

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Entrop, Oliver; Fuchs, Fabian U.

### Working Paper Implicit currency carry trades of companies

Passauer Diskussionspapiere - Betriebswirtschaftliche Reihe, No. B-41-20

**Provided in Cooperation with:** University of Passau, Faculty of Business and Economics

*Suggested Citation:* Entrop, Oliver; Fuchs, Fabian U. (2020) : Implicit currency carry trades of companies, Passauer Diskussionspapiere - Betriebswirtschaftliche Reihe, No. B-41-20, Universität Passau, Wirtschaftswissenschaftliche Fakultät, Passau

This Version is available at: https://hdl.handle.net/10419/213890

#### Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

#### Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.



# WWW.ECONSTOR.EU



Wirtschaftswissenschaftliche Fakultät

# **Implicit Currency Carry Trades of Companies**

**Oliver Entrop, Fabian U. Fuchs** 

Diskussionsbeitrag Nr. B-41-20

Betriebswirtschaftliche Reihe ISSN 1435-3539

# PASSAUER DISKUSSIONSPAPIERE

Herausgeber: Die Gruppe der betriebswirtschaftlichen Professoren der Wirtschaftswissenschaftlichen Fakultät der Universität Passau 94030 Passau

# Implicit Currency Carry Trades of Companies

### **Oliver Entrop, Fabian U. Fuchs**

Diskussionsbeitrag Nr. B-41-20

# Betriebswirtschaftliche Reihe ISSN 1435-3539

Adresse des Autors/der Autoren:

Prof. Dr. Oliver Entrop; Fabian U. Fuchs Wirtschaftswissenschaftliche Fakultät Universität Passau 94030 Passau

Telefon: +49 851 509 2461 Telefax: +49 851 509 2462 E-Mail: oliver.entrop@uni-passau.de; fabian.fuchs@uni-passau.de

Für den Inhalt der Passauer Diskussionspapiere ist der jeweilige Autor verantwortlich. Es wird gebeten, sich mit Anregungen und Kritik direkt an den Autor zu wenden.

# Implicit Currency Carry Trades of Companies

Oliver Entrop<sup>\*</sup> University of Passau Fabian U. Fuchs<sup>†</sup> University of Passau

 $<sup>^*</sup>$ Oliver Entrop, University of Passau, Chair of Finance and Banking, Innstraße 27, D-94032 Passau, Germany, phone: +49 851 509 2460, email: oliver.entrop@uni-passau.de

 $<sup>^\</sup>dagger$  Fabian U. Fuchs, University of Passau, Chair of Finance and Banking, Innstraße 27, D-94032 Passau, Germany, phone: +49 851 509 2463, email: fabian.fuchs@uni-passau.de

### Implicit Currency Carry Trades of Companies

#### Abstract

The currency carry trade (CCT) strategy – borrowing in low-interest-rate currencies and investing in high-interest-rate currencies – has been found to generate excess returns that cannot be explained by common risk factors. We argue that companies implicitly execute carry trades, when they have input costs and sales in countries with differing interest rate levels. Consequently, the equity of companies that are not fully hedged against foreign exchange rate changes should be sensitive to returns from currency carry trades. Analyzing a broad sample of US firms, our contribution to the literature is twofold: (i) Based on an APT approach we find a risk premium for implicitly executed currency carry trades in equity returns. (ii) We examine the influence of various company-specific characteristics and find that a company's size and liquidity have the most significant impact on its sensitivity to currency carry trade returns.

Keywords: Carry trade; hedging; exchange rate exposure; uncovered interest parity JEL classification: F31; G32; G15

#### 1 Introduction

The currency carry trade (CCT) strategy borrows low-interest-rate currencies (short position) and invests in high-interest-rate currencies (long position). This widely used speculative trading strategy should not yield excess returns if the uncovered interest rate parity (UIP) holds. The UIP states that risk-neutral investors should show no preferences regarding their domestic interest rate and foreign rates, since exchange rate movements offset the interest rate differential. However, multiple studies have found that high-interest-rate currencies depreciate less than expected (or appreciate), and low-interest-rate currencies appreciate less than expected (or depreciate) against the UIP, which became known as the "forward premium puzzle" (Fama, 1984). Thus, violating the UIP, CCTs are often found to yield high average excess returns.

This paper studies CCTs of US companies. Companies that are based in a low-interest-rate country typically provide or obtain goods and services to/from various other currency areas. Due to their primary business objective and their choice of sales or input market, those companies are exposed to changes in the corresponding exchange rates. As companies often do not hedge all of their market risks (e.g. Bodnar et al., 1998; Glaum, 2002), such changes affect their firm value. If, for example, the value of sales in a high-interest-rate currency depreciates less than expected under the UIP, investors gain from the existing implicit CCTs (iCCTs). This is why we should expect a sensitivity to the realization of CCTs in the stock returns of companies. The related literature, presented in Section 2 in more detail, interprets the premium of CCTs as a premium for taking on the respective risk. We should therefore be able to find a similar risk premium in equity returns.

As our first contribution, we test if monthly excess returns from interest differentials and a premium from an iCCT strategy is priced in the stock market of US companies. For that, we sort the excess returns of the currencies of all major US trading partners into portfolios according to their monthly forward premium. Those portfolios are then adjusted by yearly trade weights to match the relative importance of a currency to an average US company. The AVG portfolio is given by the average excess return of all portfolios and the  $HML_{FX}$  portfolio is given by a long position with the highest forward premium and a short position of the portfolio with the lowest forward premium. For the stock returns, we consider public US non-financial companies listed between 1997 and 2016. After adjusting for missing data and infrequently traded companies, we are left with 2,113 companies in our considered time frame. Following Chen et al. (1986), Bessler and Opfer (2003) and Shanken and Weinstein (2006), we then perform a version of the Fama and MacBeth (1973) approach for the AVG and  $HML_{FX}$  portfolio, all excess return portfolios and a trade-weighted exchange rate index using the stock returns as the explained variable. We indeed find significant premia for the AVG,  $HML_{FX}$  and excess returns portfolios but not for the trade-weighted exchange rate index. Hence, companies perform iCCTs and investors earn a premium from this implicit trading strategy and these premia cannot be due to a mere change in the trade-weighted exchange rate index.

As a second contribution, we estimate the sensitivities of the companies' stock returns to the  $HML_{FX}$  and AVG portfolio. This estimation technique stems from the foreign exchange rate exposure literature and was first introduced by the linear one-factor model of Adler and Dumas (1984). As we are interested in the overall effect of interest differentials between countries, which is represented by the iCCT index of companies, we refrain from including a market factor that could proxy the currency effect we are looking for. In a next step, we take these sensitivities as the dependent variable and explain its variations by different company characteristics in various panel approaches. We aim to determine what kind of companies are most likely to effectuate iCCTS and what factors drive the magnitude of the reaction of stock returns to iCCTs. We find that the key drivers are the company's size and dividends per earnings.

The remainder of the paper is organized as follows. Section 2 gives an overview over the related strand of literature. In Section 3 we discuss for which companies we expect iCCTs to influence stock returns. In Section 4 we describe the dates and time intervals used in this study. In Section 5 we test the UIP for the currencies used in this study, introduce the iCCT excess return formulation, the portfolio construction and the empirical model approaches. In Section 6 we present the empirical findings of the APT approach. We show that iCCTs are priced in stock returns of companies and also what factors drive the stock returns' exposure to iCCTs. In Section 7 we perform additional robustness checks. Finally, in Section 8 we provide some concluding comments.

#### 2 Related Literature

A large body of work aims to explain the excess returns of CCTs. Burnside et al. (2011a) form CCT portfolios and apply the CAPM, the Fama and French (1993) model and include realized stock volatility to replicate realized mean excess returns. Lustig and Verdelhan (2007) establish a consumption-based model with market risk that explains 87% of the cross-sectional variation of the excess returns. Their approach was criticized by Burnside (2011), who feel that accounting for estimated regressors in the cross-section leads to insignificant premia. Lustig et al. (2011) propose the average currency excess return and the return of the carry trade portfolio, which goes long in a portfolio of currencies with the highest foreign premium and short in a portfolio with the highest foreign discount. The aim of this paper is not to explain excess returns, but to analyze the impact of CCTs on equity returns. For this, we apply a form of the risk factors of Lustig et al. (2011).

Menkhoff et al. (2012) derive a factor inspired by Ang et al.'s (2006) work on equities to proxy for unexpected movements in the volatility of global FX markets. Their model prices more than 90% of the cross-sectional variation of excess returns across five CCT portfolios. Ahmed and Valente (2015) built upon this work and divide the global FX volatility in short- and long-run components. Another explanation for excess returns of CCTs my be investor overconfidence. Burnside et al. (2011b) point out that investors overreact to their information about future inflation, as they are too confident about their own market assessment.

Other studies link the existence of excess returns to peso problems or disaster risk. Delays in monetary decisions, a crisis on global financial markets or the occurrence of rare currency shifts can eliminate the excess returns of CCTs in between such events. Brunnermeier et al. (2008) highlight the role of investors in currency crashes. They argue that the limited speculative capital in a crash scenario with dried up liquidity forces highly-levered traders to unwind CCTs, thus leading to a depreciation of high-interest-rate currencies. Burnside et al. (2011a) use at-themoney currency options to hedge a CCT, which eliminates extreme losses. Based on this, Jurek (2014) employs both unhedged and hedged CCTs and divides the total risk premium of CCTs into separate premia for currency crashes and diffusive shock premium. As the hedged CCT eliminates crash risk, the diffusive shock premium accounts for 5% of the total risk premium.

#### 3 Implicit Currency Carry Trades

Let us assume that a US company produces and distributes goods from the US to other countries. Hence, the costs mainly occur in US dollar (short position) and the revenues in a foreign currency (long position). The equivalent value of the latter is then transferred back to the US. This transaction between a US company and a foreign market can be seen as an iCCT. If such an US exporter does not hedge, the company can profit from iCCTs, but it is also exposed to a potential downside. This operates the other way around for a US importer. Overall, if there are excess returns of CCTs, we should be able to find a risk premium iCCTs in stock returns. Even if we do not know the exact volume, time frame or interest until the realized revenues are transferred back, we should be able to find changes in the stock price of a company for varying iCCT returns. As operational and financial hedging lower the potential impact of iCCTs, we should only find such an influence if the respective company is not completely hedged. Furthermore, larger multinational companies might not only engage solely in exporting or importing activities. The more complex the international involvement of a company – for example if it has production sites and sales markets in multiple countries interacting with each other – the harder it gets to anticipate the directional effect of iCCTs, as this depends on the company being a (net) exporter or importer and on its interaction with high- or low-interest-rate countries relative to the US.

We also take into account domestic companies that sell all or most of their products within the US. Aggarwal and Harper (2010) show that the market values of domestic companies are equally exposed to currency changes in financial and product markets, which effect interest rates, competitors, suppliers, inputs, and international customers that are in turn confronted with exchange rate changes. Despite the fact that we ex-ante do not know if there is a risk premium from iCCTs for domestic companies, we do not remove these companies from our sample to avoid a potential selection bias in the subsequent analysis of iCCT sensitivities.<sup>1</sup>

#### 4 Data and Company Selection

We retrieve monthly stock returns and corporate data for those public non-financial US corporations listed between 1997 and 2016 that are available in Datastream. Financial companies are subject to a separate line of study as those firms have different business objectives towards

<sup>&</sup>lt;sup>1</sup>We also exclude the domestic companies and estimate the risk premia on the reduced sample. The risk premia are almost unchanged, with slightly reduced level of significance for some portfolios due to the reduction of the sample size.

financial risk taking. We exclude companies that have zero returns for more than then percent of their stock return data (see Khoo, 1994). The dataset is survivorship bias-free. This leaves us with 2,113 companies in our considered time frame. For these companies we retrieved monthly stock returns from Datastream. The risk-free rate is the one-month Treasury Bill rate.

We obtained monthly spot exchange rates and one-month forward exchange rates from Datastream. The sample contains 35 currencies that are included in the broad trade-weighted exchange rate of the FED, namly those of Argentina, Australia, Brazil, Canada, Chile, China, Colombia, the Euro area, Hong Kong, India, Indonesia, Israel, Japan, Malaysia, Mexico, the Philippines, Russia, Saudi Arabia, Singapore, South Korea, Sweden, Switzerland, Taiwan, Thailand, and the United Kingdom; The currencies of Austria, Belgium, Finland, France, Germany, Ireland, Italy, the Netherlands, Portugal and Spain were replaced by the euro from January 1999 onwards. Venezuela is excluded due to missing data. For most of the currencies the sample covers the years 1997 (February) until 2016. If forward exchange rates are not available starting from February 1997 onwards, the currency is entered beginning when available.<sup>2</sup> All exchange rates are quoted in units of foreign currency per US dollar.

We use trade weights developed by the US Federal Reserve for every country mentioned above to construct iCCT indices that capture the relative importance of the main currencies that are relevant for an average US company. We use yearly changing weights, because – corresponding to the corporate strategic decisions – the structure of iCCTs are more long-term oriented and unlikely to change on a monthly basis. We discuss this in Section 5.2 in more detail.

<sup>&</sup>lt;sup>2</sup>Argentina (April 2004), Brazil (August 2000), China(March 2003), Chile (April 2004), Colombia (April 2004), Russia (April 2004), India (November 1997), Israel (April 2004) and South Korea (September 1999).

#### 5 UIP, Currency Portfolios and Estimation Model

#### 5.1 Failure of the UIP

As a first step we test if the UIP is violated for the currencies and time frame in our sample, to ensure there is indeed a forward premium puzzle for an analysis of companies' iCCTs. As mentioned, the UIP states that there is no arbitrage between the interest differentials of countries, since exchange rate movements offset the interest rate differential. This would mean that riskneutral investors see no profit difference between investing in currency at the domestic interest rate (as opposed to the foreign rate), exchanging it for foreign currency and transferring it back at the end of the investment. For indirectly quoted exchange rates, so that an increase in the exchange rate indicates an appreciation of the US dollar, the UIP is given by:

$$(1+i_t^k)\frac{s_t}{E(s_{t+1})} = 1+i_t.$$
(1)

Here,  $i_t$  and  $i_t^k$  are the nominal interest rates at the end of period t in the US and foreign country k, respectively. The variables  $s_t$  and  $s_{t+1}$  represent the spot exchange rates for period t and t+1 in units of foreign currency k per US dollar and E(.) is the expectations operator. We leave out the subscript k for the exchange rate expressions.

For the covered interest parity (CIP), investing locally or abroad is secured in t using the forward exchange rate  $f_t$  instead of  $s_{t+1}$ . If both the UIP and the CIP are valid, then  $f_t = E(s_{t+1})$ , i.e.  $f_t$  is an unbiased forecast of the future spot rate. The CIP is usually found to hold with daily and monthly data (e.g. Akram et al., 2008). But empirical evidence generally disagrees with the validity of the UIP. We employ the Fama (1984) test of the forward premium puzzle. For comparability in this study, we examine the violation of the UIP using the discrete formulation of the forward-spot returns to explain the spot return in the regression:

$$\frac{s_{t+1} - s_t}{s_t} = \alpha + \beta \frac{f_t - s_t}{s_t} + \eta_{t+1}.$$
 (2)

For  $\alpha = 0$  and  $\beta = 1$ , Equation (2) implies  $E(s_{t+1}) = f_t$ . Consistent with the literature, we test the failure of the UIP from the US point of view and thus that the  $\beta$  coefficients are different from 1. Fama (1984) showed that the forward exchange rates deviate from the future spot rates. Since then many other studies reported  $\beta$  coefficients below one and negative estimates (e.g. Froot and Thaler, 1990). More recently Burnside et al. (2006) find negative estimates of  $\beta$  for major currencies from 1976 to 2005. Like Fama (1984), we perform Zellner's (1962) seemingly unrelated regression (SUR) as we expect a high contemporaneous correlation across currencies. Table 1 reports the results. Note that the individual significance levels refer to  $\alpha = 0$  and  $\beta = 1$ , respectively.

#### [Table 1 about here.]

We can confirm the failure of the UIP for the currencies in the time frame of 1997 to 2016. Nearly all  $\beta$  coefficients of the forward-spot rate are negative and significantly different from one. Notable exceptions are the Australian and Canadian dollars. For the currencies in the time frame from 2004 to 2016, the number of  $\beta$  coefficients different from one decrease – also partly due to the fewer number of observations. The joint F-test rejects the notion that all  $\beta$ coefficients are equal to one or zero and the constants are not distinguishable from zero. We can therefore conclude, that for most of the currencies in our sample the UIP does not hold true. As discussed by Burnside et al. (2011b), a negative  $\beta$  corresponds to the "forward premium puzzle". We will show this in the next section with the iCCT portfolios.

#### 5.2 Excess Returns and Currency Portfolios

Following Lustig and Verdelhan (2007) and Lustig et al. (2011), we sort all currencies according to their forward premium  $(f_t - s_t)/s_t$  or, in other words, according to their interest rate differential against the US interest rate. Currencies are ranked from a low to a high forward premium. Each currency is then allocated to one of three portfolios according to their forward premium. One third of the currencies with the lowest forward premium (or foreign discount) enter the "low" portfolio, the second third of the currencies with a higher forward premium enter the "middle" portfolio and the third of the currencies with the highest forward premium enter the "high" portfolio. If the number of currencies to the high and low portfolio and insert the remaining currencies in the middle portfolio. We resort the portfolios every year.

In the next step, we form discrete excess returns  $rx_{t+1}^k$  of each currency k for each month t relative to the US dollar that represent the return from the respective interest differentials:<sup>3</sup>

$$rx_{t+1}^{k} = i_{t}^{k} - i_{t} - \Delta s_{t+1} \approx \frac{f_{t} - s_{t+1}}{s_{t}}.$$
(3)

The monthly excess return of each of the three portfolios is then given by the sum of the monthly excess returns of each currency of Equation (3) in the respective portfolio multiplied by yearly adjusted US trade weights. The sum of the trade weights in each portfolio equals one. As we want to analyze the iCCTs of companies, we do not take the viewpoint of an investor that is able to trade all currencies equally to perform CCTs. The trade weights are thus applied to account for the relative importance of the main currencies that are applicable for an average US company.

 $<sup>^{3}</sup>$ In contrast to the yearly adjusted portfolios and trade weights – as we assume that the selection of the currency exposure of the companies does not change more frequently – it is however plausible that companies do transfer back or receive remunerations on the earnings from abroad on a monthly basis.

The difference in returns between the high portfolio minus those in the low portfolio  $(HML_{FX})$ represents investors borrowing low-interest-rate currencies (low portfolio) and investing (lending) in high-interest-rate currencies (high portfolio). Corresponding to Lustig et al. (2011) we also calculate the average of the high, middle and low portfolios (AVG). This portfolio represents the average return on a trade-weighted investment at the main exchange rates of the US, financed by the US dollar. In the robustness checks we also show the results for different portfolio specifications based on Menkhoff et al. (2012) with, for example, five instead of three portfolios.

#### 5.3 Descriptive Statistics

Table 2 reports the descriptive statistics for the high, middle, low, AVG and  $HML_{FX}$  portfolios. We also show the results for the trade-weighted exchange rate of the Federal Reserve and the total US market capitalization from Datastream as a market factor that represents the development of the US stock market. We report the annualized monthly returns for the mean, median, standard deviation and the Sharpe ratio. For the first order autocorrelation coefficients we use monthly returns.

#### [Table 2 about here.]

The annualized average returns and the median increase from portfolio low to portfolio high and the  $HML_{FX}$  portfolio from negative to positive values. The same applies for the Sharpe ratio. The high portfolio shows a positive annualized return of 2.37%, which corresponds to the negative  $\beta$  in Section 5.1. The low portfolio's return is negative with -3.37%. There are currencies in the low portfolio from countries lower interest rates than the US. The annualized average return of the AVG portfolio and the middle portfolio are close to zero. The annualized average return of the carry trade portfolio is close to 6%, delivering a Sharpe ratio of 0.62. The annualized average market return is 7.48% and the return of the trade-weighted exchange rate index is 1.45%. The standard deviations are in line with Lustig et al. (2011). The skewness decreases from the low to the high portfolio, and the kurtosis stays just below three. Furthermore, we find that the first order autocorrelation coefficient is only significant at the one percent level for the  $HML_{FX}$  portfolio.

The correlations of the portfolios low, middle and high range between 34% and 63%. As expected, the AVG portfolio shows high correlations with the three portfolios. The correlation of the  $HML_{FX}$  portfolio is per construction positive with the high and negative with the low portfolio. Whereas the correlations of the trade-weighted exchange rate index and the low, middle and high portfolios range from 39% to 52%, the correlations with the  $HML_{FX}$  portfolio that represents iCCTs is close to zero. We interpret the low correlations of the market factor with the portfolio as an indication that CCTs are not primarily driven by macroeconomic conditions in the US.

#### [Figure 1 about here.]

Figure 1 displays the cumulative discrete returns of the  $HML_{FX}$  portfolio, the market return and the trade-weighted exchange rate index. We marked months with a recession in the US according to NBER in gray. Carry trades were especially profitable until the financial crisis in 2008 decreased potential returns. From the financial crisis onwards we see more spikes roughly at the same level until now. The first recession in 2001 goes along with an increase in the  $HML_{FX}$  portfolio and an opposite market reaction. Only during the financial crisis we do see a synchronous movement of the two curves. After that the market returns steadily increased until 2016, in contrast to the  $HML_{FX}$  portfolio. The FX index does not show such major movements. There is only a smaller peak after 2009 and a slow but steady increase in recent years.

#### 5.4 Pricing of iCCT of Companies

In the next step we want to determine whether iCCTs are priced in the stock market. For this we apply a version of the Fama and MacBeth (1973) approach to see if we find risk premia of iCCTs in the stock returns of companies. Following Chen et al. (1986), we first estimate the exposure of companies' stock returns as in Equation (4). For this time series regression per company we use 60 monthly preceding observations to measure  $\beta$  factors:

$$R_{i,t} = \alpha_i + \beta_{i_1} F_{1,t} + \dots + \beta_{i,j} F_{j,t} + \varepsilon_{i,t}.$$
(4)

 $R_{i,t}$  is the total excess stock return of company *i* over period *t*.  $\alpha_i$  is the company-specific constant. For *F* we enter the excess returns  $rx_{j,t}$  of the three portfolios *j* (high, middle and low) at time *t* together and the  $HML_{FX}$ , AVG portfolio and the FX index separately to find if the variations in the stock returns can be attributed to iCCTs. We do not include the AVGportfolio in the estimation of the low, middle and high portfolios, due to multicollinearity. As already stated, the AVG is the average of the three portfolios, which results in a correlation close to 90%. For the same reason we estimate the  $HML_{FX}$  portfolio separately. The FX Index is used to determine if the results from the portfolio can be attributed to a mere currency index, which is typically used in the exchange rate exposure literature. We report the result of the FX index to provide evidence that this influence is not the reasons for the pricing of the  $HML_{FX}$ portfolio.

The resulting  $\beta$  factors are the corresponding sensitivities of the portfolios.  $\varepsilon_{i,t}$  is the idiosyncratic error term. We apply a standard OLS estimator with a correction of the standard errors according to Newey and West (1987) with at least 40 of the 60 observations to produce adequate econometric variance. The standard errors are corrected according to the level of autocorrelation and the presence of heteroscedasticity in the data.

Bessler and Opfer (2003) point out that most of the empirical studies that cover factor models assume that the model coefficients are constant over time. As Fama and French (1988) and Ferson and Harvey (1991) allude to the existence of risk premia varying over time, they use monthly overlapping subsamples to account for the time variability of the  $\beta$  estimation. We also apply this approach and roll over the monthly observations (t = 1 to t = n) to calculate the model's coefficient for t = n + 1 (i.e. for the second coefficient we use t = 2 to 61 and so on).<sup>4</sup>

The resulting  $\beta$  are then used to estimate the risk premia  $\lambda$  in the cross-sections for each month:

$$R_i = \lambda_0 + \beta_{i,1}\lambda_1 + \dots + \beta_{i,j}\lambda_j + \varepsilon_{i,t}.$$
(5)

The risk premia  $\lambda$  are obtained using the Newey and West (1987) correction with a lag selection according to the number of the observations. Next to the overall time period of the  $\beta$ calculation from 2002 until 2016, we also report the results for three five-year subsamples. The time-series means of the risk premia  $\lambda$  are then tested by a t-test for significant differences from zero.

#### 5.5 Analysis of iCCT Exposures of Companies

Next, we seek to analyze which company-specific determinants drive the relevance of iCCTs, i.e. which companies stock returns are more prone to react to iCCTs. For this, we first measure the sensitivities of companies' stock return to the  $HML_{FX}$  and AVG portfolio separately. We select the  $HML_{FX}$  portfolio and expect a positive impact for companies with costs in a low-interest

<sup>&</sup>lt;sup>4</sup>Note that we also perform the  $\beta$  estimation as in Fama and MacBeth (1973) and Chen et al. (1986) with yearly rolling observations. Like Fama and MacBeth (1973); Chen et al. (1986) we then use the resulting  $\beta$  as the independent variable in the next twelve cross-sections for each month, with the stock return still being the dependent variable. The results correspond to our chosen estimation technique with monthly rolling observations and are displayed in the robustness checks.

country and earnings in a high-interest country. Keep in mind that the US dollar would be in the low portfolio, thus we expect a positive  $HML_{FX}$  sensitivity for a US exporter and a negative one for a US importer. We analyze the AVG portfolio to test the impact on a company with an average exposure to the main US foreign currencies. Again, we expect a positive AVG for exporters and a negative one for importers.

The estimation technique applied is derived from the literature on foreign exchange rate exposure. To estimate exposures to iCCTs, we focus on the linear one-factor model of Adler and Dumas (1984). As the market value of a company is represented by the present value of its future cash flows, the sensitivity of stock returns to variations in exchange rate returns can be considered as the exchange rate exposure.

The model was later amended by Jorion (1991) with a market factor, which lowered the residuals variance. Liu et al. (2015), criticizing this common practice, state that this amendment leaves only a residual exposure to be captured by the coefficient of the exchange rate exposure. As we are interested in the overall impact of interest differentials between countries, we refrain from including a market factor that could proxy the currency effect we are looking for.<sup>5</sup>

In the literature on exchange rate exposure, yearly moving window are often used if the analysis is based on monthly data. For example Chang et al. (2013) use three years (t+1, t, t-1) of monthly data to calculate the exposures of year t with yearly moving windows. Allayannis and Ofek (2001) use both a three-year (1992-1994) and a five-year sample (1991-1995) to estimate each firm's exposure in 1993. Bodnar and Wong (2003) use five-year subsamples of their time frame and the five-year means of the corporate data to explain their exposures. We thus apply a model that is similar to the one stated in Equation (4), with the difference that for t we use

 $<sup>^{5}</sup>$ Note that due to the low correlation of the portfolios and the market factor compared to the FX index and the market factor, we expect the proxying effect to not be very large. To further elicit this potential impact, we include a market factor as well as the Fama and French (1993) factors in the robustness checks.

a five-year interval and yearly roll the yearly observations to calculate the  $\beta$  factors:

$$R_{i,t} = \alpha_i + \beta_i F_t + \varepsilon_{i,t}.$$
(6)

In contrast to the exchange rate exposure literature we replace the typically used FX index returns with returns from the  $HML_{FX}$  and AVG portfolio, respectively, to measure each of their specific currency effect. We thus insert for F the  $HML_{FX}$  and AVG portfolio separately and interpret the resulting coefficients of the  $HML_{FX}$  and AVG portfolio to the stock returns as the exposure to  $HML_{FX}$  and AVG.

In a next step we explain the estimated sensitivities by different company characteristics. The company characteristics are the means of the respective five-year horizon (t - 2 to t + 2). The estimation has the following form:

$$\begin{aligned} |\hat{\beta}_{i,t-2,t+2}| &= \omega_i + \phi_1 \; Size_{i,t-2,t+2} + \phi_2 \; For. \; Assets_{i,t-2,t+2} + \phi_3 \; For. \; Sales_{i,t-2,t+2} \\ &+ \phi_4 \; Intern. \; Inc_{\cdot i,t-2,t+2} + \phi_5 \; Lev_{\cdot i,t-2,t+2} + \phi_6 \; Quick_{i,t-2,t+2} \\ &+ \phi_7 \; Div. \; p. \; E_{\cdot i,t-2,t+2} + \phi_8 \; R\&D_{i,t-2,t+2} + \phi_9 \; M./B_{\cdot i,t-2,t+2} \\ &+ \eta_{i,t-2,t+2}. \end{aligned}$$
(7)

 $|\hat{\beta}_{i,t-2,t+2}|$  is the absolute value of the  $\beta$  coefficient of the  $HML_{FX}$  or AVG portfolio for company i and the five-year window from year t-2 to year t+2. We use absolute values and therefore positive and negative  $\hat{\beta}_{i,t-2,t+2}$  deviations from zero to analyze all companies at once. We also show the results for positive and negative  $\hat{\beta}_{i,t-2,t+2}$  separately.  $\omega_i$  are the company-specific time-invariant intercepts.

Keep in mind that for positive  $HML_{FX}$  or AVG sensitivities, being less exposed corresponds to decreased sensitivities (e.g. because the company in question hedges more). However, for negative  $HML_{FX}$  or AVG sensitivities, being less exposed corresponds to increased negative sensitivities (decreased in absolute terms). Thus for the unidirectional effects of company-specific characteristics on all  $|\hat{\beta}_{i,t-2,t+2}|$ , we will see the opposite direction of effects for positive and negative sensitivities separately. And if a company-specific characteristic shows the same direction of effect on both positive and negative sensitivities separately, the effect on all  $|\hat{\beta}_{i,t-2,t+2}|$  is not likely to be significant.

To explain the exposure of companies to iCCTs  $(HML_{FX} \text{ sensitivities})$  and to AVG exposure, we estimate Equation (7) and first use a fixed-effects panel regression with robust and clustered standard errors on the company level. Secondly, we estimate a feasible generalized least square (FGLS) regression to correct for autocorrelation across periods and heteroscedasticity between the companies' residuals to better account for the time varying estimation windows and the overlapping averages of the company characteristics. Also, recall from Table 2 that we found a significant first autocorrelation coefficient for the  $HML_{FX}$  portfolio. As the FGLS estimation specification does not change our results, we place the respective table in Appendix A.

We consider firm size (SIZE) as the log of total assets. Most studies in the literature on foreign exchange rate exposure report a negative influence of this variable, e.g. because larger companies are able to reduce hedging costs or use operation hedging more often, a consideration that would also reduce the exposure to iCCTs or AVG in this study (e.g. Nance et al., 1993). Companies with a higher ratio of foreign assets to total assets (F.ASS.), a foreign to total sales ratio (F.SAL.) or an international to total operating income ratio (INT. INC.) are directly subject to iCCTs if they engage with high-interest-rate countries. If a company's foreign sales increase, but the company does not hedge equivalently, we would expect a positive impact on its iCCT sensitivities. The reaction therefore largely depends on the company's hedging activities. How companies react to this potential exposure of  $HML_{FX}$  or AVG has yet to be established (see El-Masry et al., 2007).

We also enter the leverage ratio (LEV.), which represents reactions to higher expected distress costs and define it as total debt to common equity (Muller and Verschoor, 2006). Keep in mind that a reaction to LEV. could also be caused by the fact that higher leveraged companies have riskier equity. The quick ratio (QUICK) and dividend per earnings ratio (DIV.P.E.) both serve as a proxy for a higher short-term liquidity cushion against adverse currency movements. Thus, a company has less need to hedge reactions to interest differentials (He and Ng, 1998). The ratio of research and development expenditures to total sales (R&D) and the market to book ratio (M./B.) of the equity represent companies' growth opportunities. We have yet to analyze whether, for example, research-intensive companies hedge more in order to lower the cost of external financing caused by a higher cash-flow volatility (see Froot et al., 1993) or if such companies are in general younger and trade less with high-interest-rate countries, therefore lowering their exposure to iCCTs. Also we should consider that companies could use R&D to insulate themselves both from domestic and foreign competition.

Table 3 reports summary statistics of the variables that we use to explain the sensitivities of the AVG and  $HML_{FX}$  portfolios. We can see that the average foreign assets ratio (8%) is below the international income ratio (11%) and the average foreign sales ratio (21%). The three variables do have a correlation of 51% to 58%, but with different standard deviations and distributions. While there is some correlation between the foreign assets, international income and foreign sales ratio, we conclude that these three different variables do not necessarily go hand in hand with each other. For example, there are certainly companies that provide lots of goods or services to other countries and thus have high foreign sales, but do not produce abroad and thus have low foreign assets (see Section 4) – or conversely, importers that exhibit no foreign sales but do have foreign assets. Furthermore, some companies report substantial values for the leverage, R&D, and market to book ratio. Turning to the rest of the pairwise correlations, we find low values for almost all variables. With the exception of the foreign assets, sales and international income ratio, we find larger companies to be more likely to exhibit higher foreign assets, sales and dividends per earnings with correlations from 26% to 37% respectively. Also, higher leveraged companies do have a higher market to book ratio.

#### [Table 3 about here.]

#### 6 Empirical Results

This section first presents the results of the asset pricing test in Section 6.1 and then analyzes of what factors drive the iCCT exposure of companies in Section 6.2.

#### 6.1 Asset Pricing Test

Table 4 reports the estimated beta coefficients, the top panel covering the time frame 2002 to 2016 using five years of preceding data, and the lower panel with the two time frames of 2002 to 2008 and 2009 to 2016. The average sensitivities for the whole time frame show a clear picture of negative coefficients for the low portfolio (-0.337), coefficients close to zero for the middle portfolio (0.051) and positive coefficients for the high portfolio (0.567). Thus, there are companies that react positively, e.g. to the high portfolio, which suggests that there is a considerable number of US export-oriented companies in our sample. The amount of the significant portfolio return coefficients (at the 10% level) ranges between 13 to 21%, while the three portfolios explain 7.2% of the variation in stock returns.

The average sensitivities of the AVG and  $HML_{FX}$  portfolio are both positive and about the same size (0.403 and 0.411). Twenty percent of the AVG and 24% of the  $HML_{FX}$  coefficients

have a significant influence on the 10% level and the two portfolios explain around 3% of the stock returns' variations individually. The results of the FX index differ considerably from the portfolios with an average coefficient of 1.869 and 40% of the significant  $\beta$ -factors on the 10% level.

For the two subsamples we do find some considerable variation. In the subsample for 2002 to 2008, the coefficients of the low and middle portfolio increase in size compared to the overall time frame with the coefficients of the low portfolio still being negative. Consequently, the coefficient of the  $HML_{FX}$  portfolio becomes smaller along with the high portfolio and is about half the size compared to the whole time frame. In the subsample for 2009 to 2016, the low, middle and high portfolio again show increasing average coefficients from low to high. Here the middle portfolio is slightly negative.

The FX index shows much higher coefficients for the whole time frame as well as for the sub-periods. The amount of the significant portfolio return coefficients at the 10% level also increases to around 40% for the whole time frame and to 18% in the first sub-period.

#### [Table 4 about here.]

Table 5 shows the cross-sectional pricing results of the Fama and MacBeth (1973) model in percent. We first focus on Panel A, which considers the whole time frame from February 1997 to December 2016 and reports risk premia for the years 2002 to 2016. All risk premia  $\lambda$  of the portfolios are significant except the low portfolio and the FX index. We see an increasing premium from the low to the high portfolio from 0.044 % to 0.220%. The AVG portfolios' premium is 0.140%, while the  $HML_{FX}$  portfolio's premium is slightly higher with 0.185%. The joint F-tests reject the notion that the portfolios'  $\lambda$  are all zero for the whole time frame.

In contrast to the risk premium for the AVG and  $HML_{FX}$  portfolio, we do not find a significant risk premium for the FX index in the stock returns for the whole time frame and all

subsamples. Even if the FX index does not measure the same currency risk, this still underlines our findings of iCCTs in equity returns.

We now turn to the subsamples in Panel B. For the portfolio estimates of the years 2002 to 2008, we now find a significant risk premium only for the middle portfolio and again a significant AVG portfolio. The  $HML_{FX}$  portfolio shows a risk premium close to zero. For the sub-period of 2009 to 2016 we again find increasing risk premia from the low to the high portfolio and increased significant risk premia for the middle and high portfolios as well as for the AVG and the  $HML_{FX}$  portfolio.

#### [Table 5 about here.]

#### 6.2 Analysis of iCCT Exposure

Table 6 reports the exposures of the  $HML_{FX}$  and AVG portfolio for the five-year intervals from 1997 to 2016. The number of the observations increases during our time period as more companies enter the sample. For the  $HML_{FX}$  portfolio we find an average exposure to iCCTs of 0.423. The carry trades yield a negative influence on the companies' stock returns for the intervals of 1997 to 2002 and 2010 to 2015. For the rest of the intervals we observe positive sensitivities across the companies with peaks in the years 2004 to 2012. The amount of the significant coefficients at the 10% level for the  $HML_{FX}$  portfolio varies from 6% to 43%, with an average of 16%, which is in line with the exchange rate exposure literature that also focuses on US multinationals (e.g. Bartram and Bodnar, 2007).

For the AVG portfolio, the sensitivities are mostly positive with peaks in the three intervals of 2004 to 2010 and an average over all intervals of 0.393. We find negative values for the interval of 1998 to 2002 and the intervals of 2009 to 2015. The amount of the significant coefficients at the 10% level varies from 5% to 30%, with an average of 14% across all intervals, which is slightly lower compared to the  $HML_{FX}$  portfolio. The  $R^2$  for both portfolios are at about the same level with an average of roughly 3%.<sup>6</sup>

#### [Table 6 about here.]

Figure 2 displays the cross-sectional distribution of the  $HML_{FX}$  and AVG portfolio exposures. For the  $HML_{FX}$  sensitivities we see a distinct time variation with positive values in all quantiles for the intervals of 2003 to 2008 until the interval of 2007 to 2012. Here the quantiles follow the mean and median closely for most of the time frame. This is not the case for the AVG sensitivities with a much broader distribution that moderately narrows down over the time frame. For both exposures we see negative impact for the intervals of 2009 to 2014 and onwards.

#### [Figure 2 about here.]

To further analyze the industry-specific determinants of iCCTs, we use the SIC codes of each company and take the first two digits to sort them into 17 industry sectors as suggested by the OECD. Table 7 reports this industry classification. We can see that the number of companies as well as the estimated coefficients varies between the chosen sectors. We find positive sensitivities for nearly all industries. The average  $HML_{FX}$  sensitivity varies between 0.200 for food products, beverages and tobacco (FBT) to 0.677 for mining and quarrying. The only industry sector with a negative average  $HML_{FX}$  sensitivity is agriculture, hunting, forestry and fishing (AGR). With only four companies and 54 estimated coefficients this sector is underrepresented in our sample. For the AVG we only find a negative average sensitivities for the construction (CON) industry.

[Table 7 about here.]

<sup>&</sup>lt;sup>6</sup>Note that we estimate the exposure model of Adler and Dumas (1984) and do not include a market factor to retrieve the total exposure and not a residual one. Therefore, the explained variation of our model decreases.

In the next step we use a fixed-effects regression with, respectively, the  $HML_{FX}$  and AVG exposures as the dependent variable, to assign the influence of the above-mentioned explanatory corporate data variables. Table 8 reports their influence for absolute as well as positive and negative sensitivities. As we can see, there are more company-years with a positive exposure to the  $HML_{FX}$  factors. The share of positive exposures is even larger for the AVG portfolio.

We find a negative significant absolute effect for the size variable on  $HML_{FX}$ . Larger companies hedge more thus lowering their potential exposure to iCCTs. This also applies for negative sensitivities, as the size variable increases the negative exposures, thus reducing the exposure to iCCTs. We confirm the same effect for companies with higher dividends per earnings ratio. A higher short-term liquidity cushion, working as a substitute for hedging activities, reduces the exposure to iCCTs. For the AVG sensitivities we document the same effects of the size and dividends per earnings ratio, which are larger in absolute terms.

We now turn to companies' foreign engagement. Those with a higher foreign assets ratio show a positive reaction to iCCTs for the absolute sensitivities. This positive effect is only significant for positive exposures. Foreign sales are not significant for  $HML_{FX}$ , but shows a significant positive effect of 0.901 for negative AVG sensitivities. If a potential (net) US importing company increases its foreign sales, so do its AVG sensitivities. The reduced negative sensitivities are associated with a reduced risk premium for iCCTs. The impact of international income is always positive but only significant for absolute and positive  $HML_{FX}$  sensitivities.

If we estimate Equation (7) with a FGLS regression to account for the time varying estimation windows and the overlapping averages of the company characteristics, we get similar results. Only for the foreign engagement variables do we now see a significant absolute positive effect of the foreign sales ratio and an absolute negative effect for the international income ratio. The foreign asset ratio has now a significant positive effect for  $HML_{FX}$  exposures below zero. The results are displayed in Table A.1 in the Appendix A. Furthermore, note that by using only the  $HML_{FX}$  absolute sensitivities significant at the 10% level, neither the effects nor the significance of the variables changes for either estimation technique.

#### [Table 8 about here.]

In Table 9 we report the industry-specific effect of the company characteristic variables. In the upper Panel A, we see their effect for the  $HML_{FX}$  sensitivities and in the lower Panel B that for the AVG sensitivities. We do not include agriculture, hunting, forestry and fishing due to too few observations for this sector. For presentation purposes we further exclude sectors with a low number of observations and low average  $HML_{FX}$  sensitivities. The whole table can be found in Appendix B. In the first row we added the estimation of Equation (7) with the whole sample displayed in Table 8.

We again find a highly significant effect of size and the dividends per earnings. These results do not seem to be driven by differences in industries. For the rest of the results we see differing directions of effect and levels of significance.

#### [Table 9 about here.]

#### 7 Robustness Checks

In this section we perform additional robustness checks. We show the results from rolling over yearly instead of monthly observations as in Fama and MacBeth (1973), the pricing and explanation of five instead of three portfolios and differences in the explanation of iCCTs that occur if we include a market factor in our exposure model as in Jorion (1991) and thus measure the residual exposure after controlling for a market-wide iCCT influence. Stated briefly, all our results are robust to these modifications. Results that do not vary considerably are displayed in Appendix C.

#### 7.1 Pricing of iCCTs of Companies: Yearly Rolling Estimation

As already mentioned in Section 5.4, we aim to substantiate the pricing of iCCTs of companies by also adopting the yearly rolling Fama and MacBeth (1973) regression as in Chen et al. (1986). As before, Equation (4) is estimated with five years of monthly preceding observations, applying a standard OLS estimator with the Newey and West (1987) correction with at least 40 of the 60 observations. The resulting coefficients are then applied to the stock returns of the next twelve cross-sections of the subsequent year for the  $HML_{FX}$  and AVG portfolios and are thus no longer rolled over monthly. The resulting risk premia are again tested using a t-test for a significant difference from zero.

The results in percent of Equation (5) are displayed in Table C.1 in Appendix C for the years 2002 to 2016 and the two subsamples. Overall, the risk premia of the  $HML_{FX}$  and AVG portfolios are slightly smaller than the monthly rolling estimation and show the same significance level for the whole time frame. For the subsample of the years 2009 to 2016 we actually see an even higher level of significance for the  $HML_{FX}$  risk premium. We can therefore conclude that choosing a yearly rolling estimation does not alter our findings.

# 7.2 Pricing iCCTs and Analysis of iCCT Exposure of Companies: Using Five Portfolios

In an additional step we want to check that our choice of portfolio specification does not influence our findings regarding iCCTs. Studies like Menkhoff et al. (2012) or Lustig et al. (2011) sort their chosen currencies into five or six portfolios instead of three, so that the  $HML_{FX}$  factor built from five portfolios that invest in high-interest-rate currencies (Portfolio 5) and borrow in low-interest-rate currencies (Portfolio 1) should clearly depict an increased difference between forward premia and forward discounts and thus higher returns with the CCT strategy.

Table 10 reports the summary statistics of Portfolios 1 to 5, and as before of the AVGand  $HML_{FX}$  portfolios. As expected, we see that the means of the low (Portfolio 1) and high (Portfolio 5) portfolios are now larger in size. Equally, the  $HML_{FX}$  portfolio's average excess return is now 8.95% compared to the 6.04% with only three portfolios. Portfolios 1 and 2 are negative and Portfolios 3 to 5 are positive. Furthermore, the average excess returns of Portfolios 1 to 5 no longer gradually increase, with Portfolio 4 being lower than Portfolio 3. The average excess return of the AVG portfolio is now positive with 0.82%. The standard deviations of all portfolios are higher than in our previous analysis with three portfolios. The same applies for the sharp ratio of the  $HML_{FX}$  portfolio.

The skewness no longer shows a decreasing tendency for the low to high portfolios but is still negative for the Portfolios 4 and 5 that contain the currencies with a higher forward premium. The kurtosis is slightly lower for all portfolios compared to the three-portfolio specification. The first order autocorrelation coefficient is no longer significant for the  $HML_{FX}$  portfolio. We only find a significant first order autocorrelation for Portfolio 3. The correlations of Portfolios 1 to 5 in the lower panel of Table 10 range from 22% to 66%, similar to the three-portfolio specification. As expected, the  $HML_{FX}$  is negatively correlated with Portfolio 1 and positively with Portfolio 5.

#### [Table 10 about here.]

Next, we present the cross-sectional pricing results using the five portfolios specification. As we can see in Table 11, the risk premia of the  $HML_{FX}$  and AVG factors are still significantly priced considering the whole time frame. The premia are only slightly lower than the threeportfolio specification. For the subsamples in the five-portfolio specification, we find a higher significantly priced  $HML_{FX}$  factor for the years 2009 to 2016. The AVG factor is still significant for both subsamples.

#### [Table 11 about here.]

Finally, we analyze the  $HML_{FX}$  factor and present the average dollar risk with the AVG factor for the five-portfolio specification. We again aim to clarify which companies' stock returns are most prone to reacting to iCCTs and what company characteristics drive their exposure to iCCTs. In Table D.1 (which can be found in Appendix D) we use the fixed-effects regression with robust and clustered standard errors; we find only slight deviations from the results with the three-portfolio specification. We do not report the FGLS regression as the results are almost identical.

For the  $HML_{FX}$  sensitivities, estimated with Equation (6), we find an equal effect with regard to significant size, international income ratio and the dividends per earnings ratio variable compared to Table 8. We no longer find that the foreign assets ratio significantly influences positive coefficients. The leverage ratio is now significant for positive and not for negative  $HML_{FX}$  sensitivities. Furthermore, the overall  $R^2$  is slightly increased and we find more positive sensitivities for the  $HML_{FX}$  portfolio than before.

For the AVG exposures we find equal effects for the significant size, foreign sales ratio and dividends per earnings ratio. The foreign assets ratio is now only significant for absolute exposures and the international income ratio is now significant for negative coefficients. All in all, using five instead of three portfolios produces higher average excess returns for the  $HML_{FX}$ portfolio. Neither the pricing of iCCTs, nor the analysis of iCCT exposures of companies changes considerably due to the altered specification.

#### 7.3 Pricing and Analysis of iCCTs of Companies: Including a Market Factor

In a last step we include a market factor in both Equations (4) and (5) to analyze the pricing of companies' iCCT, as well as in Equation (6) to analyze the iCCT exposure of companies. With this we control for the market-wide impact of iCCT and only measure the residual premium and exposure. Table 12 lists the results of the pricing of iCCTs. With an included market factor the  $HML_{FX}$  portfolio is not significant for the time frame as a whole, but does correspond to the results without a market factor for the years 2009 to 2016. The premium for the years 2002 to 2008 is again close to zero. The premium of the AVG portfolio is significant for the whole time frame and the subsample of 2002 to 2008.

#### [Table 12 about here.]

Table 13 displays the exposures of the  $HML_{FX}$  and AVG portfolio for the five-year intervals between 1997 and 2016. In contrast to the model without a market factor, the  $HML_{FX}$  exposures are all positive and are much more stable until the intervals of 2010 to 2014 and onwards. The same applies for the average amount of the significant exposures at the 10% level, which also vary only comparatively slightly and range between 5.3% and 16.8%. The market factor flattens out peaks like the ones in the intervals of 2005 to 2009 and 2006 to 2010. The average  $HML_{FX}$  exposure over all intervals is also lower, with 0.26 compared to the 0.42 without a market factor. Furthermore, and not surprisingly, the average explained variation in the model with an included market factor increases to over 20%.

For the AVG portfolio we also find some deviations. For the intervals from 1997 to 2007 we report almost exclusively low but negative exposures. Corresponding to the  $HML_{FX}$  exposures, we also find low negative exposures for the intervals of 2010 to 2016. The average AVG exposure over all intervals is close to zero and therefore much lower compared to the model without a market factor.

#### [Table 13 about here.]

The results of Equation (7) of the  $HML_{FX}$  and AVG exposures with an included market factor are displayed in Table 14. We do find the same significant effects of the size and the dividends per earnings ratio compared to the model without a market factor. We find a negative exposure for more companies when measuring only the residual exposure after the market-wide impact. Despite the fact that we find the same direction of effect for almost all variables except the international income ratio, the level of significance varies for the foreign engagement variables for the  $HML_{FX}$  and AVG exposures. The foreign asset ratio as well as the international income ratio are less significant and the significance of the foreign sales ratio increases for both the  $HML_{FX}$  and AVG factors. But the overall impact of the company characteristics on the explanation of iCCTs of companies stays unchanged by the inclusion of a market factor.

[Table 14 about here.]

#### 8 Concluding Remarks

This study empirically examines whether returns from a carry trade strategy, i.e. borrowing low-interest-rate currencies that trade at a forward discount and investing in high-interest-rate currencies that trade at a forward premium, implicitly affect stock returns of US companies. This carry trade strategy has been found to yield excess returns, since currencies with a forward premium depreciate less than expected (or appreciate) under the UIP, a phenomenon that became known as the forward premium puzzle. Companies that are based in a low-interest-rate country such as the US, are prone to react to such currency changes and thus iCCTs if they are not fully hedged. Thus, such companies should be exposed to appreciations of high-interest-rate markets in such countries or more indirectly through competition with foreign companies or foreign suppliers.

In this paper, we do not aim to explain excess returns from CCT with, for example, timevarying risk premia. With our focus on the implicit impact of CCT on stock returns we aim to (i) determine whether iCCTs are priced in the stock returns of US companies at all and if so (ii) which companies and industries are more likely to react to iCCTs. To do so, we first point out the failure of the UIP for almost all currencies in our sample and thus the existence of the forward premium puzzle that gives rise to CCTs. We use trade weights and adjust yearly a portfolio that goes long in currencies with the highest forward premium and short in currencies with the highest forward discount, to account for the international ties and adaptations of an average US company. The return of this portfolio represents the return of iCCTs of an average US company. Following Lustig et al. (2011) we also build a portfolio that represents the average return of a trade-weighted investment in the main US trade partner's exchange rates, financed by the US dollar.

We use a version of the Fama and MacBeth (1973) procedure and find significantly priced risk premia for iCCTs and the average portfolio in the stock returns of 2,113 listed US companies for our considered time frame of 1997 to 2016. In doing so, we detect that the level and the significance of the risk premia vary over time. In the next step, we estimate sensitivities of the iCCT returns on the stock returns in five-year intervals. These sensitivities represent each company's exposure to carry trades. Following the literature on exchange rate exposure, we then explain these sensitivities using different company characteristics. Bigger companies, companies with more dividends per earnings and a higher market-to-book ratio exhibit less exposure to iCCTs. Furthermore, we find that a higher international income ratio increases the exposure to iCCTs. On the industry level we find, for example, that an increased foreign sales ratio decreases the exposure to iCCTs of sectors such as the construction, electricity, gas and water supply and mining and quarrying. Our results are not altered if we include a market factor in our analysis, use five instead of three currency portfolio categories or use a FGLS regression to account for the overlapping interval estimation.

Further research should answer the question of what factors drive the time variation of iCCTs of companies. As this was not the focus of this study, we did not identify reasons for potentially changing hedging behavior of companies or other factors that lower the impact of CCTs in general as the driving force of insignificant risk premia in certain sub-periods. Furthermore, more detailed data about the foreign involvement of each individual company, e.g. the location of each companies' subsidiaries, production, sales and input market, would enable further studies to identify the iCCTs of companies individually and thus more specifically their exposures to certain currencies.

### Appendix A Feasible generalized least squares regression

[Table A.1 about here.]

### Appendix B Industry breakdown including all sectors

[Table B.1 about here.]

[Table B.2 about here.]

### Appendix C Pricing of iCCTs of companies: using yearly rolling

### observations

[Table C.1 about here.]

# Appendix D Analysis of iCCT exposure of companies: using

### five portfolios

[Table D.1 about here.]

#### References

- Adler, M., Dumas, B., 1984. Exposure to currency risk: Definition and measurement. Financial Management 13 (2), 41–50.
- Aggarwal, R., Harper, J. T., 2010. Foreign exchange exposure of "domestic" corporations. Journal of International Money and Finance 29, 1619–1636.
- Ahmed, S., Valente, G., 2015. Understanding the price of volatility risk in carry trades. Journal of Banking & Finance 57, 118–129.
- Akram, Q. F., Rime, D., Sarno, L., 2008. Arbitrage in the foreign exchange market: Turning on the microscope. Journal of International Economics 76 (2), 237–253.
- Allayannis, G., Ofek, E., 2001. Exchange rate exposure, hedging, and the use of foreign currency derivatives. Journal of International Money and Finance 20 (2), 273–296.
- Ang, A., Hodrick, R. J., Xing, Y., Zhang, X., 2006. The cross-section of volatility and expected returns. The Journal of Finance 61 (1), 259–299.
- Bartram, S. M., Bodnar, G. M., 2007. The exchange rate exposure puzzle. Managerial Finance 33 (9), 642–666.
- Bessler, W., Opfer, H., 2003. Empirische Untersuchung zur Bedeutung makroökonomischer Faktoren für Aktienrenditen am deutschen Kapitalmarkt. Financial Markets and Portfolio Management 17 (4), 412–436.
- Bodnar, G. M., Hayt, G. S., Marston, R. C., 1998. Wharton survey of financial risk management by US non-financial firms. Financial Management 27, 70–91.
- Bodnar, G. M., Wong, M. H. F., 2003. Estimating exchange rate exposures: Issues in model structure. Financial Management 32 (1), 35–67.
- Brunnermeier, M. K., Nagel, S., Pedersen, L. H., 2008. Carry trades and currency crashes. Nber Macroeconomics Annual 23, 313–387.
- Burnside, C., 2011. The cross section of foreign currency risk premia and consumption growth risk: Comment. The American Economic Review 101 (7), 3456–3476.
- Burnside, C., Eichenbaum, M., Kleshchelski, I., Rebelo, S., 2011a. Do peso problems explain the returns to the carry trade? The Review of Financial Studies 24 (3), 853–891.
- Burnside, C., Eichenbaum, M. S., Kleshchelski, I., Rebelo, S., 2006. The returns to currency speculation. NBER Working Paper No. 12489.
- Burnside, C., Han, B., Hirshleifer, D., Wang, T. Y., 2011b. Investor overconfidence and the forward premium puzzle. The Review of Economic Studies 78 (2), 523–558.
- Chang, F.-Y., Hsin, C.-W., Shiah-Hou, S.-R., 2013. A re-examination of exposure to exchange rate risk: The impact of earnings management and currency derivative usage. Journal of Banking & Finance 37 (8), 3243–3257.
- Chen, N.-F., Roll, R., Ross, S. A., 1986. Economic forces and the stock market. The Journal of Business 59 (3), 38–403.

- El-Masry, A., Abdel-Salam, O., Alatraby, A., 2007. The exchange rate exposure of UK nonfinancial companies. Managerial Finance 33 (9), 620–641.
- Fama, E. F., 1984. Forward and spot exchange rates. Journal of Monetary Economics 14 (3), 319–338.
- Fama, E. F., French, K. R., 1988. Permanent and temporary components of stock prices. Journal of Political Economy 96, 246–273.
- Fama, E. F., French, K. R., 1993. Common risk factors in the returns on bonds and stocks. Journal of Financial Economics 33 (1), 3–56.
- Fama, E. F., MacBeth, J. D., 1973. Risk, return, and equilibrium: Empirical tests. Journal of Political Economy 81 (3), 607–636.
- Ferson, W. E., Harvey, C. R., 1991. The variation of economic risk premiums. Journal of Political Economy 99, 385–415.
- Froot, K., Scharfstein, D., Stein, J. C., 1993. Risk management: Coordinating corporate investment and financing policies. The Journal of Finance 48, 1629–1658.
- Froot, K., Thaler, R. H., 1990. Anomalies: Foreign exchange. Journal of Economic Perspectives 4 (3), 179–192.
- Glaum, M., 2002. The determinants of selective exchange risk management-evidence from German non-financial corporations. Journal of Applied Corporate Finance 14, 108–121.
- He, J., Ng, L. K., 1998. The foreign exchange exposure of Japanese multinational corporations. The Journal of Finance 53 (2), 733–753.
- Jorion, P., 1991. The pricing of exchange rate risk in the stock market. Journal of Financial and Quantitative Analysis 26 (3), 363–376.
- Jurek, J. W., 2014. Crash-neutral currency carry trades. Journal of Financial Economics 113 (3), 325–347.
- Khoo, A., 1994. Estimation of foreign exchange exposure: An application to mining companies in Australia. Journal of International Money and Finance 13 (3), 342–363.
- Liu, F., Sercu, P., Vandebroek, M., 2015. Orthogonalized regressors and spurious precision, with an application to currency exposures. Journal of International Money and Finance 51, 245–263.
- Lustig, H., Roussanov, N., Verdelhan, A., 2011. Common risk factors in currency markets. Review of Financial Studies 24 (11), 3731–3777.
- Lustig, H., Verdelhan, A., 2007. The cross section of foreign currency risk premia and consumption growth risk. The American Economic Review 97 (1), 89–117.
- Menkhoff, L., Sarno, L., Schmeling, M., Schrimpf, A., 2012. Carry trades and global foreign exchange volatility. The Journal of Finance 67 (2), 681–718.
- Muller, A., Verschoor, W. F. C., 2006. European foreign exchange risk exposure. European Financial Management 12 (2), 195–220.

- Nance, D. R., Smith, C. W., Smithson, C. W., 1993. On the determinants of corporate hedging. The Journal of Finance 48 (1), 267–284.
- Newey, W. K., West, K. D., 1987. Hypothesis testing with efficient method of moments estimation. International Economic Review 28, 777–787.
- Shanken, J., Weinstein, M. I., 2006. Economic forces and the stock market revisited. Journal of empirical finance 13 (2), 129–144.
- Zellner, A., 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American Statistical Association 57 (298), 348–368.

## Tables

|                |                          | 199       | 7-2016         |         |                                   | 20      | 04-2016        |          |
|----------------|--------------------------|-----------|----------------|---------|-----------------------------------|---------|----------------|----------|
| Country        | $\alpha$                 | SE        | β              | SE      | α                                 | SE      | β              | SE       |
| Argentina      | -                        | -         | _              | -       | -0.000                            | (0.003) | 0.600***       | (0.052)  |
| Australia      | 0.000                    | (0.003)   | 0.327          | (0.946) | -0.001                            | (0.004) | 0.996          | (1.209)  |
| Austria        | 0.001                    | (0.002)   | $-0.532^{***}$ | (0.086) | -                                 | -       | -              | -        |
| Belgium        | 0.001                    | (0.002)   | -0.568***      | (0.089) | -                                 | -       | -              | -        |
| Brazil         | -                        | -         | -              | -       | 0.003                             | (0.007) | -0.118         | (0.713)  |
| Canada         | 0.000                    | (0.002)   | 2.050          | (1.424) | 0.000                             | (0.002) | 2.496          | (2.462)  |
| Chile          | -                        | -         | -              | -       | 0.002                             | (0.003) | -0.498         | (0.998)  |
| China          | -                        | -         | -              | -       | -0.001*                           | (0.000) | $0.520^{***}$  | (0.137)  |
| Colombia       | -                        | -         | -              | -       | -0.000                            | (0.004) | 0.830          | (0.879)  |
| Eurozone       | -                        | -         | -              | -       | 0.002                             | (0.002) | 0.899          | (1.570)  |
| Finland        | 0.001                    | (0.002)   | -0.704***      | (0.115) | -                                 | -       | -              | -        |
| France         | 0.001                    | (0.002)   | -0.520***      | (0.091) | -                                 | -       | -              | -        |
| Germany        | 0.001                    | (0.002)   | -0.550***      | (0.087) | -                                 | -       | -              | -        |
| Hong Kong      | 0.000                    | (0.000)   | -0.063***      | (0.095) | -0.000                            | (0.000) | $-0.342^{***}$ | (0.225)  |
| India          | -                        | -         | -              | -       | 0.005                             | (0.003) | $-0.315^{**}$  | (0.525)  |
| Indonesia      | 0.009                    | (0.006)   | $0.037^{***}$  | (0.080) | 0.002                             | (0.003) | $0.106^{***}$  | (0.053)  |
| Ireland        | 0.001                    | (0.002)   | $-0.444^{***}$ | (0.273) | -                                 | -       | -              | -        |
| Israel         | -                        | -         | -              | -       | -0.002                            | (0.002) | 1.864          | (1.656)  |
| Italy          | 0.001                    | (0.002)   | -0.359***      | (0.119) | -                                 | -       | -              | -        |
| Japan          | 0.001                    | (0.003)   | 0.084          | (0.942) | 0.002                             | (0.003) | 0.659          | (1.335)  |
| Malaysia       | 0.003                    | (0.003)   | $0.212^{***}$  | (0.045) | 0.002                             | (0.002) | $-0.117^{***}$ | (0.124)  |
| Mexico         | $0.007^{***}$            | (0.003)   | $-0.446^{***}$ | (0.285) | 0.004                             | (0.004) | 0.155          | (0.934)  |
| Netherlands    | 0.001                    | (0.002)   | $-0.568^{***}$ | (0.087) | -                                 | -       | -              | _        |
| Philippines    | 0.000                    | (0.002)   | $0.858^{**}$   | (0.361) | 0.001                             | (0.002) | $-0.869^{***}$ | (0.673)  |
| Portugal       | 0.001                    | (0.002)   | $-0.314^{***}$ | (0.100) | -                                 | -       | -              | _        |
| Russia         | -                        | -         | -              | -       | -0.003                            | (0.004) | $1.703^{**}$   | (0.317)  |
| Saudi Arabia   | 0.000                    | (0.000)   | $-0.217^{***}$ | (0.088) | -0.000                            | (0.000) | $-0.343^{***}$ | (0.129)  |
| Singapore      | -0.000                   | (0.001)   | $-0.657^{***}$ | (0.459) | -0.001                            | (0.001) | 0.756          | (0.578)  |
| South Korea    | -                        | -         | -              | -       | 0.001                             | (0.003) | $-0.491^{*}$   | (0.893)  |
| Spain          | 0.001                    | (0.002)   | -0.305***      | (0.093) | -                                 | -       | -              | _        |
| Sweden         | 0.002                    | (0.002)   | $-0.354^{*}$   | (0.705) | 0.002                             | (0.003) | 0.822          | (1.175)) |
| Switzerland    | -0.003                   | (0.002)   | $-1.615^{***}$ | (0.869) | -0.002                            | (0.003) | -1.187         | (1.574)  |
| Taiwan         | 0.001                    | (0.001)   | $0.190^{***}$  | (0.279) | 0.000                             | (0.001) | $0.108^{***}$  | (0.317)  |
| Thailand       | 0.001                    | (0.002)   | 0.400          | (0.269) | -0.000                            | (0.002) | $-0.382^{**}$  | (0.562)  |
| United Kingdom | 0.002                    | (0.002)   | -0.175         | (1.316) | 0.002                             | (0.002) | 1.361          | (1.831)  |
| Observations   |                          |           | 239            |         |                                   |         | 152            |          |
| Avg. adi $R^2$ |                          | ſ         | 0.005          |         |                                   |         | 0.030          |          |
| F-test         | 1. All <i>B</i>          | = 1: p-va | lue = 0.000    |         |                                   | p-val   | ue = 0.000     |          |
|                | 2. All $\beta$           | = 0: p-va | lue = 0.000    |         | p-value = 0.000 $p-value = 0.000$ |         |                |          |
|                | $3. \text{ All } \alpha$ | = 0: p va | lue = 0.285    |         |                                   | p-val   | ue = 0.391     |          |
|                | 5. m. a                  | 0. p va   |                |         |                                   | P tur   |                |          |

Table 1: Violation of the Uncovered Interest Parity

This table shows the UIP test for the currencies of our dataset using a seemingly unrelated regression of Zellner (1962). Currencies with the forward rate available from February 1997 onwards as well as the single Eurozone countries are included in the first column. Currencies that are available from April 2004 onwards are displayed in the second column. The euro replaces the individual currencies of its member states. The coefficients are tagged with the respective significance levels: \* p<10%, \*\* p<5%, \*\*\* p<1%. We test if  $\alpha = 0$  and  $\beta = 1$  individually and jointly in the F-tests at the bottom of the table. Standard errors (SE) are given next to the coefficients in parenthesis.

| Annualized re | <u>eturns</u> : |        |        |        |            |          |        |
|---------------|-----------------|--------|--------|--------|------------|----------|--------|
| Portfolio     | Low             | Mid.   | High   | AVG    | $HML_{FX}$ | FX index | Market |
| Mean          | -3.37           | 0.91   | 2.37   | -0.09  | 6.04       | 1.45     | 7.48   |
|               | [0.41]          | [0.57] | [0.51] | [0.40] | [0.63]     | [0.38]   | [1.19] |
| Median        | -3.64           | 1.75   | 2.72   | 0.32   | 6.77       | 1.41     | 11.08  |
| Std. dev.     | 6.37            | 8.88   | 7.92   | 6.13   | 9.78       | 5.97     | 18.46  |
| Sharpe ratio  | -0.53           | 0.10   | 0.30   | -0.01  | 0.62       | 0.24     | 0.41   |
| Skewness      | 0.34            | -0.09  | -0.38  | -0.02  | 0.08       | 0.20     | -0.80  |
| Kurtosis      | 2.79            | 2.96   | 2.54   | 2.64   | 2.98       | 2.22     | 3.00   |
| AC(1)         | -0.01           | 0.10   | 0.10   | 0.04   | 0.15       | 0.40     | 0.08   |
|               | (0.87)          | (0.12) | (0.13) | (0.52) | (0.02)     | (0.00)   | (0.19) |
| Correlation:  |                 |        |        |        |            |          |        |
|               | Low             | Middle | High   | AVG    | $HML_{FX}$ | FX index | Market |
| Low           | 1.00            |        |        |        |            |          |        |
| Middle        | 0.52            | 1.00   |        |        |            |          |        |
| Hig           | 0.34            | 0.63   | 1.00   |        |            |          |        |
| AVG           | 0.73            | 0.88   | 0.83   | 1.00   |            |          |        |
| $HML_{FX}$    | -0.45           | 0.20   | 0.68   | 0.22   | 1.00       |          |        |
| FX index      | 0.48            | 0.57   | 0.39   | 0.58   | 0.00       | 1.00     |        |
| Market        | -0.03           | 0.08   | 0.09   | 0.06   | 0.11       | 0.35     | 1.00   |

 Table 2: Descriptive Statistics

This table reports the mean, median, standard deviation and the Sharpe ratio using annualized monthly returns of the low, middle, high, AVG and  $HML_{FX}$  portfolio from 1997 to 2016. AVG represents the average portfolio of the low, middle and high portfolio and  $HML_{FX}$  stands for the CCT portfolio, which is long in portfolio high and short in portfolio low. We also show the descriptive statistics of the trade-weighted exchange rate index of the Federal Reserve (FX index) in indirect quotation, whose weights we use in the portfolio construction, and total US market capitalization of Datastream as a market factor (Market) that represents the development of the US stock market. The mean, the median and the standard deviation are given in percentage points. Sharpe Ratios are computed as the annualized means divided by the annualized standard deviations. For the first order autocorrelation coefficients (AC(1)) we used monthly returns. The respective p-values are displayed in parentheses. We also report the standard errors of the average returns in brackets. The lower panel present the respective monthly correlations.

| Summary    | statistic  | s:         |            |            |        |        |            |        |        |
|------------|------------|------------|------------|------------|--------|--------|------------|--------|--------|
|            | Size       | F.Ass.     | F.Sal.     | Int.Inc.   | Lev.   | Quick  | Div.p.E.   | R&D    | М./В.  |
| Obs.       | 29,202     | $26,\!357$ | $27,\!555$ | $29,\!545$ | 29,075 | 28,812 | $28,\!950$ | 29,091 | 27,115 |
| Mean       | 12.77      | 0.08       | 0.21       | 0.11       | 1.22   | 2.85   | 0.11       | 2.90   | 4.49   |
| Median     | 12.81      | 0.00       | 0.09       | 0.00       | 0.23   | 1.41   | 0.00       | 0.01   | 2.27   |
| 10% q.     | 9.86       | 0.00       | 0.00       | 0.00       | 0.00   | 0.57   | 0.00       | 0.00   | 0.82   |
| 90% q.     | 15.73      | 0.29       | 0.60       | 0.40       | 1.58   | 5.41   | 0.41       | 0.52   | 7.14   |
| Std. dev.  | 2.36       | 0.15       | 0.25       | 0.23       | 13.99  | 10.62  | 0.19       | 29.41  | 16.81  |
| Correlatio | <u>n</u> : |            |            |            |        |        |            |        |        |
|            | Size       | F.Ass.     | F.Sal.     | Int.Inc.   | Lev.   | Quick  | Div.p.E.   | R&D    | М./В.  |
| Size       | 1.00       |            |            |            |        |        |            |        |        |
| F.Ass.     | 0.26       | 1.00       |            |            |        |        |            |        |        |
| F.Sal.     | 0.32       | 0.58       | 1.00       |            |        |        |            |        |        |
| Int.Inc.   | 0.25       | 0.51       | 0.57       | 1.00       |        |        |            |        |        |
| Lev.       | 0.04       | 0.00       | 0.01       | -0.01      | 1.00   |        |            |        |        |
| Quick      | -0.21      | -0.11      | -0.07      | -0.07      | -0.02  | 1.00   |            |        |        |
| Div.p.E.   | 0.37       | 0.13       | 0.08       | 0.08       | -0.01  | -0.13  | 1.00       |        |        |
| R&D        | -0.12      | -0.05      | -0.05      | -0.05      | -0.00  | 0.15   | -0.06      | 1.00   |        |
| M./B.      | -0.05      | -0.02      | -0.01      | -0.02      | 0.51   | 0.01   | -0.02      | 0.02   | 1.00   |

Table 3: Summary statistics and correlations of the explanatory variables

This table reports the number of observations (Obs.), the mean, the median, the 10% quantile, the 90% quantile, and the standard deviation of the explanatory variables used to explain the iCCT exposure of the AVG and  $HML_{FX}$  portfolio. The lower panel presents the respective correlations.

| NW                                                                          | Low    | Mid.                               | High  | AVG                                | $HML_{FX}$                                           | FX                                                               |
|-----------------------------------------------------------------------------|--------|------------------------------------|-------|------------------------------------|------------------------------------------------------|------------------------------------------------------------------|
| All avg. $\beta$                                                            | -0.337 | 0.051                              | 0.567 | 0.403                              | 0.441                                                | 1.869                                                            |
| Max. obs. in group<br>Overall obs.<br>sign. $10\%$ level<br>avg. adj. $R^2$ | 0.172  | $179 \\ 271,976 \\ 0.131 \\ 0.072$ | 0.210 | $179 \\ 271,976 \\ 0.197 \\ 0.028$ | $     179 \\     271,976 \\     0.242 \\     0.033 $ | $     \begin{array}{ c c c c c c c c c c c c c c c c c c c$      |
| 2002-2008 avg. $\beta$                                                      | -0.075 | 0.230                              | 0.388 | 0.512                              | 0.213                                                | 1.31                                                             |
| Max. obs. in group<br>Overall obs.<br>sign. $10\%$ level<br>avg. adj. $R^2$ | 0.140  | $84 \\ 109,686 \\ 0.117 \\ 0.56$   | 0.160 | 84<br>109,686<br>0.159<br>0.023    | 84<br>109,686<br>0.145<br>0.021                      | 84<br>109,686<br>0.178<br>0.023                                  |
| 2009-2016 avg. $\beta$                                                      | -0.581 | -0.007                             | 0.688 | 0.434                              | 0.596                                                | 2.245                                                            |
| Max. obs. in group<br>Overall obs.<br>sign. 10% level<br>avg. adj. $R^2$    | 0.194  | 96<br>162,290<br>0.140<br>0.083    | 0.244 | $96 \\ 162,290 \\ 0.250 \\ 0.035$  | 96<br>162,290<br>0.307<br>0.041                      | $\begin{array}{c c} 96 \\ 162,290 \\ 0.556 \\ 0.075 \end{array}$ |

Table 4: Betas of iCCTs of companies

This table shows the  $\beta$  factors as specified in Equation (4). We roll over monthly observations. For each estimation we use the monthly data of five preceding years, with at least 40 observations. The displayed  $\beta$  factors are the average coefficients with the companies' stock return as the depended variable. The low, middle and high portfolios are estimated together and the AVG,  $HML_{FX}$  and FX index separately. To account for outliners of the companies' sensitivities, we winsorize 0.5% of the estimated  $\beta$  factors at each end. We also show the average  $R^2$  as well as the perceptual number of the, on the 10% level, significant  $\beta$  factors.

| FMB                             |                                               | Low                | Mid.                                                   | High                                                 | AVG                                                        | $HML_{FX}$                                          | FX                                                       |
|---------------------------------|-----------------------------------------------|--------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|
| Panel A<br>2002-2016            | $\begin{array}{c} \lambda \\ (t) \end{array}$ | 0.044<br>(1.473)   | $0.172^{**}$<br>(2.418)                                | $\begin{array}{c} 0.220^{**} \\ (2.214) \end{array}$ | $ \begin{array}{ } 0.140^{**} \\ (2.578) \end{array} $     | $\begin{array}{c} 0.185^{*} \\ (1.696) \end{array}$ | $0.066 \\ (0.967)$                                       |
| F-test<br>p-value<br>adj. $R^2$ |                                               |                    | $\begin{array}{c} 4.306 \\ 0.006 \\ 0.011 \end{array}$ |                                                      | $ \begin{array}{c c} 6.646 \\ 0.011 \\ 0.005 \end{array} $ | $2.876 \\ 0.092 \\ 0.005$                           | $\begin{array}{c} 0.936 \\ 0.335 \\ 0.010 \end{array}$   |
| Panel B<br>2002-2008            | $\begin{array}{c} \lambda \\ (t) \end{array}$ | 0.054<br>(1.196)   | $0.096^{*}$<br>(1.679)                                 | 0.066<br>(1.313)                                     | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$    | 0.018<br>(0.259)                                    | 0.006<br>(0.096)                                         |
| F-test<br>p-value<br>adj. $R^2$ |                                               |                    | $\begin{array}{c} 1.991 \\ 0.122 \\ 0.009 \end{array}$ |                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$    | $0.067 \\ 0.796 \\ 0.003$                           | $\begin{array}{c} 0.009 \\ 0.923 \\ 0.008 \end{array}$   |
| Subsample 2009-2016             | $\begin{array}{c} \lambda \\ (t) \end{array}$ | $0.035 \\ (0.789)$ | $\begin{array}{c} 0.237^{**} \\ (2.057) \end{array}$   | $\begin{array}{c} 0.353^{**} \\ (2.148) \end{array}$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$    | $0.330^{*}$<br>(1.889)                              | $ \begin{array}{c c} 0.118 \\ (1.104) \end{array} $      |
| F-test<br>p-value<br>adj. $R^2$ |                                               |                    | $3.156 \\ 0.028 \\ 0.014$                              |                                                      | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$    | $3.568 \\ 0.062 \\ 0.008$                           | $ \begin{array}{c} 1.220 \\ 0.272 \\ 0.011 \end{array} $ |

Table 5: Pricing of iCCTs of companies

This table reports the FMB results of the cross-sectional pricing of the low, middle and high, AVG,  $HML_{FX}$  portfolios as well as the FX index on the companies' stock returns. The low, middle and high portfolio are calculated together and the rest of the variables separately. We display the risk premia  $\lambda$  and the respective t-statistics in parenthesis. The coefficients are tagged with the respective significance levels: \* p<10%, \*\* p<5%, \*\*\* p<1%. In the above Panel A, we show the results for the whole time frame of February 1997 to 2016, which are calculated using 60 month of preceding data points and rolling monthly observations. In the lower Panel B, we conduct the analysis for sub-periods for  $\beta$ . For every FMB procedure we provide the time observations of estimated  $\beta$ , the overall observations for every company, the F-test with the respective p-value and the adjusted  $R^2$ .

|             |           | E             | $ML_{FX}$ | C     | AVG           |        |       |  |
|-------------|-----------|---------------|-----------|-------|---------------|--------|-------|--|
| Interval    | Obs.      | $\hat{\beta}$ | $SN^*$    | $R^2$ | $\hat{\beta}$ | $SN^*$ | $R^2$ |  |
| 1997-2001   | 1,136     | -0.261        | 0.061     | 0.016 | 0.277         | 0.045  | 0.015 |  |
| 1998-2002   | 1,201     | -0.072        | 0.061     | 0.021 | -0.206        | 0.058  | 0.017 |  |
| 1999-2003   | $1,\!290$ | 0.318         | 0.093     | 0.021 | 0.085         | 0.059  | 0.017 |  |
| 2000-2004   | 1,326     | 0.387         | 0.107     | 0.025 | 0.371         | 0.062  | 0.017 |  |
| 2001 - 2005 | $1,\!353$ | 0.051         | 0.084     | 0.018 | 0.318         | 0.073  | 0.017 |  |
| 2002-2006   | $1,\!374$ | 0.327         | 0.084     | 0.018 | 0.580         | 0.080  | 0.017 |  |
| 2003 - 2007 | $1,\!416$ | 0.144         | 0.069     | 0.016 | 0.692         | 0.095  | 0.019 |  |
| 2004-2008   | $1,\!474$ | 0.943         | 0.334     | 0.056 | 1.526         | 0.302  | 0.054 |  |
| 2005 - 2009 | 1,529     | 1.171         | 0.405     | 0.066 | 1.420         | 0.282  | 0.050 |  |
| 2006-2010   | $1,\!612$ | 1.267         | 0.427     | 0.066 | 1.284         | 0.251  | 0.045 |  |
| 2007 - 2011 | $1,\!660$ | 0.874         | 0.187     | 0.041 | 0.803         | 0.120  | 0.029 |  |
| 2008-2012   | $1,\!674$ | 0.904         | 0.069     | 0.018 | 0.679         | 0.107  | 0.027 |  |
| 2009-2013   | 1,736     | 0.287         | 0.069     | 0.018 | -0.350        | 0.099  | 0.019 |  |
| 2010-2014   | 1,785     | -0.260        | 0.141     | 0.019 | -0.610        | 0.208  | 0.031 |  |
| 2011 - 2015 | $1,\!849$ | -0.101        | 0.088     | 0.016 | -0.620        | 0.205  | 0.029 |  |
| 2012-2016   | 1,926     | 0.519         | 0.186     | 0.023 | 0.011         | 0.124  | 0.018 |  |
|             | 24,341    | 0.423         | 0.162     | 0.031 | 0.393         | 0.136  | 0.027 |  |

Table 6: Betas of iCCTs of companies

This table shows the  $\beta$  factors for the  $HML_{FX}$  and AVG portfolio using a Newey and West (1987) estimator. The number of lags is obtained from an autocorrelation test. For each estimation we use the monthly data of five-year intervals, with at least 40 observations. The displayed  $\beta$  factors are the average coefficients of each interval with the companies' stock return as the dependent variable. The AVG and  $HML_{FX}$  portfolio are estimated separately. Consistent with the pricing of iCCT of companies, we account for outliners of the companies' sensitivities by winsorizing 0.5% of the estimated  $\beta$  factors at each end. We also show the average  $R^2$  as well as the percentage amount of the significant  $\beta$  factors (SN) at the 10% level. Significance level: \* p<10%

| Indu                            | stry sector                                    | Description                                                                                                                                                                                       | SIC Codes                                                                | Comp.                                     | Coef.                                 | $HML_{FX}$                                         | AVG                   |
|---------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------------------|-----------------------|
| -                               | AGR                                            | Agriculture, hunting, forestry and fishing                                                                                                                                                        | 01-09                                                                    | 4                                         | 54                                    | -0.187                                             | 0.346                 |
| 2                               | $\operatorname{BFP}$                           | Basic metals and fabricated metal products                                                                                                                                                        | 33-34                                                                    | 71                                        | 959                                   | 0.525                                              | 0.463                 |
| က                               | BUS                                            | Business services                                                                                                                                                                                 | 73                                                                       | 294                                       | 2,793                                 | 0.275                                              | 0.254                 |
| 4                               | CMP                                            | Chemicals and non-metallic mineral products                                                                                                                                                       | 28-30, 32                                                                | 331                                       | 3,601                                 | 0.352                                              | 0.477                 |
| ы                               | CON                                            | Construction                                                                                                                                                                                      | 15-17                                                                    | 23                                        | 299                                   | 0.807                                              | -0.034                |
| 9                               | EGW                                            | Electricity, gas and water supply                                                                                                                                                                 | 49                                                                       | 58                                        | 586                                   | 0.206                                              | 0.287                 |
| 7                               | EOQ                                            | Electrical and optical equipment                                                                                                                                                                  | 36, 38                                                                   | 387                                       | 4,892                                 | 0.372                                              | 0.388                 |
| $\infty$                        | FBT                                            | Food products, beverages and tobacco                                                                                                                                                              | 20-21                                                                    | 61                                        | 761                                   | 0.200                                              | 0.279                 |
| 6                               | MEN                                            | Machinery and equipment, nec                                                                                                                                                                      | 35                                                                       | 120                                       | 1,583                                 | 0.531                                              | 0.336                 |
| 10                              | MNR                                            | Manufacturing nec; recycling                                                                                                                                                                      | 25, 39                                                                   | 27                                        | 385                                   | 0.587                                              | 0.346                 |
| 11                              | MQA                                            | Mining and quarrying                                                                                                                                                                              | 10-14                                                                    | 85                                        | 982                                   | 0.677                                              | 0.375                 |
| 12                              | OSE                                            | Other services                                                                                                                                                                                    | 27, 75-89, 91-99                                                         | 185                                       | 1,670                                 | 0.507                                              | 0.449                 |
| 13                              | $\mathrm{TLF}$                                 | Textiles, textile products, leather and footwear                                                                                                                                                  | 22-23, 31                                                                | 21                                        | 277                                   | 0.825                                              | 0.506                 |
| 14                              | $\operatorname{TPT}$                           | Transport and storage, post and telecommunication                                                                                                                                                 | 40-48                                                                    | 94                                        | 1,049                                 | 0.261                                              | 0.515                 |
| 15                              | TRQ                                            | Transport equipment                                                                                                                                                                               | 37                                                                       | 77                                        | 943                                   | 0.360                                              | 0.605                 |
| 16                              | WPP                                            | Wood, paper, paper products, printing and publishing                                                                                                                                              | 24, 26-27                                                                | 48                                        | 568                                   | 0.450                                              | 0.361                 |
| 17                              | WRH                                            | Wholesale and retail trade; Hotels and restaurants                                                                                                                                                | 50-59, 70                                                                | 227                                       | 2,939                                 | 0.597                                              | 0.395                 |
|                                 | All                                            |                                                                                                                                                                                                   |                                                                          | 2,113                                     | 24, 341                               | 0.423                                              | 0.392                 |
| This $^{\uparrow}$ corres $AVG$ | table displays<br>ponding SIC<br>portfolios (C | ; the industry breakdown into 17 sectors according to the OECD. codes, the number of companies in each industry (Comp.) as we oeff.). Furthermore, we added the average coefficients of the $HML$ | We only include nor<br>Il as the amount of e<br>$_{FX}$ and $AVG$ portfo | i-financial<br>stimated o<br>lios for eac | companie<br>oefficients<br>h industry | s. We also rej<br>s of the <i>HML</i><br>y sector. | port the $F_{FX}$ and |

| industry breakdown into 17 sectors according to the OECD. W<br>s, the number of companies in each industry (Comp.) as well<br>Furthermore, we added the average coefficients of the $HML_{F}$ ) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ble displays the<br>onding SIC code<br>ortfolios (Coef.).                                                                                                                                       |

 Table 7: Industry classification of companies

|                        | HM             | $L_{FX} - \hat{\beta}_{i,t-2}$ | 2,t+2             | A                   | $VG-\hat{\beta}_{i,t-2,t-2}$ | +2                |
|------------------------|----------------|--------------------------------|-------------------|---------------------|------------------------------|-------------------|
|                        | $ \hat{eta} $  | $\hat{\beta} > 0$              | $\hat{\beta} < 0$ | $ $ $ \hat{\beta} $ | $\hat{\beta} > 0$            | $\hat{\beta} < 0$ |
| Size                   | -0.146***      | -0.095***                      | 0.180***          | -0.404***           | -0.461***                    | 0.270***          |
|                        | (-7.002)       | (-3.562)                       | (5.649)           | (-11.973)           | (-9.485)                     | (6.138)           |
| F.Ass.                 | 0.197          | $0.312^{**}$                   | -0.050            | 0.363**             | $0.398^{*}$                  | -0.381            |
|                        | (1.547)        | (2.125)                        | (-0.198)          | (2.077)             | (1.650)                      | (-1.599)          |
| F.Sal.                 | 0.006          | 0.021                          | 0.170             | -0.599***           | -0.234                       | $0.901^{***}$     |
|                        | (0.053)        | (0.129)                        | (1.170)           | (-3.257)            | (-1.023)                     | (2.984)           |
| Int.Inc.               | $0.139^{**}$   | $0.216^{***}$                  | 0.060             | 0.043               | 0.071                        | 0.180             |
|                        | (2.468)        | (3.419)                        | (0.631)           | (0.510)             | (0.618)                      | (1.393)           |
| Lev.                   | -0.001         | -0.000                         | $0.002^{***}$     | -0.001              | 0.000                        | 0.000             |
|                        | (-1.505)       | (-0.286)                       | (2.646)           | (-0.808)            | (0.212)                      | (0.122)           |
| Quick                  | -0.002         | -0.001                         | 0.002             | -0.006              | -0.009                       | -0.001            |
|                        | (-0.521)       | (-0.198)                       | (0.318)           | (-0.880)            | (-0.965)                     | (-0.123)          |
| Div.p.E.               | $-0.436^{***}$ | $-0.461^{***}$                 | $0.344^{***}$     | -0.622***           | $-0.728^{***}$               | $0.456^{***}$     |
|                        | (-5.617)       | (-4.897)                       | (3.106)           | (-6.012)            | (-4.933)                     | (3.111)           |
| R&D                    | -0.000         | -0.000**                       | 0.000             | 0.000               | $0.001^{***}$                | $0.000^{**}$      |
|                        | (-0.002)       | (-2.195)                       | (1.142)           | (0.058)             | (2.835)                      | (2.251)           |
| M./B.                  | -0.001***      | -0.002**                       | -0.001            | 0.001               | 0.000                        | -0.001            |
|                        | (-2.768)       | (-2.510)                       | (-1.339)          | (0.321)             | (0.124)                      | (-0.884)          |
| overall $\mathbb{R}^2$ | 0.067          | 0.056                          | 0.126             | 0.111               | 0.120                        | 0.076             |
| adj. $R^2$             | 0.018          | 0.013                          | 0.032             | 0.052               | 0.042                        | 0.053             |
| F-test                 | 16.072         | 10.672                         | 8.716             | 32.646              | 18.504                       | 13.482            |
| p-value                | 0.000          | 0.000                          | 0.000             | 0.000               | 0.000                        | 0.000             |
| Obs.                   | $21,\!812$     | $12,\!574$                     | 9,238             | 21,812              | $14,\!532$                   | $7,\!280$         |

**Table 8:** Fixed-effects regression for  $HML_{FX}$  and AVG

Dependent variables: the sensitivities of the  $HML_{FX}$  and AVG portfolio that represent the exposure to iCCTs of companies. Absolute values of the coefficients are used for the first regressions. For the latter the sign of the coefficients is used to separate the sample into positive and negative values. All regressions are estimated using a fixed-effects panel regression with robust and clustered standard errors on the company level. T-statistics are given in parentheses. The coefficients are tagged with the respective significance levels: \* p<10%, \*\* p<5%, \*\*\* p<1%. We also report the overall  $R^2$ , the adjusted  $R^2$ , the joint F-test with the respective p-value and the overall observations (Obs.).

| Panel A                                                                                                                       | $ \hat{\beta} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $HML_{FX}$                                                                                                                    | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BFP                                                                                                                                                                                                                                                                             | BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\operatorname{CMP}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EGW                                                                                                                                                                                                                                                                                | EOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MEN                                                                                                                                                                                                                                                                        | MQA                                                                                                                                                                                                                                                                   | OSE                                                                                                                                                                                                                                                                        | TLF                                                                                                                                                                                                                                                                                      | WRH                                                                                                                                                                                                                                                                                                        |
| Size                                                                                                                          | -0.15***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.09                                                                                                                                                                                                                                                                           | -0.24***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.19***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.10                                                                                                                                                                                                                                                                              | -0.13***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.11                                                                                                                                                                                                                                                                      | $-0.24^{***}$                                                                                                                                                                                                                                                         | $-0.17^{**}$                                                                                                                                                                                                                                                               | -0.12                                                                                                                                                                                                                                                                                    | -0.05                                                                                                                                                                                                                                                                                                      |
|                                                                                                                               | (-7.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (-0.68)                                                                                                                                                                                                                                                                         | (-4.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (-3.52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (-1.24)                                                                                                                                                                                                                                                                            | (-3.28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (-1.63)                                                                                                                                                                                                                                                                    | (-3.11)                                                                                                                                                                                                                                                               | (-2.09)                                                                                                                                                                                                                                                                    | (-0.43)                                                                                                                                                                                                                                                                                  | (-0.86)                                                                                                                                                                                                                                                                                                    |
| F.Ass.                                                                                                                        | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.39***                                                                                                                                                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.71^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.48                                                                                                                                                                                                                                                                               | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.66^{**}$                                                                                                                                                                                                                                                                | $1.31^{*}$                                                                                                                                                                                                                                                            | 0.34                                                                                                                                                                                                                                                                       | $2.42^{**}$                                                                                                                                                                                                                                                                              | -0.33                                                                                                                                                                                                                                                                                                      |
|                                                                                                                               | (1.55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2.94)                                                                                                                                                                                                                                                                          | (0.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2.03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.65)                                                                                                                                                                                                                                                                             | (-0.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2.22)                                                                                                                                                                                                                                                                     | (1.79)                                                                                                                                                                                                                                                                | (0.50)                                                                                                                                                                                                                                                                     | (2.81)                                                                                                                                                                                                                                                                                   | (-0.65)                                                                                                                                                                                                                                                                                                    |
| F.Sal.                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-3.14^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-1.60^{***}$                                                                                                                                                                                                                                                                      | -0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.22                                                                                                                                                                                                                                                                       | $-1.14^{**}$                                                                                                                                                                                                                                                          | -0.07                                                                                                                                                                                                                                                                      | -0.65                                                                                                                                                                                                                                                                                    | 0.69                                                                                                                                                                                                                                                                                                       |
|                                                                                                                               | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.42)                                                                                                                                                                                                                                                                          | (0.03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (-3.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-3.02)                                                                                                                                                                                                                                                                            | (-1.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.87)                                                                                                                                                                                                                                                                     | (-2.29)                                                                                                                                                                                                                                                               | (-0.17)                                                                                                                                                                                                                                                                    | (-0.34)                                                                                                                                                                                                                                                                                  | (1.38)                                                                                                                                                                                                                                                                                                     |
| Int.Inc.                                                                                                                      | $0.14^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.28                                                                                                                                                                                                                                                                           | $0.21^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.19                                                                                                                                                                                                                                                                              | $0.27^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                                                                                                                                                                                                                                                                       | $-0.33^{*}$                                                                                                                                                                                                                                                           | -0.15                                                                                                                                                                                                                                                                      | 1.02                                                                                                                                                                                                                                                                                     | 0.42                                                                                                                                                                                                                                                                                                       |
|                                                                                                                               | (2.47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (-0.68)                                                                                                                                                                                                                                                                         | (2.11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (-0.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-0.59)                                                                                                                                                                                                                                                                            | (2.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1.50)                                                                                                                                                                                                                                                                     | (-1.85)                                                                                                                                                                                                                                                               | (-0.53)                                                                                                                                                                                                                                                                    | (1.28)                                                                                                                                                                                                                                                                                   | (1.16)                                                                                                                                                                                                                                                                                                     |
| Lev.                                                                                                                          | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                               | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.00                                                                                                                                                                                                                                                                      | 0.06                                                                                                                                                                                                                                                                  | -0.00                                                                                                                                                                                                                                                                      | $0.28^{**}$                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                       |
|                                                                                                                               | (-1.51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1.03)                                                                                                                                                                                                                                                                          | (0.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (-0.36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.99)                                                                                                                                                                                                                                                                             | (-1.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (-0.66)                                                                                                                                                                                                                                                                    | (1.33)                                                                                                                                                                                                                                                                | (-0.66)                                                                                                                                                                                                                                                                    | (2.55)                                                                                                                                                                                                                                                                                   | (0.28)                                                                                                                                                                                                                                                                                                     |
| Quick                                                                                                                         | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.02                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.03*                                                                                                                                                                                                                                                                             | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                       | 0.13                                                                                                                                                                                                                                                                                     | -0.06**                                                                                                                                                                                                                                                                                                    |
|                                                                                                                               | (-0.52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (-1.27)                                                                                                                                                                                                                                                                         | (0.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (-0.52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (-0.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-1.97)                                                                                                                                                                                                                                                                            | (-0.72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.66)                                                                                                                                                                                                                                                                     | (0.84)                                                                                                                                                                                                                                                                | (0.92)                                                                                                                                                                                                                                                                     | (0.61)                                                                                                                                                                                                                                                                                   | (-2.00)                                                                                                                                                                                                                                                                                                    |
| Div.p.E.                                                                                                                      | -0.44***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.37                                                                                                                                                                                                                                                                           | -0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.46*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.99**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.58**                                                                                                                                                                                                                                                                            | -0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.88***                                                                                                                                                                                                                                                                   | -0.56                                                                                                                                                                                                                                                                 | -0.39                                                                                                                                                                                                                                                                      | -0.97                                                                                                                                                                                                                                                                                    | -0.52*                                                                                                                                                                                                                                                                                                     |
|                                                                                                                               | (-5.62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (-1.46)                                                                                                                                                                                                                                                                         | (-1.55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (-1.77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (-2.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-2.27)                                                                                                                                                                                                                                                                            | (-1.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (-3.18)                                                                                                                                                                                                                                                                    | (-1.41)                                                                                                                                                                                                                                                               | (-1.27)                                                                                                                                                                                                                                                                    | (-1.16)                                                                                                                                                                                                                                                                                  | (-1.94)                                                                                                                                                                                                                                                                                                    |
| R&D                                                                                                                           | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.26                                                                                                                                                                                                                                                                            | 0.03***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.54                                                                                                                                                                                                                                                                               | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01***                                                                                                                                                                                                                                                                    | -0.06**                                                                                                                                                                                                                                                               | 0.00***                                                                                                                                                                                                                                                                    | -5.11                                                                                                                                                                                                                                                                                    | 0.30**                                                                                                                                                                                                                                                                                                     |
|                                                                                                                               | (-0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1.08)                                                                                                                                                                                                                                                                          | (8.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (-0.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1.51)                                                                                                                                                                                                                                                                             | (-1.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4.82)                                                                                                                                                                                                                                                                     | (-2.23)                                                                                                                                                                                                                                                               | (3.32)                                                                                                                                                                                                                                                                     | (-0.42)                                                                                                                                                                                                                                                                                  | (2.38)                                                                                                                                                                                                                                                                                                     |
| M./B.                                                                                                                         | -0.00***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.03                                                                                                                                                                                                                                                                           | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.00**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.30***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.01**                                                                                                                                                                                                                                                                            | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                       | -0.03                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                       | -0.18                                                                                                                                                                                                                                                                                    | -0.01***                                                                                                                                                                                                                                                                                                   |
|                                                                                                                               | (-2.77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (-1.35)                                                                                                                                                                                                                                                                         | (-0.77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (-2.28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (-2.09)                                                                                                                                                                                                                                                                            | (-0.22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.38)                                                                                                                                                                                                                                                                     | (-1.35)                                                                                                                                                                                                                                                               | (0.12)                                                                                                                                                                                                                                                                     | (-1.45)                                                                                                                                                                                                                                                                                  | (-2.89)                                                                                                                                                                                                                                                                                                    |
| overall $R^2$                                                                                                                 | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                                                                            | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                       | 0.14                                                                                                                                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                       | 0.19                                                                                                                                                                                                                                                                                     | 0.03                                                                                                                                                                                                                                                                                                       |
| adj. $R^2$                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.08                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                       | 0.14                                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                       |
| F                                                                                                                             | 16.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500.37                                                                                                                                                                                                                                                                          | 75.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.74                                                                                                                                                                                                                                                                               | 63.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.86                                                                                                                                                                                                                                                                       | 3.61                                                                                                                                                                                                                                                                  | 13.56                                                                                                                                                                                                                                                                      | 9.47                                                                                                                                                                                                                                                                                     | 3.26                                                                                                                                                                                                                                                                                                       |
| F-test                                                                                                                        | 16.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500.37                                                                                                                                                                                                                                                                          | 75.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.74                                                                                                                                                                                                                                                                               | 63.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.86                                                                                                                                                                                                                                                                       | 3.61                                                                                                                                                                                                                                                                  | 13.56                                                                                                                                                                                                                                                                      | 9.47                                                                                                                                                                                                                                                                                     | 3.26                                                                                                                                                                                                                                                                                                       |
| p-value                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                       |
| Obs.                                                                                                                          | 21.812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 878                                                                                                                                                                                                                                                                             | 2.564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 518                                                                                                                                                                                                                                                                                | 4.262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1  440                                                                                                                                                                                                                                                                     | 851                                                                                                                                                                                                                                                                   | 1.437                                                                                                                                                                                                                                                                      | 243                                                                                                                                                                                                                                                                                      | 2.655                                                                                                                                                                                                                                                                                                      |
|                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                             | 2,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 010                                                                                                                                                                                                                                                                                | 1,202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,110                                                                                                                                                                                                                                                                      | 001                                                                                                                                                                                                                                                                   | 1,101                                                                                                                                                                                                                                                                      | 210                                                                                                                                                                                                                                                                                      | 2,000                                                                                                                                                                                                                                                                                                      |
| Panel B                                                                                                                       | $ \hat{\beta} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                                                                                                                    | 1,101                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                         |
| Panel B<br>AVG                                                                                                                | $\frac{ \hat{\beta} }{\text{All}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>BFP                                                                                                                                                                                                                                                                        | 3<br>BUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>CMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5<br>CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6<br>EGW                                                                                                                                                                                                                                                                           | 7<br>EOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>MEN                                                                                                                                                                                                                                                                   | 11<br>MQA                                                                                                                                                                                                                                                             | 12<br>OSE                                                                                                                                                                                                                                                                  | 13<br>TLF                                                                                                                                                                                                                                                                                | 17<br>WRH                                                                                                                                                                                                                                                                                                  |
| Panel B<br>AVG<br>Size                                                                                                        | $ \hat{\beta} $<br>All<br>-0.40***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>BFP<br>-0.14                                                                                                                                                                                                                                                               | 3<br>BUS<br>-0.43***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4<br>CMP<br>-0.55***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>CON<br>-0.94*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6<br>EGW<br>-0.33***                                                                                                                                                                                                                                                               | 7<br>EOQ<br>-0.37***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9<br>MEN<br>-0.29***                                                                                                                                                                                                                                                       | 11<br>MQA<br>-0.29***                                                                                                                                                                                                                                                 | 1,101<br>12<br>OSE<br>-0.64***                                                                                                                                                                                                                                             | 13<br>TLF<br>-0.45*                                                                                                                                                                                                                                                                      | 17<br>WRH<br>-0.21***                                                                                                                                                                                                                                                                                      |
| Panel B<br>AVG<br>Size                                                                                                        | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ -0.40^{***} \\ (-11.97) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>BFP<br>-0.14<br>(-0.74)                                                                                                                                                                                                                                                    | 3<br>BUS<br>-0.43***<br>(-4.95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4<br>CMP<br>-0.55***<br>(-6.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>CON<br>-0.94*<br>(-1.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6<br>EGW<br>-0.33***<br>(-3.79)                                                                                                                                                                                                                                                    | 7<br>EOQ<br>-0.37***<br>(-4.71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>MEN<br>-0.29***<br>(-3.48)                                                                                                                                                                                                                                            | 11<br>MQA<br>-0.29***<br>(-2.78)                                                                                                                                                                                                                                      | $     12 \\     OSE \\     -0.64^{***} \\     (-4.22) $                                                                                                                                                                                                                    | $ \begin{array}{r}     13 \\     TLF \\     -0.45^{*} \\     (-2.05) \end{array} $                                                                                                                                                                                                       | 17<br>WRH<br>-0.21***<br>(-2.78)                                                                                                                                                                                                                                                                           |
| Panel B<br>AVG<br>Size<br>F.Ass.                                                                                              | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{ c c } 2 \\ BFP \\ \hline -0.14 \\ (-0.74) \\ 1.48^{**} \end{array}$                                                                                                                                                                                             | 3<br>BUS<br>-0.43***<br>(-4.95)<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>CMP<br>-0.55***<br>(-6.46)<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $5 \\ CON \\ -0.94^* \\ (-1.90) \\ -1.23 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00                                                                                                                                                                                                                                            | $7 \\ EOQ \\ -0.37^{***} \\ (-4.71) \\ 0.48 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9<br>MEN<br>-0.29***<br>(-3.48)<br>0.51                                                                                                                                                                                                                                    | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33                                                                                                                                                                                                                             | 12<br>OSE<br>-0.64***<br>(-4.22)<br>-0.89                                                                                                                                                                                                                                  | 13<br>TLF<br>-0.45*<br>(-2.05)<br>1.38                                                                                                                                                                                                                                                   | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38                                                                                                                                                                                                                                                                  |
| Panel B<br>AVG<br>Size<br>F.Ass.                                                                                              | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{ c c c } 2 \\ BFP \\ \hline & -0.14 \\ (-0.74) \\ 1.48^{**} \\ (2.13) \end{array}$                                                                                                                                                                               | $\begin{array}{r} 3\\ BUS\\ -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>CMP<br>-0.55***<br>(-6.46)<br>0.34<br>(0.69)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>CON<br>-0.94*<br>(-1.90)<br>-1.23<br>(-0.75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)                                                                                                                                                                                                                                  | $7 \\ EOQ \\ -0.37^{***} \\ (-4.71) \\ 0.48 \\ (1.62) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9<br>MEN<br>-0.29***<br>(-3.48)<br>0.51<br>(1.25)                                                                                                                                                                                                                          | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)                                                                                                                                                                                                                  | 1,131<br>12<br>OSE<br>-0.64***<br>(-4.22)<br>-0.89<br>(-1.14)                                                                                                                                                                                                              | $\begin{array}{c} 13 \\ TLF \\ -0.45^{*} \\ (-2.05) \\ 1.38 \\ (0.73) \end{array}$                                                                                                                                                                                                       | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)                                                                                                                                                                                                                                                       |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.                                                                                    | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{ c c c } 2 \\ BFP \\ \hline & -0.14 \\ (-0.74) \\ 1.48^{**} \\ (2.13) \\ 0.41 \end{array}$                                                                                                                                                                       | 3<br>BUS<br>-0.43***<br>(-4.95)<br>0.38<br>(0.74)<br>-1.89***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>CMP<br>-0.55***<br>(-6.46)<br>0.34<br>(0.69)<br>-0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>CON<br>-0.94*<br>(-1.90)<br>-1.23<br>(-0.75)<br>2.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***                                                                                                                                                                                                                      | 7<br>EOQ<br>-0.37***<br>(-4.71)<br>0.48<br>(1.62)<br>-0.92***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9<br>MEN<br>-0.29***<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27                                                                                                                                                                                                                 | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14                                                                                                                                                                                                         | 12<br>OSE<br>-0.64***<br>(-4.22)<br>-0.89<br>(-1.14)<br>0.17                                                                                                                                                                                                               | $\begin{array}{c} 13 \\ TLF \\ -0.45^{*} \\ (-2.05) \\ 1.38 \\ (0.73) \\ -0.59 \end{array}$                                                                                                                                                                                              | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67                                                                                                                                                                                                                                              |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.                                                                                    | $\begin{array}{c}  \hat{\beta}  \\ All \\ \hline (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{ c c c } 2 \\ BFP \\ \hline \\ 0.14 \\ (-0.74) \\ 1.48^{**} \\ (2.13) \\ 0.41 \\ (0.53) \\ \end{array}$                                                                                                                                                          | 3<br>BUS<br>-0.43***<br>(-4.95)<br>0.38<br>(0.74)<br>-1.89***<br>(-2.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>CMP<br>-0.55***<br>(-6.46)<br>0.34<br>(0.69)<br>-0.48<br>(-0.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5 \\ CON \\ -0.94^* \\ (-1.90) \\ -1.23 \\ (-0.75) \\ 2.93 \\ (1.45) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)                                                                                                                                                                                                           | $7 \\ EOQ$ $-0.37^{***} \\ (-4.71) \\ 0.48 \\ (1.62) \\ -0.92^{***} \\ (-2.95)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>MEN<br>-0.29***<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)                                                                                                                                                                                                      | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)                                                                                                                                                                                              | $\begin{array}{c} 12 \\ OSE \\ \hline -0.64^{***} \\ (-4.22) \\ -0.89 \\ (-1.14) \\ 0.17 \\ (0.20) \end{array}$                                                                                                                                                            | $\begin{array}{c} 13\\ TLF\\ -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ \end{array}$                                                                                                                                                                                        | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)                                                                                                                                                                                                                                   |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.                                                                        | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (.5.12) \\ \hline $ | $\begin{array}{ c c } 2 \\ BFP \\ \hline -0.14 \\ (-0.74) \\ 1.48^{**} \\ (2.13) \\ 0.41 \\ (0.53) \\ -0.16 \\ -0.16 \\ \hline \end{array}$                                                                                                                                     | $\begin{array}{c} 3\\ BUS\\ \hline -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ (-5.70)\\ 0.18\\ $                                                                   | 4<br>CMP<br>-0.55***<br>(-6.46)<br>0.34<br>(0.69)<br>-0.48<br>(-0.98)<br>0.02<br>(-0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5<br>CON<br>-0.94*<br>(-1.90)<br>-1.23<br>(-0.75)<br>2.93<br>(1.45)<br>-0.99***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(5.1)                                                                                                                                                                                          | $7 \\ EOQ$ $-0.37^{***} \\ (-4.71) \\ 0.48 \\ (1.62) \\ -0.92^{***} \\ (-2.95) \\ 0.16 \\ (-2.95) \\ 0.16 \\ (-2.95) \\ 0.16 \\ (-2.95) \\ 0.16 \\ (-2.95) \\ 0.16 \\ (-2.95) \\ 0.16 \\ (-2.95) \\ 0.16 \\ (-2.95) \\ (-2.95) \\ 0.16 \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.$ | 9<br>MEN<br>-0.29***<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09                                                                                                                                                                                             | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.37)                                                                                                                                                                          | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.22)\end{array}$                                                                                                                                        | $\begin{array}{c} 13\\ \text{TLF}\\ \hline -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ 0.56\\ (-0.51)\end{array}$                                                                                                                                                     | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)<br>0.23<br>(-2.3)                                                                                                                                                                                                                 |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.                                                                        | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{ c c } 2 \\ BFP \\ \hline & -0.14 \\ (-0.74) \\ 1.48^{**} \\ (2.13) \\ 0.41 \\ (0.53) \\ -0.16 \\ (-0.50) \\ \hline & (-0.50) \end{array}$                                                                                                                       | $\begin{array}{c} 3\\ BUS\\ \hline -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ 0.52\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4<br>CMP<br>-0.55***<br>(-6.46)<br>0.34<br>(0.69)<br>-0.48<br>(-0.98)<br>0.02<br>(0.06)<br>(0.06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $5 \\ CON \\ -0.94^* \\ (-1.90) \\ -1.23 \\ (-0.75) \\ 2.93 \\ (1.45) \\ -0.99^{***} \\ (-2.95) \\ (-2.95) \\ -0.95 \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) $                                                                                     | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)                                                                                                                                                                                         | $\begin{array}{c} 7\\ \text{EOQ}\\ \hline \\ -0.37^{***}\\ (-4.71)\\ 0.48\\ (1.62)\\ -0.92^{***}\\ (-2.95)\\ 0.16\\ (1.08)\\ (1.08)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>MEN<br>-0.29***<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)                                                                                                                                                                                  | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>(-0.75)                                                                                                                                                               | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ \end{array}$                                                                                                                                     | $\begin{array}{c} 13\\ \text{TLF}\\ \hline -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ \end{array}$                                                                                                                                                          | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)<br>0.23<br>(0.60)<br>(0.60)                                                                                                                                                                                                       |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.                                                                | $\begin{array}{c}  \hat{\beta}  \\ All \\ \hline (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (0.51) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{ c c } 2 \\ BFP \\ \hline -0.14 \\ (-0.74) \\ 1.48^{**} \\ (2.13) \\ 0.41 \\ (0.53) \\ -0.16 \\ (-0.50) \\ 0.03 \\ (0.57) \\ \hline \end{array}$                                                                                                                 | 3<br>BUS<br>-0.43***<br>(-4.95)<br>0.38<br>(0.74)<br>-1.89***<br>(-2.70)<br>0.18<br>(0.72)<br>-0.00<br>(.0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4<br>CMP<br>(-6.46)<br>0.34<br>(0.69)<br>-0.48<br>(-0.98)<br>0.02<br>(0.06)<br>0.01<br>(0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $5 \\ CON \\ -0.94^* \\ (-1.90) \\ -1.23 \\ (-0.75) \\ 2.93 \\ (1.45) \\ -0.99^{***} \\ (-2.95) \\ 0.15 \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\ (-2.95) \\$                                                                                    | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**                                                                                                                                                                               | 7<br>EOQ<br>-0.37***<br>(-4.71)<br>0.48<br>(1.62)<br>-0.92***<br>(-2.95)<br>0.16<br>(1.08)<br>-0.00**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9<br>MEN<br>-0.29***<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01                                                                                                                                                                         | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(-0.75)                                                                                                                                                       | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.02)\end{array}$                                                                                                                      | $\begin{array}{c} 13\\ 13\\ TLF\\ \hline \\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ 0.24^{**}\\ (-2.2)\end{array}$                                                                                                                                                   | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)<br>0.23<br>(0.60)<br>0.00<br>(0.00)                                                                                                                                                                                               |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.                                                                | $\begin{array}{c}  \hat{\beta}  \\ All \\ \hline (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ 0.51 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>BFP<br>-0.14<br>(-0.74)<br>1.48**<br>(2.13)<br>0.41<br>(0.53)<br>-0.16<br>(-0.50)<br>0.03<br>(0.85)                                                                                                                                                                        | 3<br>BUS<br>-0.43***<br>(-4.95)<br>0.38<br>(0.74)<br>-1.89***<br>(-2.70)<br>0.18<br>(0.72)<br>-0.00<br>(-0.04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 4\\ \text{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ (0.40)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $5 \\ CON \\ -0.94^* \\ (-1.90) \\ -1.23 \\ (-0.75) \\ 2.93 \\ (1.45) \\ -0.99^{***} \\ (-2.95) \\ 0.15 \\ (0.66) \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0$ | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**<br>(2.51)                                                                                                                                                                     | $\begin{array}{c} 7\\ \text{EOQ}\\ \hline \\ -0.37^{***}\\ (-4.71)\\ 0.48\\ (1.62)\\ -0.92^{***}\\ (-2.95)\\ 0.16\\ (1.08)\\ -0.00^{**}\\ (-2.06)\\ -0.01\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9<br>MEN<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01<br>(-0.74)                                                                                                                                                                          | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>0.02*                                                                                                                                               | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.02\\ \end{array}$                                                                                                            | $\begin{array}{c} 13\\ \text{TLF}\\ \hline -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ 0.24^{**}\\ (2.29)\\ (2.29)\end{array}$                                                                                                                               | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)<br>0.23<br>(0.60)<br>0.00<br>(0.47)                                                                                                                                                                                               |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.<br>Quick                                                       | $\begin{array}{c}  \hat{\beta}  \\ All \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.92) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>BFP<br>-0.14<br>(-0.74)<br>1.48**<br>(2.13)<br>0.41<br>(0.53)<br>-0.16<br>(-0.50)<br>0.03<br>(0.85)<br>-0.19***                                                                                                                                                            | $\begin{array}{r} 3\\ BUS\\ \hline -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.04\\ (0.05)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4<br>CMP<br>(-6.46)<br>0.34<br>(0.69)<br>-0.48<br>(-0.98)<br>0.02<br>(0.06)<br>0.01<br>(0.40)<br>-0.01<br>(0.41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $5 \\ CON \\ -0.94^* \\ (-1.90) \\ -1.23 \\ (-0.75) \\ 2.93 \\ (1.45) \\ -0.99^{***} \\ (-2.95) \\ 0.15 \\ (0.66) \\ 0.38 \\ (1.17) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**<br>(2.51)<br>0.14**<br>(2.20)                                                                                                                                                 | 7<br>EOQ<br>(-4.71)<br>0.48<br>(1.62)<br>-0.92***<br>(-2.95)<br>0.16<br>(1.08)<br>-0.00**<br>(-2.06)<br>-0.01<br>(0.75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9<br>MEN<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01<br>(-0.74)<br>-0.03<br>(-0.02)                                                                                                                                                      | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.22)                                                                                                                                   | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (-1.21)\\ 0.00\\ (-1.02)\end{array}$                                                                                    | 13<br>TLF<br>-0.45*<br>(-2.05)<br>1.38<br>(0.73)<br>-0.59<br>(-0.36)<br>0.56<br>(0.81)<br>0.24**<br>(2.29)<br>-0.20<br>(-0.21)                                                                                                                                                           | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)<br>0.23<br>(0.60)<br>0.00<br>(0.47)<br>-0.10**                                                                                                                                                                                    |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.<br>Quick                                                       | $\begin{array}{c}  \hat{\beta}  \\ All \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.01 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ -0.03 \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88) \\ (-0.88$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>BFP<br>-0.14<br>(-0.74)<br>1.48**<br>(2.13)<br>0.41<br>(0.53)<br>-0.16<br>(-0.50)<br>0.03<br>(0.85)<br>-0.19***<br>(-7.05)                                                                                                                                                 | $\begin{array}{c} 3\\ BUS\\ \hline & -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ 0.04\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 4\\ \text{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ (-0.41)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ 0.66\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**<br>(2.51)<br>0.14**<br>(2.09)<br>(2.9)                                                                                                                                        | 7<br>EOQ<br>-0.37***<br>(-4.71)<br>0.48<br>(1.62)<br>-0.92***<br>(-2.95)<br>0.16<br>(1.08)<br>-0.00**<br>(-2.06)<br>-0.01<br>(-0.73)<br>(-0.73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>MEN<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01<br>(-0.74)<br>-0.03<br>(-0.96)                                                                                                                                                      | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.93)<br>(-1.93)                                                                                                                        | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ 0.16\\ \end{array}$                                                                                            | $\begin{array}{c} 13\\ \text{TLF}\\ \hline -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ 0.24^{**}\\ (2.29)\\ -0.20\\ (-0.71)\\ (-0.71)\\ 0.22\end{array}$                                                                                                     | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)<br>0.23<br>(0.60)<br>0.00<br>(0.47)<br>-0.10**<br>(-2.19)                                                                                                                                                                         |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.<br>Quick<br>Div.p.E.                                           | $\begin{array}{c}  \hat{\beta}  \\ All \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.62^{***} \\ (-2.51) \\ (-2.51) \\ -0.01 \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) \\ (-2.51) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>BFP<br>-0.14<br>(-0.74)<br>1.48**<br>(2.13)<br>0.41<br>(0.53)<br>-0.16<br>(-0.50)<br>0.03<br>(0.85)<br>-0.19***<br>(-7.05)<br>-0.62*<br>(-1.50)                                                                                                                            | $\begin{array}{c} 3\\ BUS\\ \hline & -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ -0.24\\ (0.27)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 4\\ \text{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ (-0.41)\\ -0.52\\ (-1.42)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.61)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**<br>(2.51)<br>0.14**<br>(2.09)<br>-0.87**<br>(2.51)                                                                                                                            | 7<br>EOQ<br>-0.37***<br>(-4.71)<br>0.48<br>(1.62)<br>-0.92***<br>(-2.95)<br>0.16<br>(1.08)<br>-0.00**<br>(-2.06)<br>-0.01<br>(-0.73)<br>-0.82***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9<br>MEN<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01<br>(-0.74)<br>-0.03<br>(-0.96)<br>-0.77**                                                                                                                                           | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.93)<br>-1.36**                                                                                                                        | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (0.21)\end{array}$                                                                                     | $\begin{array}{c} 13\\ \text{TLF}\\ \hline -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ 0.24^{**}\\ (2.29)\\ -0.20\\ (-0.71)\\ -0.02\\ (-0.71)\\ -0.02\end{array}$                                                                                            | $\begin{array}{c} 17 \\ \text{WRH} \\ \hline -0.21^{***} \\ (-2.78) \\ -0.38 \\ (-0.62) \\ -0.67 \\ (-0.86) \\ 0.23 \\ (0.60) \\ 0.00 \\ (0.47) \\ -0.10^{**} \\ (-2.19) \\ -0.67^{**} \\ (-2.17) \end{array}$                                                                                             |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.<br>Quick<br>Div.p.E.                                           | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.62^{***} \\ (-6.01) \\ \hline (-6.01) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{ c c c } 2\\ BFP\\ \hline \\ -0.14\\ (-0.74)\\ 1.48^{**}\\ (2.13)\\ 0.41\\ (0.53)\\ -0.16\\ (-0.50)\\ 0.03\\ (0.85)\\ -0.19^{***}\\ (-7.05)\\ -0.62^{*}\\ (-1.79)\\ (-1.79)\\ \end{array}$                                                                       | $\begin{array}{c} 3\\ BUS\\ \hline & -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ -0.24\\ (-0.75)\\ 0.04^{*}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 4\\ \text{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ -0.52\\ (-1.46)\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0.02\\ (-1.46)\\ -0$ | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.85)\\ -0.95\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 6\\ \text{EGW}\\ \hline \\ -0.33^{***}\\ (-3.79)\\ 1.00\\ (1.37)\\ -2.32^{***}\\ (-3.64)\\ 0.32\\ (0.44)\\ 0.07^{**}\\ (2.51)\\ 0.14^{**}\\ (2.09)\\ -0.87^{**}\\ (-2.54)\\ \end{array}$                                                                         | 7<br>EOQ<br>-0.37***<br>(-4.71)<br>0.48<br>(1.62)<br>-0.92***<br>(-2.95)<br>0.16<br>(1.08)<br>-0.00**<br>(-2.06)<br>-0.01<br>(-0.73)<br>-0.82***<br>(-2.91)<br>(-2.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>MEN<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01<br>(-0.74)<br>-0.03<br>(-0.96)<br>-0.77**<br>(-2.10)                                                                                                                                | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.93)<br>-1.36**<br>(-2.59)                                                                                                             | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (-0.81)\\ -0.40\\ (-0.81)\\ -0.00\end{array}$                                                          | $\begin{array}{c} 13\\ TLF\\ -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ 0.24^{**}\\ (2.29)\\ -0.20\\ (-0.71)\\ -0.02\\ (-0.02)\\ (-0.02)\end{array}$                                                                                                        | $\begin{array}{r} 17 \\ \text{WRH} \\ \hline -0.21^{***} \\ (-2.78) \\ -0.38 \\ (-0.62) \\ -0.67 \\ (-0.86) \\ 0.23 \\ (0.60) \\ 0.00 \\ (0.47) \\ -0.10^{**} \\ (-2.19) \\ -0.67^{**} \\ (-2.45) \\ (-2.45) \\ (-2.45) \end{array}$                                                                       |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.<br>Quick<br>Div.p.E.<br>R&D                                    | $\begin{array}{c}  \hat{\beta}  \\ All \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.62^{***} \\ (-6.01) \\ 0.00 \\ (0.26) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{ c c c } 2\\ BFP\\ \hline \\ -0.14\\ (-0.74)\\ 1.48^{**}\\ (2.13)\\ 0.41\\ (0.53)\\ -0.16\\ (-0.50)\\ 0.03\\ (0.85)\\ -0.19^{***}\\ (-7.05)\\ -0.62^{*}\\ (-1.79)\\ 0.44\\ (1.92)\\ \end{array}$                                                                 | $\begin{array}{c} 3\\ BUS\\ \hline & -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ -0.24\\ (-0.75)\\ 0.01^{*}\\ (1.22)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 4\\ \text{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ -0.52\\ (-1.46)\\ 0.00\\ (0.12)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.85)\\ 1.00\\ (0.22) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**<br>(2.51)<br>0.14**<br>(2.09)<br>-0.87**<br>(-2.54)<br>1.02<br>(1.20)                                                                                                         | 7<br>EOQ<br>-0.37***<br>(-4.71)<br>0.48<br>(1.62)<br>-0.92***<br>(-2.95)<br>0.16<br>(1.08)<br>-0.00**<br>(-2.06)<br>-0.01<br>(-0.73)<br>-0.82***<br>(-2.91)<br>-0.082***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>MEN<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01<br>(-0.74)<br>-0.03<br>(-0.96)<br>-0.77**<br>(-2.10)<br>0.01*<br>(-1.20)                                                                                                            | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.93)<br>-1.36**<br>(-2.59)<br>-0.08<br>(-0.52)                                                                                         | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (-0.81)\\ 0.00\\ (0.22) \end{array}$                                                                   | 13<br>TLF<br>-0.45*<br>(-2.05)<br>1.38<br>(0.73)<br>-0.59<br>(-0.36)<br>0.56<br>(0.81)<br>0.24**<br>(2.29)<br>-0.20<br>(-0.71)<br>-0.02<br>(-0.02)<br>-25.79**                                                                                                                           | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)<br>0.23<br>(0.60)<br>0.00<br>(0.47)<br>-0.10**<br>(-2.19)<br>-0.67**<br>(-2.45)<br>0.48***                                                                                                                                        |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.<br>Quick<br>Div.p.E.<br>R&D                                    | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.62^{***} \\ (-6.01) \\ 0.00 \\ (0.06) \\ (0.00) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{ c c c } 2\\ BFP\\ \hline \\ -0.14\\ (-0.74)\\ 1.48^{**}\\ (2.13)\\ 0.41\\ (0.53)\\ -0.16\\ (-0.50)\\ 0.03\\ (0.85)\\ -0.19^{***}\\ (-7.05)\\ -0.62^{*}\\ (-1.79)\\ 0.44\\ (1.06)\\ 0.02\\ \end{array}$                                                          | $\begin{array}{c} 3\\ BUS\\ \hline -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ -0.24\\ (-0.75)\\ 0.01^{*}\\ (1.96)\\ 0.02\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 4\\ \mathrm{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ -0.52\\ (-1.46)\\ 0.00\\ (0.12)\\ 0.00\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.85)\\ 1.00\\ (0.03)\\ 0.25\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**<br>(2.51)<br>0.14**<br>(2.09)<br>-0.87**<br>(-2.54)<br>1.02<br>(1.60)<br>0.05***                                                                                              | 7<br>EOQ<br>-0.37***<br>(-4.71)<br>0.48<br>(1.62)<br>-0.92***<br>(-2.95)<br>0.16<br>(1.08)<br>-0.00**<br>(-2.06)<br>-0.01<br>(-0.73)<br>-0.82***<br>(-2.91)<br>-0.00<br>(-0.43)<br>0.00***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} 9\\ \text{MEN}\\ \hline \\ -0.29^{***}\\ (-3.48)\\ 0.51\\ (1.25)\\ -0.27\\ (-0.72)\\ -0.09\\ (-0.43)\\ -0.01\\ (-0.74)\\ -0.03\\ (-0.96)\\ -0.77^{**}\\ (-2.10)\\ 0.01^{*}\\ (1.88)\\ 0.01 \end{array}$                                                  | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.93)<br>-1.36**<br>(-2.59)<br>-0.08<br>(-0.58)<br>0.00                                                                                 | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (-0.81)\\ 0.00\\ (0.39)\\ 0.00\\ (0.39)\\ 0.00\\ \end{array}$                                          | 13<br>TLF<br>-0.45*<br>(-2.05)<br>1.38<br>(0.73)<br>-0.59<br>(-0.36)<br>0.56<br>(0.81)<br>0.24**<br>(2.29)<br>-0.20<br>(-0.71)<br>-0.02<br>(-0.02)<br>-25.79**<br>(-2.09)<br>-0.11                                                                                                       | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)<br>0.23<br>(0.60)<br>0.00<br>(0.47)<br>-0.10**<br>(-2.19)<br>-0.67**<br>(-2.45)<br>0.48***<br>(3.62)<br>0.01***                                                                                                                   |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.<br>Quick<br>Div.p.E.<br>R&D<br>M./B.                           | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.62^{***} \\ (-6.01) \\ 0.00 \\ (0.06) \\ 0.00 \\ (0.22) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{ c c c } 2\\ BFP\\ \hline \\ -0.14\\ (-0.74)\\ 1.48^{**}\\ (2.13)\\ 0.41\\ (0.53)\\ -0.16\\ (-0.50)\\ 0.03\\ (0.85)\\ -0.19^{***}\\ (-7.05)\\ -0.62^{*}\\ (-1.79)\\ 0.44\\ (1.06)\\ -0.02\\ (-0.28)\\ \end{array}$                                               | $\begin{array}{c} 3\\ BUS\\ \hline & -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ -0.24\\ (-0.75)\\ 0.01^{*}\\ (1.96)\\ 0.02\\ (1.2c)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 4\\ \mathrm{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ -0.52\\ (-1.46)\\ 0.00\\ (0.12)\\ -0.00\\ (0.42)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.85)\\ 1.00\\ (0.03)\\ 0.25\\ (1.c0)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**<br>(2.51)<br>0.14**<br>(2.09)<br>-0.87**<br>(-2.54)<br>1.02<br>(1.60)<br>-0.05****                                                                                            | 7<br>EOQ<br>-0.37***<br>(-4.71)<br>0.48<br>(1.62)<br>-0.92***<br>(-2.95)<br>0.16<br>(1.08)<br>-0.00**<br>(-2.06)<br>-0.01<br>(-0.73)<br>-0.82***<br>(-2.91)<br>-0.00<br>(-0.43)<br>0.00***<br>(-2.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9<br>MEN<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01<br>(-0.74)<br>-0.03<br>(-0.96)<br>-0.77**<br>(-2.10)<br>0.01*<br>(1.88)<br>0.01                                                                                                     | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.93)<br>-1.36**<br>(-2.59)<br>-0.08<br>(-0.58)<br>-0.00<br>(-0.12)                                                                     | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (0.18)\\ -0.40\\ (0.39)\\ 0.00\\ (0.39)\\ 0.00\\ (0.9)\end{array}$                                     | 13<br>TLF<br>-0.45*<br>(-2.05)<br>1.38<br>(0.73)<br>-0.59<br>(-0.36)<br>0.56<br>(0.81)<br>0.24**<br>(2.29)<br>-0.20<br>(-0.71)<br>-0.02<br>(-0.02)<br>-25.79**<br>(-2.09)<br>-0.11<br>(-1.12)                                                                                            | 17<br>WRH<br>-0.21***<br>(-2.78)<br>-0.38<br>(-0.62)<br>-0.67<br>(-0.86)<br>0.23<br>(0.60)<br>0.00<br>(0.47)<br>-0.10**<br>(-2.19)<br>-0.67**<br>(-2.45)<br>0.48***<br>(3.62)<br>-0.01***                                                                                                                  |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.<br>Quick<br>Div.p.E.<br>R&D<br>M./B.                           | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline \\ -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.62^{***} \\ (-6.01) \\ 0.00 \\ (0.06) \\ 0.00 \\ (0.32) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                          | $\begin{array}{c} 3\\ BUS\\ \hline\\ -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.01\\ (0.85)\\ -0.24\\ (-0.75)\\ 0.01^{*}\\ (1.96)\\ 0.02\\ (1.36)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 4\\ \mathrm{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ -0.52\\ (-1.46)\\ 0.00\\ (0.12)\\ -0.00\\ (0.12)\\ -0.00\\ (-0.43)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.85)\\ 1.00\\ (0.03)\\ 0.25\\ (1.60) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 6\\ {\rm EGW}\\ \hline \\ -0.33^{***}\\ (-3.79)\\ 1.00\\ (1.37)\\ -2.32^{***}\\ (-3.64)\\ 0.32\\ (0.44)\\ 0.07^{**}\\ (2.51)\\ 0.14^{**}\\ (2.09)\\ -0.87^{**}\\ (-2.54)\\ 1.02\\ (1.60)\\ -0.05^{***}\\ (-4.38)\end{array}$                                     | $\begin{array}{c} 7\\ \mathrm{EOQ}\\ \hline 7\\ \mathrm{EOQ}\\ \hline (-4.71)\\ 0.48\\ (1.62)\\ -0.92^{***}\\ (-2.95)\\ 0.16\\ (1.08)\\ -0.00^{**}\\ (-2.06)\\ -0.01\\ (-0.73)\\ -0.82^{***}\\ (-2.91)\\ -0.00\\ (-0.43)\\ 0.00^{***}\\ (2.99) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 9\\ \text{MEN}\\ \hline \\ -0.29^{***}\\ (-3.48)\\ 0.51\\ (1.25)\\ -0.27\\ (-0.72)\\ -0.09\\ (-0.72)\\ -0.09\\ (-0.74)\\ -0.03\\ (-0.96)\\ -0.77^{**}\\ (-2.10)\\ 0.01^{*}\\ (1.88)\\ 0.01\\ (1.52) \end{array}$                                         | $\begin{array}{c} 11\\ MQA\\ \hline \\ -0.29^{***}\\ (-2.78)\\ -0.33\\ (-0.27)\\ -0.14\\ (-0.20)\\ -0.30\\ (-0.75)\\ 0.00\\ (-0.75)\\ 0.00\\ (-0.75)\\ 0.00\\ (-0.75)\\ -0.03^{*}\\ (-1.93)\\ -1.36^{**}\\ (-2.59)\\ -0.08\\ (-0.58)\\ -0.00\\ (-0.10)\\ \end{array}$ | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (0.18)\\ -0.40\\ (0.39)\\ 0.00\\ (0.39)\\ 0.00\\ (0.08)\end{array}$                                    | $\begin{array}{c} 13\\ 13\\ TLF\\ -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ 0.24^{**}\\ (2.29)\\ -0.20\\ (-0.71)\\ -0.02\\ (-0.02)\\ (-25.79^{**}\\ (-2.09)\\ -0.11\\ (-1.12)\\ \end{array}$                                                               | $\begin{array}{r} 17 \\ \text{WRH} \\ \hline & -0.21^{***} \\ (-2.78) \\ -0.38 \\ (-0.62) \\ -0.67 \\ (-0.86) \\ 0.23 \\ (0.60) \\ 0.00 \\ (0.47) \\ -0.10^{**} \\ (-2.19) \\ -0.67^{**} \\ (-2.45) \\ 0.48^{***} \\ (3.62) \\ -0.01^{***} \\ (-2.75) \end{array}$                                         |
| Panel B<br>AVG<br>Size<br>F.Ass.<br>F.Sal.<br>Int.Inc.<br>Lev.<br>Quick<br>Div.p.E.<br>R&D<br>M./B.<br>overall R <sup>2</sup> | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline \\ -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.62^{***} \\ (-6.01) \\ 0.00 \\ (0.06) \\ 0.00 \\ (0.32) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{ c c c } 2\\ BFP\\ \hline \\ -0.14\\ (-0.74)\\ 1.48^{**}\\ (2.13)\\ 0.41\\ (0.53)\\ -0.16\\ (-0.50)\\ 0.03\\ (0.85)\\ -0.19^{***}\\ (-7.05)\\ -0.62^{*}\\ (-7.05)\\ -0.62^{*}\\ (-1.79)\\ 0.44\\ (1.06)\\ -0.02\\ (-0.98)\\ \hline \\ 0.06\\ \hline \end{array}$ | $\begin{array}{r} 3\\ BUS\\ \hline -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ -0.24\\ (-0.75)\\ 0.01^{*}\\ (1.96)\\ 0.02\\ (1.36)\\ \hline 0.08\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 4\\ \mathrm{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ -0.52\\ (-1.46)\\ 0.00\\ (0.12)\\ -0.00\\ (-0.43)\\ \hline 0.13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.85)\\ 1.00\\ (0.03)\\ 0.25\\ (1.60)\\ \hline 0.05\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**<br>(2.51)<br>0.14**<br>(2.09)<br>-0.87**<br>(-2.54)<br>1.02<br>(1.60)<br>-0.05***<br>(-4.38)<br>0.17                                                                          | $\begin{array}{r} 7\\ \mathrm{EOQ}\\ \hline 7\\ \mathrm{EOQ}\\ \hline (-4.71)\\ 0.48\\ (1.62)\\ -0.92^{***}\\ (-2.95)\\ 0.16\\ (1.08)\\ -0.00^{**}\\ (-2.06)\\ -0.01\\ (-0.73)\\ -0.082^{***}\\ (-2.91)\\ -0.00\\ (-0.43)\\ 0.00^{***}\\ (2.99)\\ \hline 0.10\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9<br>MEN<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01<br>(-0.74)<br>-0.03<br>(-0.96)<br>-0.77**<br>(-2.10)<br>0.01*<br>(1.52)<br>0.10                                                                                                     | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.93)<br>-1.36**<br>(-2.59)<br>-0.08<br>(-0.58)<br>-0.00<br>(-0.10)<br>0.12                                                             | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (-0.81)\\ 0.00\\ (0.39)\\ 0.00\\ (0.08)\\ \hline \end{array}$                                          | $\begin{array}{c} 13\\ 13\\ TLF\\ -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ 0.24^{**}\\ (2.29)\\ -0.20\\ (-0.71)\\ -0.02\\ (-0.02)\\ (-0.71)\\ -0.02\\ (-0.02)\\ -25.79^{**}\\ (-2.09)\\ -0.11\\ (-1.12)\\ \hline 0.06 \end{array}$                        | $\begin{array}{r} 17 \\ \text{WRH} \\ \hline -0.21^{***} \\ (-2.78) \\ -0.38 \\ (-0.62) \\ -0.67 \\ (-0.86) \\ 0.23 \\ (0.60) \\ 0.00 \\ (0.47) \\ -0.10^{**} \\ (-2.19) \\ -0.67^{**} \\ (-2.45) \\ 0.48^{***} \\ (3.62) \\ -0.01^{***} \\ (-2.75) \\ \hline 0.09 \end{array}$                            |
| Panel B<br>$AVG$ SizeF.Ass.F.Sal.Int.Inc.Lev.QuickDiv.p.E.R&DM./B.overall $R^2$<br>adj. $R^2$                                 | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline \\ -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.62^{***} \\ (-6.01) \\ 0.00 \\ (0.06) \\ 0.00 \\ (0.32) \\ \hline \\ 0.11 \\ 0.05 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                          | $\begin{array}{c} 3\\ BUS\\ \hline -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ -0.24\\ (-0.75)\\ 0.01^{*}\\ (1.96)\\ 0.02\\ (1.36)\\ \hline 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.$ | $\begin{array}{c} 4\\ \mathrm{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ -0.52\\ (-1.46)\\ 0.00\\ (0.12)\\ -0.00\\ (-0.43)\\ \hline 0.13\\ 0.07\\ \hline 0.13\\ 0.07\\ \hline 0.14\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.85)\\ 1.00\\ (0.03)\\ 0.25\\ (1.60)\\ \hline 0.05\\ 0.15\\ 0.15\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>EGW<br>-0.33***<br>(-3.79)<br>1.00<br>(1.37)<br>-2.32***<br>(-3.64)<br>0.32<br>(0.44)<br>0.07**<br>(2.51)<br>0.14**<br>(2.09)<br>-0.87**<br>(-2.54)<br>1.02<br>(1.60)<br>-0.05***<br>(-4.38)<br>0.17<br>0.20                                                                  | $\begin{array}{c} 7\\ \mathrm{EOQ}\\ \hline 7\\ \mathrm{EOQ}\\ \hline 0.37^{***}\\ (-4.71)\\ 0.48\\ (1.62)\\ -0.92^{***}\\ (-2.95)\\ 0.16\\ (1.08)\\ -0.00^{**}\\ (-2.06)\\ -0.01\\ (-0.73)\\ -0.082^{***}\\ (-2.91)\\ -0.00\\ (-0.43)\\ 0.00^{***}\\ (2.99)\\ \hline 0.10\\ 0.06\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9<br>MEN<br>-0.29***<br>(-3.48)<br>0.51<br>(1.25)<br>-0.27<br>(-0.72)<br>-0.09<br>(-0.43)<br>-0.01<br>(-0.74)<br>-0.03<br>(-0.96)<br>-0.77**<br>(-2.10)<br>0.01*<br>(1.88)<br>0.01<br>(1.52)<br>0.10<br>0.03                                                               | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.93)<br>-1.36**<br>(-2.59)<br>-0.08<br>(-0.58)<br>-0.00<br>(-0.10)<br>0.12<br>0.03                                                     | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (0.18)\\ -0.40\\ (0.081)\\ 0.00\\ (0.39)\\ 0.00\\ (0.08)\\ \hline \\ 0.08\\ 0.09\\ \hline \end{array}$ | 13<br>TLF<br>-0.45*<br>(-2.05)<br>1.38<br>(0.73)<br>-0.59<br>(-0.36)<br>0.56<br>(0.81)<br>0.24**<br>(2.29)<br>-0.20<br>(-0.71)<br>-0.02<br>(-0.02)<br>-25.79**<br>(-2.09)<br>-0.11<br>(-1.12)<br>0.06<br>0.05                                                                            | $\begin{array}{r} 17 \\ \text{WRH} \\ \hline -0.21^{***} \\ (-2.78) \\ -0.38 \\ (-0.62) \\ -0.67 \\ (-0.86) \\ 0.23 \\ (0.60) \\ 0.00 \\ (0.47) \\ -0.10^{**} \\ (-2.19) \\ -0.67^{**} \\ (-2.45) \\ 0.48^{***} \\ (3.62) \\ -0.01^{***} \\ (-2.75) \\ \hline 0.09 \\ 0.03 \\ 0.03 \\ \end{array}$         |
| Panel B<br>$AVG$ SizeF.Ass.F.Sal.Int.Inc.Lev.QuickDiv.p.E.R&DM./B.overall $R^2$<br>adj. $R^2$<br>F-test                       | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline \\ -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (0.51) \\ -0.00 \\ (0.51) \\ -0.00 \\ (0.51) \\ -0.01 \\ (-0.81) \\ -0.01 \\ (-0.81) \\ -0.01 \\ (-0.81) \\ -0.01 \\ (-0.81) \\ -0.01 \\ (-0.81) \\ -0.00 \\ (0.32) \\ \hline \\ 0.11 \\ 0.05 \\ 32.65 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                        | $\begin{array}{c} 3\\ BUS\\ \hline -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ -0.24\\ (-0.75)\\ 0.01^{*}\\ (1.96)\\ 0.02\\ (1.36)\\ \hline 0.08\\ 0.08\\ 7.95\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 4\\ \mathrm{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ -0.52\\ (-1.46)\\ 0.00\\ (0.12)\\ -0.00\\ (-0.43)\\ \hline 0.13\\ 0.07\\ 7.13\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.85)\\ 1.00\\ (0.03)\\ 0.25\\ (1.60)\\ \hline & 0.05\\ 0.15\\ 3.91\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 6\\ EGW\\ \hline \\ -0.33^{***}\\ (-3.79)\\ 1.00\\ (1.37)\\ -2.32^{***}\\ (-3.64)\\ 0.32\\ (0.44)\\ 0.07^{**}\\ (2.51)\\ 0.14^{**}\\ (2.09)\\ -0.87^{**}\\ (-2.54)\\ 1.02\\ (1.60)\\ -0.05^{***}\\ (-4.38)\\ \hline \\ 0.17\\ 0.20\\ 21.11\\ 0.11\\ \end{array}$ | $\begin{array}{c} 7\\ \mathrm{EOQ}\\ \hline 7\\ \mathrm{EOQ}\\ \hline (-4.71)\\ 0.48\\ (1.62)\\ -0.92^{***}\\ (-2.95)\\ 0.16\\ (1.08)\\ -0.00^{**}\\ (-2.06)\\ -0.01\\ (-0.73)\\ -0.082^{***}\\ (-2.91)\\ -0.00\\ (-0.43)\\ 0.00^{***}\\ (2.99)\\ \hline 0.10\\ 0.06\\ 14.66\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 9\\ \text{MEN}\\ \hline \\ -0.29^{***}\\ (-3.48)\\ 0.51\\ (1.25)\\ -0.27\\ (-0.72)\\ -0.09\\ (-0.72)\\ -0.09\\ (-0.74)\\ -0.03\\ (-0.96)\\ -0.77^{**}\\ (-2.10)\\ 0.01^{*}\\ (1.88)\\ 0.01\\ (1.52)\\ \hline \\ 0.10\\ 0.03\\ 3.16\\ \end{array}$        | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03<br>(-0.75)<br>0.00<br>(0.03)<br>-1.36**<br>(-2.59)<br>-0.08<br>(-0.58)<br>-0.00<br>(-0.10)<br>0.12<br>0.03<br>2.82                            | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (-0.81)\\ 0.00\\ (0.39)\\ 0.00\\ (0.39)\\ 0.00\\ (0.08)\\ \hline \\ 0.08\\ 0.09\\ 15.08\end{array}$    | $\begin{array}{c} 13\\ 13\\ TLF\\ -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ 0.24^{**}\\ (2.29)\\ -0.20\\ (-0.71)\\ -0.02\\ (-0.02)\\ (-0.71)\\ -0.02\\ (-0.02)\\ -25.79^{**}\\ (-2.09)\\ -0.11\\ (-1.12)\\ \hline 0.06\\ 0.05\\ 4.38\\ \end{array}$        | $\begin{array}{r} 17 \\ \text{WRH} \\ \hline -0.21^{***} \\ (-2.78) \\ -0.38 \\ (-0.62) \\ -0.67 \\ (-0.86) \\ 0.23 \\ (0.60) \\ 0.00 \\ (0.47) \\ -0.10^{**} \\ (-2.19) \\ -0.67^{**} \\ (-2.45) \\ 0.48^{***} \\ (3.62) \\ -0.01^{***} \\ (-2.75) \\ \hline 0.09 \\ 0.03 \\ 8.80 \\ \end{array}$         |
| Panel B<br>$AVG$ SizeF.Ass.F.Sal.Int.Inc.Lev.QuickDiv.p.E.R&DM./B.overall $R^2$<br>adj. $R^2$ F-test<br>p-value               | $\begin{array}{c}  \hat{\beta}  \\ \text{All} \\ \hline -0.40^{***} \\ (-11.97) \\ 0.36^{**} \\ (2.08) \\ -0.60^{***} \\ (-3.26) \\ 0.04 \\ (0.51) \\ -0.00 \\ (-0.81) \\ -0.01 \\ (-0.88) \\ -0.62^{***} \\ (-6.01) \\ 0.00 \\ (0.06) \\ 0.00 \\ (0.32) \\ \hline 0.11 \\ 0.05 \\ 32.65 \\ 0.00 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                        | $\begin{array}{c} 3\\ BUS\\ \hline -0.43^{***}\\ (-4.95)\\ 0.38\\ (0.74)\\ -1.89^{***}\\ (-2.70)\\ 0.18\\ (0.72)\\ -0.00\\ (-0.04)\\ 0.04\\ (0.85)\\ -0.24\\ (-0.75)\\ 0.01^{*}\\ (1.96)\\ 0.02\\ (1.36)\\ \hline 0.08\\ 0.08\\ 7.95\\ 0.00\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 4\\ \mathrm{CMP}\\ \hline -0.55^{***}\\ (-6.46)\\ 0.34\\ (0.69)\\ -0.48\\ (-0.98)\\ 0.02\\ (0.06)\\ 0.01\\ (0.40)\\ -0.01\\ (0.40)\\ -0.01\\ (-0.41)\\ -0.52\\ (-1.46)\\ 0.00\\ (0.12)\\ -0.00\\ (-0.43)\\ \hline 0.13\\ 0.07\\ 7.13\\ 0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 5\\ \text{CON}\\ \hline & -0.94^{*}\\ (-1.90)\\ -1.23\\ (-0.75)\\ 2.93\\ (1.45)\\ -0.99^{***}\\ (-2.95)\\ 0.15\\ (0.66)\\ 0.38\\ (1.17)\\ -0.61\\ (-0.85)\\ 1.00\\ (0.03)\\ 0.25\\ (1.60)\\ \hline & 0.05\\ 0.15\\ 3.91\\ 0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 6\\ EGW\\ \hline \\ -0.33^{***}\\ (-3.79)\\ 1.00\\ (1.37)\\ -2.32^{***}\\ (-3.64)\\ 0.32\\ (0.44)\\ 0.07^{**}\\ (2.51)\\ 0.14^{**}\\ (2.09)\\ -0.87^{**}\\ (-2.54)\\ 1.02\\ (1.60)\\ -0.05^{***}\\ (-4.38)\\ \hline \\ 0.17\\ 0.20\\ 21.11\\ 0.00\\ \end{array}$ | $\begin{array}{c} 7\\ \mathrm{EOQ}\\ \hline 7\\ \mathrm{EOQ}\\ \hline (-4.71)\\ 0.48\\ (1.62)\\ -0.92^{***}\\ (-2.95)\\ 0.16\\ (1.08)\\ -0.00^{**}\\ (-2.06)\\ -0.01\\ (-0.73)\\ -0.082^{***}\\ (-2.91)\\ -0.00\\ (-0.43)\\ 0.00^{***}\\ (2.99)\\ \hline 0.10\\ 0.06\\ 14.66\\ 0.00\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 9\\ \text{MEN}\\ \hline \\ -0.29^{***}\\ (-3.48)\\ 0.51\\ (1.25)\\ -0.27\\ (-0.72)\\ -0.09\\ (-0.72)\\ -0.09\\ (-0.74)\\ -0.03\\ (-0.96)\\ -0.77^{**}\\ (-2.10)\\ 0.01^{*}\\ (1.88)\\ 0.01\\ (1.52)\\ \hline \\ 0.10\\ 0.03\\ 3.16\\ 0.00\\ \end{array}$ | 11<br>MQA<br>-0.29***<br>(-2.78)<br>-0.33<br>(-0.27)<br>-0.14<br>(-0.20)<br>-0.30<br>(-0.75)<br>0.00<br>(0.03)<br>-0.03*<br>(-1.93)<br>-1.36**<br>(-2.59)<br>-0.08<br>(-0.58)<br>-0.00<br>(-0.10)<br>0.12<br>0.03<br>2.82<br>0.01                                     | $\begin{array}{c} 12\\ \text{OSE}\\ \hline \\ -0.64^{***}\\ (-4.22)\\ -0.89\\ (-1.14)\\ 0.17\\ (0.20)\\ -0.34\\ (-1.02)\\ -0.00\\ (-1.21)\\ 0.00\\ (0.18)\\ -0.40\\ (-0.81)\\ 0.00\\ (0.39)\\ 0.00\\ (0.08)\\ \hline \\ 0.08\\ 0.09\\ 15.08\\ 0.00\\ \end{array}$          | $\begin{array}{c} 13\\ 13\\ TLF\\ -0.45^{*}\\ (-2.05)\\ 1.38\\ (0.73)\\ -0.59\\ (-0.36)\\ 0.56\\ (0.81)\\ 0.24^{**}\\ (2.29)\\ -0.20\\ (-0.71)\\ -0.02\\ (-0.02)\\ (-0.71)\\ -0.02\\ (-0.02)\\ -25.79^{**}\\ (-2.09)\\ -0.11\\ (-1.12)\\ \hline 0.06\\ 0.05\\ 4.38\\ 0.00\\ \end{array}$ | $\begin{array}{r} 17 \\ \text{WRH} \\ \hline -0.21^{***} \\ (-2.78) \\ -0.38 \\ (-0.62) \\ -0.67 \\ (-0.86) \\ 0.23 \\ (0.60) \\ 0.00 \\ (0.47) \\ -0.10^{**} \\ (-2.19) \\ -0.67^{**} \\ (-2.45) \\ 0.48^{***} \\ (3.62) \\ -0.01^{***} \\ (-2.75) \\ \hline 0.09 \\ 0.03 \\ 8.80 \\ 0.00 \\ \end{array}$ |

Table 9: Fixed-effects regression for each industry sector with  $HML_{FX}$ 

Dependent variables: the sensitivities of the  $HML_{FX}$  portfolio that represent the exposure to iCCTs of companies in Panel A and the sensitivities of the AVG portfolio in the lower Panel B. Absolute values of the coefficients are used for each of the first regressions. All regressions are estimated using a fixed-effects panel regression with robust and clustered standard errors on the company level. T-statistics are given in parentheses. The coefficients are tagged with the respective significance levels: \* p<10%, \*\* p<5%, \*\*\* p<1%. We also report the overall and adjusted  $R^2$ , the joint F-test with the respective p-value and the overall Observations (Obs.). We used the industry breakdown displayed in Table 7 to divide the sample into 17 sectors. We do not include the agriculture, hunting, forestry and fishing sector due to the the insufficient number of observations. For presentation purposes we further exclude sectors with a low number of observations and low average  $HML_{FX}$  sensitivities (food products, beverages and tobacco; manufacturing nec, recycling; transport and storage, post and telecommunication; transport equipment; wood, paper, paper products, printing and publishing). The table with all industries is displayed in the Appendix B.

| Annualized re | <u>eturns</u> : |        |        |        |        |        |            |
|---------------|-----------------|--------|--------|--------|--------|--------|------------|
| Portfolio     | 1               | 2      | 3      | 4      | 5      | AVG    | $HML_{FX}$ |
| Mean          | -4.04           | -1.81  | 1.41   | 0.58   | 4.55   | 0.82   | 8.95       |
|               | [0.43]          | [0.63] | [0.55] | [0.58] | [0.55] | [0.42] | [0.66]     |
| Median        | -4.59           | -1.99  | 1.15   | 1.93   | 3.98   | 0.23   | 9.91       |
| Std. dev.     | 6.59            | 9.76   | 8.52   | 8.91   | 8.49   | 6.57   | 10.27      |
| Sharpe ratio  | -0.61           | -0.19  | 0.17   | 0.07   | 0.54   | 0.12   | 0.87       |
| Skewness      | 0.04            | 0.19   | 0.17   | -0.42  | -0.11  | 0.01   | 0.04       |
| Kurtosis      | 1.80            | 2.21   | 3.45   | 2.19   | 2.27   | 2.63   | 2.43       |
| AC(1)         | -0.05           | -0.01  | 0.14   | 0.10   | 0.07   | 0.06   | 0.05       |
|               | (0.48)          | (0.86) | (0.03) | (0.11) | (0.29) | (0.38) | (0.45)     |
| Correlation:  |                 |        |        |        |        |        |            |
|               | 1               | 2      | 3      | 4      | 5      | AVG    | $HML_{FX}$ |
| 1             | 1.00            |        |        |        |        |        |            |
| 2             | 0.45            | 1.00   |        |        |        |        |            |
| 3             | 0.36            | 0.66   | 1.00   |        |        |        |            |
| 4             | 0.22            | 0.51   | 0.54   | 1.00   |        |        |            |
| 5             | 0.33            | 0.50   | 0.61   | 0.59   | 1.00   |        |            |
| AVG           | 0.60            | 0.82   | 0.82   | 0.77   | 0.80   | 1.00   |            |
| $HML_{FX}$    | -0.51           | 0.09   | 0.26   | 0.36   | 0.65   | 0.24   | 1.00       |

Table 10: Pricing and explanation of iCCTs using five portfolios

This table reports the mean, median, standard deviation and the Sharpe ratio using annualized monthly returns of the portfolio 1 to 5 (from low to high forward premiums), AVG and  $HML_{FX}$  portfolio from 1997 to 2016. AVG represents the average portfolio of the low, middle and high portfolio and  $HML_{FX}$  stands for the CCT portfolio, which is long in portfolio high and short in portfolio low. We also show the descriptive statistics of the trade-weighted exchange rate index of the Federal Reserve (FX index) in indirect quotation, whose weights we use in the portfolio construction, and total US market capitalization of Datastream as a market factor (Market) that represents the development of the US stock market. The mean, the median and the standard deviation are given in percentage points. Sharpe Ratios are computed as the annualized means divided by the annualized standard deviations. For the first order autocorrelation coefficients (AC(1)) we used monthly returns. The respective p-values are displayed in parentheses. We also report the standard errors of the average returns in brackets. The lower panel presents the respective monthly correlations.

| FMB        |     | All          | Subsa     | mples        |
|------------|-----|--------------|-----------|--------------|
|            |     | 2002-2016    | 2002-2008 | 2009-2016    |
| $HML_{FX}$ | λ   | $0.145^{*}$  | -0.022    | $0.289^{**}$ |
|            | (t) | (1.663)      | (-0.323)  | (2.010)      |
| F-test     |     | 2.767        | 0.104     | 4.039        |
| p-value    |     | 0.098        | 0.748     | 0.047        |
| adj. $R^2$ |     | 0.005        | 0.002     | 0.007        |
| AVG        | λ   | $0.136^{**}$ | 0.066     | $0.196^{**}$ |
|            | (t) | (2.286)      | (1.614)   | (1.995)      |
| F-test     |     | 5.227        | 2.604     | 3.981        |
| p-value    |     | 0.023        | 0.110     | 0.049        |
| adj. $R^2$ |     | 0.005        | 0.003     | 0.006        |

Table 11: Pricing of iCCTs of companies with five portfolios

This table reports the FMB results of the cross-sectional pricing of the  $HML_{FX}$  and AVG portfolio on the companies' stock returns separately. The two portfolios are retrieved from Portfolios 1 to 5 (low to high forward premium). We display the risk premia  $\lambda$  and the respective t-statistics in parenthesis. The coefficients are tagged with the respective significance levels: \* p<10%, \*\* p<5%, \*\*\* p<1%. We show the results for the time frame of February 1997 to 2016 and sub-periods, which are calculated using five years of consecutive monthly data points and monthly rolling over observations. We also display the F-test with the respective p-value and the adjusted  $R^2$ .

| FMB        |           | All          | Subsa     | mples       |
|------------|-----------|--------------|-----------|-------------|
|            |           | 2002-2016    | 2002-2008 | 2009-2016   |
| $HML_{FX}$ | λ         | 0.113        | -0.038    | $0.243^{*}$ |
|            | (t)       | (1.340)      | (-0.528)  | (1.754)     |
| F-test     |           | 0.908        | 1.645     | 2.324       |
| p-value    |           | 0.405        | 0.199     | 0.103       |
| adj. $R^2$ |           | 0.010        | 0.013     | 0.008       |
| AVG        | $\lambda$ | $0.116^{**}$ | 0.104**   | 0.127       |
|            | (t)       | (2.295)      | (2.628)   | (1.454)     |
| F-test     |           | 2.663        | 5.020     | 1.964       |
| p-value    |           | 0.073        | 0.009     | 0.146       |
| adj. $R^2$ |           | 0.011        | 0.013     | 0.010       |

Table 12: Pricing of iCCTs of companies with included market

This table reports the FMB results of the cross-sectional pricing of the  $HML_{FX}$  and AVG portfolio on the companies' stock returns separately with an included market factor. We display the risk premia  $\lambda$  and the respective t-statistics in parenthesis. The coefficients are tagged with the respective significance levels: \* p < 10%, \*\* p < 5%, \*\*\* p < 1%. We show the results for the time frame of February 1997 to 2016 and sub-periods, which are calculated using five years of consecutive monthly data points and monthly rolling over observations. We also display the F-test with the respective p-value and the adjusted  $R^2$ .

|             |           | E           | $ML_{FX}$ | C     |               | AVG    |       |
|-------------|-----------|-------------|-----------|-------|---------------|--------|-------|
| Interval    | Obs.      | $\hat{eta}$ | $SN^*$    | $R^2$ | $\hat{\beta}$ | $SN^*$ | $R^2$ |
| 1997-2001   | $1,\!136$ | 0.243       | 0.053     | 0.118 | -0.042        | 0.066  | 0.119 |
| 1998-2002   | 1,201     | 0.316       | 0.065     | 0.135 | -0.044        | 0.075  | 0.135 |
| 1999-2003   | $1,\!290$ | 0.382       | 0.080     | 0.134 | 0.002         | 0.090  | 0.136 |
| 2000-2004   | 1,326     | 0.319       | 0.077     | 0.147 | -0.100        | 0.101  | 0.153 |
| 2001 - 2005 | $1,\!353$ | 0.575       | 0.094     | 0.178 | -0.253        | 0.088  | 0.178 |
| 2002-2006   | $1,\!374$ | 0.639       | 0.100     | 0.168 | -0.046        | 0.070  | 0.165 |
| 2003-2007   | $1,\!416$ | 0.339       | 0.094     | 0.151 | -0.018        | 0.076  | 0.149 |
| 2004-2008   | $1,\!474$ | 0.262       | 0.145     | 0.217 | 0.104         | 0.167  | 0.218 |
| 2005-2009   | 1,529     | 0.433       | 0.168     | 0.245 | 0.124         | 0.126  | 0.238 |
| 2006-2010   | $1,\!612$ | 0.445       | 0.153     | 0.265 | 0.271         | 0.168  | 0.262 |
| 2007 - 2011 | $1,\!660$ | 0.369       | 0.161     | 0.283 | 0.258         | 0.178  | 0.280 |
| 2008-2012   | $1,\!674$ | 0.324       | 0.156     | 0.288 | 0.216         | 0.173  | 0.286 |
| 2009-2013   | 1,736     | 0.251       | 0.122     | 0.249 | 0.066         | 0.124  | 0.246 |
| 2010-2014   | 1,785     | -0.061      | 0.143     | 0.237 | -0.001        | 0.150  | 0.235 |
| 2011 - 2015 | $1,\!849$ | -0.190      | 0.163     | 0.198 | -0.072        | 0.168  | 0.196 |
| 2012-2016   | 1,926     | -0.148      | 0.149     | 0.161 | -0.019        | 0.113  | 0.158 |
|             | 24,341    | 0.260       | 0.120     | 0.204 | 0.035         | 0.121  | 0.202 |

Table 13: Betas of iCCTs of companies with an included market factor

This table shows the  $\beta$  factors for the  $HML_{FX}$  and AVG portfolios using a Newey and West (1987) estimator including a market factor. The number of lags is obtained from an autocorrelation test. For each estimation we use the monthly data of five-year intervals, with at least 40 observations. The displayed  $\beta$  factors are the average coefficients of each interval with the companies' stock return as the dependent variable. The AVG and  $HML_{FX}$  portfolio are estimated separately. Consistent with the pricing of iCCT of companies, we account for outliners of the companies' sensitivities by winsorizing 0.5% of the estimated  $\beta$  factors at each end. We also show the average  $R^2$  as well as the percentage amount of the significant  $\beta$  factors (SN) at the 10% level. Significance level: \* p<10%

|                        | HM            | $L_{FX}$ - $\hat{\beta}_{i,t-1}$ | 2,t+2             | A               | $VG-\hat{\beta}_{i,t-2,t-2}$ | +2                |
|------------------------|---------------|----------------------------------|-------------------|-----------------|------------------------------|-------------------|
|                        | $ \hat{eta} $ | $\hat{\beta} > 0$                | $\hat{\beta} < 0$ | $ \hat{\beta} $ | $\hat{\beta} > 0$            | $\hat{\beta} < 0$ |
| Size                   | -0.210***     | -0.178***                        | $0.221^{***}$     | -0.457***       | -0.537***                    | 0.296***          |
|                        | (-10.388)     | (-6.561)                         | (7.408)           | (-13.849)       | (-10.558)                    | (7.398)           |
| F.Ass.                 | 0.118         | $0.232^{*}$                      | -0.009            | 0.190           | 0.075                        | -0.171            |
|                        | (1.021)       | (1.655)                          | (-0.049)          | (1.122)         | (0.295)                      | (-0.805)          |
| F.Sal.                 | -0.228**      | -0.299*                          | $0.255^{*}$       | -0.738***       | -0.520**                     | $0.893^{***}$     |
|                        | (-2.031)      | (-1.837)                         | (1.683)           | (-4.386)        | (-2.188)                     | (3.668)           |
| Int.Inc.               | -0.008        | $0.101^{*}$                      | 0.098             | -0.033          | -0.043                       | 0.147             |
|                        | (-0.183)      | (1.660)                          | (1.472)           | (-0.420)        | (-0.339)                     | (1.417)           |
| Lev.                   | 0.000         | 0.001                            | 0.000             | -0.001          | 0.001                        | 0.001             |
|                        | (0.297)       | (1.581)                          | (0.736)           | (-0.722)        | (0.456)                      | (1.487)           |
| Quick                  | 0.003         | 0.006                            | -0.000            | -0.003          | -0.008                       | -0.002            |
|                        | (0.722)       | (0.877)                          | (-0.080)          | (-0.416)        | (-0.811)                     | (-0.325)          |
| Div.p.E.               | -0.299***     | $-0.174^{**}$                    | $0.272^{***}$     | -0.459***       | $-0.555^{***}$               | $0.404^{***}$     |
|                        | (-4.722)      | (-2.118)                         | (2.769)           | (-4.676)        | (-3.787)                     | (3.047)           |
| R&D                    | $0.000^{***}$ | -0.000                           | -0.000***         | -0.000          | $0.000^{**}$                 | 0.000             |
|                        | (5.113)       | (-1.512)                         | (-3.627)          | (-0.600)        | (2.065)                      | (1.270)           |
| M./B.                  | -0.001***     | -0.002***                        | 0.000             | -0.000          | 0.000                        | -0.001            |
|                        | (-2.635)      | (-2.623)                         | (0.586)           | (-0.154)        | (0.098)                      | (-1.054)          |
| overall $\mathbb{R}^2$ | 0.114         | 0.091                            | 0.134             | 0.138           | 0.156                        | 0.096             |
| adj. $R^2$             | 0.038         | 0.029                            | 0.038             | 0.073           | 0.064                        | 0.063             |
| F-test                 | 26.091        | 9.512                            | 14.633            | 39.860          | 20.951                       | 16.805            |
| p-value                | 0.000         | 0.000                            | 0.000             | 0.000           | 0.000                        | 0.000             |
| Obs.                   | $21,\!804$    | $11,\!480$                       | $10,\!324$        | 21,804          | 11,753                       | $10,\!051$        |

Table 14: Fixed-effects regression for  $HML_{FX}$  and AVG with included market factor

Dependent variables: the sensitivities of the  $HML_{FX}$  and AVG portfolio that represent the exposure to iCCTs of companies, which were estimated including a market factor. Thus, the sensitivities represent the residual exposure after the market-wide influence. Absolute values of the coefficients are used for the first regressions. For the latter the sign of the coefficients is used to separate the sample into positive and negative values. All regressions are estimated using a fixed-effects panel regression with robust and clustered standard errors on the company level. T-statistics are given in parentheses. The coefficients are tagged with the respective significance levels: \* p<10%, \*\* p<5%, \*\*\* p<1%. We also report the overall and adjusted  $R^2$ , the joint F-test with the respective p-value and the overall observations (Obs.).

|                                    | HM             | $L_{FX}$ - $\hat{\beta}_{i,t-2}$ | 2,t+2             | A               | $VG-\hat{\beta}_{i,t-2,t}$ | +2                |
|------------------------------------|----------------|----------------------------------|-------------------|-----------------|----------------------------|-------------------|
|                                    | $ \hat{eta} $  | $\hat{\beta} > 0$                | $\hat{\beta} < 0$ | $ \hat{\beta} $ | $\hat{\beta} > 0$          | $\hat{\beta} < 0$ |
| Size                               | -0.051***      | -0.043***                        | 0.071***          | -0.106***       | -0.117***                  | 0.079***          |
|                                    | (-17.987)      | (-12.009)                        | (14.976)          | (-24.725)       | (-22.760)                  | (19.349)          |
| F.Ass.                             | -0.004         | 0.035                            | $0.118^{***}$     | 0.188***        | $0.243^{***}$              | -0.048            |
|                                    | (-0.095)       | (0.657)                          | (2.805)           | (3.111)         | (3.665)                    | (-0.830)          |
| F.Sal.                             | $0.054^{*}$    | 0.057                            | -0.056            | -0.044          | -0.002                     | 0.027             |
|                                    | (1.855)        | (1.602)                          | (-1.602)          | (-1.069)        | (-0.037)                   | (0.672)           |
| Int.Inc.                           | $-0.046^{*}$   | -0.040                           | -0.063**          | -0.058*         | $-0.122^{***}$             | 0.061             |
|                                    | (-1.860)       | (-1.413)                         | (-2.302)          | (-1.665)        | (-3.350)                   | (1.633)           |
| Lev.                               | 0.000          | 0.001                            | $0.001^{*}$       | -0.000          | -0.000                     | -0.000            |
|                                    | (0.574)        | (1.299)                          | (1.659)           | (-0.137)        | (-0.202)                   | (-0.104)          |
| Quick                              | -0.001         | -0.004*                          | -0.003**          | -0.001          | -0.006**                   | -0.007**          |
|                                    | (-0.522)       | (-1.660)                         | (-2.283)          | (-0.356)        | (-2.138)                   | (-1.970)          |
| Div.p.E.                           | $-0.510^{***}$ | $-0.561^{***}$                   | $0.162^{***}$     | -0.628***       | -0.678***                  | $0.503^{***}$     |
|                                    | (-22.161)      | (-19.343)                        | (5.404)           | (-19.132)       | (-17.088)                  | (14.968)          |
| R&D                                | 0.000          | -0.000                           | -0.000            | 0.000           | 0.000                      | 0.000             |
|                                    | (0.949)        | (-1.411)                         | (-0.702)          | (0.458)         | (0.885)                    | (0.443)           |
| M./B.                              | -0.000         | -0.001**                         | -0.000            | 0.000           | 0.000                      | -0.000            |
|                                    | (-1.299)       | (-2.304)                         | (-1.075)          | (0.982)         | (0.494)                    | (-0.941)          |
| $cor(\hat{eta},\hat{\hat{eta}})^2$ | 0.080          | 0.073                            | 0.129             | 0.125           | 0.134                      | 0.102             |
| N                                  | 21,722         | $14,\!374$                       | 7,070             | 21,722          | $12,\!438$                 | 9,084             |

**Table A.1:** Feasible generalized least squares regression for  $HML_{FX}$  and AVG

Dependent variables: the sensitivities of the  $HML_{FX}$  and AVG portfolio that represent the exposure to iCCTs of companies. Absolute values of the coefficients are used for the first regressions. For the latter the sign of the coefficients is used to separate the sample into positive and negative values. All regressions are estimated using a feasible generalized least square regression to correct for autocorrelation across periods and heteroskedasticity between the residuals on the firm level. The T-statistics are given in parentheses. The coefficients are tagged with the respective significance levels: \* p<10%, \*\* p<5%, \*\*\* p<1%. We also report the squared correlation (cor) of the estimated exposures and fitted values of the dependent variable, as a standard  $R^2$  statistic is not useful as a diagnostic tool for GLS regressions.

|                                                                                    | $ \hat{\beta} $ All                                         | 2<br>BFP                                                  | 3<br>BUS                                                  | 4<br>CMP                                                                                                        | 5<br>CON                                                 | 6<br>EGW                                                 | 7<br>EOQ                                                  | 8<br>FBT                                               | 9<br>MEN                                                  | 10<br>MNR                                                  | 11<br>MQA                                       | 12 OSE                                                     | 13 TLF                                                  | $^{14}_{\mathrm{TPT}}$                                    | $^{15}_{ m TRQ}$                                          | 16<br>WPP                                                    | 17<br>WRH                                     |
|------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|
| Size                                                                               | $-0.15^{***}$ (-7.00)                                       | -0.09                                                     | $-0.24^{***}$<br>(-4.35)                                  | $-0.19^{***}$<br>(-3.52)                                                                                        | 0.32 (1.60)                                              | -0.10 (-1.24)                                            | $-0.13^{***}$<br>(-3.28)                                  | -0.02                                                  | -0.11 (-1.63)                                             | $-0.63^{*}$<br>(-1.92)                                     | $-0.24^{***}$ (-3.11)                           | $-0.17^{**}$ (-2.09)                                       | -0.12 (-0.43)                                           | -0.17*<br>(-1.83)                                         | 0.06<br>(0.53)                                            | -0.04<br>(-0.28)                                             | -0.05 (-0.86)                                 |
| F.Ass.                                                                             | 0.20                                                        | $1.39^{***}$                                              | 0.09                                                      | 0.05                                                                                                            | $1.71^{*}$                                               | 0.48                                                     | -0.02                                                     | -0.02                                                  | 0.66**                                                    | -0.94                                                      | $1.31^{*}$                                      | 0.34                                                       | $2.42^{**}$                                             | -0.74                                                     | $1.97^{**}$                                               | -0.69                                                        | -0.33                                         |
| F Col                                                                              | (1.55)                                                      | (2.94)                                                    | (0.25)                                                    | (0.12)                                                                                                          | (2.03)<br>$^{2}_{14***}$                                 | (0.65)                                                   | (-0.11)                                                   | (-0.03)                                                | (2.22)                                                    | (-1.35)                                                    | (1.79)                                          | (0.50)                                                     | (2.81)                                                  | (-0.82)                                                   | (2.11)                                                    | (-0.81)                                                      | (-0.65)                                       |
| тОат-                                                                              | (0.05)                                                      | (0.42)                                                    | (0.03)                                                    | (1.10)                                                                                                          | (-3.26)                                                  | (-3.02)                                                  | (-1.16)                                                   | (99.0-)                                                | (0.87)                                                    | (1.22)                                                     | (-2.29)                                         | (-0.17)                                                    | (-0.34)                                                 | (-0.56)                                                   | (1.07)                                                    | (-0.10)                                                      | (1.38)                                        |
| Int.Inc.                                                                           | 0.14**                                                      | -0.28                                                     | $0.21^{**}$                                               | 0.12                                                                                                            | -0.09                                                    | -0.19                                                    | $0.27^{***}$                                              | $0.56^{*}$                                             | 0.20                                                      | -0.36                                                      | -0.33*                                          | -0.15                                                      | 1.02                                                    | -0.17                                                     | -0.40                                                     | -0.03                                                        | 0.42                                          |
| Lev.                                                                               | (2.47) -0.00                                                | (-0.68)<br>0.04                                           | (2.11)<br>0.00                                            | (0.74)-0.00                                                                                                     | (-0.27)<br>0.04                                          | (-0.59)<br>0.02                                          | (2.60)<br>-0.00                                           | $(1.93) \\ 0.03^{**}$                                  | (1.50)-0.00                                               | (-1.04)<br>0.00                                            | (-1.85)<br>0.06                                 | (-0.53)-0.00                                               | $(1.28)$ $0.28^{**}$                                    | (-0.33)<br>0.01                                           | (-1.28)<br>- $0.04^{***}$                                 | (-0.08)<br>$0.11^{**}$                                       | (1.16) 0.00                                   |
|                                                                                    | (-1.51)                                                     | (1.03)                                                    | (0.46)                                                    | (-0.36)                                                                                                         | (0.23)                                                   | (0.00)                                                   | (-1.27)                                                   | (2.60)                                                 | (-0.66)                                                   | (0.03)                                                     | (1.33)                                          | (-0.66)                                                    | (2.55)                                                  | (0.83)                                                    | (-2.87)                                                   | (2.24)                                                       | (0.28)                                        |
| Quick                                                                              | -0.00                                                       | -0.02                                                     | 0.03                                                      | -0.00                                                                                                           | -0.06                                                    | -0.03*                                                   | -0.00                                                     | 0.01                                                   | 0.02                                                      | -0.03**                                                    | 0.02                                            | 0.01                                                       | 0.13                                                    | -0.11                                                     | $-0.16^{*}$                                               | 0.00                                                         | -0.06**                                       |
|                                                                                    | (-0.52)                                                     | (-1.27)                                                   | (0.94)                                                    | (-0.52)                                                                                                         | (-0.29)                                                  | (-1.97)                                                  | (-0.72)                                                   | (0.14)                                                 | (0.66)                                                    | (-2.46)                                                    | (0.84)                                          | (0.92)                                                     | (0.61)                                                  | (-0.85)                                                   | (-1.97)                                                   | (0.30)                                                       | (-2.00)                                       |
| Div.p.E.                                                                           | -0.44***                                                    | -0.37                                                     | -0.37                                                     | $-0.46^{*}$                                                                                                     | -0.99**                                                  | -0.58**                                                  | -0.20                                                     | $-1.13^{***}$                                          | -0.88***                                                  | -0.42                                                      | -0.56                                           | -0.39                                                      | -0.97                                                   | -0.41                                                     | -0.03                                                     | 0.06                                                         | -0.52*                                        |
|                                                                                    | (-5.62)                                                     | (-1.46)                                                   | (-1.55)                                                   | (-1.77)                                                                                                         | (-2.21)                                                  | (-2.27)                                                  | (-1.33)                                                   | (-3.17)                                                | (-3.18)                                                   | (-0.77)                                                    | (-1.41)                                         | (-1.27)                                                    | (-1.16)                                                 | (-1.47)                                                   | (-0.09)                                                   | (0.22)                                                       | (-1.94)                                       |
| R&D                                                                                | -0.00                                                       | 0.26                                                      | $0.03^{***}$                                              | -0.00                                                                                                           | 72.67                                                    | 0.54                                                     | -0.00                                                     | $1.27^{***}$                                           | $0.01^{***}$                                              | -0.10                                                      | -0.06**                                         | $0.00^{***}$                                               | -5.11                                                   | $-0.04^{***}$                                             | 0.05                                                      | -0.04**                                                      | $0.30^{**}$                                   |
|                                                                                    | (00.0-)                                                     | (1.08)                                                    | (8.00)                                                    | (-0.30)                                                                                                         | (1.12)                                                   | (1.51)                                                   | (-1.10)                                                   | (2.80)                                                 | (4.82)                                                    | (-0.09)                                                    | (-2.23)                                         | (3.32)                                                     | (-0.42)                                                 | (-2.64)                                                   | (1.25)                                                    | (-2.67)                                                      | (2.38)                                        |
| M./B.                                                                              | -0.00***                                                    | -0.03                                                     | -0.01                                                     | -0.00**                                                                                                         | $0.30^{***}$                                             | $-0.01^{**}$                                             | -0.00                                                     | -0.00                                                  | 0.00                                                      | -0.00                                                      | -0.03                                           | 0.00                                                       | -0.18                                                   | -0.00                                                     | $0.03^{**}$                                               | -0.05*                                                       | $-0.01^{***}$                                 |
|                                                                                    | (-2.77)                                                     | (-1.35)                                                   | (-0.77)                                                   | (-2.28)                                                                                                         | (3.04)                                                   | (-2.09)                                                  | (-0.22)                                                   | (-1.06)                                                | (0.38)                                                    | (10.0-)                                                    | (-1.35)                                         | (0.12)                                                     | (-1.45)                                                 | (-0.07)                                                   | (2.09)                                                    | (-1.80)                                                      | (-2.89)                                       |
| overall $R^2$                                                                      | 0.07                                                        | 0.07                                                      | 0.08                                                      | 0.08                                                                                                            | 0.04                                                     | 0.15                                                     | 0.05                                                      | 0.13                                                   | 0.08                                                      | 0.09                                                       | 0.14                                            | 0.03                                                       | 0.19                                                    | 0.08                                                      | 0.00                                                      | 0.11                                                         | 0.03                                          |
| adj. $R^2$                                                                         | 0.02                                                        | 0.07                                                      | 0.05                                                      | 0.02                                                                                                            | 0.08                                                     | 0.08                                                     | 0.02                                                      | 0.10                                                   | 0.03                                                      | 0.08                                                       | 0.05                                            | 0.02                                                       | 0.14                                                    | 0.05                                                      | 0.06                                                      | 0.05                                                         | 0.02                                          |
| F-test                                                                             | 16.07                                                       | 500.37                                                    | 75.65                                                     | 4.40                                                                                                            | 22.76                                                    | 7.74                                                     | 63.98                                                     | 3.55                                                   | 5.86                                                      | 2.63                                                       | 3.61                                            | 13.56                                                      | 9.47                                                    | 354.33                                                    | 3.58                                                      | 490.77                                                       | 3.26                                          |
| p-value                                                                            | 0.00                                                        | 0.00                                                      | 0.00                                                      | 0.00                                                                                                            | 0.00                                                     | 0.00                                                     | 0.00                                                      | 0.00                                                   | 0.00                                                      | 0.03                                                       | 0.00                                            | 0.00                                                       | 0.00                                                    | 0.00                                                      | 0.00                                                      | 0.00                                                         | 0.00                                          |
| Obs.                                                                               | 21,812                                                      | 878                                                       | 2,564                                                     | 3,292                                                                                                           | 277                                                      | 518                                                      | 4,262                                                     | 677                                                    | 1,440                                                     | 348                                                        | 851                                             | 1,437                                                      | 243                                                     | 942                                                       | 825                                                       | 543                                                          | 2,655                                         |
| Dependent v<br>regressions <i>i</i><br>with the res<br>We used the<br>observations | variables: tl<br>are estimate<br>pective sigr<br>industry b | ae sensitivil<br>ed using a<br>iffcance lev<br>reakdown d | ties of the<br>fixed-effect<br>els: * p<1<br>lisplayed in | $\begin{array}{c} HML_{FX} \ p_{0}\\ \text{s panel reg}\\ 0\%, \ ^{**} \ p<5\\ \text{a Table 7 to} \end{array}$ | ortfolio that<br>ession with<br>%, *** p<1<br>divide the | t represent<br>1 robust an<br>1%. We also<br>sample into | the exposu<br>d clustered<br>> report the<br>> 17 sectors | te to iCCTs<br>standard e<br>overall and<br>. We do no | s of compar<br>arors on th<br>d adjusted<br>at include th | iies. Absol<br>e company<br>$R^2$ , the joi<br>ie agricult | ute values of level. T-s nt F-test wure, huntin | of the coeff<br>tatistics ar<br>ith the res<br>g, forestry | icients are<br>e given in<br>pective p-v<br>and fishing | used for ea<br>parenthese<br>value and th<br>g sector due | ch of the f<br>s. The coe<br>he overall c<br>e to the ins | first regress<br>fficients arr<br>bservation<br>ufficient nu | ons. All<br>e tagged<br>s (Obs.).<br>imber of |

| Table B.1 | Fixed-effects | regression | for each | industry | sector with | $HML_{FX}$ |
|-----------|---------------|------------|----------|----------|-------------|------------|
|-----------|---------------|------------|----------|----------|-------------|------------|

|                                                               | <                                                           |                                                             |                                                                          |                                                          |                                                            |                                                           |                                                           |                                                              |                                                          |                                                          |                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                            |                                                       |                                        |
|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|----------------------------------------|
|                                                               | β                                                           | 5                                                           | ç                                                                        | 4                                                        | ъ                                                          | 9                                                         | 7                                                         | ×                                                            | 6                                                        | 10                                                       | 11                                           | 12                                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                                                        | 15                                                         | 16                                                    | 17                                     |
|                                                               | All                                                         | BFP                                                         | BUS                                                                      | CMP                                                      | CON                                                        | EGW                                                       | EOQ                                                       | FBT                                                          | MEN                                                      | MNR                                                      | MQA                                          | OSE                                                           | TLF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TPT                                                       | TRQ                                                        | WPP                                                   | WRH                                    |
| Size                                                          | $-0.40^{***}$                                               | -0.14                                                       | -0.43***                                                                 | -0.55***                                                 | $-0.94^{*}$                                                | -0.33***                                                  | $-0.37^{***}$                                             | $-0.36^{***}$                                                | -0.29***                                                 | -0.25                                                    | $-0.29^{***}$                                | $-0.64^{***}$                                                 | $-0.45^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.53***                                                  | -0.26                                                      | -0.07                                                 | $-0.21^{***}$                          |
|                                                               | (-11.97)                                                    | (-0.74)                                                     | (-4.95)                                                                  | (-6.46)                                                  | (-1.90)                                                    | (-3.79)                                                   | (-4.71)                                                   | (-3.08)                                                      | (-3.48)                                                  | (-1.01)                                                  | (-2.78)                                      | (-4.22)                                                       | (-2.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (-2.75)                                                   | (-1.19)                                                    | (-0.42)                                               | (-2.78)                                |
| F.Ass.                                                        | $0.36^{**}$                                                 | $1.48^{**}$                                                 | 0.38                                                                     | 0.34                                                     | -1.23                                                      | 1.00                                                      | 0.48                                                      | -0.10                                                        | 0.51                                                     | -1.49                                                    | -0.33                                        | -0.89                                                         | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.57                                                     | 1.19                                                       | -0.05                                                 | -0.38                                  |
|                                                               | (2.08)                                                      | (2.13)                                                      | (0.74)                                                                   | (0.69)                                                   | (-0.75)                                                    | (1.37)                                                    | (1.62)                                                    | (-0.12)                                                      | (1.25)                                                   | (-1.64)                                                  | (-0.27)                                      | (-1.14)                                                       | (0.73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-1.15)                                                   | (1.40)                                                     | (20.0-)                                               | (-0.62)                                |
| F.Sal.                                                        | -0.60***                                                    | 0.41                                                        | -1.89***                                                                 | -0.48                                                    | 2.93                                                       | -2.32***                                                  | $-0.92^{***}$                                             | 0.51                                                         | -0.27                                                    | 1.07                                                     | -0.14                                        | 0.17                                                          | -0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.37                                                     | 1.10                                                       | 0.48                                                  | -0.67                                  |
|                                                               | (-3.26)                                                     | (0.53)                                                      | (-2.70)                                                                  | (-0.98)                                                  | (1.45)                                                     | (-3.64)                                                   | (-2.95)                                                   | (0.73)                                                       | (-0.72)                                                  | (0.00)                                                   | (-0.20)                                      | (0.20)                                                        | (-0.36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (-0.27)                                                   | (1.54)                                                     | (0.54)                                                | (-0.86)                                |
| Int.Inc.                                                      | 0.04                                                        | -0.16                                                       | 0.18                                                                     | 0.02                                                     | -0.99***                                                   | 0.32                                                      | 0.16                                                      | 0.42                                                         | -0.09                                                    | -0.15                                                    | -0.30                                        | -0.34                                                         | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.55                                                      | -0.06                                                      | -0.48                                                 | 0.23                                   |
|                                                               | (0.51)                                                      | (-0.50)                                                     | (0.72)                                                                   | (0.06)                                                   | (-2.95)                                                    | (0.44)                                                    | (1.08)                                                    | (1.38)                                                       | (-0.43)                                                  | (-0.41)                                                  | (-0.75)                                      | (-1.02)                                                       | (0.81)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.12)                                                    | (-0.23)                                                    | (-1.64)                                               | (0.60)                                 |
| Lev.                                                          | -0.00                                                       | 0.03                                                        | -0.00                                                                    | 0.01                                                     | 0.15                                                       | $0.07^{**}$                                               | -0.00**                                                   | 0.01                                                         | -0.01                                                    | 0.01                                                     | 0.00                                         | -0.00                                                         | $0.24^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.01                                                     | -0.02                                                      | $0.07^{**}$                                           | 0.00                                   |
|                                                               | (-0.81)                                                     | (0.85)                                                      | (-0.04)                                                                  | (0.40)                                                   | (0.66)                                                     | (2.51)                                                    | (-2.06)                                                   | (0.91)                                                       | (-0.74)                                                  | (0.23)                                                   | (0.03)                                       | (-1.21)                                                       | (2.29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-0.32)                                                   | (-0.64)                                                    | (2.47)                                                | (0.47)                                 |
| Quick                                                         | -0.01                                                       | -0.19***                                                    | 0.04                                                                     | -0.01                                                    | 0.38                                                       | $0.14^{**}$                                               | -0.01                                                     | 0.03                                                         | -0.03                                                    | -0.01                                                    | $-0.03^{*}$                                  | 0.00                                                          | -0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.08                                                     | -0.16                                                      | $0.01^{**}$                                           | $-0.10^{**}$                           |
|                                                               | (-0.88)                                                     | (-7.05)                                                     | (0.85)                                                                   | (-0.41)                                                  | (1.17)                                                     | (2.09)                                                    | (-0.73)                                                   | (1.13)                                                       | (-0.96)                                                  | (-1.05)                                                  | (-1.93)                                      | (0.18)                                                        | (-0.71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (-0.39)                                                   | (-1.09)                                                    | (2.41)                                                | (-2.19)                                |
| Div.p.E.                                                      | -0.62***                                                    | $-0.62^{*}$                                                 | -0.24                                                                    | -0.52                                                    | -0.61                                                      | -0.87**                                                   | -0.82***                                                  | $-1.03^{**}$                                                 | -0.77**                                                  | $-1.01^{**}$                                             | $-1.36^{**}$                                 | -0.40                                                         | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.71                                                     | 0.10                                                       | $-0.66^{*}$                                           | -0.67**                                |
|                                                               | (-6.01)                                                     | (-1.79)                                                     | (-0.75)                                                                  | (-1.46)                                                  | (-0.85)                                                    | (-2.54)                                                   | (-2.91)                                                   | (-2.16)                                                      | (-2.10)                                                  | (-2.58)                                                  | (-2.59)                                      | (-0.81)                                                       | (-0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (-1.64)                                                   | (0.18)                                                     | (-1.83)                                               | (-2.45)                                |
| R&D                                                           | 0.00                                                        | 0.44                                                        | $0.01^{*}$                                                               | 0.00                                                     | 1.00                                                       | 1.02                                                      | -0.00                                                     | $-1.13^{***}$                                                | $0.01^{*}$                                               | 0.83                                                     | -0.08                                        | 0.00                                                          | $-25.79^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.10^{***}$                                              | $0.13^{**}$                                                | $0.09^{***}$                                          | $0.48^{***}$                           |
|                                                               | (0.06)                                                      | (1.06)                                                      | (1.96)                                                                   | (0.12)                                                   | (0.03)                                                     | (1.60)                                                    | (-0.43)                                                   | (-7.16)                                                      | (1.88)                                                   | (1.00)                                                   | (-0.58)                                      | (0.39)                                                        | (-2.09)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3.41)                                                    | (2.03)                                                     | (4.85)                                                | (3.62)                                 |
| M./B.                                                         | 0.00                                                        | -0.02                                                       | 0.02                                                                     | -0.00                                                    | 0.25                                                       | -0.05***                                                  | $0.00^{***}$                                              | -0.00                                                        | 0.01                                                     | -0.01                                                    | -0.00                                        | 0.00                                                          | -0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                                      | 0.01                                                       | -0.03                                                 | $-0.01^{***}$                          |
|                                                               | (0.32)                                                      | (-0.98)                                                     | (1.36)                                                                   | (-0.43)                                                  | (1.60)                                                     | (-4.38)                                                   | (2.99)                                                    | (-0.16)                                                      | (1.52)                                                   | (-0.60)                                                  | (-0.10)                                      | (0.08)                                                        | (-1.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.69)                                                    | (0.93)                                                     | (-1.02)                                               | (-2.75)                                |
| overall $R^2$                                                 | 0.11                                                        | 0.06                                                        | 0.08                                                                     | 0.13                                                     | 0.05                                                       | 0.17                                                      | 0.10                                                      | 0.15                                                         | 0.10                                                     | 0.09                                                     | 0.12                                         | 0.08                                                          | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                                                      | 0.09                                                       | 0.12                                                  | 0.09                                   |
| adj. $R^2$                                                    | 0.05                                                        | 0.11                                                        | 0.08                                                                     | 0.07                                                     | 0.15                                                       | 0.20                                                      | 0.06                                                      | 0.06                                                         | 0.03                                                     | 0.07                                                     | 0.03                                         | 0.09                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                      | 0.02                                                       | 0.02                                                  | 0.03                                   |
| F-test                                                        | 32.65                                                       | 21.71                                                       | 7.95                                                                     | 7.13                                                     | 3.91                                                       | 21.11                                                     | 14.66                                                     | 10.86                                                        | 3.16                                                     | 13.81                                                    | 2.82                                         | 15.08                                                         | 4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1454.17                                                   | 29.17                                                      | 2582.69                                               | 8.80                                   |
| p-value                                                       | 0.00                                                        | 0.00                                                        | 0.00                                                                     | 0.00                                                     | 0.00                                                       | 0.00                                                      | 0.00                                                      | 0.00                                                         | 0.00                                                     | 0.00                                                     | 0.01                                         | 0.00                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                      | 0.00                                                       | 0.00                                                  | 0.00                                   |
| Obs.                                                          | 21,812                                                      | 878                                                         | 2,564                                                                    | 3,292                                                    | 277                                                        | 518                                                       | 4,262                                                     | 677                                                          | 1,440                                                    | 348                                                      | 851                                          | 1,437                                                         | 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 942                                                       | 825                                                        | 543                                                   | 2,655                                  |
| Dependent v<br>are estimated<br>significance l<br>breakdown d | ariables: th<br>l using a fix<br>evels: * p<<br>isplayed in | e sensitiviti<br>ed-effects p<br>10%, ** p<<br>Table 7 to c | as of the $AI$<br>anel regress<br>5%, *** p <sup>•</sup><br>livide the s | VG portfolic<br>sion with rc<br><1%. We al<br>ample into | o that repre<br>obust and c<br>lso report t<br>17 sectors. | sent the exj<br>lustered sta<br>he overall a<br>We do not | posure to iC<br>ndard error<br>nd adjusted<br>include the | CTs of com<br>s on the co<br>$1 R^2$ , the jc<br>agriculture | apanies. Al-<br>mpany leve<br>oint F-test<br>e, hunting, | solute valu<br>l. T-statis<br>with the re<br>forestry an | tics are give<br>spective p-<br>d fishing se | befficients a<br>per in parent<br>value and t<br>sctor due to | the used for the the the overall of the insufficient of the insuff | each of the<br>coefficients<br>observation<br>cient numbe | first regrees<br>a are tagge<br>s (Obs.). '<br>er of obser | sions. All r<br>d with the<br>We used the<br>vations. | egressions<br>respective<br>e industry |

**Table B.2:** Fixed-effects regression for each industry sector with AVG

| FMB                             |               | All                                                  | Subsa                                                  | mples                                                  |
|---------------------------------|---------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|                                 |               | 2002-2016                                            | 2002-2008                                              | 2009-2016                                              |
| HML <sub>FX</sub>               | $\lambda$ (t) | $0.163^{*}$<br>(1.670)                               | -0.032<br>(-0.452)                                     | $\begin{array}{c} 0.334^{**} \\ (2.002) \end{array}$   |
| F-test<br>p-value<br>adj. $R^2$ |               | 2.787<br>0.097<br>0.005                              | $\begin{array}{c} 0.205 \\ 0.652 \\ 0.002 \end{array}$ | $\begin{array}{c} 4.008 \\ 0.048 \\ 0.007 \end{array}$ |
| AVG                             | $\lambda$ (t) | $\begin{array}{c} 0.129^{**} \\ (2.312) \end{array}$ | $0.053 \\ (1.586)$                                     | $0.195^{*}$<br>(1.961)                                 |
| F-test<br>p-value<br>adj. $R^2$ |               | $5.345 \\ 0.022 \\ 0.004$                            | $2.515 \\ 0.117 \\ 0.003$                              | $3.846 \\ 0.053 \\ 0.006$                              |

Table C.1: Yearly pricing of iCCTs of companies

This table reports the FMB results of the cross-sectional pricing of the  $HML_{FX}$  and AVG portfolio on the companies' stock returns separately. We display the risk premia  $\lambda$  and the respective t-statistics in parenthesis. The coefficients are tagged with the respective significance levels: \* p<10%, \*\* p<5%, \*\*\* p<1%. We show the results for the time frame of February 1997 to 2016 and sub-periods, which are calculated using five years of consecutive monthly data points and yearly rolling over observations. We also display the F-test with the respective p-value and the adjusted  $R^2$ .

|                        | HM             | $L_{FX} - \hat{\beta}_{i,t-2}$ | 2,t+2             | AV              | $VG-\hat{\beta}_{i,t-2,t-2}$ | +2                |
|------------------------|----------------|--------------------------------|-------------------|-----------------|------------------------------|-------------------|
|                        | $ \hat{eta} $  | $\hat{\beta} > 0$              | $\hat{\beta} < 0$ | $ \hat{\beta} $ | $\hat{\beta} > 0$            | $\hat{\beta} < 0$ |
| Size                   | -0.187***      | -0.198***                      | 0.163***          | -0.410***       | -0.468***                    | 0.287***          |
|                        | (-8.689)       | (-6.482)                       | (6.548)           | (-12.709)       | (-9.992)                     | (7.044)           |
| F.Ass.                 | 0.221          | 0.189                          | -0.050            | $0.368^{**}$    | 0.304                        | -0.349            |
|                        | (1.533)        | (1.017)                        | (-0.244)          | (2.198)         | (1.318)                      | (-1.611)          |
| F.Sal.                 | -0.026         | -0.006                         | 0.158             | -0.583***       | -0.273                       | $0.794^{***}$     |
|                        | (-0.189)       | (-0.031)                       | (1.128)           | (-3.365)        | (-1.213)                     | (2.884)           |
| Int.Inc.               | $0.260^{***}$  | $0.315^{***}$                  | -0.066            | 0.043           | 0.098                        | $0.226^{*}$       |
|                        | (4.218)        | (4.268)                        | (-0.848)          | (0.545)         | (0.923)                      | (1.872)           |
| Lev.                   | 0.000          | $0.001^{**}$                   | 0.000             | -0.001          | -0.000                       | 0.001             |
|                        | (1.138)        | (2.494)                        | (0.376)           | (-1.011)        | (-0.135)                     | (0.949)           |
| Quick                  | -0.005         | -0.002                         | $0.007^{**}$      | -0.006          | -0.005                       | 0.003             |
|                        | (-1.424)       | (-0.307)                       | (2.004)           | (-0.956)        | (-0.562)                     | (0.353)           |
| Div.p.E.               | $-0.577^{***}$ | $-0.646^{***}$                 | $0.528^{***}$     | -0.594***       | $-0.732^{***}$               | $0.457^{***}$     |
|                        | (-6.655)       | (-5.446)                       | (5.019)           | (-6.148)        | (-5.064)                     | (3.253)           |
| R&D                    | $0.000^{*}$    | -0.000**                       | -0.000            | -0.000          | 0.000                        | $0.000^{*}$       |
|                        | (1.710)        | (-2.172)                       | (-1.454)          | (-0.510)        | (1.592)                      | (1.876)           |
| M./B.                  | $-0.001^{***}$ | -0.002***                      | -0.001            | 0.001           | 0.000                        | -0.001            |
|                        | (-2.657)       | (-2.987)                       | (-1.000)          | (0.375)         | (0.398)                      | (-1.159)          |
| overall $\mathbb{R}^2$ | 0.071          | 0.063                          | 0.130             | 0.111           | 0.123                        | 0.075             |
| adj. $R^2$             | 0.025          | 0.022                          | 0.036             | 0.056           | 0.045                        | 0.060             |
| F-test                 | 21.604         | 13.748                         | 11.621            | 35.872          | 19.484                       | 15.560            |
| p-value                | 0.000          | 0.000                          | 0.000             | 0.000           | 0.000                        | 0.000             |
| Obs.                   | 21,804         | $13,\!934$                     | 7,870             | 21,804          | $12,\!480$                   | 9,324             |

**Table D.1:** Fixed-effects regression for  $HML_{FX}$  and AVG using five portfolios

Dependent variables: the sensitivities of the  $HML_{FX}$  and AVG portfolio that represent the exposure to iCCTs of companies. Absolute values of the coefficients are used for the first regressions. For the latter the sign of the coefficients is used to separate the sample into positive and negative values. All regressions are estimated using a fixed-effects panel regression with robust and clustered standard errors on the company level. T-statistics are given in parentheses. The coefficients are tagged with the respective significance levels: \* p<10%, \*\* p<5%, \*\*\* p<1%. We also report the overall and adjusted  $R^2$ , the joint F-test with the respective p-value and the overall observations (Obs.).

## Figures



**Figure 1:** Cumulative returns of the  $HML_{FX}$  portfolio, the market return and the FX index



**Figure 2:** Cross-sectional distribution of the sensitivities of the  $HML_{FX}$  and AVG portfolio to stock returns of US companies

# Betriebswirtschaftliche Reihe der Passauer Diskussionspapiere

# Bisher sind erschienen:

| B-1-98  | Jochen Wilhelm, A fresh view on the Ho-Lee model of the term structure from a stochastic discounting perspective                                                                   |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B-2-98  | Bernhard Nietert und Jochen Wilhelm, Arbitrage, Pseudowahrscheinlichkeiten<br>und Martingale - ein didaktisch einfacher Zugang zur elementaren Bewertungs-<br>theorie für Derivate |
| B-3-98  | Bernhard Nietert, Dynamische Portfolio-Selektion unter Berücksichtigung von Kurssprüngen                                                                                           |
| B-4-99  | Jochen Wilhelm, Option Prices with Stochastic Interest Rates – Black/Scholes and Ho/Lee unified                                                                                    |
| B-5-99  | Anja Tuschke, Stock-based Incentive Schemes and the Managerial Labor Market                                                                                                        |
| B-6-00  | Jochen Wilhelm, Das Gaußsche Zinsstrukturmodell – Eine Analyse auf der Basis<br>von Wahrscheinlichkeitsverteilungen                                                                |
| B-7-01  | Bernhard Nietert und Jochen Wilhelm, Some Economic Remarks on Arbitrage<br>Theory                                                                                                  |
| B-8-01  | Jochen Wilhelm, Option Prices with Stochastic Interest Rates –<br>Black/Scholes and Ho/Lee unified                                                                                 |
| B-9-02  | Jochen Wilhelm, Risikoabschläge, Risikozuschläge und Risikoprämien –<br>Finanzierungstheoretische Anmerkungen zu einem Grundproblem der<br>Unternehmensbewertung                   |
| B-10-03 | Jochen Wilhelm, Unternehmensbewertung – Eine finanzmarkttheoretische Untersuchung                                                                                                  |
| B-11-04 | Bernhard Nietert und Jochen Wilhelm, Non-Negativity of Nominal and Real<br>Riskless Rates, Arbitrage Theory, and the Null-Alternative Cash                                         |
| B-12-06 | Armin Dolzer und Bernhard Nietert – Portfolio selection with Time Constraints<br>and a Rational Explanation of Insufficient Diversification and Excessive Trading                  |
| B-13-08 | Josef Schosser - Bewertung ohne "Kapitalkosten": ein arbitragetheoretischer An satz zu Unternehmenswert, Kapitalstruktur und persönlicher Besteuerung                              |
| B-14-14 | Mathias Eickholt, Oliver Entrop, Marco Wilkens, Individual Investors and Subop-<br>timal Early Exercises in the Fixed-Income Market                                                |
| B-15-14 | Mathias Eickholt, Oliver Entrop, Marco Wilkens, What Makes Individual Inves-<br>tors Exercise Early? Empirical Evidence from the Fixed-Income Market                               |

- B-16-14 Mathias Eickholt, Behavioral Financial Engineering in the Fixed-Income Market: The Influence of the Coupon Structure
- B-17-16 Caroline Baethge, Performance in the Beauty Contest: How Strategic Discussion Enhances Team Reasoning
- B-18-16 Caroline Baethge, Marina Fiedler, Aligning Mission Preferences: Does Self-Selection Foster Performance in Working Groups?
- B-19-16 Caroline Baethge, Marina Fiedler, All or (Almost) Nothing? The Influence of Information Cost and Training on Information Selection and the Quality of Decision-Making.
- B-20-16 Caroline Baethge, Marina Fiedler, Ernan Haruvey, In It to Win It: Experimental Evidence on Unique Bid Auctions
- B-21-16 Markus Grottke, Maximilian Kittl, First the stick, then the carrot? A cross-country evaluation of the OECD's initiative against harmful tax competition
- B-22-16 Heike Diller, Stephen Jeffrey, Marina Fiedler, Searching for the silver linings of techno-invasion
- B-23-16 Stephen Jeffrey, Heike Diller, Marina Fiedler, How does intensification and mobile rearrangement affect employee commitment
- B-24-16 Heike Diller, Life is tough so you gotta be rough How resilience impacts employees' attitude towards ICT use
- B-25-16 Stephen Jeffrey, Heike Diller, Marina Fiedler, Closing the Strategy-Performance Gap: The Role of Communication Fit and Distraction
- B-26-17 S. Baller, O. Entrop, A. Schober, M. Wilkens, What drives Performance in the Speculative Market of Short-Term Exchange-Traded Retail Products?
- B-27-17 S. Baller, Risk Taking in the Market of Speculative Exchange-Traded Retail Products: Do Socio-Economic Factors matter?
- B-28-17 L. Frey, L. Engelhard, Review on Tax Research in Accounting: Is the information given by U.S. GAAP income taxes also provided by IFRS?
- B-29-17 J. Lorenz, M. Diller, Do Tax Information Exchange Agreements Curb Transfer Pricing-Induced Tax Avoidance?
- B-30-17 J. Lorenz, M. Grottke, Tax Consultants' Incentives A Game-Theoretic Investigation into the Behavior of Tax Consultants, Taxpayers and the Tax Authority in a Setting of Tax Complexity
- B-31-18 Oliver Entrop, Matthias F. Merkel, "Exchange Rate Risk" within the European Monetary Union? Analyzing the Exchange Rate Exposure of German Firms

- B-32-18 Oliver Entrop, Matthias F. Merkel, Manager's Research Education, the Use of FX Derivatives and Corporate Speculation
- B-33-18 Matthias F. Merkel, Foreign Exchange Derivative Use and Firm Value: Evidence from German Non-Financial Firms
- B-34-19 Oliver Entrop, Georg Fischer, Hedging Costs and Joint Determinants of Premiums and Spreads in Structured Financial Products
- B-35-19 Georg Fischer, How Dynamic Hedging Affects Stock Price Movements: Evidence from German Option and Certificate Markets
- B-36-19 Markus Fritsch, On GMM estimation of linear dynamic panel data models
- B-37-19 Andrew Adrian Yu Pua, Markus Fritsch, Joachim Schnurbus, Large sample properties of an IV estimator based on the Ahn and Schmidt moment conditions
- B-38-19 Andrew Adrian Yu Pua, Markus Fritsch, Joachim Schnurbus, Practical aspects of using quadratic moment conditions in linear dynamic panel data models
- B-39-19 Markus Fritsch, Andrew Adrian Yu Pua, Joachim Schnurbus, pdynmc An Rpackage for estimating linear dynamic panel data models based on linear and nonlinear moment conditions
- B-40-20 Oliver Entrop, Fabian U. Fuchs, Foreign Exchange Rate Exposure of Companies under Dynamic Regret