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Abstract

Over the last decade, agent-based models in economics have reached a state
of maturity that brought the tasks of statistical inference and goodness-of-fit
of such models on the agenda of the research community. While most available
papers have pursued a frequentist approach adopting either likelihood-based
algorithms or simulated moment estimators, here we explore Bayesian estima-
tion using a Markov chain Monte Carlo approach (MCMC). One major problem
in the design of MCMC estimators is finding a parametrization that leads to
a reasonable acceptance probability for new draws from the proposal density.
With agent-based models the appropriate choice of the proposal density and
its parameters becomes even more complex since such models often require a
numerical approximation of the likelihood. This brings in additional factors
affecting the acceptance rate as it will also depend on the approximation error
of the likelihood. In this paper, we take advantage of a number of recent in-
novations in MCMC: We combine Particle Filter Markov Chain Monte Carlo
(PMCMC) as proposed by Andrieu et al. (2010) with adaptive choice of the
proposal distribution and delayed rejection in order to identify an appropri-
ate design of the MCMC estimator. We illustrate the methodology using two
well-known behavioral asset pricing models.
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Università degli Studi di Firenze. I am most grateful to my host, Leonardo Bargigli, for his excellent
hospitality. I also wish to thank Leonardo as well as Simone Alfarano, Lapo Filistrucchi and Giorgio
Ricchiuti for many helpful discussions.

†Author’s Address: Department of Economics, University of Kiel, Olshausenstr. 40, 24118 Kiel,
Germany, Email: lux@economics.uni-kiel.de.

1



1 Introduction

Over the last decade, agent-based models in economics have reached a state of ma-

turity that brought the tasks of statistical inference and goodness-of-fit of such models

on the agenda of the research community. Using mostly relatively simple models of

financial markets, a variety of statistical tools have meanwhile been developed to this

end (cf. Lux and Zwinkels, 2018, for a review of this literature). Most available

papers have used a frequentist approach adopting either likelihood-based algorithms

or simulated moment estimators. In contrast, Bayesian estimation approaches can be

found in very few papers only. This is surprising insofar as Bayesian methods have

become the dominating paradigm in estimation of contemporaneous dynamic general

equilibrium models in macroeconomics (cf., Herbst and Schorfheide, 2015).

At the time of writing, to my knowledge only three contributions exist applying

a Bayesian methodology to agent-based models: Grazzini et al. (2017), Lux (2018)

and Bertschinger et al. (2018). Grazzini et al. (2017) use both Markov Chain Monte

Carlo (MCMC) and Approximate Bayesian Computation (ABC) to estimate the pos-

terior of the parameters of a medium-scale macroeconomic model with heterogeneous

expectations. In contrast to traditional MCMC, the ABC algorithm uses auxiliary

measures of fit rather than the likelihood to sample from the posterior distribution

(cf. Sisson et al., 2007). Since the likelihood is often not available in analytical form

in agent-based models, the authors adopt a kernel density estimator to approximate

this component of the MCMC algorithm.

Lux (2018) applies both frequentist and Bayesian estimation methods for estima-

tion of two basic financial ABMs. All his implementations of various estimators are

based on an approximation of the likelihood using the concept of a particle filter as
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introduced in the statistical literature by Gordon et al. (1993) and Kitagawa (1996).

The particle filter (or sequential Monte Carlo method) provides an approximation of

the likelihood via a discrete set of realizations of the latent variables of a model (the

particles). This approach presumes a state-space representation of the underlying

model (which is natural for many ABMs). A particle filter approximation is initi-

ated by sampling the initial values of the particles for the hidden states of the model

from their unconditional distribution. The collection of particles is, then, updated

via sampling-importance-resampling over the length of the available time series of the

observable variables. One advantage of using a particle filter approximation of the

likelihood within an MCMC algorithm is that together with estimation of the poste-

rior distribution it also allows for filtering of the time variation of the unobservable

variables which are often at the center of interest in ABMs (e.g. agents’ expectations,

opinions or strategies).

Since for many complex models, the exact likelihood cannot be computed, Andrieu

et al. (2010) have proposed to replace the exact likelihood by an approximation using

the particle filter to perform MCMC estimation in such cases. They show that the

resulting Markov chain converges to the posterior under very general conditions on the

structure of the likelihood and the proposal density. More generally, they demonstrate

that using an unbiased estimate of the likelihood (which is, for instance, the case with

the particle filter), leaves the equilibrium distribution of the posterior of the MCMC

chain unchanged. Within an agent-based model in ecology, Particle Markov Chain

Monte Carlo (PMCMC) has been used recently also by Golightly and Wilkinson

(2011).

One problem of traditional MCMC and PMCMC alike is finding a parametrization

that leads to a reasonable acceptance probability for new draws from the proposal
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density. While with an analytical likelihood this requires an appropriate choice of

the proposal density and its parameters, in PMCMC the number of particles enters

as another factor that influences the acceptance rate as it determines the extent

of approximation error of the likelihood. Most empirical applications first run a

number of trials to determine an appropriate specification for the proposal density

before turning to estimation proper. Doing so, Lux (2018) identifies scenarios with

conventional acceptance rates for the three-parameter model of Alfarano et al. (2008),

but admits that he had been unable to find a satisfactory combination of proposal

density and number of particles for a second model with four parameters based upon

Franke and Westerhoff (2012).

He states that in all trial runs, the acceptance rate remained extremely low. While

this would not impede the statistical validity of the approach as established by An-

drieu et al. (2010), it makes its implementation impractical as very long simulation

runs would be required to compensate for a low acceptance rate.

The very problem of low acceptance rates is addressed by the third entry on

this topic in the recent literature by Bertschinger et al. (2018). These authors use

so-called Hamiltonian MCMC for Bayesian estimation of two agent-based models.

Hamiltonian MCMC attempts to find regions with high probabilities of acceptance by

introducing an auxiliary momentum variable (cf., Neal, 2011). Adopting the principle

of joint preservation of volume in conservative dynamic systems, the dynamics of the

parameters and their associated momentum variables is modeled as a Hamiltonian

system which when used to draw new proposals of the parameters, should select these

approximately along an iso-line of equal probability and, thus, should guarantee high

acceptance rates. Unfortunately, this approach requires numerical derivatives of the

log probability density to implement the Hamiltonian dynamics as a conservative
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system of differential equations.

This is particularly problematic in the present setting: First, in most agent-based

models with a finite number of agents, the probabilistic elements in the individuals’

behavior will make any statistics derived from the underlying process non-smooth.

For instance, if agents’ behavior is described by probabilities to switch from one be-

havioral alternative to another, even with a fixed sequence of random numbers, a

discrete change will happen at a certain value of any one of the parameters of the

model. Second, the same type of discrete changes happens in the particle filter in the

resampling step when the acceptance of any particle to the new population is decided

via multinomial draws based on their relative likelihood (implying that the Hamilto-

nian approach is generally not computable with a particle filter approximation). The

first type of complication is not relevant for the models explored in Bertschinger et al.

(2018) since these are either based on a limiting case with an infite number of agents

or on a dynamic process with two uniform groups of agents without consideration of

individual agents per se. The examples in Lux (2018), however, do consider a finite

number of autonomous agents and, thus, the elegant approach of Hamiltonian MCMC

appears unfeasible because of the lack of smoothness of the numerical approximation

of the likelihood. To make MCMC work, we, therefore, have to choose an alternative

route: adaptive adjustment of the parameters of the proposal density.

The rest of the paper proceeds as follows: The next section introduces the prin-

ciples of PMCM together with algorithms for the adaptive choice of the proposal

density and delayed rejection. Sec. 3 provides a short outline of the theoretical asset-

pricing models we use as test cases for adaptive PMCMC. Sec. 4 provides Monte

Carlo results on the performance of the algorithms, and Sec. 5 presents empirical

results obtained for data of three major stock markets. Sec. 6 provides conclusions.
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2 Adaptive Markov Chain Monte Carlo for Agent-

Based-Models

We set the stage by introducing the seminal framework of MCMC. Markov Chain

Monte Carlo consists in generating a Markov chain that converges to a certain in-

variant distribution. In this context, the distribution we are after is the posterior

distribution of the parameters of an agent-based model. To this end, one needs to

introduce a prior distribution from which an initial set of parameters, say θ0, is drawn.

One then determines the marginal likelihood of the observed data under this initial

choice of parameters, which we denote by Pθ0(y). For typical agent-based-models, no

closed-form likelihood function is available for this evaluation so that we resort to an

unbiased estimation of the likelihood using the particle filter.

The Markov chain develops with draws from a proposal density g(θξ|θξ−1) with ξ

the sequential order of the chain. New draws from this proposal density, say θ∗, are

accepted with a probability:

α(θ∗|θξ−1) = min

{
Pθ∗(y)p(θ

∗)g(θξ−1|θ
∗)

Pθξ−1
(y)p(θξ−1)g(θ∗|θξ−1)

, 1

}
(1)

If the new draw is not accepted, the chain will continue with a replication of the

previous values, θξ = θξ−1. The strength of MCMC lies in the fact, that the chain

generated in this way will converge to the limiting invariant distribution under very

mild regularity conditions on the marginal likelihood of the proposal density.

Difficulties often appear in the practical implementation. Namely, any particu-

lar choice of starting value will lead to a more or less extended transient prior to

convergence to the invariant distribution. Second, the overall acceptance rate should
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be high enough to provide for sufficient exploration of the invariant distribution. To

achieve this goal, fine-tuning of the parameters of the proposal density is required.

One simple approach consists in conducting some preliminary experiments to identify

a set of parameters of the proposal density that lead to an acceptable dynamics of the

Markov chain. However, the higher the number of parameters of the invariant distri-

bution, the more time-consuming this step becomes. It might, therefore, be desirable

to choose the parameters adaptively in response to the observed rate of acceptances.

Luckily, the convergence properties of MCMC can even be maintained under adap-

tation provided some minimal conditions are fulfilled. The basic requirement is that

the degree of adaptation goes to zero as ξ → ∞ (cf. Andrieu and Thomas, 2008).

Rules with decreasing intensity of adaptation are easy to construct. In most appli-

cations of MCMC, the proposals are following a random walk, i.e. θ∗ is drawn from

a multivariate Normal distribution, θ∗ ∼ N(θξ−1,Σ). The focus of adaptation would

then be the covariance matrix Σ. In fine-tuning the acceptance probability, it would

be important to adjust Σ in a way to reflect the unknown covariance structure of

the invariant posterior distribution. To see this, consider as an example a bivariate

Normal with high degree of correlation. It is obvious that a proposal distribution

with off-diagonal elements equal to zero would be accepted the less often the higher

the correlation between parameters and the higher the dimension of the parameter

space.

Andrieu and Thomas (2008) and Rosenthal (2011) provide details of various al-

gorithms for adaptive choice of the proposal density. Typically, these algorithms use

iterative estimates of the covariance of the target invariant distribution. Let µ denote

the mean and Σ̂ the covariance of the sampled realizations of the vector of parame-

ters, θ, over the Markov chain. One would, then, obtain an update of the covariance
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matrix over the course of the simulation using:

µξ+1 = µξ + γξ+1(θξ+1 − µξ) (2)

Σ̂ξ+1 = Σ̂ξ + γξ+1

(
(θξ+1 − µξ)(θξ+1 − µξ)

T − Σ̂ξ

)
.

In order to ensure convergence of the Markov chain, the degree of adaptation as

incorporated in γξ should vanish asymptotically. Hence, γξ should be chosen so that

γξ → 0 for ξ → ∞. With this adaptive estimation of the covariance of the posterior

distribution, new proposals would be drawn according to θ∗ ∼ N(θξ,
2.382

d
Σ̂ξ) with d

the dimension of the parameter space. The scaling by 2.382

d
is motivated by theoretical

results showing that under certain conditions this scaling leads to an optimal proposal

distribution in terms of convergence speed and asymptotic variance (cf. Rosenthal,

2011).

Since this optimal scaling has been obtained for relatively simple cases, it needs,

however, not necessarily apply to the posterior distribution of the parameters of a

complex agent-based model. Alternatively, one might then introduce an arbitrary

scaling parameter λξ and draw proposals according to θ∗ ∼ N(θξ, λξΣ̂ξ). The scaling

could then vary according to the observed acceptance rate α and a predetermined

target α∗:

ln(λξ+1) = ln(λξ) + γξ+1(αξ − α∗) (3)

where αξ is the acceptance rate of new proposals until iteration ξ and α∗ is often

chosen as 0.234 reflecting what has been found to be optimal in certain analytically

accessible cases (again, this number need not be optimal for our more complex ap-
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plications). Eq. (3) indicates that the covariance matrix of the proposals should be

linearly increased if the acceptance rate is deemed to high (as larger changes would

make acceptance less likely) and vice versa.

Besides adaptation of the scale of the proposal distribution, we will also imple-

ment another variation of the baseline MCMC adjustment that has been introduced

in recent literature, the so-called delayed rejection. First proposed by Tierney (1994),

this generalization allows for subsequent moves after rejection of a proposal in the

first round. Here we will confine ourselves to adding a second stage of another new

proposal. The distribution of the second proposal need not be identical to that of the

first stage, and indeed, it will typically be useful to choose a different distribution.

Denoting the stage two proposal distributions by g(2)(θξ|θξ−1) and the resulting pro-

posal by θ∗∗, the delayed rejection adjustment works in the following way: (i) draw

θ∗ from g() and accept θ∗ with probability α as given in eq. (1). If θ∗ in rejected,

draw another proposal θ∗∗ from g(2)() and accept it with probability β given by:

β(θ∗∗|θ∗, θξ−1) = min

{
Pθ∗∗(y)g(θ

∗|θ∗∗)(1− α(θ∗|θ∗∗))g(2)(θξ−1|θ
∗∗)

Pθξ−1
(y)g(θ∗|θξ−1)(1− α(θ∗|θξ−1))g(2)(θ∗∗|θξ−1)

, 1

}
(4)

Haario et al. (2006) propose to combine adaptation and delayed rejection to en-

hance the efficiency of MCMC estimation (denoting the combination by DRAM:

Delayed Acceptance Adaptive Metropolis).
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3 Models

Our basic test case in this paper are two alternative models of asset-price dynam-

ics including non-fundamental factors based on Franke and Westerhoff (2012) and

Alfarano et al. (2008).

The present version of the model of Franke and Westerhoff 1 is, thus, a slightly,

modified one that has also been used already by Lux (2018). It uses the distinction

between the notorious fundamentalists and chartists that are characterized by their

excess demand functions:

EDf,t = Nf,ta(pf,t − pt), (5)

EDc,t = Nc,tb(pt−1 − pt−2) (6)

with Nf,t and Nc,t their respective numbers at time t and a, b the elasticities of their

demand functions. pf,t and pt denote the log fundamental value and the log price,

respectivity.

Defining c =
b

a
and zt =

Nc,t

N
(N = Nf,t +Nc,t), the log price is determined by:

pt = pf,t +
zt

1− zt
c(pt−1 − pt−2). (7)

1 While it would be interesting to explore Bayesian estimation of the full ”battery” of ABMs of
financial markets in their paper, a closer inspection shows that at least some of their models
suffer from non-stationary, so that also no invariant distribution of the parameters could be
expected to exist. Parenthetically, it might be remarked that this lack of stationarity also
makes estimation via simulated maximum likelihood (SML) and model comparisons on the
base of the SML objective function cumbersome.
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If the log fundamental value is assumed to follow a Brownian motion with incre-

ments εf,t ∼ N(0, σf ), we obtain returns rt = pt − pt−1 obeying:

rt = εf,t +
zt

1− zt
c(pt−1 − pt−2)−

zt−1

1− zt−1

c(pt−2 − pt−3). (8)

The observable variable rt is, thus, a noisy signal for the realization of the latent

variable zt with the similarity unobservable fundamental innovations constituting the

noise that distorts the signal.

In one version of their battery of models, Franke and Westerhoff (2012) assume that

the fractions of fundamentalists and chartists follow a herding process with simple

transitions rates between both groups. Denoting πc,t(πf,t) the transition rate for a

change of a fundamentalist to a chartist strategy (and vice versa), a baseline herding

dynamics can be expressed as:

πc,t = νeαxt , n̄f,t = νe−αxt (9)

with

xt =
Nc,t −Nf,t

N
= 2zt − 1 . (10)

This model comes with four parameters that one would like to estimate when

confronting the model with data: the ratio of demand elasticities of both groups of

traders, c, the standard deviation of the distribution of the fundamental shocks, σf ,

the constant ν that expresses the overall tendency of agents to change their strategies,

and α, the herding coefficient. In contrast to Franke and Westerhoff (2012), we apply

the transition rates (9) to a true ensemble of agents (using N = 100) while the original
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paper has assumed an infinite population. This implies that the latent state variable

zt is driven not by a single noise factor, but by the joint distribution characterizing N

Poisson processes with time-varying intensities as defined in eq.(9). Lux (2018) found

this prototype model combining chartists/fundamentalists and herding dynamics to

be inferior to a simple framework proposed by Alfarano et al. (2008). The basic aim

here is to revisit this comparison on the base of Bayesian estimation instead of the

frequentist model comparison of the earlier paper.

The Alfarano et al. (2008) framework includes the same demand of fundamen-

talists, but assumes that the second group are pure noise tenders and that agents

do not switch between groups of noise traders and fundamentalists. The latter are

either optimistic or pessimistic and their attitude is determined by a similar conta-

gion dynamics as has been assumed for the choice of trading strategy in the modified

Franke/Westerhoff approach.

Noise trades’ and fundamentalists’ excess demand are given by:

EDc = Tcyt, (11)

EDf = Tf (Pf,t − Pf ) (12)

with Tc, Tf denoting trading volumes of both groups, respectively

yt =
n+,t − n−,t

Tc

(13)

and n+,t(n−,t) the currently optimistic (pessimistic) individuals among the constant
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overall number of noise tenders. The equilibrium price in this model is obtained as:

pt = pf,t +
Tc

Tf

yt. (14)

Hence, returns are given by:

rt = εf,t +
Tc

Tf

(yt − yt−1) (15)

Again, asset returns are a noisy signal for the realization of the latent variable,

now denoted by yt.

The within-group dynamics are determined by the following transition rates:

π+,t = a+ bn+,t , (16)

π−,t = a+ bn−,t (17)

for the switch from pessimistic to optimistic opinion (π+,t) and vice versa. It

includes a autonomous propensity to change opinion, a, and one that is driven by the

current majority, b.

Normalizing Tc

Tf
= 1, the model leaves the parameters, σf , a and b to be estimated.

Again, to preserve the spirit of a ‘true’ ABM, a finite number of agents (TC = 100)

is used to simulate the time-variation of the latent variable yt.

4 Simulation Results

In the following we provide details on explorative simulations of Adaptive Markov

Chain Monte Carlo estimation using both adaptation of the proposals and delayed
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rejection. For the adaptive component, we set γξ in eqs. (2) and (3) as follows:

γξ =
1

(ξ − ξTrans)η
(18)

with ξTrans the number of iterations during the burn-in phase of the MCMC run.

Since with η > 0 adaptation vanishes asymptotically, this extension of PMCMC

preserves the convergence of the Markov chain. Experimentation showed that the

results were not very sensitive to η if this parameter were not chosen two large.

In the results reported below, η = 0.1 has been used. During the burn-in phase,

proposals have been drawn from a relatively wide distribution with covariance terms

all set equal to zero. The burn-in, thus, serves to learn about correlations between the

parameters of the model. Once the burn-in phase is completed, eqs. (2) and (3) are

applied in order to adapt the proposals to the correlation structure of the parameters

and to adjust the scale of the proposal distribution in a way to get close to an optimal

acceptance rate. In order to avoid degenerate outcomes of the adaptation process,

the proposal density is modified slightly by adding a small constant term:

θ∗ ∼ N(θξ, λξΣξ) + 0.01N (θξ,Σ0) with Σ0 the proposal density used in the burn-

in phase. In cases with delayed rejection, a second round has been added after the

rejection of the initial proposal with the new proposal distribution g(2)(θ∗∗|θξ−1) set

equal to 0.01g(θ∗|θξ−1) The following plots and tables illustrate the results of ten

shorter runs with adaptation only and one longer run using the full DRAM (delayed

rejection plus adaptive Metropolis algorithm) as proposed by Haario et al. (2006).

In the following, we first report the results of two sets of computational experi-

ments for the modified model of Franke and Westerhoff (2012). All simulations have

the purpose of estimating the posterior distribution of the parameters on the base
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of returns generated for a typical length of financial time series with T=2,000 obser-

vations. The underlying parameters were: ν = 1, α = 0.85, b = 2, σf = 0.03 and

N = 100. In the first series of experiments we run 10 Markov chains with a length of

7,500 iterations and the number of particles B = 1, 000. We consider the first 1,500

data points as transient observations. Since with little experience on the estimation

of this model, we have hardly any guidance for the prior, we choose a uniform prior

over the interval [0,5] for parameters ν, α and b, and a uniform prior over [0,σr] for

the parameter σf . In the latter case, σr is the pseudo-empirical standard deviation

of the underlying time series of returns. This constitutes a natural upper bound

for this parameter as the fundamental innovations could at most generate fluctua-

tions of the size of the entire return volatility if the parameters for the behavioral

components all converge towards zero. During the burn-in phase of the first 1,500 it-

erations, we compute proposals according to a multivariate Normal distribution with

standard derivations 0.5 for the first three parameters and 0.1σr for the fourth and

of all-diagonal entries equal to zero. As can be seen in Fg.1 this generates very few

accepted proposals. As displayed in Table 1, the average acceptance rate is just 0.044

with as few as 10 in one particular run. After this burn-in phase we start adaptation:

We compute the covariance matrix of the proposals in a data-driven way and adapt

its scale λ as prescribed in eq. (2), (3) and (18). As we can see, adaptation leads

immediately to a much higher acceptance rate of about 0.147 with indeed relatively

little variation between runs.
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Figure 1: Evolution of parameters during 10 adaptive MCMC runs for the modified
Franke and Westerhoff model

Fig. 2 exhibits in the first ten boxplots in each panel the resulting posterior dis-

tributions. Overall, they appear relatively uniform particularly with respect to their

interquartile range (the boxes) while the extremes show somewhat more variation. It

transpires from the posterior distributions that σf is estimated very precisely from

the mean of the posterior distribution while the other parameters are all somewhat

biased downward. Since all experiments are based on the same synthetic serics, we

cannot say at this stage whether the bias is particular to this example or whether it

is a systematic result of the particle filter approximation of the likelihood.
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Figure 2: Boxplots of parameters for ten AM runs (numbers 1 through 10) and one
DRAM run (number 11). To guarantee roughly similar magnitudes of the estimated
parameters, σf has been multiplied by 100 in our experiments.

Figure 3 shows the adjustment of the scale parameter for the ten different runs.

From its value of one upon initialization λ drops relatively fast initially and eventually

converges to a constant level between 0.2 and 0.6. The numbers appear specific to

each run, but they interact, of course, with the estimated covariance matrix. Since

the resulting distributions are very similar, the ‘degree of freedom’ implied by the

adjustment of both Σ̂ and λ can lead to different specific trajectories of adaptation.
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Figure 3: Development of adaptive scale parameter λ after the burn-in phase for 10
AM runs (main plot) and one DRAM run (inlet).

Table 1 presents diagnostic statistics that are typically reported to assess the

convergence of an MCMC chain. Indeed, we have run 10 separate chains to be able

to compute the celebrated Gelman-Rubin diagnostic, denoted by R in Table 2. It

compares the within-chain variance to the between-chain variance and computes a

potential scale reduction factor, i.e., the factor by which the variance can be reduced

by doubling the running time of the chain. Our computation of this statistics follows

Flegal et al. (2008) and we also report the upper 0.95 percent bound of the point

estimates of R using a Student t approximation to its distribution (cf. Flegal et al.,
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2008). A rule of thumb for an acceptable range of R is to choose the length of the

chain so that R falls below 1.1. Since the scale reduction rate can be computed for

any parameter or function of parameters, we report it both for the four parameters

of the model and for the resulting likelihood. We find that in all cases the point

estimate and the upper 95 percent bound are much smaller than 1.1 indicating good

convergence properties.
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Table 1: Franke/Westerhoff model

parameter mean1 mean2 R R0.975 hw0.975

v 0.837 0.836 1.009 1.012 0.013
α 0.786 0.787 1.002 1.003 0.005
b 1.83 1.83 1.005 1.007 0.011
σf 3.004 3.004 1.003 1.004 0.006
Likel. 3975.382 3975.815 1.021 1.025 0.241

acceptance rates:
AM (1− 1500) : 0.036 (0.019)
AM (1501 : 7500): 0.147(0.011)
DRAM (1500 : 61500) : 0.265

Alfarano et al. model

parameter mean 1 mean 2 R R0.975 hw0.975

a 0.191 0.190 1.016 1.020 0.016
b 1.400 1.400 1.012 1.014 0.075
σf 3.026 3.026 1.009 1.012 0.016
Likel. 3850.169 3851.204 1.013 1.015 0.266

acceptance rates:
M (1− 1500) : 0.199 (0.044)
AM (1501 : 7500): 0.187(0.030)
DRAM (1500 : 61500) : 0.160

Table 1: The table shows the results of computational experiments with different
specifications of PMCMC to estimate the posterior distribution of the parameters
of the modified Franke and Westerhoff (2012) model and the Alfarano et al. (2008)
model. Mean 1 is the mean over 10 AM runs with B = 1000 of length of 7500
iterations with the last 6000 iterations of all runs pooled together; mean2 is the mean
of the last 30,000 iterations of one DRAM run with B = 500 with a total of 61,500
iterations. R is the convergence diagostic by Gelman and Rubin and R0.975 its 95
percent upper bound. hw0.975 is the upper half-width of the 95 percent interval for
the mean of the posterior distributions of the long DRAM sample. Parameters a and
b in Alfarano et al. (2008) are multiplied by a factor 1000 and σf in both models by
a factor 100 for better readability.
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Our second experiment uses the DRAM algorithm, i.e. it combines the adaptive

adjustment of the proposal distribution with a second round of proposals in the case

of a rejection of the first proposal. We use the same covariance matrix like in the first

round but multiply it by a factor 0.01 to obtain proposals closer to the last accepted

value. In contrast to the previous experiment, we have also reduced the number of

particles to B = 500 while the AM runs had used B = 1, 000 in the particle filter. As

can be seen, the delayed adjustment algorithm increases the acceptance rate to 0.265,

slightly above the target, while indeed the AM runs had never been able to achieve

the target rate of 0.234. As the last boxplots in Fig. 2 show there is no obvious

difference between the resulting quantiles of this run and the previous shorter runs

with a different design.

Fig. 4 compares the overall distributions for one of the parameters, ν, and the

likelihood function. On the upper panel, the pooled results from the 10 AM runs after

burn-in are displayed. On the lower panel, we show those from the single DRAM

run, for the last 30,000 iterations. Both histograms are virtually indistinguishable.

The same holds for the estimated means listed in Table 1. The last column of the

table also shows the half-width of the 95 percent confidence interval of the mean

parameter estimates based upon batch means (splitting the last 30,000 data points

into subsamples of 5.000). Following, for example, Flegal et al. (2008) this half-width

can be interpreted as another convergence criterion applicable to cases where one

prefers to perform one single run. With all parameters having comfidence intervals

for their mean of at most 0.02 and the likelihood a confidence interval smaller than

0.5, the precision appears within conventional bounds. It is interesting to compare the

trajectory for λ for the DRAM experiment to those of the previous runs. As shown

in Fig. 3 this case shows an initial increase, but with a hump-shaped continuation
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actually converges back to some limiting value close to 1. With the more frequent

acceptances, this run started out close to the target rate after the burn-in and even

exceeded it during the adaption phase so that the adaptation widened the covariance

matrix in order to reduce the acceptance rate back towards the level of 0.234.

Figure 4: Histograms of parameter ν and the likelihood for both the ten AM runs
and the single DRAM run.

Table 1 also shows results of a similar set of experiments for the model of Alfarano

et al. (2008). The underlying parameter values are a = 0.0003, b = 0.0014, and

σf = 0.03 as in the other model. As it can be seen, the results are broadly similar in

terms of the precision as measured by the scale reduction factor and the half-width
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of the estimator of the posterior mean. In this model, the parameter b exhibits the

smallest bias while a shows a larger deviation between the assumed value and the

posterior mean. Acceptance rates remain somewhat below target for both the AM

and DRAM experiments. In the case of this model the adjustment leads to ever

decreasing λ indicating that a distribution for the proposals with zero values in its

off-diagonal entries is sufficient for arrive at the indicated acceptance rates. However,

for the model of Alfarano et al., neither the AM nor the DRAM algorithm are able

to meet the target rate of acceptance.

Given the adaptive nature of our choice of the proposal densities, it appears mys-

terious how the adjustment could underachieve relative to its set target rate. The

difference is likely due to the influence of another crucial parameter, the number of

particles used in the approximation of the likelihood function. Efficient choice of this

parameter has been studied by Pitt et al. (2012), Sherlock et al. (2015) and Doucet

et al. (2015). These contributions derive various results on the efficient choice of the

number of particles, B, by assuming that the approximation of the likelihood func-

tion leads to a distortion against the exact likelihood that can itself be approximated

by a Gaussian noise governing the behavior of the log-likelihood. Their general rec-

ommendation is choosing B so that the standard deviation of the log-likelihood is

in the range of 1.0 to 1.7 in order to minimize overall computing time (balancing

the computational effort due to a larger Monte Carlo sample in the case of a higher

rejection rate against the effort needed to reduce the rejection rate through a higher

number of particles). A larger standard deviation of the log-likelihood leads to a

higher rejection rate since positive deviations from the exact likelihood would very

rarely get replaced by even higher such deviations which in the course of a simulation

becomes less and less probable. However, how exactly the standard deviation of the
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log-likelihood scales with the number of particles depends on the structure of the

model and the (true) parameters.
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Table 2 shows estimates of the standard deviation of the log-likelihood at the

chosen parameter values, using 100 replications of its computations with different

random number seeds for the particle filter. We find that for B = 1000 the Franke

/Westerhoff model gets very close to the target of unity, and also for B =500 the

increase of the standard deviation appears moderate and acceptable. In contrast, the

Alfarano et al. model has a much higher standard deviation at B =500 which explains

the low acceptance rate of 0.160 in the DRAM experiments reported in Table 1.

5 Empirical Application

Equipped with the insights of the previous section on how to design on adaptive

PMCMC algorithm efficiently, we apply this approach to a selection of time series

of major stock markets. The series we consider consist of the S&P500 for the U.S.

economy, the German DAX and the Japanese Nikkei index. To obtain a series with

a length comparable to that of our previous simulations initially the time period

January 2008 though February 2015 had been chosen, with a total of 1886 observations

of daily returns. If the PMCMC algorithm would attain an acceptance rate close to its

target, the empirical estimation should allow for an efficiency of parameter estimation

that should be comparable to the results obtained by the synthetic data in Table 2.

The chosen sample is also part of the larger sample used in Lux (2018) for the same

series so that results of the present exercise could be compared with his previous

parameter estimates on the base of a frequentist use of the particle filter.

The empirical exercise was initiated with a complete replication of the design of

the simulations reported in the previous section using the DRAM algorithm with

the same initial distribution of the proposals and the same length of burn-in phase
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before initiating the adaptation. Unfortunately, what had been working well in the

simulations, did not work so well in the practical applications: For both models,

we obtained Monte Carlo chains with an acceptance rate way below target, even

in the adaptation phase. In many cases, the chains showed rejection rates close to

hundred percent and only two digit numbers of accepted values over runs of 60,000

iterations. As can be interred from Table 2, the reason for this dismal performance

of the algorithm lies in the high variability of the log-likelihood for these two models

with the chosen number of particles in the approximation of the likelihood. In order

to assess this variability, a preliminary set of parameters estimates has been used to

simulate the model and compute the standard deviation of its log likelihood for the

given data.

As can bee seen in Table 2, the log likelihood for the S&P 500 data has a standard

deviation of about 50 for the Alfarano et al. model with number of particles set as

B = 500. Increasing the number of particles leads to a monotonic decrease of the

variability, but even with B = 8, 000 the standard deviation is still as high as 2.011.

While for the Franke/Westerhoff model, the variability is somewhat lower than for

the first model, increasing the number of particles has only a small effect, and even

with B = 8000 the standard deviation remained above 9. While one could in prin-

ciple still increase the number of particles further, the computational demands of an

efficient PMCMC estimation, unfortunately, appear out of reach for this time series,

period of investigation and hypothesized models. The same actually was found for

the DAX and the Nikkei. Closer inspection shows that the log-likelihood is so volatile

over the chosen period because of the large fluctuations in the start of this period

which coincides with the time of the worldwide financial crises after the collapse of

Lehman brothers. When removing this part, the log-likelihood shows distinctly less
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variations. To see whether a shorter series would be amenable to PMCMC estimation,

the last 1000 observations have been used stretching from 04/26/2011 to 02/28/2015.

In terms of the standard deviation of the log likelihood this time window appears

better-behaved: For the Alfarano et al. model one obtains a standard deviation of

1.226 with B = 1, 000 while for the Franke/Westerhoff model it is 0.873, obtained

again from simulations with parameters estimated from a relatively short initial run

of the algorithm. For the two other series, the same restriction of the time window

yielded the following results: With the Alfarano et al. model, the DAX showed simi-

lar behavior like the S&P 500 while the Nikkei index showed still too high variability

of the likelihood which only receded to acceptable levels with B = 8, 000. In con-

trast, the same series showed a standard deviation of the log likelihood under the

Franke/Westerhoff model that was almost two orders of magnitude lower with entries

all below 0.05 over the entire range from B = 500 to B = 8, 000 displayed in Table 2.

Since a value below the optimal one of a about unity indicates a high acceptance rate

this somewhat unexpected behavior is not really an obstacle for PMCMC estimation.

Indeed, it would rather indicate that we would need a relatively short chain only to

achieve a given target of efficiency. In the following we repeat the results using the

DRAM algorithm for these three series with T = 1, 000 observations, using as the

default setting B = 1, 000 particles and a chain of length 61, 500 with adaptation

starting after the first 1, 500 iterations.

Table 3 displays the results for the Alfarano et al. model. For the S&P500 and the

DAX, the acceptance rates for this setting are very close to target, while for the Nikkei

it remains distinctly lower (as expected). For the later, another run with B = 6000

has been conducted which shows more satisfying behavior (somewhat surprisingly so

since the standard deviation of the log-likelihood reported it Table 2 is still relatively
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high with 3.672 for this setting). Together with the mean of the posterior distribution

of the parameters and the likelihood, the table also shows the 95 percent confidence

interval for the mean and the 95 percent credible interval for the pertinent parameter

inferred firm the full posterior distribution (i.e., the 2.5 and 97.5 simulated quantiles).

The interesting aspects are the following: First, in all three cases, we conclude that

b > a with at least a confidence level of 95 percent as the 95 percent credible intervals

of both parameters are non-overlapping. In the context of this model, this implies

that the equilibrium distribution of the latent variable yt from eq. (12) is bimodal.

Hence, the fluctuations between volatile and tranquil market phases are caused by

changes between a dominance of optimistic and pessimistic sentiment. Second, the

estimates for the parameters σf are all distinctly smaller than the standard deviations

of the underlying time series of returns (numbers are given in Table 4): this is again

significant at least at the 95 percent level as the credible intervals do not include the

empirical standard deviation of the data. The conclusion within the model is that

fundamental shocks explain only parts of the variation of returns, and the impact of

sentiment dynamics (represented by the parameters a and b) is non-negligible.

Fig. 5 displays the Markov chains for the parameter a for the three time series

(all with B=1000). As can be seen, convergence to the limiting distribution is almost

immediate, and the fluctuations appear very regular. The lower acceptance rate in

the case of the Nikkei Index is also well visible in the simulation. Parameters b and

σf behave very similarly. Also shown in Fig. 5 is the dynamics of the adaptation

parameter λ for the S&P500 and the DAX series. In both cases, the adaptation

proceeds in cycles that at least up to the range of 60,000 iterations performed here

show no tendency of dying out. Since eqs. (2) and (3) define the dynamics of a

dynamic system such a behavior is a possible outcome of the adaptive choice of the
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proposal distribution. Since all the conditions for convergence of the Markov chain

are fulfilled, this should not have any impact on the posterior, and indeed the chains

of the parameters’ posteriors appear to be unaffected by the fluctuations of λ (which

likely goes hand-in-hand, with compensating fluctuations of
∑̂

))

For the Nikkei, the adaptation parameter λ converges monotonically to zero, so

that the proposal density tends to N(θξ, 0.01Σ0). This is probably a consequence

of the inability of the algorithm to find acceptable proposals because of the large

variation of the log-likelihood. In an attempt at increasing the acceptance rate, the

variance of the proposal distribution is shrinking further and further, albeit without

sufficient success, so that this tendency drives λ to zero. Interestingly, an alternative

MCMC run with B = 6.000 particles (Nikkei II in Table 3) shows again the oscillating

dynamics as with the two other stock market series.

Table 4 and Fig. 6 provide the results for the Franke/Westerhoff model. This

time, we find the adaption rate λ to be close to the target in the cases of the S&P500

and the Nikkei, while the adaption underperforms in the case of the DAX. Again the

‘satisfactory’ cases came along with cyclical adjustments of λ (of which only one wide

swing has apparently been completed after 60,000 steps for the S&P500), while in the

‘unsatisfactory’ case of the DAX we find λ converging to zero again. Nevertheless,

the latter case appears to generate the most stable parameter estimates after burn-in.

Since with a mean of the posterior of the parameter ν of about 12 the simulation of

the Markov chain becomes very time consuming 2 we have stopped these simulations

after 31,500 steps rather than the usual 61,500. Unfortunately the estimate of the

parameter b is counter-intuitive and would have to be explained by strong contrarian

2 This is so, because with ν ≈ 12 there is a high frequency of agents revising their strategic
decisions for chartist versus fundamentalist behavior which leads to a long computation time
of every unit time step within the particle algorithm for the latent state.
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behavior of chartists or ‘anti-fundamentalist’ behavior of the group of fundamentalists

(i.e., expectations of a movement of the price away from the fundamental value).

For the S&P500 and the Nikkei, we see a very broad distribution of the posterior

of the parameter ν which might be even understated in Table 4 for the S&P500 given

the large increase of this parameters towards the end of the simulation (cf. the upper

left-hand panel of Fig. 6). For the S&P the remaining parameters appear more

precise, while both α and b show great variation as well for the Nikkei. Parameter b

is again negative for the Nikkei and also parameter α would indicate anti-herding.

For all three series, we obtain relatively narrow posterior distributions for σf .

However, the pertinent numbers are all very close to the standard deviations of re-

turns σr themselves meaning that - according to the estimates of the Franke and

Westerhoff model- most of the dynamics of returns would have to be explained by

fundamental news. The remaining behavioral parameters would, then, loose their

economic relevance. Indeed, the credible 95 percent confidence intervals for σf in-

clude σr for the DAX and Nikkei, and only for the S&P is σr marginally located

outside this interval. Comparing the posterior distribution of the likelihood values

for both models, we find that their 95 percent credible intervals are non-overlapping

for all three series. In all cases, the Alfarano et al. model has higher values and can,

thus, be said to outperform its competitors at least at a confidence level of 95 percent.

This confirms results reported by Lux (2018) on the base of a frequentist comparison

of both models (albeit for longer time series).
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Figure 5: Evolution of model parameter a and adaptation parameter λx during the
MCMC run with 1.000 particles using the DRAM algorithm. Not shown is the scale
parameter λ for the Nikkei as it converges to zero very quickly.
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Table 4: Estimates of FW model

S&P500 DAX Nikkei
mean(ν) 2.327 12.388 7.629
95% conf. (1.344 3.400) (11.742 13.033) (6.047 9.211)
95% cred. (0.878 6.295) (11.755 13.053) (0.368 14.326)
mean(α) 1.276 1.348 -7.896
95% conf. (1.153 1.398) (1.283 1.412) (-9.435 -6.357)
95% cred. (1.211 1.336) (1.307 1.390) (-17.812 0.625)
mean(b) 16.681 -10.201 -14.866
95% conf. (15.287 18.074) (-11.086 -9.316) (-16.210 -13.522)
95% cred. (14.556 19.355) (-11.253 -9.163) (-19.740 -9.184)
mean(σf ) 12.298 9.243 12.902
95% conf. (12.090 12.507) (9.064 9.422) (12.700 13.103)
95% cred. (11.763 12.868) (8.823 9.734) (12.354 13.479)
stdc(ret) 12.886 9.692 12.936
mean (lkl) 2944.864 3245.836 2926.123
95% conf. (2944.081 2945.648) (3245.258 3246.413) (2925.597 2926.648)
95% cred. (2940.660 2948.564) (3241.042 3249.260 ) (2923.192 2926.905)
accept. rate 0.253 0.083 0.225

Table 4: The table shows the parameter estimates and maximized likelihood values
for the Franke and Westerhoff model obtained from the posterior distribution. The
underlying samples consisted of 1000 daily observations. The table includes the mean
parameter estimates, the 95 percent confidence interal of this mean, and the 95 percent
credible interval of the posterior distribution. All estimates are obtained with B = 500
particles. Estimates for S&P500 and Nikkei are estimated from the last 30,000 of a
Markov chain with an overall length of 61,500 iterations of with the first 1,500 steps
were used for burn-in. For the DAX a Markov chain of only 31,500 iterations was
simulated of which the last 15,000 have been used for parameter estimation.
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Figure 6: Evolution of model parameters ν and α during the MCMC run with 500
particles using the DRAM algorithm. the upper right-hand panel shows how the
adaptation parameter λ evolves for the S&P500 and the DAX. For the Nikkei index
it converges to zero in relatively short course.

6 Conclusions

This paper has explored the potential use of refined Markov Chain Monte Carlo ap-

proaches for estimation of the parameters of agent-based models. Using an adaptive

choice of the distribution of proposals, we indeed found a convenient convergence of

the acceptance rates towards their target in our exploratory runs of two behavioral
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stock market models with a finite number of interacting agents. Unfortunately, the

application to empirical data turned out to still be cumbersome in certain cases. In

particular, we found this approach to be still infeasible for our initially chosen time

series of three major stock indices covering daily data from 2008 though 2015. As

it turned out the variation of the log-likelihood values for this sample appeared so

large in all three cases that a reasonably high acceptance rate would have required

an enormous number of particles in the simulations. This particular behavior of our

initial time series obviously stems from a number of extreme realisations during the

financial crisis that lead to large fluctuations of the likelihood values across observa-

tions. In order to be able to apply Particle MCMC at all, we have reduced the sample

to a better-behaved subsample skipping the years 2008 to 2010. This method-driven

reduction of the time series under scrutiny is obviously unsatisfactory. As a general

insight of our analyses, we find that the flexibility of APMCMC still depends on the

combination of data at hand, hypothesized model and best-fitting parameter values

of this model that taken together is, of course, outside the control of the researcher.

Despite these limitations, the present exercise brought some interesting results to

the fore: parameter estimates for the Alfarano et al. model where in line with the

results of Lux (2018) using frequentist methods and a much large sample, and also

the dominance of this model over the competitor of Franke and Westerhoff (2012)

has been confirmed. As in the previous paper, the parameter estimates of the latter

model basically indicated very little relevance of speculative activity and a dominant

influence of fundamental news on asset price movements, while the Alfarano et al.

model, in contrast, diagnoses a strong influence of sentiment.

While it has been demonstrated in the literature, that the use of an unbiased esti-

mator of the likelihood leaves the equilibrium distribution of the posterior unchanged
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in MCMC estimation (Andrieu et al., 2010), the present paper shows the practical

limitations of this approach. If the computational demands of PMCMC become in-

feasible, one would likely have to resort to Approximate Bayesian Computing (ABC)

using auxiliary measures of fit rather than the likelihood. A few recent attempts at

the application of ABC, for agent-based models can be found in ecology (Parry et al.,

2013; Zhang et al., 2017). The adaptation of these methods should be on the research

agenda as one of the possible avenues to proceed in the validation of agent-based

models in economics.
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