Q0 term has a �nite value for c0 > 0. Suppose we reduce cj1 to zero ∀j ∈Θ1 and then swap the second

operation with the �rst one such that the proliferation now occurs at t0. Then, the expected pro�t at time

t1 becomes:

Maximize
Q

j
1,∀j∈Θ1

z =
∑
j∈Θ1

Gj
1(Qj

1,D
Θ1
1 ) (68)

subject to:

Qj
1 ≤Q

j
0, ∀j ∈Θ1. (69)

Given that the cost of �rst operation after the swap is zero, we have Qj
0 =∞ ∀j ∈Θ0. The problem (68)�(69)

reduces to the unconstrained version of the problem (66)�(67). Therefore, the expected pro�t at time t1

increases after the swap (i.e., expediting the proliferation).

If c0 = cj1 ∀j ∈Θ1 in the initial case, then swapping the operations leads to a decrease in pro�ts. It results

from the fact that such a swapping of the operations prevents the manufacturer from getting the bene�ts

of inventory pooling at time t0 when the costs of the operations are the same. Therefore, a threshold value

exists between 0 and c1.

Proof of Proposition 6

The proof follows directly from Proposition 3.
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