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Non-technical summary

Research Question

A regular recommendation for the design of monetary policy is to use rules that respond

strongly to inflation and other economic variables. According to the so-called Taylor

principle, a strong response to inflation is important to avoid multiple equilibria that could

otherwise lead to persistent swings in inflation. However, these prescriptions typically

assume that public and policymakers can perfectly observe the state of the economy.

Instead, we consider the following case of imperfect information: Policymakers receive only

noisy signals, based on which they form estimates of economic conditions, and plug these

estimates into an otherwise standard policy rule. We ask whether the Taylor principle

then still helps to avoid multiple equilibria.

Contribution

We consider an imperfect information case that has been widely used before, but, typically

under the assumption that there was a unique equilibrium. We are the first to document

that there is an inherent risk of multiple equilibria in this case, even when the policy rule

adheres to the Taylor principle.

Results

Multiple equilibria are a generic feature of our setting, since the imperfectly informed pol-

icymaker cannot distinguish shocks to economic fundamentals from self-fulfilling changes

in expectations of the public. A further, novel feature of our environment is that the

variability of these belief shocks is bounded to ensure consistency of expectations between

policymaker and public.



Nichttechnische Zusammenfassung

Fragestellung

Ein regelmäßiger Ratschlag für die Gestaltung der Geldpolitik besteht darin, Regeln zu

verwenden, die stark auf die Inflation und andere wirtschaftliche Variablen reagieren. Nach

dem sogenannten Taylor-Prinzip ist eine starke Reaktion auf die Inflation wichtig, um mul-

tiple Gleichgewichte zu vermeiden, die andernfalls zu anhaltenden Inflationsschwankungen

führen könnten. Diese Vorschläge setzen jedoch voraus, dass Öffentlichkeit und politische

Entscheidungsträger die Wirtschaftslage direkt beobachten können. Stattdessen betrach-

ten wir den folgenden Fall unvollständiger Informationen: Die politischen Entscheidungs-

träger empfangen nur ungenaue Signale, auf deren Grundlage sie Schätzungen der wirt-

schaftlichen Bedingungen bilden, und fügen diese Schätzungen in eine standardmässige

Zinsregel ein. Wir fragen, ob in diesem Fall das Taylor-Prinzip ausreicht multiple Gleich-

gewichte zu vermeiden.

Beitrag

Wir betrachten eine Umgebung mit unvollständiger Information, welche bereits regel-

mäßig in der Literatur zur Anwendung gekommen ist, aber typischerweise unter der An-

nahme, dass ein einziges Gleichgewicht vorliegt. Wir sind die ersten, die dokumentieren,

dass in diesem Fall ein inhärentes Risiko für mehrere Gleichgewichte besteht, selbst wenn

die Zinsregel dem Taylor-Prinzip entspricht.

Ergebnisse

Multiple Gleichgewichte sind ein allgemeines Merkmal unserer Modellumgebung, da der

unvollständig informierte politische Entscheidungsträger Schocks von wirtschaftlichen

Fundamentaldaten nicht von unerwarteten, selbsterfüllender Änderungen in den Erwar-

tungen der Öffentlichkeit unterscheiden kann. Ein weiteres, neuartiges Merkmal unse-

res Modells ist, dass die Variabilität dieser Erwartungsschocks zwangsläufig begrenzt ist,

um die Konsistenz der Erwartungen zwischen politischen Entscheidungsträgern und der

Öffentlichkeit zu gewährleisten.
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1 Introduction

Asymmetric information is a pervasive feature of economic environments. Even when
agents are fully rational, their expectation formation and decision-making process are
constrained by the fact that information may be imperfectly distributed in the economy for
reasons such as costs of information acquisition. Asymmetric information is also a central
issue for the conduct of monetary policy as policymakers regularly face uncertainty about
the true state of the economy, either because they are uncertain about the structure of the
economy or because they receive data in real time that are subject to measurement error.
In environments where information is perfect and symmetrically shared, the literature
has shown that ill-designed policy rules can cause indeterminacy. We study equilibrium
determinacy in an asymmetric information setting, where policy is conducted based on
estimates of the true state of the economy.

We consider an economic environment with two types of agents, one who has full in-
formation about the state of economy while the other agent is imperfectly informed. More
specifically, the less informed agent’s information set is nested within the fully informed
agent’s. We think of the two agents as a fully informed public, or alternatively, the private
sector as a data-generating process for aggregate outcomes, and a less informed policy-
maker. We model the private sector as a homogeneously informed representative agent
who is perfectly informed about the aggregate state whereas the policymaker operates
under imperfect imperfection, which, for instance, can take the form of aggregate data
subject to measurement error.1

A key assumption of our modelling framework is that both types of agents, the pol-
icymaker and the private sector, form rational expectations, but based on different in-
formation sets. Private-sector behavior is characterized by a set of linear, expectational
difference equations. On the other hand, the policymaker’s behavior is characterized
by the use of a policy instrument. It is set according to a rule that responds to the
policymaker’s optimal estimates of economic conditions.2 Formally, we consider linear,
stochastic equilibria with time-invariant decision rules and Gaussian shocks. In this case,
the rational inference efforts of the policymaker are represented by a dynamic signal ex-
traction problem as captured by the Kalman filter. The interaction of the two sets of
expectation formation processes represents the fundamental mechanism underlying equi-
librium determination.

The central result of our paper is that equilibrium indeterminacy is generic in this
imperfect information environment for a broad class of linear models that have unique
equilibria under full information. Optimal information processing of the less informed
agent introduces additional stable dynamics into the equation system that then lead to
self-fulling expectations. Intuitively, the interaction of the two expectation processes gen-
erates an endogenous feedback mechanism in a similar vein to strategic complementarities
or the application of ad-hoc behavior in the standard indeterminacy literature. Moreover,
the interplay of expectations based on different information sets results in equilibrium

1Such a dichotomy is well-established in the learning literature. Where our work differs is that both
agents have rational expectations and know the structure of the economy, although not necessarily its
state.

2As a specific example, we consider a Taylor-type interest-rate rule that responds to the policymaker’s
projection of inflation.
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outcomes that are not certainty equivalent even though we only consider environments
that are linear. While the rationality of expectations under both information sets places
non-trivial restrictions on outcomes, they are not sufficient to rule out multiple equilibria.

We characterize the outcomes of different equilibria as the result of non-fundamental
disturbances, similar to the perfect-information literature on equilibrium determinacy in
linear rational expectations models. Such belief shocks are unrelated to fundamental
shocks in the original economic setup and can be interpreted as self-fulfilling shifts in
expectations, or beliefs, that cause fluctuations consistent with the concept of a linear,
stationary equilibrium. When there is indeterminacy in the perfect-information case,
there are no restrictions on the scale of effects caused by belief shocks. In contrast,
the potential effects of belief shocks are tightly bounded in our imperfect information
environment. The bounds arise from the required consistency of expectations of the
public and the policymaker and the assumption that we consider only environments that
have a unique equilibrium under full information.

Our main application is a standard New Keynesian model where monetary policy fol-
lows a Taylor-type interest-rate rule. The rule coefficients satisfy the Taylor principle,
which assures determinacy under full information. Under imperfect information, how-
ever, the central bank cannot adjust the nominal rate directly in response to movements
in actual inflation and the output gap. Instead, policymakers observe noisy signals of
inflation and output and the policy rate responds to optimal projections of inflation and
output gap. The sensitivity of the policy rate to movements in actual inflation and the
output gap then depend on the sensitivity of policymakers’ projections to the incoming
signals. The more the central bank is successful at stabilizing inflation and output gap,
the noisier will be the signal and policymakers’ projections will barely respond. As a
result, the policy rate will not respond much to actual inflation and the output gap, and
the Taylor principle effectively ceases to hold.

Likewise, indeterminacy cannot lead to non-fundamental shocks becoming an arbitrar-
ily large driver of inflation and the output gap. Otherwise, the central bank’s signal would
become highly informative and the policy rate would respond with sufficient strength to
actual inflation and the output gap to re-establish determinacy. In sum, while we find
generic indeterminacy in this setting, the extent to which indeterminacy manifests itself
is bounded. The variance bound on indeterminacy-induced fluctuations is a novel and
important result of our setup. This bound arises when the central bank observes noisy
signals of endogenous, variables and it reflects the endogenous response of the signals’
information content to monetary policy. Key features of our analysis are also illustrated
with a simple Fisher-equation model.

Our paper touches upon three strands in the literature. First, our paper contributes to
the burgeoning literature on imperfect information in macroeconomic models. An impor-
tant topic of the existing literature have been the implications of dispersed information
among different members of the public and the resulting effects on their strategic interac-
tions and the informational value of prices. Key contributions by Nimark (2008a, 2008b,
2014), Angeletos and La’O (2013), and Acharya, Benhabib and Huo (2017) demonstrate
that imperfect information has important implications for the amplification and propa-
gation of economic shocks. However, while the literature has been aware of the potential
for multiple equilibria, this has usually not been a key issue of the analysis. In that vein,
our paper is much closer to Benhabib, Wang and Wen (2015) who consider sentiment
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shocks in their New Keynesian model with imperfect information in the private sector.
In contrast to our setup, which involves the interaction between a policymaker and the
public under different information sets, sunspot or belief shocks do not arise endogenously
in their setting. In that respect, our framework is closer to Rondina and Walker (2017).

A number of papers have also analyzed the effects of policy actions on the informational
value of market signals and their interplay when policy itself responds to market infor-
mation (Goodhart 1987, Bernanke and Woodford 1997, Morris and Shin 2018, Siemroth
2019). This literature has typically found a tension between a policymaker’s desire to ex-
tract information from prices as policy seeks to influence market outcomes. In our setup,
the degree to which indeterminacy gives rise to fluctuations driven by non-fundamental
shocks depends on the outcomes targeted by policy. What is unique in our analysis, is the
interplay between noisy signals gleaned from endogenous variables and indeterminacy.3

Second, our research also makes a contribution to the literature on indeterminacy in
linear rational expectations models by expanding the set of plausible economic mecha-
nisms that can lead to multiple equilibria. A key element of the indeterminacy literature
is the presence of a mechanism that validates self-fulfilling expectations. In the standard
literature, these could arise from what is often termed strategic complementarities, such as
increasing returns to scale in production that are not internalized, as in the seminal con-
tributions of Benhabib and Farmer (1994), Farmer and Guo (1994), and Schmitt-Grohe
(1997). An alternative mechanism is the interplay between economic agents’ forward-
looking behavior and the reaction function of a policymaker, which Clarida, Gali and
Gertler (2000) and Lubik and Schorfheide (2004) show to be a key feature of macroeco-
nomic fluctuations.4

In contrast, our framework does not rely on these previously identified sources of in-
determinacy but rather on the interaction of different expectation formation processes
under asymmetric information sets. This also sets our framework apart from the general
imperfect information literature, which is largely concerned with the strategic interac-
tion between agents in the private sector. Although our framework utilizes the formal-
ism of the indeterminacy literature, where we build on the contributions of Lubik and
Schorfheide (2003, 2004) and Farmer, Khramov and Nicolò (2015), the mechanism to get
there is novel. More specifically, we show that in an imperfect information environment
the standard root-counting approach in the literature is inadequate in identifying the set
of multiple equilibria. At the same time, we show that the set of multiple equilibria,
despite the generic pervasiveness of indeterminacy, is tightly circumscribed by internal
consistency requirements for the interaction between the two expectation processes. Our
paper thereby puts some caveats on the notion that sunspot shocks are unrestricted in
their effects on macroeconomic outcomes.

Third, the applications in our paper speak to the monetary policy literature concerned
with the effects of interest-rate rules on determinacy. A well-known result from this litera-
ture is the Taylor principle, which requires that interest rate rules respond to endogenous

3Bernanke and Woodford (1997) consider implications for existence and determinacy of equilibria
arising from an inflation-targeting central bank’s use of private-sector forecasts in lieu of its own. A key
difference of our work are the consequences for determinacy arising from the explicit consideration of an
imperfectly informed central bank’s signal extraction problem.

4Ascari, Bonomolo and Lopes (2019) also point to sunspot-driven equilibria as a key source of fluctu-
ations during the high-inflation era of the 1970s.
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variables with sufficient strength, to avoid multiple equilibria and ensure determinacy.
Clarida et al. (2000) and Lubik and Schorfheide (2004) have pointed to a neglect of the
Taylor rule as a possible factor behind the Great Inflation. However, their evidence is
based on a full-information perspective that does not account for the uncertainties faced
by the Federal Reserve in assessing the state of the economy in real time, as discussed by
Orphanides (2001). The framework that we develop in this paper sheds new light on this
issue.

A key paper in this literature is Orphanides (2003) who models the consequences of an
imperfectly informed central bank for economic outcomes. Similar to our framework, his
model considers a policy rule that responds to estimates of economic conditions generated
from optimal signal extraction efforts. But in a fundamental difference to our framework,
his model is purely backward-looking so that the issue of indeterminacy does not arise.
Our paper also relates to Svensson and Woodford (2004) and Aoki (2006) who derive
conditions for optimal policy when the policymaker is less informed than the public in
forward-looking linear rational expectations models, but take determinacy as given.5

This paper is structured as follows: The next section introduces our framework by
means of a simple example in which we can derive analytical results. The section pro-
ceeds by developing the various model components sequentially so as to build up the
full set of equilibrium relationships. We also discuss various extensions and some addi-
tional findings that connect our framework to the literature. Section 3 contains the main
body of the paper. We present a general linear rational expectations framework with het-
erogeneous information sets and use results from general linear systems theory to prove
existence of a variety of equilibria. It is here that we establish our central result that
equilibrium indeterminacy is generic in this framework. We conduct some quantitative
exercises in section 4. We first solve the simple example of section 2 numerically in order
to provide additional insights. In the next step, we solve a New Keynesian model under
our informational assumptions. We show that while indeterminacy is, in fact, generic
in this policy-relevant model, the quantitative implications appear relatively limited. In
section 5, we consider a set of alternative policy rules that lead to determinate outcomes.
Section 6 concludes and discusses further extensions of our framework.

2 A Simple Example Model

We develop the basic concepts and ideas underlying our modelling framework by means of
a simple example. First, we describe the basic structural relationships before introducing
two types of information sets. For exposition purposes we distinguish information sets
where the observed signals reflect solely exogenous variables or where the signal also
reflects endogenous variables. We then introduce the key component of the framework,
namely optimal information extraction by the less informed agent via Kalman-filtering,
and a projection condition that rational expectations equilibria in our framework need to

5Applications following Svensson and Woodford to various economic issues are Carboni and Ellison
(2011), Dotsey and Hornstein (2003), and Nimark (2008b). Evans and Honkapohja (2001) and Or-
phanides and Williams (2006, 2007) revisit the question of policymaking under imperfect information in
an environment with learning. Faust and Svensson (2002) and Mertens (2016) study the implications for
optimal policy of the opposite informational asymmetry, where the public does not perfectly share the
policymaker’s information set.
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obey. We conclude this section by discussing the underlying intuition and some special
results from the simple framework.

2.1 Economic Framework

We consider a simple textbook model of inflation determination in a frictionless economy.
The economy is described by a Fisher equation that links the nominal interest rate it
to the real rate rt via expected inflation Etπt+1, where Et is an expectation operator.
The nominal rate is set according to a monetary policy rule where it responds to current
inflation πt.

6 Reflecting the central role of the Fisher equation here, we refer to the small
model also as a Fisher economy. We assume that the real rate is characterized by an
exogenous AR(1) process with a Gaussian shock. The equation system is thus given by:

it = rt + Etπt+1, (1)

it = φπt, (2)

rt = ρrt−1 + εt, (3)

where εt ∼ iid N(0, σ2
ε) and |ρ| < 1. Throughout this paper we assume that the monetary

policy parameter φ is outside the unit circle, |φ| > 1.
There are two agents in this economy: a representative private-sector agent whose

behavior is characterized by the Fisher equation (1), and a central bank whose behavior
is given by a monetary policy rule such as (2). We assume that the agents know the
structure of the economy, including the structural parameters, and that they observe the
history of their respective information sets. Crucially, both agents form expectations
rationally. The central assumption of our framework is that the two agents have different,
but nested information sets. The full information set St contains realizations of all shocks
through time t, where Et is the rational expectations operator under full information,
so that for some variable xt, Etxt+h = E (xt+h|St), for all h, and Etxt = xt. We also
define a limited information set Zt which is nested in St, Zt ⊂ St.7 The expectations, or
projections, of the less informed agent for any variable xt are denoted as xt|t = E (xt|Zt)
and xt+h|t = E (xt+h|Zt). Since Zt is spanned by St we can apply the law of iterated
expectations to obtain: E (E(xt+h|Zt)|St) = xt+h|t.

We consider two informational environments: full and limited information. Under full
information rational expectations (FIRE), both agents are assumed to know St.8 This
means that they observe all variables in the model without error, that they know the
history of all shocks, and that they understand the structure of the economy and the
solution concepts. Under limited information rational expectations (LIRE), we assume
that one agent has access to the full information set St, while the other observes the
limited information set Zt only. For the purposes of this simple example, we assume that
the private sector is fully informed whereas the central bank has limited information.

6In the Supplementary Appendix, we also consider a policy rule of the type: it = rt + φπt, with a
time-varying intercept given by the real rate of interest.

7Allowing Zt to be only weakly nested in St, Zt ⊆ St, would also encompass the case when both
agents are fully informed. We will typically consider the limited-information case as such that Zt is
strictly less informative than St.

8In terms of notation, the full-information case corresponds to the situation where Zt = St.
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2.2 Rational Expectations Equilibria with Full Information

The equation system (1) - (3) forms a linear rational expectations model that can be
solved under FIRE with standard methods. Substituting the policy rule into the Fisher
equation yields a relationship in inflation with driving process rt:

φπt = Etπt+1 + rt. (4)

The type of solution depends on the value of the policy coefficient φ. It is well known
that the solution is unique if and only if |φ| > 1. In this case, the determinate rational
expectations (RE) solution is: πt = 1

φ−ρrt and it = φ
φ−ρrt. Inflation and the nominal rate

inherit the properties of the exogenous process rt and are thus first-order autoregressive
processes.

When |φ| < 1, the full-information solution is indeterminate, and there are infinitely
many solutions to equation (4). Although the remainder of the paper considers the
case |φ| > 1, it is instructive to review the implications of equilibrium indeterminacy
when φ is inside the unit circle, since we utilize these concepts later. We follow the
approach developed by Lubik and Schorfheide (2003), which extends the Sims (2002)
solution method to the case of indeterminacy.

We define the rational expectations forecast error ηt = πt−Et−1πt, whereby Et−1ηt = 0
by construction. This allows us to substitute out inflation expectations Etπt+1 in (4), so
that we can write:

πt = φπt−1 + rt−1 + ηt. (5)

It is easily verifiable that this representation is a solution to the expectational difference
equation (4). Inflation is a stationary process with autoregressive parameter |φ| < 1 and
driving process rt−1. What makes this equilibrium indeterminate is the fact that the
solution imposes no restriction on the evolution of ηt other than that it is a martingale
difference sequence with Et−1ηt = 0. Consequently, there can be infinitely many solutions.

Without loss of generality, we can, however, put some structure on the solution.9

Following Farmer, Khramov, and Nicolò (2015) we decompose the RE forecast error ηt
into a fundamental component, namely the policy innovation εt, and a non-fundamental
component, the belief shock bt. More specifically, we can write ηt = γεεt + γbbt, where
Et−1bt = 0.10 The loadings −∞ < γε, γb < ∞ on the two sources of uncertainty are
unrestricted and their choice is arbitrary. They can be used to index specific equilibria
within the set of indeterminate equilibria. A specific solution to (4) when |φ| < 1 can
therefore be written as:

πt = φπt−1 + rt−1 + γεεt + γbbt. (6)

Returning to the case of |φ| > 1, we can also compute an RE equilibrium for the
case when the dynamic system is conditioned down onto the information set Zt. Since

9Strictly speaking, this is without loss of generality within the set of equilibria that are time-invariant
and linear. There are other non-linear equilibria that can be constructed in this linear model. See Evans
and McGough (2005) for further discussion.

10The interpretation of a belief shock in the terminology of Lubik and Schorfheide (2003) and Farmer,
Khramov, and Nicolò (2015) emerges when the inflation equation is rewritten in terms of expectations
only. Define ξt = Etπt+1 and rewrite equation (4) as ξt = φξt−1 + rt + φηt. In this representation, the
forecast error ηt is akin to an innovation to the conditional expectation ξt.
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the content of this information set is known to both agents, we can apply the law of
iterated expectations: E (E(xt+h|Zt)|St) = xt+h|t. Except for changing the information
set on which the expectations operator is conditioned, the structure of the system remains
unchanged. The policy rule now becomes:

it|t = φπt|t. (7)

Following the same steps as before, we find that:

πt+1|t = φπt|t + rt|t, (8)

which is a first-order difference equation in projected inflation πt|t. Under the maintained

assumption that |φ| > 1, the RE equilibrium is πt|t = 1
φ−ρrt|t and it|t = φ

φ−ρrt|t. The
form of the solution is isomorphic to the FIRE solution above. That is, central bank
projections of inflation and the evolution of the policy rate obey the same functional form
as the actual variables in the full information model. Moreover, in our setup central bank
decisions are always based on Zt such that it = it|t. The key insight is that under Zt, the
central bank has less information than under St, but it still forms expectations rationally
under its own information set, given its real rate projections rt|t.

11

2.3 Rational Expectations Equilibria with Limited Information

The key aspect of our limited information framework is that there are two expectation
formation processes interacting with each other. The nature of this interaction, and how it
affects equilibrium determination, depends on how the limited-information agent extracts
and updates information. Our framework has four building blocks: first, the relation-
ships describing the fully-informed agent; second, those of the limited-information agent;
third, the filtering and updating mechanism used by the latter to gain additional informa-
tion; and fourth, restrictions on agents’ projections to ensure consistency of expectation
formation in an RE equilibrium.

In the simple example considered thus far, the first element is given by the Fisher
equation (1) and the law of motion of the real rate (3). Considering the second building
block, we assume that the central bank is the less informed agent and therefore has access
to the information set Zt. As in Svensson and Woodford (2004), policy is set based on
target variable projections. Specifically, the behavior of the central bank is given by a
limited information policy rule where the policy rate responds to the inflation projection
πt|t:

it = φπt|t (9)

The third element is the specification of the central bank’s information extraction and
updating problem. The policymaker is aware of the limited information set and solves a
signal extraction problem to conduct inference about unobserved variables.12 The model

11This is a key difference to the framework in Lubik and Matthes (2016) who assume that the central
bank engages in least-squares learning to gain information about private-sector outcomes. In our setup,
the deviation from the standard RE benchmark is only minor in the sense that the central bank does not
observe everything that the private sector does, but employs fully rational expectations in its inferences
about current and future conditions.

12Conceptually, this is an environment where the central bank receives noisy measurements of incoming
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is linear and the exogenous shocks are Gaussian; in addition, we assume that the belief
shocks are Gaussian. Without loss of generality, the variance of belief shocks is normalized
to one:13

bt ∼ N(0, 1). (10)

As a result, the Kalman filter is the optimal filter in this environment. The gain in the op-
timal projection equation is endogenous and depends on the second moments of the model
variables in an equilibrium. In turn, existence and uniqueness of an equilibrium depends
on the endogenous Kalman gain. This feature of our framework implies a non-trivial
fixed-point problem. Finally, the fourth building block of our framework is an additional
restriction on equilibrium determination. We posit that rational expectations formation
across all information sets has to be mutually and internally consistent. Specifically, the
central bank’s behavior is constrained by its own projections, namely πt|t = 1

φ−ρrt|t and

it = φ
φ−ρrt|t, and a projection for rt|t. These projections imply a restriction on the joint

behavior of the model variables’ second moments so as to validate the RE of the fully
informed and the limited-information agents.

We now discuss the solution of our simple framework in two steps. We specify simple
information sets that make the central bank’s projection equations analytically tractable,
whereby we distinguish between exogenous and endogenous information sets. The for-
mer contains only exogenous variables where there is no feedback between projection and
model evolution. Specifically, we assume that the central bank receives a noisy measure-
ment of the real rate of interest. In the second step, we assume endogenous information
where the central bank observes inflation with a measurement error.

2.3.1 Equilibrium with an Exogenous Signal

We assume that the central bank observes the real rate with measurement error νt ∼
iid N(0, σ2

ν), so that its information set is Zt = {Zt, Zt−1, . . .}, with Zt = rt + νt.
14 The

signal Zt is exogenous in that the real rate is an exogenous process that does not depend
on other endogenous variables.15 The Kalman projection equation for the real rate is:

rt|t = rt|t−1 + κr
(
rt − rt|t−1 + νt

)
, (11)

where the Kalman gain κr is an endogenous coefficient, and the one-step-ahead projection
of the real rate is rt|t−1 = ρrt−1|t−1.

We now combine the private sector Fisher equation (1) with the policy rule (9):

φπt|t = rt + Etπt+1. (12)

data but makes decisions in real time based on its best projections of the true underlying data.
13Similar to the full-information case shown in (6), belief shocks will enter the system only via the

endogenous forecast error, which linearly depends on the belief shock bt with sensitivity γb, This allows
us to normalize the variance of belief shocks.

14In addition, the central bank knows the structure of the economy and all parameters of the model,
which are common knowledge. For brevity, these elements of the information set are omitted in our
notation.

15However, the process of making projections of the real rate, that is, of gaining information about its
true value can depend on endogenous outcomes.
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The evolution of inflation depends on two expectation processes: the central bank’s pro-
jection of inflation πt|t and the private sector’s expectation Etπt+1. Using the formalism
described above, we introduce the RE forecast error ηt and rewrite this equation as:

πt = φπt−1|t−1 − rt−1 + ηt. (13)

In addition, recall that after conditioning down all equations of the model onto Zt and
solving for an RE equilibrium conditional on Zt, we obtain:

πt|t =
1

φ− ρ
rt|t . (14)

Equation (14) is a consistency condition for the RE equilibrium that we will also refer to
as “projection condition” since it restricts central bank projections to be consistent with
predictions from the full-information model.

We can now combine these equations into a linear RE system:

πt =
φ

φ− ρ
rt−1|t−1 − rt−1 + ηt,

rt|t = (1− κr) ρrt−1|t−1 + κrρrt−1 + κrεt + κrνt, (15)

rt = ρrt−1 + εt.

The first equation in (15) is derived from the Fisher equation, where we substituted out
the central bank’s lagged inflation projection by using the projection condition (14). The
second equation is derived from the Kalman projection equation for the real rate, while
the third equation is the law of motion of the actual real rate. The set of equations
in (15) is a well-specified equation system in three unknowns: inflation πt, the exogenous
real rate rt, and the central bank projection of the real rate rt|t. In principle, it can be
solved using standard methods for linear RE models that allow for indeterminacy such
as Lubik and Schorfheide (2003). However, there are two key differences to the standard
framework. First, the gain coefficient κr is endogenous and has to be computed from the
second moments of the model solution. The second difference is that the central bank’s
projection rt|t has to be consistent with the solution of the full system it determines. This
projection condition necessitates an additional computational step in the solution of the
model.

We solve the model in three steps. First, in the exogenous signal case, the Kalman fil-
tering problem can be solved independently of the solution for inflation dynamics. Second,
as shown below, the Kalman gain lies between zero and one. As a result, rt|t is station-
ary and standard root-counting implies that the system (15) is indeterminate. Third,
we impose the projection condition. Following Farmer, Khramov, and Nicolò (2015), we
find it convenient to express the endogenous forecast error as a linear combination of
fundamental and belief shocks:16

ηt = γεεt + γννt + γbbt. (16)

The solution is determinate if γb = 0 and γε and γν are uniquely determined. An RE

16Alongside εt, we refer to the measurement error νt as a fundamental shock, too.
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equilibrium may not exist when there are no loadings that fulfill the restrictions imposed
by and on the model, specifically, the projection condition (14).

We find it convenient to define innovations of any variable xt as its unexpected compo-
nent relative to the limited information set Zt−1: x̃t = xt − xt|t−1, that is, the projection
innovations. We can then define the projection error variance Σ = var

(
r̃t − r̃t|t

)
=

var (r̃t) − var
(
r̃t|t
)
, whereby cov(r̃t, r̃t|t) = var(r̃t|t). The steady-state Kalman gain is

given by:

κr =
cov
(
r̃t, Z̃t

)
var(Z̃t)

, (17)

where Z̃t = r̃t + νt. It is straightforward to verify that var (r̃t) = ρ2Σ + σ2
ε and that

var(Z̃t) = var (r̃t) + σ2
ν . Similarly, we have that cov(r̃t, Z̃t) = var (r̃t). This leads to the

following expression:

κr =
ρ2Σ + σ2

ε

ρ2Σ + σ2
ε + σ2

ν

, (18)

whereby clearly 0 < κr < 1. We can now find an expression for the projection error

variance Σ by noting that cov(r̃t, r̃t|t) = var(r̃t|t) and var
(
r̃t|t
)

= κr cov
(
r̃t, Z̃t

)
, given

the projection equation r̃t|t = κrZ̃t. Substituting these expressions into the definition of
Σ results in a quadratic equation, commonly known as a Riccati equation:

Σ =
ρ2Σ + σ2

ε

ρ2Σ + σ2
ε + σ2

ν

σ2
ν . (19)

The (positive) solution to this equation is given by:

Σ =
1

2ρ2

[
−
(
σ2
ε +

(
1− ρ2

)
σ2
ν

)
+

√
(σ2

ε + (1− ρ2)σ2
ν)

2 + 4σ2
εσ

2
νρ

2

]
. (20)

We can now establish that the LIRE model with an exogenous signal vector always
has multiple equilibria. We have 0 < κr < 1, from which it follows that |(1− κr) ρ| < 1,
so that the law of motion for rt|t in the full equation system is a stable difference equation.
In (13), inflation depends only on lags of the real rate rt and lags of the real-rate projection
rt|t, which are both stationary. Without any dependence of inflation on lags of its own,
inflation is stationary for any specification of ηt, and we can conclude that the equilibrium
cannot be determinate. That is, the structure of the model does not impose restrictions
that would uniquely pin down the endogenous forecast error ηt and which would typically
derive from the set of explosive roots in the system. One such restriction could be |κr| > 1,
which we can rule out in this case. In other words, the representation (15) is already a
candidate solution to the model.

In the final step, we need to ensure that central bank projections for inflation and
the real rate are mutually consistent. Specifically, πt|t = 1

φ−ρrt|t needs to hold along any
equilibrium path. This projection condition imposes a second-moment restriction on inno-

vations with respect to the central bank’s information set cov
(
π̃t, Z̃t

)
= 1

φ−ρcov
(
r̃t, Z̃t

)
.

Since cov
(
r̃t, Z̃t

)
= ρ2Σ +σ2

ε , we can write cov
(
π̃t, Z̃t

)
= cov (π̃t, r̃t) + cov (π̃t, νt). Using
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the innovation representation of the projection equation for πt, we have:

π̃t = −
(
r̃t−1 − r̃t−1|t−1

)
+ ηt, (21)

where after some substitution we find that cov (π̃t, r̃t) = −ρΣ + γεσ
2
ε . Similarly, we

have that cov (π̃t, νt) = γνσ
2
ν . Combining all expressions results in the following linear

restriction on the shock loadings of the forecast error ηt = γεεt + γbbt + γννt:

γν =
φ

φ− ρ
Σ

σ2
ν

+
1

φ− ρ
σ2
ε

σ2
ν

− σ2
ε

σ2
ν

γε. (22)

This condition places a linear restriction on γε and γν to guarantee that central bank
projections for inflation and the real rate co-vary as they would in the full information
case. However, this projection condition does not uniquely determine γε and γν . Moreover,
γb is left unrestricted. We can now summarize the solution in the following proposition.

Proposition 1 (LIRE Equilibrium in the Fisher Economy with Exogenous Signal). The
set of stationary RE equilibria in the model (15) under LIRE with exogenous signal Zt =
rt + νt is characterized by:

πt =
φ

φ− ρ
rt−1|t−1 − rt−1 + γεεt + γννt + γbbt, (23)

rt|t = (1− κr) ρrt−1|t−1 + κrρrt−1 + κrεt + κrνt, (24)

rt = ρrt−1 + εt, (25)

where:

κr =
ρ2Σ + σ2

ε

ρ2Σ + σ2
ε + σ2

ν

, (26)

Σ =
1

2ρ2

[
−
(
σ2
ε +

(
1− ρ2

)
σ2
ν

)
+

√
(σ2

ε + (1− ρ2)σ2
ν)

2 + 4σ2
εσ

2
νρ

2

]
, (27)

−∞ < γb <∞,−∞ < γε <∞, γν =
φ

φ− ρ
Σ

σ2
ν

+

(
1

φ− ρ
− γε

)
σ2
ε

σ2
ν

. (28)

Proof. The result follows directly from the positive solution to the Riccati equation (19)
and (20) as well as the projection condition (22).

We can draw the following conclusion at this point. Equilibrium indeterminacy is
generic in this setting in that the endogenous forecast error is not uniquely determined
and that any stationary RE equilibrium allows for the presence of sunspot shocks. Me-
chanically, the optimal filter employed by the central bank introduces a stable root into
the system, associated with the Kalman gain κr, and thereby leaves the endogenous fore-
cast error undetermined. Although policy obeys the Taylor principle with |φ| > 1, and
there is a unique mapping from central bank projections to endogenous outcomes, equi-
librium is generically indeterminate in the full model, in particular, the component that
is orthogonal to the central bank’s information set.17

17By the logic of the root-counting approach to solving linear RE models, the system needs an ‘unstable’
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A second observation is that the projection condition imposes restrictions on the set of
multiple equilibria which stands in contrast to the typical indeterminacy case under full
information. Optimal filtering restricts how private agents coordinate on an equilibrium,
that is, which equilibrium is admissible and consistent with central bank projections.
Although the effects of belief shocks with exogenous information are still unrestricted,
the relationship between the fundamental real-rate shock and the measurement error is
subject to a second moment restriction on their comovement.18 However, this simple
example is restrictive in that the central bank only observes an exogenous process with
error. In the next step, we therefore analyze an endogenous signal which creates additional
feedback within the model.

2.3.2 Equilibrium with an Endogenous Signal

We now assume that the central bank observes the inflation rate with measurement error
νt such that Zt = πt + νt. We present the analysis in terms of the projection equation for
the real rate to facilitate comparison with the previous case:

rt|t = rt|t−1 + κr
(
πt − πt|t−1 + νt

)
. (29)

This leads to the full equation system:

πt =
φ

φ− ρ
rt−1|t−1 − rt−1 + ηt,

rt|t = (ρ+ κr) rt−1|t−1 + κrrt−1 + κrνt + κrηt, (30)

rt = ρrt−1 + εt.

While the structure of the system is the same as before under exogenous information, the
key difference is the coefficient (ρ+ κr) on the lagged real rate projection. In addition,
real rate projections depend on the endogenous forecast error ηt. As a result, the solution
for κr depends on the equilibrium law of motion for πt.

To solve the model, we first derive the endogenous Kalman gain and the associ-
ated forecast error variance. We then derive the projection condition and assess con-
sistency with the proposed equilibrium paths. The steady-state Kalman gain is κr =

cov
(
r̃t, Z̃t

)
�var(Z̃t), where r̃t = rt − rt|t−1 and Z̃t = π̃t + νt. As before, we de-

compose the endogenous forecast error ηt = γεεt + γννt + γbbt. It can be quickly ver-

ified that cov
(
r̃t, Z̃t

)
= −ρΣ + γεσ

2
ε . The negative sign in this expression reflects

the inverse relationship between inflation and the real rate when the signal is endoge-
nous. Using π̃t = −

(
r̃t−1 − r̃t−1|t−1

)
+ ηt, we find that var(Z̃t) can be expressed as

var(Z̃t) = Σ + γ2εσ
2
ε + γ2bσ

2
b + (1 + γν)

2 σ2
ν .

root outside the unit circle to pin down the endogenous forecast error when there is one ‘jump variable’,
namely inflation. In the FIRE case, this is provided by the policy parameter |φ| > 1, while the Kalman
filter introduces a stable root.

18From an empirical perspective, the FIRE solution results in a reduced-form representation for inflation
that is first-order autoregressive. The LIRE solution on the other hand exhibits much richer dynamics.
In particular, the resulting inflation process can be quite persistent when the signal-to-noise ratio is small
since a large σ2

ν translates into a small Kalman gain.
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We can now derive the following expression for the Kalman gain:

κr =
−ρΣ + γεσ

2
ε

Σ + γ2εσ
2
ε + γ2bσ

2
b + (1 + γν)

2 σ2
ν

. (31)

Although the forecast error variance Σ still needs to be determined as a function of the
structural parameters, we can make two observations already. First, in contrast with the
exogenous signal case the gain κr can be negative for small enough γε, that is, κr < 0 if
γε < ρΣ/σ2

ε . Second, existence of a steady-state Kalman filter implies that |ρ + κr| < 1
as long as Σ > 0, as shown in Proposition 2 below. We return to a discussion of the
case where rt = rt|t, so that Σ = 0, later in this section. In the next step, we compute
the projection error variance Σ = var (r̃t) − var

(
r̃t|t
)
. Using var (r̃t) = ρ2Σ + σ2

ε and

var
(
r̃t|t
)

= κrcov
(
r̃t, Z̃t

)
we can derive the following Riccati equation, which is quadratic

in Σ:

Σ = ρ2Σ + σ2
ε −

(−ρΣ + γεσ
2
ε)

2

Σ + γ2εσ
2
ε + γ2bσ

2
b + (1 + γν)

2 σ2
ν

. (32)

Finally, an equilibrium has to obey the restrictions imposed by central bank projec-
tions, namely πt|t = 1

φ−ρrt|t. This implies a covariance restriction of projection errors which
differs from the exogenous signal case because of different information sets. Specifically,

we have that cov
(
π̃t, Z̃t

)
= 1

φ−ρcov
(
r̃t, Z̃t

)
or alternatively (φ− ρ) cov (π̃t, π̃t + νt) =

cov (r̃t, π̃t + νt). After some rearranging we can write this expression as:

γν (1 + γν) = − φ

φ− ρ
Σ

σ2
ν

− γ2b
φ− ρ

σ2
b

σ2
ν

+
[1− (φ− ρ) γε] γε

φ− ρ
σ2
ε

σ2
ν

. (33)

The condition places a quadratic restriction on all three innovation loadings γ in contrast
to the linear restriction on γε and γn and unrestricted γb in the exogenous signal case.
This can imply that there are no or multiple solution to this equation, and thus for the
overall equilibrium, for a given parameterization of the model. We summarize our findings
in the following proposition.

Proposition 2 (LIRE Equilibrium in the Fisher Economy with Endogenous Signal).
The set of stationary RE equilibria in the model (30) under LIRE with endogenous signal
Zt = πt + νt is characterized by the following dynamic equations:

πt =
φ

φ− ρ
rt−1|t−1 − rt−1 + γεεt + γννt + γbbt, (34)

rt|t = (ρ+ κr) rt−1|t−1 − κrrt−1 + κrγεεt + κr (1 + γν) νt + κrγbbt, (35)

rt = ρrt−1 + εt,
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With Σ > 0, we have:

|ρ+ κr| < 1 (36)

Σ =
1

2

(
α +

√
α2 + 4β

)
, (37)

α = (1 + 2ργε)σ
2
ε − (1− ρ)2

(
γ2εσ

2
ε + γ2b + (1 + γν)

2 σ2
ν

)
, (38)

β =
(
γ2b + (1 + γν)

2 σ2
ν

)
σ2
ε , (39)

κr =
−ρΣ + γεσ

2
ε

Σ + γ2εσ
2
ε + γ2b + (1 + γν)

2 σ2
ν

, (31)

γν (1 + γν) = − φ

φ− ρ
Σ

σ2
ν

− 1

φ− ρ
σ2
b

σ2
ν

+

(
1

φ− ρ
− γε

)
γε
σ2
ε

σ2
ν

. (33)

Proof. Equations (37), (38) and (39) follow directly from solving the quadratic equation
for Σ > 0 in (32). The expression for the Kalman gain κr in (31) and the restrictions
from the projection condition in (33) restate earlier results. The requirement that with
Σ > 0 we must have |ρ + κr| < 1 is an application of Theorem 3 in Appendix A. In this
specific example, the result that |ρ + κr| < 1 can be derived as follows: Consider the
candidate value κr = 0 for the Kalman gain; in this case we would have Σ = Var (rt).
The optimal Kalman gain seeks to minimize Σ and the optimal value of Σ must thus be
(weakly) smaller than Var (rt) = σ2

ε/(1− ρ2) and finite. With the optimal Kalman gain,
projections are given by (35) and the process for the projection errors r∗t = rt − rt|t is
r∗t = (ρ+ κr)r

∗
t−1 + εt − κr(ηt + νt). Recall that Σ ≡ Var (r∗t ). We can thus conclude that

for 0 < Σ <∞ the optimal Kalman gain must be such that |ρ+ κr| < 1.

Proposition 2 describes the set of solutions under indeterminacy. With |ρ+ κr| < 1 the
equation system has only stable roots and therefore lacks a restriction to determine the
endogenous forecast error uniquely. As in the case of an exogenous signal, the projection
condition that ensures internal consistency of central bank and private sector expectation
formation restricts the set of multiple equilibria. Specifically, an equilibrium with Σ > 0
does not exist when no innovation loadings can be found to ensure existence of a steady-
state Kalman filter that is consistent with the projection condition. Moreover, the set
of solutions is restricted over the parameter space by the nonlinear Riccati equation for
the forecast error variance, by non-negativity constraints on variances and by ruling out
complex solutions.19

In contrast to the exogenous signal case, feedback between filtering and model solution
is central to equilibrium determination. Filtering depends on the information set, the
result of which affects equilibrium outcomes and the content of the information set. This
fixed-point problem has been noted before, at least as early as Sargent (1991). We go
beyond this insight by showing that equilibrium determination is substantially different
from the standard linear RE case. A solution may not exist even when the root-counting
criterion for existence of an equilibrium indicates a sufficient number of stable roots in
standard FIRE settings. While the root-counting approach for given κr could indicate
non-existence, uniqueness or indeterminacy, it is the second-moment restrictions due to
the less informed agent’s filtering problem that determine equilibrium. In that sense,

19Section 4 provides a full set of numerical solutions for this simple example.
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indeterminacy is generic in a LIRE environment since existence of a stable Kalman filter
introduces a stable root into the dynamic system. At the same time, the second-moment
restrictions resulting from the projection condition restrain belief shock loadings, which
stands in stark contrast to the case of indeterminacy in a FIRE scenario.

2.4 Additional Results

The remainder of this section provides further insights and intuition for key results arising
from our framework. First, we consider a case where the RE equilibrium under LIRE can
appear determinate in the sense that the Kalman gain implies an explosive root that pins
down the forecast error. In a second exercise, we show that the simple model implies an
upper variance bound for the dynamics of the model. We discuss additional results in the
Supplementary Appendix. These include a comparison with the framework of Svensson
and Woodford (2004) that shares similarities with our approach, and a derivation of the
model solution for an alternative monetary policy rule.

2.4.1 Equilibrium with Σ = 0 and an Explosive Root

The determinacy properties of a full-information, linear RE model depend on the number
of unstable eigenvalues in the dynamic system. In a standard root-counting approach (for
instance, Blanchard and Kahn, 1980), the equilibrium is unique if the number of explosive
roots matches the number of forward-looking, or jump, variables. With fewer explosive
roots, the equilibrium is indeterminate and non-existent otherwise. In the simple example
model there is one jump variable, inflation, as evidenced by the presence of the endogenous
forecast error ηt; in order to achieve determinacy, this jump variable should be matched
by an explosive root. We consider whether this possibility can arise in our simple model
given the two types of information sets. The respective dynamic RE equation systems are
given in Propositions 1 and 2.

In the exogenous-signal case, Proposition 1 establishes that the Kalman gain lies be-
tween zero and one, 0 < κr < 1.20 Consequently, the projection equation is a stable
difference equation and the absence of an unstable root means that ηt is not pinned down
uniquely. While the projection condition restricts the set of equilibria in terms of the load-
ings on the stochastic disturbances, there is a multiplicity of solutions to this problem
and indeterminacy is generic in this setting.

The case of an endogenous information set is different. We can define r∗t = rt − rt|t as
the error from the projection onto the current information set and rewrite the equation
slightly:

r∗t = (ρ+ κr) r
∗
t−1 + εt − κrνt − κrηt. (40)

This is a first-order difference equation driven by a linear combination of stochastic terms:
the exogenous real-rate innovation εt, the exogenous measurement error νt, and the en-
dogenous forecast error ηt. The stability of the difference equation for r∗t hinges on
|ρ+ κr| < 1. As demonstrated in Proposition 2, for Var (r∗t ) = Σ > 0, |ρ+ κr| < 1
is assured by the existence of a solution to the Kalman filter.

20When the central bank only observes linear combinations of exogenous variables, the Kalman filtering
problem can be solved independently from the rest of the model since the measurement equation contains
only exogenous variables.
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Now suppose that |ρ+ κr| > 1. In this case, the only stationary solution is r∗t = 0
and thus Σ = 0, which is achieved by letting ηt = 1

κr
εt − νt, so that the endogenous

forecast error is determined as a function of fundamentals alone.21 We can verify the
proposed solution by substituting the expression into the projection equation (35), which
yields rt = ρrt−1 + εt. Substituting the solution into the inflation equation (34) leads to
πt = ρ

φ−ρrt−1 + 1
κr
εt − νt, so that the loadings in the forecast error decomposition ηt =

γεεt+γbbt+γννt are γε = 1/ (φ− ρ), γν = −1, and γb = 0. The latter simply restates that
belief shocks do not affect equilibrium outcomes when the standard eigenvalue condition
for an equilibrium holds, namely that the number of unstable roots equals the number of
jump variables.

The proposal equilibrium perfectly reveals one of the exogenous drivers rt, while pro-
viding no signal about other shocks. In contrast, the equilibrium inflation rate depends
on the measurement error νt and is not perfectly revealed to the central bank. The full-
information solution is πFIt = ρ

φ−ρrt−1+ 1
φ−ρεt. Comparing the LIRE and FIRE solution we

therefore find that πLIt = πFIt −νt, which suggests that κr = Cov (r̃t, π̃t + νt)/Var (π̃t + νt) =
Cov (εt, ηt + νt)/Var (ηt + νt) = φ − ρ.22 The root of the projection equation is thus
ρ+ κr = φ > 1, which validates our original conjecture.

This equilibrium in the LIRE model with an endogenous information set is special
in the sense that it superficially appears like the unique equilibrium in a FIRE setting:
the solution is not affected by sunspot shocks while the forecast error is pinned down by
matching the numbers of explosive roots and jump variables. It is not, however, a unique
equilibrium in the sense that there is only one solution to the dynamic equation system
for a given set of parameters. This is because the gain κr is endogenous and, as such,
there can be other equilibria with a different gain. This special equilibrium is thus one
of many multiple equilibria.23 However, as discussed in section I.2 of the Supplementary
Appendix, the existence of the special equilibrium is germane to the simple structure of
this example economy, and typically does not extend to more general models.

2.4.2 Variance Bounds

The projection condition ensures that expectation formation of the different types of
agents in the model is mutually consistent. As it turns out, this condition also provides
bounds on the variances of the model’s endogenous variables. Specifically, we show that
the special equilibrium discussed above has the highest inflation variance of all equilibria
in the LIRE setting despite having the plausibly desirable property that it is not driven
by belief or sunspot shocks.24

21From the perspective of the private sector the measurement error is a fundamental innovation in that
it is a primitive of the model and affects outcomes in any equilibrium.

22Formally, the proposed solution when |ρ+ κr| > 1 corresponds to an unstable, non-positive solution
of the Riccati equation in (32). In this particular case, the non-positive solution of the Riccati equation
is exactly equal to zero.

23It is somewhat akin to the result described in Lubik and Schorfheide (2003), where an indeterminate
equilibrium without sunspots is observationally equivalent to a corresponding determinate equilibrium.
However, in their case, this sunspot equilibrium without sunspots belongs to a set of equilibria that are
continuous in the parameter space whereas the special equilibrium is discretely different from the set of
equilibria in Proposition 2.

24Following Taylor (1977), Blanchard (1979) proposed to select equilibria based on a minimum variance
criterion. The variance bounds presented here, suggest that the minimum-variance equilibrium is not an
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The RE solution in the space of central bank projections is πt|t = 1
φ−ρrt|t. This implies

the projection condition cov
(
π̃t, Z̃t

)
= 1

φ−ρcov
(
r̃t, Z̃t

)
for information set Zt, whereby

we focus on the case Zt = πt + νt. Expanding terms we find:

var(π̃t) + cov (π̃t, νt) =
1

φ− ρ
cov (π̃t, r̃t) , (41)

where we have made use of the fact that cov (r̃t, νt) = 0. Collecting terms, we can write:

var(π̃t) = cov

(
π̃t,

1

φ− ρ
r̃t − νt

)
. (42)

Using the Cauchy-Schwarz inequality the upper bound on the inflation projection error
variance is given by:

var(π̃t) ≤ var

(
1

φ− ρ
r̃t − νt

)
=

(
1

φ− ρ

)2

var(r̃t) + σ2
ν . (43)

Since πt = π̃t + πt|t−1 and πt|t−1 = 1
φ−ρrt|t−1, we can derive the expression:

var(πt) = var(π̃t) +

(
1

φ− ρ

)2

var(rt|t−1) + 2cov
(
π̃t, rt|t−1

)
, (44)

whereby the covariance is zero under optimal projections. Similarly, var(rt) = var(r̃t) +
var(rt|t−1). Substituting these expressions and collecting terms results in the following
upper bound for the inflation variance:

var(πt) ≤
(

1

φ− ρ

)2

var(rt) + σ2
ν = σ2

ν +
σ2
ε

(1− ρ2) (φ− ρ)2
. (45)

The first term in the expression is the measurement error variance σ2
ν , while the second

term is the variance under FIRE with solution πt = 1
φ−ρrt. In the special equilibrium, the

solution for inflation is πSt = 1
φ−ρrt − νt, with variance var(πSt ) = σ2

ν + σ2
ε

(1−ρ2)(φ−ρ)2 . This

expression is equal to the upper bound above. This implies that the inflation variance in
the special equilibrium is the highest inflation variance of any equilibria under LIRE with
an endogenous information set, i.e., var(πt) ≤ var(πSt ). Moreover, the variance bound
is a direct implication of the projection condition. It may seem counterintuitive that
an equilibrium in which sunspots do not matter exhibits more volatility than a sunspot
equilibrium. In fact, it also runs counter to the comparable scenario in a standard deter-
minacy analysis where sunspot shocks under a multiple equilibrium add excess volatility.
At the same time, it highlights the different nature of equilibrium determination in our
framework.

equilibrium driven solely by fundamental shocks, but an equilibrium where fluctuations are at least in
part due to non-fundamental belief shocks.
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2.4.3 Closed-form Solutions with an Alternative Information Set

Even in the simple Fisher economy presented above, closed-form solutions are difficult to
obtain due to the intricate fixed-point problem of the imperfect-information equilibrium.
We now present a variant of the Fisher economy with a particular information set that
enables us to derive a number of results in closed form. In contrast to the case discussed
above, the specification of the simple example shown here features only amplification but
no additional persistence of inflation due to belief shocks.

As before, the model combines an exogenous AR(1) process for the real rate with a
Fisher equation and a Taylor rule that responds to the central bank’s inflation projection:

it = rt + Etπt+1 , it = φπt|t , |φ| > 1 ,

rt = ρ rt−1 + εt εt ∼ iidN(0, σ2
ε) , |ρ| < 1 ,

and the projection condition requires πt|t = rt|t/(φ−ρ). As before, we express the endoge-
nous forecast error as a linear combination of fundamental and belief shocks. Collecting
terms yields the following characterization of the inflation process:

πt+1 = −(rt − rt|t) +
ρ

φ− ρ
rt + ηt+1 (46)

with ηt+1 ≡ πt+1 − Etπt+1

= γεεt+1 + γννt+1 + γbbt+1 , bt+1 ∼ iidN(0, 1) , (47)

We now assume that the central bank’s information set is characterized by a bivariate
signal, which includes a perfect reading of the real rate and a noisy signal of current
inflation:

Zt =

[
rt

πt + νt

]
with νt ∼ iidN(0, σ2

ν) (48)

⇒ rt|t = rt ⇒ πt|t =
1

φ− ρ
rt , (49)

In light of (49), the inflation dynamics specified in (46) simplify to

πt+1 =
ρ

φ− ρ
rt + ηt+1 . (50)

Before determining the shock loadings γε, γν , and γb of the endogenous forecast error ηt,
we can already note that one-step-ahead expectations of inflation, Etπt+1 = rt/(φ−ρ), are
identical to the full-information case so that the effects of indeterminacy will be limited
to changes in the amplification of shocks, without consequences for inflation persistence.

In light of (50), we can conclude that the history of Zt spans the same information
content as the history of

W t =

[
εt

(1 + γν) νt + γb bt

]
. (51)
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W t spans Zt since, with |ρ| < 1, εt spans rt, and since observing (1 + γν) νt + γb bt adds
the same information to the span of εt as observing πt + νt.

Conveniently, the signal vector W t consists of two mutually orthogonal elements that
are serially uncorrelated over time. As a result, projections onto W t can be decomposed
into the sum of projections onto its individual elements. The projection condition (49)
then requires ηt|t = εt|t/(φ− ρ), and with εt|t = εt, we can conclude that

γε =
1

φ− ρ
. (52)

In addition we have π∗t ≡ πt−πt|t = γν νt+γb bt, and thus E
(
γν νt + γb bt

∣∣Zt
)

= 0, which
implies the following restriction on γν and γb:

Cov
(
γν νt + γb bt

∣∣ (1 + γν) νt + γb bt
)

= γν(1 + γν)σ
2
ν + γ2b = 0 . (53)

⇒ γν = −1

2
±

√
1

4
− γ2b
σ2
ν

(54)

Real solutions to (54) require |γb| < 0.5σν leading to a continuum of solutions with
γν ∈ [−1, 0]. While there is a unique solution for the shock loading γε, as given in (52),
there are multiple solutions for γν and γb as characterized by (54).

Equilibrium dynamics of inflation are described by (46) and (47) together with (52)
and (54). Collecting terms, inflation evolves according to:

πt =
1

φ− ρ
rt + γν νt + γb bt (55)

where γν and γb are restricted by (54). In light of the projection condition (53), the
variance of inflation is given by

Var (πt) =

(
1

φ− ρ

)2

Var (rt) + |γν |σ2
ν . (56)

Since γν is bounded by one in absolute value, there is an upper bound for the inflation
variance equal to Var (rt)/(φ− ρ)2 + σ2

ν .
A key feature of this example is that belief shock loadings are not generally zero, and

non-fundamental belief shocks can affect equilibrium outcomes. In addition, there is an
upper bound on belief shock loadings. The upper bound on belief shock loadings stems
from the projection condition and is unique to our imperfect information framework.
When indeterminacy arises in full-information models, there are no such bounds on the
scale with which belief shocks can affect economic outcomes.

In the absence of measurement error on inflation, σν = 0, the outcomes in our simpli-
fied example collapse to the full-information solution πt = rt/(φ − ρ) and equilibria are
continuous with respect to the full-information case as σν approaches zero. For any mea-
surement error variance, the range of possible equilibria includes the case where outcomes
are identical to the full-information case, with γν = γb = 0.
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2.5 Discussion

At the core of our simple model is that the Taylor principle is not satisfied under imper-
fect information even though it holds in the corresponding set-up with full information.25

The Taylor principle prescribes a sufficiently strong response of the nominal policy rate
to actual inflation. Deviating from it leads to sunspot-driven movements in private sector
expectations that the central bank cannot invalidate through its actions. Even though
there is a unique mapping between central bank projections of outcomes and economic
conditions, actual outcomes remain indeterminate in our framework. In standard models
such as Clarida, Gali and Gertler (2000) or Lubik and Schorfheide (2004) indeterminacy
arises because the central bank conducts a policy that does not satisfy the Taylor prin-
ciple. In contrast, in our limited information setting the central bank applies the Taylor
principle with respect to its reaction to projections derived from an optimal filter, which
then leads to an insufficiently strong reaction of policy to actual inflation. The source
of the indeterminacy thus lies in the interaction of expectations formed under the two
information sets.

When outcomes are not uniquely determined by economic fundamentals, there is a
role for belief shocks to drive economic fluctuations. The term “belief shocks” refers to
a set of economic disturbances that matter since people believe that they do. In general,
these disturbances are otherwise unrelated to economic fundamentals.26 We can think of
the implications of belief shocks in terms of the following thought experiment. Suppose
that the realization of a sunspot leads the private sector to believe that inflation is higher
than warranted by economic fundamentals. This implies a reassessment of the nominal
interest-rate path and a higher it in compensation for higher expected inflation. At this
point, the behavior of the central bank is crucial. If the Taylor principle holds under
FIRE, it would raise the policy rate by proportionally more than the private-sector’s
sunspot-driven belief. If the Taylor principle does not hold, the central bank raises the
policy rate by proportionally less and thereby validates the original belief. Consequently,
next period’s expected inflation is a fraction φ of this period’s inflation rate, see equation
(6), so that the resulting equilibrium is indeterminate and subject to belief shocks.

A similar intuition holds in the LIRE case, with a subtle but crucial wrinkle that
captures the core of our framework. We assume that the central bank follows a projection-
based policy rule as in Svensson and Woodford (2004). This is arguably common central
bank practice as real-time data are generally noisy and an informative signal needs to
be extracted. The policy rule is it = φπt|t with |φ| > 1. The central bank’s inflation

projection is therefore πt|t = (φ− ρ)−1 rt|t so that it = φ (φ− ρ)−1 rt|t. In the case of an
exogenous signal with a real rate projection equation rt|t = rt|t−1 + κr

(
rt − rt|t−1 + νt

)
,

the implied policy rule is then:

it =
φ

φ− ρ
rt|t−1 + κr

φ

φ− ρ
(
rt − rt|t−1 + νt

)
. (57)

25In our simple example economy, the Taylor principle requires |φ| > 1, as discussed, among others, by
Woodford (2003). For more general interest rate rules, Bullard and Mitra (2002) study requirements on
interest-rate rule coefficients to ensure determinacy in the New Keynesian model.

26The use of the term “beliefs” is conceptually distinct from the “projections” described as part of
our imperfect information setup, where projections are the result of the policymaker’s optimal signal
extraction efforts.
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The source of indeterminacy in this case is that policy responds only to movements in
exogenous variables and the measurement error. The interest rate therefore evolves au-
tonomously of the remainder of the model with no feedback from an endogenous variable.
This stems, of course, from the fact that the central bank’s information set only contains
real-time real rate observations and is thus almost akin to an interest-rate peg, which
even in a FIRE model implies indeterminacy. In contrast to the FIRE case, the central
bank responds to projected inflation which, consistent with the projection condition, the
central bank knows to be a function of real rate projections. However, when the signal is
exogenous, the projections do not contain a signal from actual inflation; instead, they re-
flect the average comovement between inflation and the signal in equilibrium. Therefore,
monetary policy cannot invalidate beliefs that arise along a particular inflation trajectory.

These basic insights also apply to the case of an endogenous information set as pre-
sented in Proposition 2. We can derive an implied policy rule as before:

it =
φ

φ− ρ
rt|t−1 + κr

φ

φ− ρ
(
πt − πt|t−1 + νt

)
, (58)

where the central bank observes current inflation with error. The resulting feedback from
inflation movements to real rate projections implies that current inflation matters for the
interest rate path so that the effective policy coefficient is κrφ/(φ− ρ) instead of φ. Since
κr is likely small and also within the unit circle it implies that the Taylor principle in
terms of feedback from actual inflation to the policy rate is not satisfied as the response
is less than proportional.27

Continuing our thought experiment, a sunspot-driven increase in inflation also affects
the central-bank’s projection process. Signal extraction is imperfect in the sense that the
central bank adjusts its inflation projection somewhat upward as it cannot fully distinguish
between the signal and the sunspot noise. Because of the size of the Kalman gain the
resulting effective interest rate increase is smaller than would be warranted so that the
sunspot-driven belief is validated. At the same time, the central bank’s projection is
consistent with the Taylor principle as it observes data subject to measurement error in
its limited information set; whereas the private sector is aware of the actual data and
takes into account the effective policy feedback in setting expectations.28

Equilibrium determination in our framework is conceptually different from the stan-
dard linear RE model. In the latter, the parameter space can typically be divided in
three distinct regions of determinacy, indeterminacy, and non-existence. Given a spe-
cific parameterization the model solution is thus placed in one of the regions so that a
reduced-form representation can be obtained. The set of multiple equilibria can be pa-
rameterized using the approach of Lubik and Schofheide (2003) or Farmer, Khramov, and
Nicolò (2015) which then can be used to describe adjustment dynamics. This set of equi-
libria is essentially unrestricted. Although our imperfect information model shares some
similarities, the key difference is that there is no corresponding partition of the parameter
space. Equilibrium indeterminacy is generic in the sense that a root-counting approach
would generally imply indeterminacy and would not pin down the forecast forecast errors

27This qualitative observation is borne out quantitatively by the numerical exercises in section 4.
28In this sense, our framework is similar to the set-up in Lubik and Matthes (2015) where learning

about the economy in a real-time environment with measurement error and an optimal policy choice can
engender indeterminacy.
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uniquely, with the exception of the special case as discussed above.
At the same time, an equilibrium for a given parameterization may not exist because it

is inconsistent with the projection condition or conditions derived from the computation
of the gain coefficients while fulfilling the criteria of the root-counting approach. Again,
this insight reflects the fact that in this imperfect information environment the solution
of a linear RE system depends on second moments of that system which in turn are
endogenous to the model solution. However, the set of multiple equilibria under LIRE is
restricted by the projection condition in stark contrast to the standard case. We leave it
to the numerical analysis in section 4 to assess the quantitative implications.

3 General Framework

We now introduce the general modelling framework, of which the analysis in the previous
section is an introductory example. We begin by laying out a general class of expectational
linear difference systems that feature conditional expectations of two types of agents with
possibly different information sets. After reviewing rational expectations outcomes under
full information, we turn to the imperfect information case, where one of the agents (“the
policymaker”) is strictly less informed than the other (“the private sector”). We highlight
the quantitative implications of this general framework in Section 4, where we study a
New Keynesian model.

3.1 An Expectational Difference Equation with Two Informa-
tion Sets

We consider linear, time-invariant equilibria that solve a system of linear expectational
difference equations of the following form:

EtSt+1 + ĴSt+1|t = ASt + ÂSt|t +Ai it (59)

it = Φiit−1 + ΦJSt+1|t + ΦASt|t (60)

St =

[
X t

Y t

]
(61)

where it denotes a vector of policy instruments (typically a scalar) andX t and Y t are vec-
tors of backward- and forward-looking variables, respectively.29 There are Nx backward-
and Ny forward-looking variables as well as Ni policy instruments. As in Klein (2000)
and Svensson and Woodford (2004), the backward-looking variables are characterized by
exogenous forecast errors, εt:

X t − Et−1X t = Bxε εt εt ∼ N(0, I) (62)

29Throughout, vectors and matrices will be denoted with bold letters; notice, however, that our use of
lower- and uppercase letters does not distinguish between matrices and vectors. In most applications, it
is likely to be a scalar, but nothing in our framework hinges on this assumption and so we use the generic
vector notation, it, throughout. In our context, keeping the policy instrument separate from Xt and Y t

will be useful since it will always be assumed to be perfectly known and observable to both public and
central bank.
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where the number of independent, exogenous shocks Nε may be smaller than the number
of backward-looking variables, Nx, while Bxε is assumed to have full rank (i.e. Bxε has
Nε independent columns). As in Klein (2000), we also assume that the initial value of the
backward-looking variables, X0, is exogenously given. In contrast, forecast errors for the
forward-looking variables, denoted

ηt ≡ Y t − Et−1Y t, (63)

are endogenous and remain to be determined as part of the model’s RE solution.30

The pair of linear difference equations (59) and (60) is intended to capture the interde-
pendent decision making of two kinds of agents.31 Both agents form rational expectations,
but conditional on different information sets, that will be described further below: One
agent has access to full information about the state of the economy; in the applications
considered in our paper, this would be a representative agent for the private sector also
referred to as “the public”. Private sector decisions are represented by (59), which also
depends on the setting of a policy instrument it chosen by the other agent. The second
agent is an imperfectly informed policymaker. In light of our applications, we synony-
mously refer to the policymaker also as “central bank.” The policymaker sets it according
to the rule given in (60). By definition, the policymaker must know the current value and
history of her instrument choices. Moreover, all variables entering the policy rule (60)
are expressed as expectations conditional on the central bank’s information set, denoted
St+1|t and St|t.

The policymaker is supposed to form rational expectations based on an information set
that is characterized by the observed history of a signal, denoted Zt, as well as knowledge
of all model parameters.32 For any variable V t, and any lead or lag h, EtV t+h denotes
expectations based on full information whereas

V t+h|t ≡ E(V t+h|Zt) Zt = {Zt,Zt−1,Zt−2, . . .} (64)

denotes conditional expectations under the central bank information set.33 For further
use, it will be helpful to introduce the following notation for innovations Ṽ t and residuals
V ∗t :

Ṽ t ≡ V t − V t|t−1 , V ∗t ≡ V t − V t|t = Ṽ t − Ṽ t|t . (65)

Henceforth we will use the term “shocks” in reference to martingale difference sequences
defined relative to the full information set, and the term “innovations” when referring to
martingale difference sequences with respect to the central bank’s information set.

By construction, central bank actions, it, are spanned by the history of observed sig-
nals, such that we always have it = it|t; note that it merely reflects information contained

30Note that there are in principle Ny endogenous forecast errors; though, as will be seen shortly, their
variance-covariance matrix need not have full rank.

31In our setup, equations ( 59) and ( 60) serve as primitives. In principle, each of these equations could
represent a mere behavioral characterization or, alternatively, a description of optimal decision making
in the form of a (linearized) first-order condition as in Svensson and Woodford (2004), for example.

32There is common knowledge about the structure of the economy and all model parameters.
33For notational convenience, knowledge of model paramters is suppressed when describing the infor-

mation sets underlying conditional expectations.
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in Zt and need not be added to the description of the measurement vector, even though
the policy instrument will not be explicitly listed as part of the measurement vector Zt.
The measurement vector has Nz elements, and each is a linear combination of backward-
and forward-looking variables:

Zt = HSt = HxX t +HyY t . (66)

The measurement vector may also be affected by “measurement errors” — disturbances to
the measurement equation that would otherwise be absent from a full-information version
of the model. Such measurement errors are assumed to have been lumped into the vector
of backward-looking variables, X t.

34

3.2 Full Information Equilibrium

Our setup nests the case of full information when St+h|t = EtSt+h ∀h ≥ 0, which holds,
for example, when H = I such that Zt = St. The full-information system can easily
be solved using familiar methods like those of Sims (2002), Klein (2000), or King and
Watson (1998). We stack all variables, including the policy control, into a vector St that
is partitioned into a vector of Ni + Nx backward-looking variables, X t, and a vector of
Ny +Ni forward-looking variables, Y t:35

St =

[
X t

Y t

]
where X t =

[
it−1
X t

]
Y t =

[
Y t ,
it

]
(67)

Using S ′t =
[
i′t−1 S′t i′t

]
, the dynamics of the system under full information are then

characterized by the following expectational difference equation:I 0 0

0 I + Ĵ 0
0 ΦJ 0


︸ ︷︷ ︸

J

EtSt+1 =

 0 0 I

0 A+ Â Ai

−Φi −ΦH I


︸ ︷︷ ︸

A

St (68)

Throughout, we focus on environments where a unique full-information solution exists,
and assume that the following assumption holds:

ASSUMPTION 1 (Unique full-information solution). The pencil |J z −A|, with J and
A as defined in (68), is a regular pencil and has Ni +Nx roots inside the unit circle and
Ny +Ni roots outside the unit circle.36

As shown in Klein (2000) or King and Watson (1998), Assumption 1 ensures the
existence of a unique equilibrium under full information.37 The solution has the following

34By construction, we have then Zt|t = HSt|t = Zt and thus H Var
(
St|Zt

)
H ′ = 0.

35The presence of the lagged policy control in X t serves to handle the case of interest-rate smoothing,
Φi 6= 0, and can otherwise be omitted. In the case of interest rate smoothing, it−1 enters the system as a
backward-looking variables. In the setups of Klein (2000) or King and Watson (1998), it is required that
all backward-looking variables be placed at the top of St.

36The pencil is regular if there is some complex number z such that |J z −A| 6= 0.
37In the case of the simple Fisher economy in section 2, the root-counting condition was satisfied by

requiring that the central bank’s interest-rate rule satisfied the Taylor principle, responding more than
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form, and can be computed, for example, using the numerical methods of Klein (2000):

EtX t+1 = P X t , Y t = G X t , G =

[
Gyi Gyx
Gii Gix

]
. (69)

where P is a stable matrix.38 Certainty equivalence holds, and the decision-rule coeffi-
cients P and G do not depend on the shock variances encoded in Bxε and, of course, not
on the measurement loadings H either.39 Equilibrium dynamics in the full-information
case are then summarized by:

St+1 = T̄ St + H̄εt+1 , T̄ =

[
P 0
GP 0

]
, H̄ =


0
I
Gyx
Gix

Bxε , (70)

where T̄ is stable because P is, and the endogenous forecast errors are given by ηt =
GyxBxε εt.

3.3 Expectation Formation in Imperfect Information Equilibria

In the imperfect-information case, we are interested in linear equilibria, driven by normally
distributed disturbances, so that a Kalman filter delivers an exact representation of the
true conditional expectations. Hence, we make the following assumption:

ASSUMPTION 2 (Jointly normal forecast errors). The endogenous forecast errors are a
linear combination of the Nε exogenous errors, εt, and Ny so-called belief shocks, bt, that
are mean zero and uncorrelated with εt:

ηt = Γεεt + Γbbt (71)

Moreover, exogenous shocks and belief shocks are generated from a joint standard normal
distribution,

wt ≡
[
εt
bt

]
∼ N

([
0
0

]
,

[
I 0
0 I

])
(72)

As a corollary, exogenous and endogenous forecast errors are joint normally distributed

one-to-one to fluctuations in inflation.
38A stable matrix has all eigenvalues inside the unit circle.
39As noted before, our imperfect information setup would include measurement errors as part of the

vector or backward-looking variables, Xt. The measurement errors would affect endogenous variables
of the system only via H, which does not play a role in the full information solution. But, also when
computing a full-information solution, there is no harm including measurement errors in Xt: The corre-
sponding columns of Gyx — as generated, for example, by the procedures of Klein (2000) or King and
Watson (1998)— are set to zero in this case.
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as well: [
εt
ηt

]
∼ N

([
0
0

]
,

[
I Γ′ε
Γε Ωη

])
, with Ωη = ΓbΓ

′
b + ΓεΓ

′
ε . (73)

The matrix of belief shock loadings Γb need not have full rank so that linear combinations
of endogenous and exogenous forecast errors might be perfectly correlated.

Assumption 2 nests properties of the full-information case, where - under the main-
tained assumption of a unique full-information equilibrium - endogenous forecast errors
are a linear combination of the exogenous errors, and could be perfectly recovered by a
regression of ηt on εt. Joint normality of exogenous and endogenous errors then follows
directly from the assumed normality of the exogenous errors. While Assumption 2 allows
for part of ηt to be unrelated to the exogenous errors, this part takes the form of additive
belief shocks that are normally distributed. In a linear equilibrium, where (71) holds, the
belief shocks affect outcomes only via the product Γb bt; thus, without loss of generality,
bt can be normalized to have a variance-covariance matrix equal to the identity matrix.40

For now, we treat the shock loadings Γε and Γb as given and characterize a class of
equilibria where central bank expectations are represented by a Kalman filter. Afterwards,
we turn to solution methods that determine values for Γε and Γb consistent with these
equilibria. Throughout this paper, we limit attention to a particular class of equilibria
referred to as “stationary, linear and time-invariant equilibria,” that are formally defined
as follows:

Definition 1 (Stationary, linear, time-invariant equilibrium). In a stationary, linear,
and time-invariant equilibrium, forward- and backward-looking variables, Y t and X t, as
well as the policy instrument, it, are stationary and their equilibrium dynamics satisfy
the expectational difference system described by (59) and (60).41 All expectations are
rational, and the imperfectly informed agent’s information set is described by (66). In
addition, Assumption 2 holds, which means that the forecast errors of the forward-looking
variables are a linear combination of fundamental shocks and belief shocks, with time-
invariant loadings Γε and Γb, as in (71), and normally distributed belief shocks bt.

As argued next, in such an equilibrium, conditions are in place to ensure that the
central bank’s conditional expectations, as defined in (64) can be represented by a Kalman
filter. The measurement equation of the central bank is given by (66). The state equation
of the central bank’s filtering problem is given by

St+1 + ĴSt+1|t = ASt + ÂSt|t +Ai it +Bwt+1 , with B =

[
Bxε 0
Γε Γb

]
, (74)

40Note further that Assumption 2 could equivalently by restated by assuming that εt and ηt are joint
normally distributed zero-mean shocks. The linear relationship in (71) between endogenous and exogenous
shocks then follows from a regression of ηt on εt, which characterizes the distribution of ηt conditional
on εt. Viewed from this perspective, the belief shocks, bt, emerge as the standardized regression residual
that is orthogonal to εt.

41Note that all of the linear equilibria considered in this paper are driven by normally distributed
shocks, leading to normally distributed outcomes, such that covariance stationarity also implies strict
stationarity. Hence, we will not distinguish between both concepts and merely refer to stationarity.
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which combines the expectational difference equation (59) with the implications of As-
sumption 2 for the endogenous forecast errors. The appearance of projections St+1|t and
St|t in (74) lends this state equation a slightly non-standard format. However, when
expressed in terms of innovations, the filtering problem can be cast in the canonical
“ABCD” form, studied, among others, by Fernández-Villaverde, Rubio-Ramı́rez, Sargent
and Watson (2007):42

S̃t+1 = A
(
S̃t − S̃t|t

)
+Bwt+1 , (75)

Z̃t+1 = C
(
S̃t − S̃t|t

)
+Dwt+1 , (76)

with C = HA , D = HB , since Z̃t+1 = HS̃t+1 . (77)

To ensure a well-behaved filtering problem, we impose the following assumption on
the shocks to the central bank’s measurement vector Dwt = Zt − Et−1Zt.

ASSUMPTION 3 (Non-degenerate shocks to the signal equation). Shocks to the central
bank’s measurement equation have a full-rank variance-covariance matrix; that is |DD′| 6=
0.

A necessary condition for Assumption 3 to hold is that the signal vector has not more
elements than the sum of endogenous and exogenous forecast errors: Nz ≤ Nε + Ny ≤
Nx +Ny.

Together with Assumption 3, certain conditions on A, B, and H known as “observ-
ability” and “unit-circle controllability” ensure the existence of a steady state Kalman
filter; details are provided in the appendix. As shown in (74), B depends on the yet to be
determined shock loadings Γε, Γb. Further below, we will discuss how the conditions for
the existence of a steady state filter impose only weak restrictions on these shock loadings.

ASSUMPTION 4 (Sufficient condition for existence of a steady-state Kalman filter).
The equilibrium shock-loadings Γε, Γb of the endogenous forecast errors ηt are such that
A, B and H are detectable and unit-circle controllable as stated in Definition 5 of the
appendix.

In general, central bank projections, St|t can be decomposed into central bank fore-
casts made in the previous period, St|t−1, and an update reflecting the innovations in
measurement vector. When a steady-state filter exists, the expectational update is linear
and a constant Kalman gain matrix relates the projected innovations in the state vector,
S̃t|t, to innovations in the measurement vector, Z̃t:

St|t = St|t−1 + S̃t|t with S̃t|t = KZ̃t , and K = Cov (S̃t, Z̃t)
(

Var (Z̃t)
)−1

. (78)

As shown in the appendix, the Kalman gain matrix, K, is given by the solution of a stan-
dard Riccati equation involving A, B and H . To remain consistent with the equilibrium

42The innovations form is obtained by projecting both sides of (74) onto Zt and subtracting these
projections from (74). When doing so, note that the policy instrument it is the central bank’s decision
variable and thus always in the central bank’s information set. Notice that the innovations form given
by (75) and (76) is identical to the innovations form of a state space system with St+1 = ASt +Bwt+1

in place of (74) while maintaining (66) as measurement equation, as noted also by (Baxter, Graham and
Wright 2011).
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properties laid out in Definition 1, we limit attention to the case when a steady-state
Kalman filter exists, which enables us to represent the central bank’s conditional expec-
tations as a recursive system of linear projections with time-invariant coefficients.

Proposition 3 (Existence of steady-state Kalman filter). When Assumptions 3 and 4
hold, a steady state Kalman filter exists that describes the projection of innovations in
the state vector, S̃t|t = KZ̃t with a constant Kalman gain K as in (78). Moreover, the
variance-covariance matrix of projection residuals is constant, Var

(
St|Zt

)
= Var (S∗t ) =

Σ∗. Existence of a steady state Kalman filter ensures that innovations S̃t = St − St|t−1
and residuals S∗t = St − St|t are stationary. Innovations to the measurement equation,

Z̃t, are stationary as well.

Proof. See Theorem 3 of Appendix A. The stationarity of Z̃t = HS̃t follows then from
the stationarity of S̃t.

Equation (78) describes the update from policymaker forecasts, St|t−1, to current
projections, St|t. What remains to be characterized is the transition equation from pol-
icymakers’ projections St|t to their forecasts, St+1|t, which is restricted by the linear
difference equations (59) and the rule (60) for the policy instrument it. Since the policy
instrument may depend on its own lagged value via Φi 6= 0 in (60), we construct the tran-
sition from St|t to St+1|t based on the vector St, which includes St and it−1, as defined
in (67).

Conditioning down (59) and (60) onto the information set of the policymaker, Zt,
yields a system of expectational linear difference equations in St that is akin to the full-
information system shown in (68), except for the use of policymaker projections in lieu of
full-information expectations:

JSt+1|t = ASt|t (79)

with J , and A as defined in (68) above. In a stationary equilibrium consistent with
Definition 1, St is stationary, and so is its projection St|t. When the equilibrium is linear
and time-invariant, the projections St|t must follow

St+1|t = T St|t , with (JT −A)St|t = 0 for some stable matrix T . (80)

T spans a stable, invariant subspace of the matrix pencil |J z−A|. In principle, several
choices of T could satisfy this criterion. To see this, think of any T whose columns include
a (sub)set of stable eigenvectors of the pencil plus columns of zeros. The simple example
of Section 2, is characterized by a dynamic system with only two non-zero eigenvalues,
and a single, one-dimensional stable subspace of the associated matrix pencil. In this
case, there is a single choice of T consistent with the equilibrium, and it is identical to
the full-information transition matrix T̄ .

In addition, JT − A must be orthogonal to the space of projections St|t. Before
discussing further the determination of T , note that in a linear equilibrium with normally
distributed shocks with a given linear transformation from projections St|t into forecasts
St+1|t, the Kalman filter represents conditional expectations of St (and thus also St).

Proposition 4 (Kalman filter represents conditional expectations). When the conditions
for Proposition 3 hold, and for a given stable transition matrix T between policymaker
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projections and forecasts as in (80), the steady state Kalman filter represents conditional
expectations St|t = E

(
St|Zt

)
in a linear, time-invariant stationary equilibrium. For a

given sequence of innovations in the measurement vector, Z̃t, the Kalman filter implies
the following, stationary evolution of projections:

St+1|t+1 = T St|t +KZ̃t+1 , with K =


0
Kx

Ky

Ki

 (81)

Proof. In a linear, time-invariant stationary equilibrium shocks are jointly normal and
propagate linearly so that the sequences of St and Zt are joint normally distributed, so
that conditional expectations are identical to mean-squared-error optimal linear projec-
tions. By the law of iterated projections, we can decompose

E
(
St+1|Zt+1

)
= E

(
St+1|Zt

)
+ E

(
S̃t+1|Z̃t+1

)
and we have E

(
St+1|Zt

)
= T St|t based on (80). E

(
S̃t+1|Z̃t+1

)
= KZ̃t+1 follows

from Proposition 3. Kx and Ky are appropriate partitions of K as defined in (78) and

Ki = Cov
(
ĩt, Z̃t

)(
Var

(
Z̃t

))−1
.43 The upper block of K, corresponding to the Kalman

gain coefficients for the lagged policy instrument, are zero since it−1 = it−1|t−1 and thus

ĩt−1|t = it−1|t − it−1|t−1 = 0.

3.4 A Class of Imperfect Information Equilibria

As noted above, there can be multiple solutions for T in (80). As an application of
certainty equivalence, a valid choice for T is T̄ , known from the full-information solu-
tion given in (70).44 In the full-information case, and under the maintained assumption
that Assumption 1 holds, T̄ characterizes the unique solution to the difference equation
JEtSt+1 = ASt.

In the imperfect information case, T need not be a unique solution. However, the
multiplicity of equilibria highlighted in our paper does not stem from the implications of
choosing different T . We rather focus solely on equilibria based on T = T̄ , which is con-
sistent with the approach of Svensson and Woodford (2004) who assume that equilibrium
is unique in a setup similar to ours.45. In order to ensure T = T̄ , we follow Svensson and
Woodford (2004) and impose the following condition:46

43The value for Ki could be computed based on the policy rule (60) and the dynamics of St; however,
further below we utilize a more direct approach.

44To verify the validity of T̄ as a solution to (79), note that T̄ solves (68) and that (79) represents the
same difference equation, when projected onto Zt.

45Applications that build on Svensson and Woodford (2004) are, for example, Dotsey and Hornstein
(2003), Aoki (2006),Nimark (2008b), Carboni and Ellison (2011).

46Note that (80) corresponds to their equation (42), and that our projection condition (82) corresponds
to their (42), (45), (46), and (47).
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Definition 2 (Projection Condition). The projection condition restricts the mapping
between projected backward- and forward-looking variables to be identical to the full-
information case:

Y t|t = GX t|t , and X t+1|t = PX t|t . (82)

where G and P are the unique solution coefficients in the corresponding full-information
case.

The projection condition is an equilibrium condition that imposes a linear mapping
between projections of backward- and forward-looking variables. In particular, the pro-
jection condition imposes a second-moment restriction on the joint distribution of the
innovations X̃ t, Ỹ t.

47 As a second-moment restriction, the projection condition restricts
only co-movements of the innovations on average but not for any particular realization
of X̃ t and Ỹ t. The upshot of the projection condition (82) is the following restriction
between Kalman gains of forward- and backward-looking variables:

Y t|t = Gyx X t|t + Gyi it−1|t =⇒ Ỹ t|t = Gyx X̃ t|t ⇐⇒ (Ky − Gyx Kx) Z̃t = 0 ,
(83)

where Ky and Kx denote the corresponding partitions of the Kalman gain, K, defined

in (78).48 Since (83) must hold for every Z̃t, the projection condition implies a restriction
on the Kalman gains, summarized in the following proposition.

Proposition 5 (Projection Condition for Kalman gains). The projection condition (82)
holds only if the Kalman gains satisfy Ky = Gyx Kx.

Proof. As noted in (83), a necessary condition for the projection to hold is (Ky − Gyx Kx) Z̃t =

0 for all realizations of Z̃t, which has a joint normal distribution. Assumption 3 implies
that Var (Z̃t) = C Var (S∗t )C

′+DD′ is strictly positive definite, so that the distribution
of Z̃t is non-degenerate. For (83) to hold, we must have Ky = Gyx Kx.

Kalman gains are multivariate regression slopes.49 As a result of Proposition 5, the
projection condition imposes a linear restriction on covariances between Ỹ t, X̃ t, and Z̃t,
i.e. Cov (Ỹ t, Z̃t) = Gyx Cov (X̃ t, Z̃t).

Henceforth we only consider equilibria that are stationary, linear and time-invariant
according to Definition 1 and that satisfy the projection condition laid out in Definition 2.
In such equilibria, the dynamics of forward- and backward-looking variables, as well as
the policy instrument, are characterized by a state vector that tracks both projections and
actual values of the vector St, which contains backward- and forward-looking variables
as well as the policy instrument. In fact, the joint vector of St and St|t does not need
to tracked in its entirety: First, St includes the policy instrument it, which lies in the

47In addition to Y t and Xt, Yt and X t also contain the current and lagged policy instrument, re-
spectively. However, the projection condition does not impose a direct restriction on innovations in the
policy instrument since it = it|t and thus ĩt−1|t = it−1|t − it−1|t−1 = 0.

48That means K =
[
K ′x K ′y

]′
so that Kx = Cov (X̃t, Z̃t)

(
Var (Z̃t)

−1)
, and Ky =

Cov (Ỹ t, Z̃t)
(

Var (Z̃t)
−1)

.

49Please recall that Ky = Cov (Ỹ t, Z̃t) Var (Z̃t)
−1

and Kx = Cov (X̃t, Z̃t) Var (Z̃t)
−1

.
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space of central bank projections, and need not be tracked twice. Thus, the state of the
economy can be described by St — which differs from St in omitting it — and St|t.
Second, the state of the economy is equivalently described by S∗t = St − St|t and St|t.
Third, when the projection condition (82) is satisfied, we need only track X t|t rather
than S ′t|t =

[
X ′t|t Y ′t|t

]
, since Y t|t = GX t|t. Properties of the resulting equilibria are

summarized in the following theorem.

Theorem 1 (Difference System Under Imperfect Information). Consider the model rep-

resented by the system of difference equations (61) and (60) in St =
[
X ′t Y ′t

]′
with a

measurement vector that is linear in St as defined in (66). In addition, let Assumptions 1,
2, 3, and 4 hold and consider stationary, linear, time-invariant equilibria that satisfy the
projection condition, as stated in Definitions 1 and 2. In this case, equilibrium dynamics
are characterized by the evolution of the following vector system:

St+1 ≡
[
S∗t+1

X t+1|t+1

]
=

[
(A−KC) 0
KxC P

]
︸ ︷︷ ︸

A

St +

[
(I −KH)
KxH

] [
Bxε 0
0 I

] [
εt+1

ηt+1

]
(84)

whereK′x =
[
0 K ′x

]
, C as defined in (77), and P known from the unique full-information

solution in (69).

Proof. Outcomes for St can be decomposed into St = S∗t + St|t. It remains to show
that St|t can be constructed from St. In addition, we need to show that the policy
instrument it = it|t can also be constructed from the proposed state vector St. Recalling
the definitions of St, X t and Y t in (61), and (67), the projection condition then implies
that

St|t =

[
X t|t
Y t|t

]
=

[
0 I
Gyi Gyx

]
︸ ︷︷ ︸

GS

X t|t , it =
[
Gii Gix

]︸ ︷︷ ︸
Gi

X t|t , with X t|t =

[
it−1
X t|t

]
,

where block matrices are partitioned along the lines of X t|t above. The various cofficient
matrices G·· are known from the full-information solution given in (69).

The dynamics of S∗t+1, as captured by the top rows of S, follow from the innovation
state space (75), (76) as well as the steady state Kalman filter described in Appendix A.
The dynamics of X t+1|t+1, as captured by the bottom rows of S, follow from (81) together

with the projection condition (82) and the dynamics of Z̃t given in (76).

The Kalman gain Kx, defined in Proposition 4, depends on the equilibrium distribu-
tion of endogenous forecast errors ηt. According to Assumption 2, ηt is a linear com-
bination of exogenous shocks εt and belief shocks bt with endogenous shock loadings Γε

and Γb that are yet to be determined so as to satisfy the projection condition stated in
Definition 2. Before turning to the determination of the shock loadings Γε and Γb of the
endogenous forecast errors, a few critical results already emerge.

The state vector St follows a first-order linear difference system given in (84). The sta-
bility of the system depends on the eigenvalues of its transition matrix A. The transition
matrix A depends on the Kalman gain K, which depends on the yet to be determined
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shock loadings Γε and Γb of the endogenous forecast errors ηt. Nevertheless, as argued
next, the existence of a steady-state Kalman filter allows us to conclude that A, is stable.

Corollary 1 (Stable Transition Matrix). Provided that a steady-state Kalman filter exists,
the transition matrixA in (84) is stable. The eigenvalues ofA are given by the eigenvalues
of P, which is stable and known from the full-information solution (69), and A −KC,
whose stability is assured by the existence of the steady-state Kalman filter.

Proof. The stability of P follows from Assumption 1 and the resulting solution of the
full-information case in (114). The stability of A − KC follows from Theorem 3 in
Appendix A.

The upshot of Corollary 1 is that the usual root-counting arguments do not pin down
the shock loadings Γε and Γb of the endogenous forecast errors ηt+1 in (84), since A is a
stable matrix for any choice of Γε and Γb consistent with the existence of a steady state
Kalman filter. Moreover, the projection condition does typically not place sufficiently
many restrictions on Γηε and Γηb to uniquely identify the shock loadings:

Corollary 2 (Generic Indeterminacy). With A stable, the endogenous forecast errors are
only restricted by the projection condition given in Definition 2. The shocks loadings of
the endogenous forecast errors, Γε and Γb, have Ny × (Nε + Ny) unknown conditions.
Stated as in (83), the projection condition imposes only Ny×Nz restrictions. However, a
necessary condition for Assumption 3 to hold is Nz ≤ Nε+Ny. As a result, the projection
condition cannot uniquely identify the shock loadings Γε and Γb.

Among others, Theorem 1 rests on the assumption of joint detectability and unit-circle
controllability of (A,B,H) where B depends on the endogenous shock loadings Γε and
Γb while A and H are primitives of the model setup. The detectability condition can
thus be verified independently from solving for Γε and Γb. An addition, as described in
the appendix (see Proposition 8), a full rank of

B =

[
Bxε 0
Γε Γb

]
is sufficient to ensure unit-circle controllability . As part of the model setup, Bxε is
supposed to have full rank. Consequently, the criterion of a full rank of B is satisfied
when the belief shock loadings Γb have full rank, and thus Γb 6= 0. Non-zero belief shock
loadings are a hallmark of equilibrium indeterminacy. While the projection condition
places restrictions on Γb, non-zero belief shock loadings are thus a sufficient condition for
the existence of a steady state Kalman filter, which in turn assures the stability of A.

Before turning to approaches to compute Γε and Γb that are consistent with the
projection condition, we summarize the construction of an equilibrium for a given solution
of the endogenous forecast errors.

Theorem 2 (Equilibria under Imperfect Information). Consider the difference system
under characterized in Theorem 1 and let ηt = Γεεt + Γbbt with shock loadings Γε and
Γb such that the projection condition (82) is satisfied. Equilibrium outcomes are then
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characterized as follows:

St =
[
I Gs

]
St it =

[
0 Gi

]
St St+1 = A St + B wt+1 , (85)

with St ≡
[
S∗t
X t

]
, wt+1 ≡

[
εt+1

bt+1

]
, and B ≡

[
(B −KD)
KXD

]
. (86)

where B and D encode the shock loading Γε and Γb as stated in (77); Kx, Gs and Gi are
defined in the proof of Theorem 1. Block matrices are partitioned along the lines of St as
stated above.

Proof. The proof follows straightforwardly from Theorem 1.

3.5 Determination of the Endogenous Forecast Errors

As described by Sims (2002) and Lubik and Schorfheide (2003), restrictions for the en-
dogenous forecast errors ηt emanate from explosive roots in the dynamic system. In our
imperfect information case, further restrictions result from the projection condition stated
in Definition 2. As noted in Corollary 1 above, the transition matrix A is always stable
in a time-invariant equilibrium with a steady-state Kalman filter. Restrictions on ηt can
only result from the projection condition; but as discussed in Corollary 2, the projec-
tion condition does generally not provide sufficiently many restrictions to pin down ηt
uniquely.

The determination of shock loadings Γε, Γb for the endogenous forecast errors that
are consistent with the projection condition poses an intricate fixed problem between
shock loadings and Kalman gains. As noted already by Sargent (1991), the Kalman
gains are endogenous equilibrium objects when the observable signals reflect information
contained in endogenous variables. In contrast, the Kalman filtering problem can be
solved independently of the equilibrium dynamics of the system, when the signal vector
consists only of exogenous variables.

In (66), the central bank’s measurement vector is generically described as a linear
combination of backward- and forward-looking variables, Zt = HxX t + HyY t. To
facilitate the analysis, we now delineate two cases: one where the signal depends on
endogenous variables (specifically, choosing Hy = I) as well as the case where the signal
solely reflects exogenous variables (Hy = 0 and X t exogenous).

3.5.1 Endogenous Signal

In (66), the signal observed by the central bank involves a linear combination of forward-
and backward-looking variables, such that the signal depends at least in part on endoge-
nous variables. When considering this case, and to simplify some of the algebra, we limit
ourselves to signal vectors that have the same length as the vector of forward-looking
variables (Y t) and that have no rank-deficient loading on Y t. All told, we assume that
Hy in (66) is square and invertible. In this case, Hy can be normalized to the identity
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matrix.50 In the endogenous-signal case, we thus consider signal vectors of the form

Zt = HxX t + Y t and thus H =
[
Hx I

]
. (87)

Note that the endogenous-signal setup also includes the case where each forward-
looking variable is observed with error, as in Zt = Y t + νt where νt is an exogenous
measurement error to be included among the set of backward-looking variables in X t.

In the context of the simple example described in section 2, we provided an analytical
characterization of the fixed point problem posed by the endogenous-signal case. However,
even in this stylized example the fixed point proved intractable to solve analytically.
Instead, we have derived a fast numerical procedure to solve for shock loadings Γε, Γb

that are consistent with the projection condition for this case.
Our numerical approach combines elements of standard techniques for solving lin-

ear RE models with a fast algorithm to solve the non-linear fixed-point problem for the
Riccati equation embedded in the Kalman filter while ensuring consistency with the pro-
jection condition. For a given intial guess of Γε, Γb, the procedure returns values that are
consistent with the projection condition; different starting values then generate typically
different result values. Details of our algorithm are described in Appendix B.

3.5.2 Exogenous Signal

For the case of an exogenous signal, we derive two general results: First, the projection
condition does not restrict the belief shock loadings of the endogenous forecast errors,
Γb, when the signal is exogenous. Second, we derive an analytical expression for the
restrictions on the loadings of the endogenous forecast errors on fundamental shocks
(including the measurement errors) that result from the projection condition.

To consider the case of a purely exogenous signal, we need to distinguish between
endogenous and exogenous components of the vector of backward-looking variables X t.
Let X t be partitioned into exogenous variables, denoted X1

t , and endogenous variables
(like the lagged inflation rate in case of a Phillips Curve with indexation), denoted X2

t .
Exogeneity of X1

t places zero restrictions on the system matrices in (59), and its
dynamics reduce to

X1
t = A11

xxX
1
t−1 +B1

xε εt (88)

where A11
xx and B1

xε are appropriate sub-blocks of A and Bxε.
51. The signal is then given

by
Zt = HxX

1
t . (89)

50Consider the case of a signal Ẑt = ĤxXt + ĤyY t where Ĥy is square and nonsingular. The

information content provided by Ẑt is equivalent to what is spanned by Zt = Ĥ
−1
y Ẑt with Hx =

Ĥ
−1
y Ĥx.
51Consistent with (59) , the endogenous component of Xt generally evolves according to

X2
t = A21

xxX
1
t−1 +A22

xxX
2
t−1 +A2

yx Y t−1 + Â
21

xxX
1
t−1|t−1 + Â

22

xxX
2
t−1t−1 + Â

2

yx Y t−1|t−1 +B2
xε εt ,

whereA21
xx,A22

xx,A2
yx, Â

21

xx, Â
22

xx, Â
2

yx, andB2
xε are appropriate sub-blocks ofA, Â andBxε, respectively.
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For ease of notation, we consider henceforth the case where the entire vector of
backward-looking variables is exogenous; that means X t = X1

t . (Our first result in
this section, the lack of restrictions on Γb, extends also to the case when X t contains
an endogenous component, that is, however, not reflected by the signal.) The signal
extraction problem is then given by the following system:

X t = AxxX t−1 +Bxεεt , (90)

Zt = HxX t , (91)

where Axx denotes the appropriate sub-block of A in (59).
Existence of steady state Kalman filter is assured by joint detectability and unit-circle

controllability of (Axx,Bxε,H), which does not depend on the equilibrium solution of the
system and thus a weaker condition than what is required by Assumption 4. Henceforth,
existence of a steady-state Kalman filter is assumed, resulting in a constant gain matrix
Kx such that Axx(I −KxHx) is stable.

A defining feature of the exogenous-signal case is that the signal extraction problem
can be solved independently from the dynamics of the forward-looking variables, Y t and
Kx and Var (X∗t ) are determined solely by (90) and (91). We have X∗t = X t −KxZt =
(I −KxHx)X̃ t and can thus write

X̃ t = AxxX
∗
t−1 +Bxε = Axx(I −KxHx)X̃ t−1 +Bxεεt (92)

Moreover, when X t = X1
t , application of the projection condition translates the Kx

into a given Kalman gain for the forward-looking variables: Ky = GyxKx, where Gyx is
known from the full-information solution of the model. The innovation dynamics of the
forward-looking variables are then restricted by the following transition equation:

Ỹ t+1 = ÃyxX̃ t−1 +AyyỸ t−1 + ηt+1 with Ãyx = Ayx − (Ayx +AyyGyx)KxHx (93)

where the endogenous forecast errors, ηt, remain to be derived. As before, we seek
ηt = Γηε εt + Γηb bt, with loadings Γηε and Γηb that satisfy the projection condition.

In addition, in order to ensure stationarity of Ỹ t, Ayy has to be a stable matrix or
further restrictions need to be imposed on ηt. In our discussion of the general case,
as part of Assumption 4, we imposed the requirement that (A,H) are detectable. As
discussed in Appendix A, this requirement is tantamount to letting the signal vector load
on any linear combinations of backward- and forward-looking variables associated with
potentially unstable dynamics. In the present context of a signal that does not load on
Y t, detectability of (A,H) boils down to the requirement that Ayy is a stable matrix.

If only the weaker requirement of detectability of (Axx,Hx) is to be imposed, note that
the innovation system (92) and (93) has the form of a typical linear rational expectations
system as analyzed, among others, by Klein (2000) and Sims (2002). As shown there,
when Ayy is not a stable matrix, linear combinations of ηt associated with unstable

dynamics of Ỹ t need to be set to zero. However, as illustrated in the simple example of
Section 2, this is typically not sufficient to uniquely determine equilibrium outcomes.52

52Note that (93) describes the innovation dynamics of the forward-looking variables, which do not
directly depend on the policy rule coefficients Φ· in (60). Since the policy instrument always lies in the
space of observations of the policymaker, it drops out of the innovations dynamics of the forward-looking
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The projection condition requires Cov (Ỹ t, Z̃t) = Gyx Cov (X̃ t, Z̃t). Due to the exo-

geneity of Z̃t — and thus Cov (bt, Z̃t) = 0 — this covariance restriction does not affect
admissible belief shock loadings Γηb.

53

Proposition 6 (Unrestricted Belief-Shock Loadings When the Signal is Exogenous).
When the signal is exogenous, as given by (90) and (91), there are no restrictions on Γηb

in a stable, linear, time-invariant equilibrium (Definition 1) where the projection condition
(Definition 2) holds.

Proof. Formally, we can decompose Ỹ t into two pieces: a component, Ỹ
ε

t , that reflects

the history of fundamental shocks εt and another component, Ỹ
b

t , solely driven by belief
shocks.

Ỹ t+1 = Ỹ
ε

t+1 + Ỹ
b

t+1 (94)

Ỹ
ε

t+1 ≡ ÃyxX̃ t−1 +AyyỸ
ε

t−1 + Γηεεt+1 (95)

Ỹ
b

t+1 ≡ AyyỸ
b

t−1 + Γηbbt+1 (96)

with the evolution of X̃ t given by (92) and Ãyx as defined in (93). When the measurement
vector is exogenous, it is uncorrelated with belief shocks at all leads and lags. Accordingly,
the central bank’s information set does not contain any signal about bt+h, for any h,

E(bt+h|Zt) = 0. Likewise, Ỹ
b

t is orthogonal to Zt, E(Ỹ b
t|Z̃t) = 0 for any Γηb. As a

consequence, Γηb does not affect the projection condition (83), Y t|t = Gyx X t|t.

As can be seen from the proof of Proposition 6, the underlying argument rests on
the orthogonality between the exogenous signal vector X t and the belief shocks bt. The
argument easily extends to the more general case when the vector of backward-looking
variables X t contains both exogenous and endogenous components X1

t and X2
t as de-

scribed in the previous section.
Finally, for the case when X t = X1

t , we can derive simple expressions to construct
fundamental shock loadings Γηε that satisfy the projection condition. Let W̃ t ≡ Ỹ

ε

t −
GyxX̃ t and note that the projection condition requires W̃ t|t = 0 and thus W̃ t = W̃

∗
t .
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Equivalently, the projection condition requires Cov (W̃ t, Z̃t) = ΣwxH
′ = 0 with Σwx ≡

Cov (W̃ t, X̃ t). Based on (90) and (95), and with Awx = Ayx − GyxAxx + AyyGyx, the

dynamics of W̃ t are given by

W̃ t+1 = AwxX
∗
t−1 +AyyW̃ t−1 + (Γηε − GyxBxε)εt+1 (97)

Σwx = AwxΣ
∗
xxA

′
xx +AyyΣwxA

′
xx (I −KxHx)

′ + (Γηε − GyxBxε)B
′
xε (98)

where Σ∗xx = Var (X∗t ) is known from solving the steady-state Kalman filter. The only
unknowns in (98) are Σwx and Γηε and we seek to find Γηε such that ΣwxH

′
x = 0.

dynamics. However, in monetary policy models with interest rate rules, it is the appropriate choice of
policy coefficients that creates many possibly unstable dynamics (which cannot be part of a stationary
equilibrium) and just a single stationary outcome.

53Notice that the result also goes through, when part of the vector of backward-looking variables was
endogenous, as long as the signal remains exogenous.

54In light of Proposition 6, we can neglect the effects of belief shocks and W̃ t has been defined with
reference to Ỹ

ε

t , as defined in the proof to Proposition 6.
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Valid values of Σwx must lie in the nullspace ofH ′x. Specifically, given a (Nx−Nz)×Nx

matrix N such that NH ′ = 0.55 we can construct valid candidates for Σwx by choosing
an arbitrary Ny × (Nx −Nz) matrix G and let Σwx = GN .

For a given candidate Σwx = GN , Γηε must thus satsfy the following condition:

ΓηεB
′
xε = f(G) (99)

where f(G) ≡ GN + GyxBxεB
′
xε −AwxΣ

∗
xxA

′
xx −AyyGNA

′
xx (I −KxHx)

′ (100)

The ability to solve (99) for Γηε depends on the dimension of the problem. When
Nx = Nε, the number of exogenous variables is identical to the number of exogenous
shocks, and Bxε is invertible. When |Bxε| 6= 0 it is straightforward to solve (99) for Γηε

given an arbitrary G:

Γηε = f(G)(B′xε)
−1 . (101)

In case of Nx > Nε, there is not necessarily a Γηε that solves (99) for anyG. Instead,G
needs to be chosen such that f(G) (I −Bxε(B

′
xεBxε)

−1B′xε) = 0, which can be obtained
numerically.56 For such a choice of G, a valid Γηε is given by Γηε = f(G)Bxε(B

′
xεBxε)

−1.

4 Quantitative Analysis

We now solve and analyze our modelling framework quantitatively. We first present results
for the simple example economy of Section 2 before turning to a New Keynesian economy
that is widely used for the analysis of monetary policy. Both applications consider central
bank information sets that are spanned by endogenous signals as discussed in section 3.5.
When the central bank’s measurement vector reflects endogenous variables, analytical
solutions are difficult to obtain and we therefore rely on our numerical procedure.

4.1 Quantitative Results for the Simple Example Model

An analytical characterization of equilibria in the simple example economy under exoge-
nous and endogenous information sets are provided in Propositions 1 and 2 in section 2.
Nevertheless, analytical bounds on parameters for existence of a solution remain difficult
to derive, especially in the case of an endogenous information set. In this section, we
provide further insight into the mechanics and implications of our framework by solving
the model numerically. Our numerical solution algorithm combines elements of standard
techniques for solving linear RE models with a fast algorithm to solve the non-linear fixed-
point problem for the Riccati equation embedded in the Kalman filter and the projection
condition. Specifically, the numerical algorithm searches for shock loadings γε, γν , and γb
that satisfy the projection condition in the endogenous signal case. Further details can
be found in Appendix B.

55A matrixN such thatNH ′ = 0 can readily be obtained from the SVD decomposition ofH = USV ′

where U and V are orthonormal, S =
[
S1 0

]
and S1 is a Nz × Nz diagonal matrix. Partition V

conformably into V =
[
V 1 V 2

]
such that H = US1V

′
1. Since V is orthonormal we have V ′2V 1 = 0.

Choosing N = V ′2 then ensures NH ′ = 0.
56Note that, as introduced in (62), Bxε has full rank which ensures that |B′xεBxε| 6= 0.
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We consider the baseline case of the policy rule it = φπt|t where the endogenous
information set Zt = πt + νt. For purposes of illustration, we set the policy parameter
φ = 1.5 and assume that the real rate follows an AR(1) process with persistence ρ = 0.9
and a unit innovation variance σ2

ε = 1. Initial experimentation shows that in this simple
example the measurement error on inflation has to be large for an equilibrium to exist. We
therefore set the variance of the i.i.d. measurement error νt to σ2

ν = 2.52.57 We generate
2000 starting points from which our algorithm is able to find valid equilibria in 99 percent
of all cases. Each equilibrium is associated with a triple (γε, γb, γν) of loadings on the
shocks in the forecast error decomposition. The fact that there are multiple such loadings
for the parameter space simply reflects that the RE solution is indeterminate. In section
I.1 of the Supplementary Appendix, we explore the bounds of the existence region for this
parameterization numerically.

We plot impulse responses to each shock for the entire set of equilibria in Figure 1,
while impulse responses for a specific equilibrium as an example are displayed in Figure 2.
For reference, we also plot the impulse responses for the FIRE specification. In the latter
case, a unit innovation to the real rate raises inflation by 1/ (φ− ρ) = 5/3 which then
decays at the constant rate ρ. The interest response follows the same pattern. This
simply reflects the Fisher effect in that a higher real rate requires a higher nominal rate
and in turn a higher inflation rate. The unique FIRE equilibrium has zero response to
the measurement error since the model is not defined as having such error, but also to
the belief shock since the solution is unique under the given parameterization.

Under LIRE, however, the set of equilibria is notably different. On impact, a unit
innovation in the real rate can either lead to an increase or a decrease in inflation over a
range of about (−1.9, 1.7) depending on which indeterminate equilibrium the economy is
in. Similarly, the nominal rate response can be positive or negative. In effect, in different
LIRE equilibria, inflation and the nominal rate can comove positively or negatively. Fig-
ure 2 displays impulse response for one of the possible LIRE equilibria where, in contrast
to the FIRE solution, inflation and the nominal interest rate comove negatively. While
the nominal rate follows the real rate increase, inflation can fall on account of a negative
loading γε on the forecast error (see Proposition 2). The figure also shows that a unit
measurement error shock lowers inflation and the nominal rate which indicates a nega-
tive loading on νt in the solution, γν < 0 (see Proposition 2). Therefore, no equilibrium
exists for positive γν .

58 In contrast, the responses to the belief shock are symmetric and
unrestricted, similar to the case of an exogenous information set.59

Figure 3 reports the autocorrelation function (ACF) and the standard deviation rel-
ative to the full information scenario.60 As shown in the upper row of panels, the FIRE
solution displays the typical autocorrelation pattern of a first-order autoregressive pro-

57As discussed in section 2, the variance of the belief shock σ2
b is normalized to unity without loss of

generality.
58This is confirmed by Figure 2 in the Supplementary Appendix
59The findings are reminiscent of the observation by Lubik and Schorfheide (2004) that changes in

comovement patterns are a hallmark of equilibrium indeterminacy and thereby allow econometricians to
identify different sets of equilibria. Moreover, their observation that indeterminate equilibria do impose
some restrictions on the behavior of the economy in response to fundamental shocks thus carries over to
our framework.

60Moments are computed via simulation for 20,000 periods with the first 1,000 periods discarded as
burn-in to avoid dependence on initial conditions.
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Figure 1: IRFs of Various Equilibria in Fisher economy

Note: Impulse response functions (IRF) for the Fisher economy model under full informa-
tion (blue) as well as various limited-information equilibria (red). Each row represents the
response of a specific variable to the shocks in the model whereas each column represent
the responses of the endogenous variables to a specific shock.

39



Figure 2: Example IRF from an Equilibrium in the Fisher economy
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mation (blue) as well as an example from the limited-information equilibria (red).
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Figure 3: Second moments of limited-information equilibria in Fisher economy

Note: Top panels show moments of endogenous variables for the Fisher economy model un-
der full information (blue) as well as various limited information equilibria (red). Bottom
panel reports ranges of relative standard deviations of outcomes under limited information
relative to the full-information outcomes.
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cess. Comparing the set of outcomes under LIRE against the unique FIRE equilibrium,
the persistence of inflation is generally lower and its serial correlation decays much more
rapidly under LIRE, whereas for the nominal rate the ACF closely resembles that under
FIRE. Since it = φπt|t = φ

φ−ρrt|t the nominal rate behaves like the real rate projection.
Given the solution in Proposition 2, this implies that the Kalman gain κr is in a tight
neighbourhood around zero. The lower panel of the figure shows ranges of relative stan-
dard deviations of outcomes under LIRE relative to the respective FIRE outcomes. The
interest rate under LIRE is generally less volatile than its FIRE counterpart despite the
presence of two additional shocks. The lower interest-rate volatility echoes our discussion
in section 2 that the effective response to inflation under LIRE after taking into account
the filtering problem constitutes a violation of the Taylor principle. In the LIRE case,
imperfect information prevents the central bank from moving the policy rate aggressively
in response to actual inflation. Instead, optimal filtering leads to attenuation of the policy
response, the flipside of which is heightened inflation volatility.

4.2 Quantitative Results for a New Keynesian Model

We now specify and solve a standard New Keynesian model often used in monetary policy
analysis under the assumption that the monetary authority has a limited information
set. Akin to the simple example model, we assume that there is a private sector, a
household, that has the same information set as households in the full information version
of the model. We also assume that the central bank only observes noisy measurements of
inflation and the level of real GDP. Finally, the central bank follows a monetary policy
rule in which it reacts to its best estimate of inflation and the output gap.

We consider a version of the New Keynesian model that includes a Phillips curve with
a backward-looking component in inflation πt:

(1− γβ)πt = βEtπt+1 + γπt−1 + xt, (102)

where 0 ≤ γ < 1 denotes the degree of indexation and governs inflation persistence. xt is
the output gap and the sole driver of inflation in this model. Its evolution is captured by
a variant of the Euler-equation which relates output to the real rate and policy actions:

xt = Etxt+1 −
1

σ
(it − Etπt+1 − rt) . (103)

σ > 0 is the intertemporal substitution elasticity and governs the responsiveness of output
growth to interest rate movements. The term in parentheses is the gap between the actual
real rate of interest (it − Etπt+1) and its natural rate rt. Similar to Laubach and Williams
(2003), we assume that rt is related to expected growth in potential real GDP yt:

rt = σEt∆yt+1. (104)

Furthermore, we assume that ∆yt follows an autoregressive process of order one:

∆yt = ρy∆yt−1 + εyt , (105)

where the innovation εyt is i.i.d. Gaussian with zero mean and finite variance σ2
y, namely
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εyt ∼ N
(
0, σ2

y

)
.

The central bank follows the feedback rule:

it = φππt|t + φxxt|t, (106)

where we assume that the policy coefficients φπ and φx are such that in the FIRE coun-
terpart of this model the equilibrium is unique. As before, xt|t denotes the output gap
projection given information available to the central bank at time t. The signal extraction
problem is thus somewhat more involved than in the simple example. The central bank
not only has to infer the true level of output from its noisy signal, but it also has to infer
the best estimate of the output gap from the available data. We choose this specification
as it arguably mirrors more closely the practice of many central banks, including the
Federal Reserve.

We introduce two measurement errors in inflation and the level of output, νπt and νxt ,
respectively. The measurement errors are jointly normally distributed and serially and
mutually uncorrelated with variances σ2

π and σ2
x. The level of GDP is by construction

equal to the growth rate in potential GDP plus the sum of lagged potential GDP and the
current output gap. This specification implies the following measurement vector Zt:

61

Zt =

[
πt + νπt

∆yt + yt−1 + νxt + xt

]
, with

[
νπt
νxt

]
∼ N

(
0,

[
σ2
π 0

0 σ2
x

])
. (107)

Table 1: Parameters for NK model

Symbol Description Value

β Discount Factor 0.99
σ Substitution Elasticity 1.00
φ Labor Elasticity 1.00
γ Inflation Indexation 0.25
φπ Policy Coefficient 2.50
φx Policy Coefficient 0.50
ρy AR(1) - Coefficient 0.75
σy StD. Output Growth 0.30
σπ StD. Measurement Error 0.80
σx StD. Measurement Error 1.39
κ Composite Parameter 0.17

Note: Parameter values for the numerical analysis of the NK model.

We calibrate the model by choosing standard parameter values in the literature (see

61As written, the measurement vector Zt contains the level of output and thus a unit root. However,
this unit root affects only the measurement dynamics and not the linear difference system of the New
Keynesian model, given by (102), (103) and (106). The conditions for the existence of a steady state
Kalman Filter, described in Appendix A, remain satisfied. Since central bank projections are conditioned
on the infinite horizon history of Zt, the measurement vector could equivalently be written in terms of
output growth.
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Table 1). We set the intertemporal substitution elasticity to σ = 1 to maintain compa-
rability with the simple example, while β = 0.99. The indexation parameter is chosen as
γ = 0.25 which roughly replicates observed inflation persistence. The policy coefficients
φπ and φx are set to 2.5 and 0.5 which guarantees the existence of equilibria in a wide
neighborhood of the parameterization. We calibrate the measurement error processes in
line with the empirical findings in Lubik and Matthes (2016). For inflation, we choose
the standard deviation of our measurement error to match their estimated unconditional
standard deviation for the inflation error.62 For real GDP, we assume that log GDP is
measured with iid error. This automatically induces autocorrelation in the measurement
error for the log-difference of GDP, consistent with their findings.63

Figure 4 reports impulse response functions under FIRE and LIRE for the fundamental
shock to potential GDP growth in the left column, next to the two measurement errors
and the two belief shocks, denoted ηπ and ηx. Each row shows the response of the model’s
endogenous variables. Solid blue lines indicate the responses under FIRE while the lines,
or areas, in red capture the responses for different equilibria under LIRE. The different
responses under LIRE are driven by different shock loadings γ, which are not uniquely
determined in equilibrium. As the only shock under FIRE that affects outcomes the
innovation to potential GDP growth increases the natural real rate via the expectations
channel. This prompts a rise in the policy rate and reduces expected output gap growth
on impact due to a fall in the current output gap. As actual production ramps up to close
the gap, inflation declines from its initial peak, which is driven by the relative reduction
in supply on impact.

Under LIRE the impulse responses to the fundamental innovation are qualitatively
similar to the FIRE responses although they show a somewhat richer dynamic adjustment
pattern. Figure 5 shows impulse responses for a single LIRE equilibrium that are fairly
close to their FIRE counterparts. We also note that the FIRE response is in parts an
envelope to the area of responses associated with indeterminate LIRE equilibria, a pattern
we also observe in the simple model. In the Supplementary Appendix, we report results
from a specification where the measurement errors are small so that the signal content
of incoming data is high. While this specification still implies indeterminate equilibria
under LIRE, the impulse responses to the fundamental shock essentially coincide with
the FIRE ones. Moreover, the responses to the other shocks are an order of magnitude
smaller and would likely be hard to detect in data. This distinguishes our framework
from more standard indeterminacy results where the range of equilibria is considerably
wider.64

The next two columns in Figure 4 show the responses to the measurement error shocks.
A positive shock to νπt prompts the central bank to adjust its inflation projection upwards.

62In their paper, the measurement error in inflation is estimated to be mildly autocorrelated, with
a point estimate of around 0.1 for the autoregressive coefficient. The switch from an autoregressive
measurement error process to iid seems innocuous.

63In that case the standard deviation of the measurement error in the log-difference is twice the standard
deviation of the measurement error in levels. We match the standard deviation of the iid measurement
error to half of the unconditional standard deviation of the estimated measurement error for GDP growth.
Standard deviations of all shocks are expressed in annualized percentages.

64In addition, in the New Keynesian model the impulse responses do not extend over the zero line
and thereby do not offer varying comovement patterns under indeterminacy as is the case in the simple
example or in Lubik and Schorfheide (2004).
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Figure 4: IRFs of Various Equilibria in New Keynesian model

Note: Impulse response functions (IRF) for the New Keynesian model under full informa-
tion (blue) as well as various limited-information equilibria (red). Each row represents the
response of a specific variable to the shocks in the model whereas each column represent
the responses of the endogenous variables to a specific shock. An example of the IRF of
one of the limited-information equilibria is show in Figure (5).
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Figure 5: IRF in New Keynesian model: Example of a limited information equilibrium
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This stimulates a contemporaneous rise in the policy rate and generally lowers the output
gap due to a fall in current GDP. The inflation rate falls because of the contractionary
central bank policy response to the inflation mismeasurement. This pattern is also evi-
dent from Figure 5. However, there are equilibria where this pattern is overturned with
a considerably smaller, even negative, interest rate response. What drives these differ-
ences are the different values of the endogenous Kalman gain associated with various
indeterminate equilibria. That is, equilibria exist where the responsiveness of inflation
projections to measurement error is small enough so that the standard adjustment dy-
namics in response to output gap movements and their projections dominate. Responses
to the output measurement error follow a similar but less pronounced pattern. A positive
innovation νxt leads to an upward revision of output gap projections and an interest rate
hike, followed by a decline in current output and a rise in prices. Adjustment patterns to
both measurement errors exhibit slowly adjusting and oscillating dynamics.

Finally, the last two columns in Figure 4 show the responses to the belief shocks, which
are identical and symmetric.65 The graphs confirm the results of Lubik and Schorfheide
(2003) and Farmer, Khramov, and Nicolò (2015) that sunspot shocks have a representa-
tion that map into belief shocks; that is, they affect expectations directly, but to which
expectational variable the belief shocks are appended do not affect outcomes for any given
equilibrium. Moreover, the set of impulse response functions is symmetric around the zero
line since the response to a sunspot shock in each equilibrium is only determined up to
its sign. Nevertheless, we can still trace out the effect of, for instance, a positive belief
shock to inflation such as in the fourth column of Figure 5, where we plot the responses
for one specific equilibrium.

To understand the equilibrium depicted in Figure 5, suppose consumers believe in-
flation to be higher than initially anticipated, the belief being driven by the realization
of a sunspot that is interpreted as fundamental. This leads the central bank to raise its
inflation projection somewhat, but not fully given its filtering problem. The policy rate
rises, but not to the full extent required to invalidate consumers’ beliefs. This would occur
if the policy response were such that it raised the real rate by enough to reign in increased
spending and thus rising prices. Although the central bank obeys the Taylor principle,
the wedge between private sector and central bank expectations generated by the filter-
ing process is sufficient for indeterminacy to arise. The less than aggressive interest-rate
response thereby leads to output gap movements that validate beliefs to the extent that
inflation rises by enough.

We compute autocorrelation functions and relative standard deviations for the New
Keynesian model which are reported in Figure 6. The upper panel shows the ACFs for
the three key variables in the model. What is notable is that the ACFs cluster around
the corresponding ACF under FIRE. A similar impression is conveyed by the range of
relative standard deviations in the lower panel. We find the same pattern as in the simple
model, namely higher inflation volatility and a slightly lower interest rate volatility which
reflects the less aggressive policy response under FIRE.

Overall, the conclusion from our quantitative analysis is that multiple equilibrium
scenarios under LIRE are pervasive and introduce deviations from fundamental outcomes
driven by measurement error and beliefs. To what extent LIRE can be distinguished from

65Small differences between the red areas in the two columns arise solely because of numerical discrep-
ancies.
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Figure 6: Second moments of limited-information equilibria in New Keynesian model

Note: Top panels show moments of endogenous variables for the New Keynesian model un-
der full information (blue) as well as various limited information equilibria (red). Bottom
panel reports ranges of relative standard deviations of outcomes under limited information
relative to the full-information outcomes.
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FIRE in aggregate data is an important question which is beyond the scope of this paper.

5 Determinate Outcomes Without Optimal Projec-

tion

This section describes an alternative class of policy rules that satisfies the same, if not sim-
pler, informational requirements as (60), but also leads to unique equilibrium outcomes.
In this alternative class, policy reactions are characterized as responses to incoming data,
Zt, instead of responses to optimal projections that are endogenously determined. Our
general framework considers reaction functions for the policy instrument that, as in (60),
respond to optimal projections of backward- and forward-looking variables. Rules of this
form could, for example, be motivated by noting that a given rule is deemed desirable
under full information and pointing to a certainty equivalence argument. In fact, based
on reasoning along those lines, Svensson and Woodford (2004) derive optimal reactions
in a form consistent with (60).

A central message of this paper, however, is to note that the interaction of the poli-
cymaker’s filtering and private-sector agents’ forward looking behavior, embodied by the
linear difference system in (59), lead to a multiplicity of equilibria that is generally inher-
ent in the class of models studied here. Rules of the form in (60) commit the policymaker
only in her responses to projected input variables, but not in her responses to incoming
data. The policymaker’s projections are rational expectations, and the sensitivity of those
expectations to incoming data depends on the signal-to-noise ratio of the central bank’s
observables in equilibrium, which results in the potential for multiple equilibria.

We adapt the general environment described in section 3 as follows: Under full in-
formation, the policy rule responds only to forward-looking variables and lagged policy
instruments:66

it = Φiit−1 + ΦyY t (108)

An example of such a rule is an outcome-based Taylor rule, while policy rules with stochas-
tic intercept are excluded. Forward-looking behavior of the private sector is characterized
by an expectational difference system similar to (59) except that, for simplicity, central-
bank projections are assumed to enter (at most) only via the policy rule, that is:

EtSt+1 = ASt +Aiit , (109)

where St continues to denote the stacked vector of backward- and forward-looking vari-
ables. As before, we assume the values of the policy-rule coefficients Φi and Φy to be such
that, when the reaction function (108) is combined with the difference system in (109),
there is a unique full-information rational expectations equilibrium.

66We continue to use notation introduced in section 3; policy instruments are denoted it, forward- and
backward-lookign variables, Y t and Xt, and the joint vector of Y t and Xt is St.
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The measurement vector Zt conveys a noisy signal of every forward-looking variable:67

Zt = Y t + νt νt ∼ N(0,Ωνν) (110)

A policymaker could also consider to simply replace Y t by its noisy signal. That is,
the policymaker could set the policy instrument according to:

it = Φiit−1 + Φy (Y t + νt) . (111)

The economy is then described by the expectational difference system (109) and the policy
rule (111). Importantly, equilibrium does not hinge on any signal extraction efforts and
its determination can be studied using standard methods as described in section 3 3.2.
In particular, the only difference between the full-information system consisting of (108)
and (109) and the “signal-rule system”, described by (109) and (111), is the presence of
additional, exogenous driving variables in the form of νt. Both systems share an identical
transmission of endogenous variables.

Since we assume that the full-information system given by (108) and (109) satisfies
the conditions for a unique equilibrium, it follows directly that the “signal-rule system”
of (109) and (111) also has a unique equilibrium. In particular, using notation introduced
above in our characterization of full-information outcomes for the general case, equilibrium
outcomes have the following form:

Y t = GyxX t + Gyiit−1 + Gyννt (112)

EtX t+1 = PxxX t +Pyiit−1 +Pxννt (113)

where Gyx, Gyi, Pxx, Pyi are conformable partitions of the full-information solution ma-
trices P and G, with values identical to (69).68

The ability to achieve equilibrium uniqueness might initially appear to be an attrac-
tive feature. However, the dependence of endogenous outcomes on signal noise in (112)
and (113) can lead to potentially highly undesirable fluctuations caused by measurement
noise. Effectively, while maintaining the requirement that policy can only respond to ob-
servables spanned by Zt, determinacy is achieved under the “signals rule” by committing
policy to respond to incoming noise with the same sensitivity as it does to Y t. In particu-
lar, in the context of the Fisher-example described in section 2, we have Gyν = 0 andX t is
purely exogenous. With this particular configuration, the variance bounds established in
section 2 indicates that any admissible equilibrium under the corresponding projections-
based policy rule, that is it = Φiit−1 + ΦyY t|t, generates less-variable outcomes, at least
in this particular example.

As described in the Supplementary Appendix, the variance bound derived in the sim-
ple example of section 2 also extends to the general case, where we have Var (Y t) ≤

67For simplicity, we continue to assume that νt is serially uncorrelated, though equilibrium uniqueness
will not depend on this property.

68The full-information coefficient matrices known from (69) can be partitioned as follows:

P =

[
Pii Pix
Pix Pxx

]
, and G =

[
Gyi Gyx
Gii Gix

]
. (114)
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Gyx Var (X t)G′yx + Var (νt). As a result, the difference between the variance-covariance
matrix of outcomes for the forward-looking variables under the projection-based rule
and its counterpart generated by the signal-based rule is positive semi-definite; so that
any quadratic loss function over Y t would at least weakly prefer outcomes under the
projections-based rule.

6 Conclusion

This paper studies the implications of imperfect information for equilibrium determination
in linear dynamic models when differently informed agents interact. We introduce a single
deviation from full information rational expectations: one group of agents is strictly less
informed than another. By doing so, we differentiate between types of agents that have
different information sets, but where each agent forms rational expectations conditional
on available information. The implications of this model structure are stark. We show
that indeterminacy of equilibrium is generic in this environment, even if the corresponding
full information setting implies uniqueness.

More concisely, even a small amount of noise in this environment, despite the best
intentions and optimal filtering of a less informed agent, can produce outcomes where
there is a sunspot component to economic fluctuations. Our paper thereby contributes
to a recent literature on informational frictions in rational expectations models. Specif-
ically, we discuss the implications for the conduct of monetary policy in a simple model
of inflation determination and a richer New Keynesian model. In addition to markedly
changing equilibrium outcomes qualitatively, our results show that quantitative differences
to the full information benchmark can be economically significant. Similar to other ap-
plications, indeterminacy adds persistence and volatility to economic outcomes. Unique
to our imperfect information setting is, however, the implication, that the variance of
indeterminacy-induced belief shocks is bounded.

Throughout our analysis, we have maintained the assumption that the policymaker’s
limited information set is nested inside the public’s information set, which allows us to
treat the private sector as a representative agent. The indeterminacy issues identified by
our paper should, however, also extend to richer informational environments as long as
the policymaker cannot perfectly observe forward-looking choice variables of the private
sector. The key condition behind our indeterminacy results is that the policymaker does
not respond one-for-one to belief shocks of the private sector when forward-looking choice
variables of the private agents are only imperfectly observed by the policymaker.

The findings in this paper suggest various avenues for further investigation. For ex-
ample, our framework has strong implications for empirical research: The general model
under limited information has a state-space representation like any other linear dynamic
framework so that a likelihood function can be constructed. The key difference and main
complication with respect to standard frameworks is that the solution of the model is
not certainty equivalent. Conditional on the Kalman gains the model implies a standard
representation, but the gains are equilibrium objects and depend on second moment prop-
erties of the solution. This can be taken into account in solution and estimation, albeit
at the cost of posing non-trivial computational challenges.69

69An alternative empirical approach would be to assume exogenous and constant gains which could
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Nevertheless, empirical work can be facilitated by the distinction between actual out-
comes and policymaker projections made in our framework. Conditional on the limited
information set of the policymaker the model is simply a linear RE model that is unaf-
fected by the computational issues in the full model. Data on projections could therefore
be used to estimate the model only over the space of central bank projections, which
would help sharpen inference for the model parameters.

While we illustrate our framework with examples of monetary policy with an imper-
fectly informed central bank, it is not limited to applications in monetary policy. In
section 3 we show that indeterminacy is a generic feature for a general class of economies
where private-sector behavior is characterized by a set of expectational linear difference
equations, exogenous driving processes are Gaussian, policy is described by a linear rule
that responds to the policymaker’s projections of economic conditions, and the projections
are rational.

A related issue is the choice of the information set. In our examples, we endowed the
central bank with specific information sets. Alternatively, one could imagine a scenario
where the policymaker chooses an optimal information set that minimizes the impact
of sunspot shocks and possibly reduces the incidence of multiplicity. This direction has
relevance for policy as central banks operate in a real-time environment fraught with
measurement error and regularly face judgment calls on the importance of incoming data.

An important extension should be to look beyond a given class of linear policy rules,
as considered here, and model the optimal policy choice for a given set of preferences.
Such an exercise could also consider how a desirable policy could be implemented with a
suitable policy rule, which requires an analysis of equilibrium selection in the presence of
indeterminacy.
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nevertheless deliver insights for policy implications in a non-optimal environment. In addition, alternative
empirical techniques might also be informative such as impulse response function matching that do not
necessarily rely on the full solution of the system.
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Appendix

A The Steady State Kalman Filter

This section describes details of the steady-state Kalman filter for the innovations state
space (75) and (76) when Assumption 3 holds. Existence of a steady-state Kalman fil-
ter relies on finding an ergodic distribution for S∗t (and thus S̃t) with constant second
moments Σ ≡ Var (S∗t ). When a steady-state filter exists, a constant Kalman gain, K
relates projected innovations of S̃t to innovations in the signal, S̃t|t = KZ̃t with:70

K = Cov
(
S̃t, Z̃t

)(
Var

(
Z̃t

))−1
= (AΣC ′ +BD′) (CΣC ′ +DD′)

−1
. (A.1)

The dynamics of S∗t are then characterized by

S∗t+1 = (A−KC) S∗t + (B −KD)wt+1 (A.2)

Existence of a steady-state filter depends on finding a symmetric, positive (semi) definite
solution Σ to the following Riccati equation:

Σ = (A−KC)Σ(A−KC)′ +BB′

= AΣA′ +BB′ − (AΣC ′ +BD′) (CΣC ′ +DD′)
−1

(AΣC ′ +BD′)
′
. (A.3)

Intuitively, the Kalman filter seeks to construct mean-squared error optimal projec-
tions St|t that minimize Σ. A necessary condition for the existence of a solution to this

minimization problem is the ability to find at least some gain K̂ for which A− K̂C is
stable; otherwise, S∗ would have unstable dynamics as can be seen from (A.2). Thus,
existence of the second moment for the residuals, Var (S∗t ) = Σ ≥ 0, is synonymous with
a stable transition matrix A−KC.

Formal conditions for the existence of a time-invariant Kalman filter have been stated,
among others, by Anderson and Moore (1979), Anderson, McGrattan, Hansen and Sargent
(1996), Kailath, Sayed and Hassibi (2000), and Hansen and Sargent (2007). Necessary
and sufficient conditions for the existence of a unique and stabilizing solution that is also
positive semi-definite depend on the “detectability” and “unit-circle controllability” of
certain matrices in our state space. We restate those concepts next.

Definition 3 (Detectability). A pair of matrices (A,C) is detectable when no right
eigenvector of A that is associated with an unstable eigenvalue is orthogonal to the row
space of C. That is, there is no non-zero column vector v such that Av = vλ and |λ| ≥ 1
with Cv = 0.

Detectability alone is already sufficient for the existence of some solution to the Riccati
equation such that A −KC is stable; see (Kailath et al. 2000, Table E.1). Evidently,
detectability is assured when A is a stable matrix, regardless of C. To gain further
intuition for the role of detectability, consider transforming St into “canonical variables”

70See also equation (78) in the paper.
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by premultiplying St with the matrix of eigenvectors of A — this transformation into
canonical variables is at the heart of procedures for solving rational expectations models
known from Blanchard and Kahn (1980), King and Watson (1998), Klein (2000), Sims
(2002). Detectability then requires the signal equation (76) to provide some signal (i.e.
to have non-zero loadings) for any unstable canonical variables.71

To establish existence of a solution to the Riccati equation that is unique and positive
semi-definite, we follow Kailath et al. (2000) and require unit-circle controllability, defined
as follows.

Definition 4 (Unit-circle controllability). The pair (A,B) is unit-circle controllable when
no left-eigenvector of A associated with an eigenvalue on the unit circle is orthogonal to
the column space of B. That is, there is no non-zero row vector v such that vA = vλ
with |λ| = 1 and vB = 0.

In our state space, with BD′ 6= 0, shocks to state and measurement equation are
generally correlated. Unit-circle controllability is thus applied to the following transfor-
mations of A, B:72

AC ≡ A−BD′ (DD′)
−1
C BC ≡ B

(
I −D′ (DD′)

−1
D
)

(A.4)

Based on these definitions, the following theorem restates results from Kailath et al.
(2000) in our notation:

Theorem 3 (Stabilizing Solution to Riccati Equation). Provided Assumption 3 holds,
a stabilizing and positive semi-definite solution to the Riccati equation (A.3) exists when
(AC ,BC) is unit-circle controllable and (A,C) is detectable. The steady-state Kalman
K gain is such that A−KC is a stable matrix, and the stabilizing solution is unique.73

Proof. See Theorem E.5.1 of Kailath et al. (2000); related results are also presented in
Anderson et al. (1996), or Chapter 4 of Anderson and Moore (1979).

In our context, with C = HA and D = HB, the conditions for detectability and
unit-circle controllability can also be restated as follows.

Proposition 7 (Detectability of (A,H)). With C = HA, detectability of (A,C) is
equivalent to detectability of (A,H)

Proof. When (A,C) are detectable, we have Cv 6= 0 for any right-eigenvector of A
associated with an eigenvalue λ on or outside the unit circle, |λ| ≥ 1. With C = HA we
then also have Cv = HAv = Hvλ 6= 0⇔Hv 6= 0

71Specifically, let A = V ΛV −1 with Λ diagonal be the eigenvalue-eigenvector factorization of A so
that the columns of V correspond to the right eigenvectors ofA. Define canonical variables SCt ≡ V

−1St.
The signal equation can then be stated as Zt = CV SCt and detectability requires the signal equation to
have non-zero loadings on at least every canonical variable associated with an unstable eigenvalue in Λ.

72Notice thatBC = BMD whereMD = I−D′ (DD′)
−1
D is a projection matrix, which is symmetric

and idempotent,MD =MDMD, and orthogonal to the row space of D.To appreciate the role ofMD,
consider the following thought experiment: MD construct the residual in projecting the shocks of the
system off the shocks in the signal equation, wt − E(wt|Dwt) =MDwt.

73There may be other, non-stabilizing positive semi-definite solutions.
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Furthermore, with C = HA and D = HB, the above expressions for AC and BC

can be transformed as follows:

AC = (I − P C)A and BC = (I − P C)B with P C ≡ BH ′ (HBB′H ′)−1H .
(A.5)

P C is a non-symmetric, idempotent projection matrix with HP C = H .74

Proposition 8 (Unit-circle controllability of (A(I − P C),B)). With C = HA and
D = HB, unit-circle controllability of (AC ,BC) is equivalent to unit-circle controllability
of (A(I − P C),B) with P C defined in (A.5).

Proof. Suppose (AC ,BC) are unit-circle controllable. Let ṽ ≡ v(I − P C) and note that
left-eigenvectors ofAC associated with eigenvalues on the unit circle cannot be orthogonal
to P C (otherwise we would have vAC = 0). Accordingly, vAC = vλ with |λ| = 1,
vBC 6= 0 and v 6= 0 is equivalent to ṽA(I − P C) = ṽλ with |λ| = 1, ṽ 6= 0 ṽB 6= 0.
The converse reasoning applies as well.

As discussed in the main text, an upshot of Proposition 8 is that a sufficient condition
for unit-circle controllability of (AC ,BC) is for B to have full rank.

Finally, for convenience, we define the the joint concept of detectability and unit-circle
controllability for the triplet (A,B,H).

Definition 5 (Joint detectability and unit-circle controllability). The triplet A,B,H is
detectable and unit-circle controllable when (A,H) is detectable and (A(I −P C),B) is
unit-circle controllable, where P C is defined in (A.5).

B Endogenous Forecast Errors when the Signal is

Endogenous

This section of the appendix describes an algorithm to solve numerically for the en-
dogenous forecast errors in the endogenous-signal case of our general setup, described in
section 3. Our numerical approach combines elements of standard techniques for solving
linear RE models with a fast algorithm to solve the non-linear fixed-point problem for
the Riccati-equation embedded in the Kalman-filter while ensuring consistency with the
projection condition. The algorithm searches for shock loadings Γηε and Γηb that satisfy
the projection condition for a Kalman filter that is consistent with equilibrium outcomes
of endogenous and exogenous variables.

As described in section 3, the endogenous-signal case considers a measurement equa-
tion of the form

Zt = HxX t + Y t . (87)

74An idempotent matrix is equal to its own square, that is PC = PCPC , and the eigenvalues of an
idempotent matrix are either zero or one and we have |PC | = 0.

55



By construction, we have Zt = Zt|t and thus Y ∗t = −HxX
∗
t , so that the innovation

system given by (75) and (76) can then be simplified as follows:

X̃ t+1 = ÃX∗t + B̃wt+1 (B.1)

Z̃t+1 = C̃X∗t + D̃wt+1 (B.2)

with Ã = Axx −AxyHx (B.3)

B̃ =
[
Bxε 0

]
(B.4)

C̃ = Hx (Axx −AxyHx) +Ayx −AyyHx (B.5)

D̃ =
[
(HxBxε + Γηε) Γηb

]
(B.6)

where Axx, Axy, etc. denote suitable sub-matrices of A; and D̃ embodies a given guess
of Γηε and Γηb.

For a given D̃, the Kalman-filtering solution to this system generates a Kalman gain
Kx which can be used to form projections X̃ t|t = KxZ̃t. What remains to be seen is

whether this guess for D̃ also satisfies the projection condition. The projection condition
requires Ky = GyxKx. Together with the projection condition, the measurement equa-
tion (87) implies I = HxKx + Ky = (Hx + Gyx)Kx. All told, we need to find shock
loadings that support a gain Kx such that LKx = I where L = Hx + Gyx.

We employ a numerical solver that searches for a D̃ that generates a Kalman gain
Kx such that LKx = I. Given a solution for D̃ that satisfies the projection condition
LKx = I, we can then back out Γε and Γb based on (B.6).
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