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ABSTRACT

What is the Value of Knowing the Propensity Score for
Estimating Average Treatment Effects?”

Propensity score matching is widely used in treatment evaluation to estimate average
treatment effects. Nevertheless, the role of the propensity score is still controversial. Since
the propensity score is usually unknown and has to be estimated, the efficiency loss arising
from not knowing the true propensity score is examined. Hahn (1998) derived the asymptotic
variance bounds for known and unknown propensity scores. Whereas the variance of the
average treatment effect is unaffected by knowledge of the propensity score, the bound for
the treatment effect on the treated changes if the propensity score is known. However, the
reasons for this remain unclear. In this paper it is shown that knowledge of the propensity
score does not lead to a “dimension reduction”. Instead it enables a more efficient estimation
of the distribution of the confounding variables.
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1 Introduction

Propensity score matching is a technique widely used in biometrics, econometrics and other
social sciences to estimate the effects of treatment receipt.! Its popularity stems from the
fact that, instead of controlling for all confounding factors X, it suffices to control for a
one-dimensional propensity score to remove all selection bias (Rosenbaum and Rubin 1983).
Exploiting this ’dimension-reduction’ property, many studies used matching on the propensity
score to estimate average treatment effects.

However, in applications the propensity score (which is the conditional probability of
treatment receipt) is usually unknown, and therefore propensity score matching proceeds
on an estimated propensity score. This gave rise to a debate on whether matching on
the propensity score is preferable to matching on all confounding variables X (Heckman,
Ichimura, and Todd 1998). Substantial research has recently been devoted to clarify the role
of the propensity score, and a particular question is, how much less precise is matching on the
estimated propensity score, instead of matching on the true propensity score? In other words,
what is the value of knowing the true propensity score?

Hahn (1998) derived the y/n-asymptotic variance bounds for nonparametric estimation of
the average treatment effect and the average treatment effect on the treated, as well for known
as for unknown propensity score. He found that the variance bound for estimating the average
treatment effect (ATE) is the same with and without knowledge of the true propensity score.
On the other hand, knowledge of the propensity score reduces the asymptotic variance for the
average treatment effect on the treated (ATET). He showed that nonparametric imputation
estimators can attain these bounds. Hirano, Imbens, and Ridder (2000) demonstrated that
Horvitz and Thompson (1952)-type estimators of average treatment effects can attain these
bounds, too. Heckman, Ichimura, and Todd (1998) analyzed local polynomial matching esti-
mators of the treatment effect on the treated and derived their asymptotic distributions, which

have a variance term corresponding to the variance bound of Hahn (1998).2

!See for example, Brodaty, Crépon, and Fougére (2001), Dehejia and Wahba (1999), Frolich, Heshmati, and
Lechner (2000), Gerfin and Lechner (2000), Heckman, Ichimura, and Todd (1997), Heckman, Ichimura, Smith,
and Todd (1998), Imbens (2000), Jalan and Ravallion (2002), Larsson (2000), Lechner (1999), Puhani (1999),

Rosenbaum and Rubin (1983, 1985) and Rubin and Thomas (1992, 1996) among others.
? Abadie and Tmbens (2001) analyze the asymptotic efficiency of k-nearest-neighbours matching estimators,

when k does not grow with increasing sample size (as it is the case with the common pair-matching estimator).



However, the reason why knowledge of the propensity score affects the variance bound of the
ATET but not of the ATE has not been fully understood. Hahn (1998) argues that the reduction
in the variance of the ATET ”can be solely attributed to the ’dimension reduction’ feature of
the propensity score”. Yet, this reasoning fails to explain, why the dimension reduction through
knowledge of the propensity score has no effect on the variance of the ATE. If indeed the lower
dimension of the propensity score would help to avoid the curse of dimensionality, knowing the
propensity score should be advantageous for estimating the ATET as well as for estimating the

ATE.

In this paper, I provide a different explanation to clarify why knowledge of the propensity
score affects the variance bound of the ATET but not of the ATE. I argue that the propensity
score is ancillary for the estimation of the conditional expected treatment outcomes E[Y|X],
but that it is informative for estimating the distribution function of the confounding variables X
in the treated subpopulation. This distribution function is the weighting function for the average
treatment effect on the treated (ATET). If the propensity score is unknown, the distribution
function Fx|treatea 18 identified by the observations X of the treated individuals only. The
control observations are not useful for estimating the distribution Flytreateq- On the other
hand, if the propensity score is known, the control observations are informative to estimate
the distribution Fy|sreqreqs Since the propensity score is proportional to the density ratio of
X among treated and control. Hence in addition to the treated observations, also the control
observations can be used to estimate Fx|sreqreq- For example in the case of random assignment
(with probability 0.5), the distribution of X is the same among the treated and the control,
and thus the number of effective observations which can be used to estimate Fi|ireated increases
from ngpeated 10 2Nireated When it is known that the individuals were randomly assigned.

From this it is apparent, why knowledge of the propensity score has no effect on the variance
bound of the ATE, because it is the effect for the whole population and not for a subpopulation.
The estimation of the average treatment effect is based on weighting the conditional potential
outcomes by the distribution F'x of X in the whole population. Since F'x is naturally estimated

from all control and all treated observations, no other subpopulations can be linked up via the

They demonstrate that these estimators do not attain the asymptotic variance bound. Ichimura and Linton
(2001) derived higher order expansions for the Horvitz and Thompson (1952)-type estimator that can be useful

for choosing the bandwidth parameter.



propensity score to estimate Fx.

To support this explanation, I show that the different variance bounds of the ATET (with
and without knowledge of the propensity score) have the same structure as the variance bounds
for estimating the distribution function Fly|sreqteq- Hence knowledge of the propensity score
affects the precision the distribution function Fx|ieateq can be estimated with. Finally it is
shown, that if the propensity score is known, the counterfactual outcome for the treated can
be estimated nonparametrically from the control observations, even if not a single treated
observation is available. This is not possible, if the propensity score is unknown.

Hence the only value of knowing the propensity score is that it helps to estimate the distri-
bution of the confounding variables X among the treated more precisely. From an asymptotic

perspective, matching on the propensity score does not lead to any dimension reduction.

2 Efficiency bounds and the propensity score

Treatment evaluation aims to estimate the causal effects of a particular treatment (e.g. drug
treatment, active labour market programmes, school education) by comparing the situation
with and without receipt of the treatment. Define Yz-o, Yi1 as the potential outcomes of individual
i, where Y;O is the outcome that individual ¢ would realize if not receiving the treatment, and
Y} is the outcome that individual i would realize if receiving the treatment, see Neyman (1923)
and Rubin (1974, 1977).3 For each individual only one of the two potential outcomes Y2, Y;!
can be observed, but never both. The average causal impact of the treatment can be measured

by the average treatment effect (ATE)
a=EY! -, 1)

which is the difference between the outcome expected when receiving the treatment and the

outcome expected when not receiving the treatment, for an individual randomly drawn from

3The extension to the case where the treatment consists of different varieties, e.g. different drug variants or
different labour market programmes, is straightforward and considered in Imbens (2000) and Lechner (2001).
Implicit in the potential outcomes Y;, ;' notation is the assumption of 'no interference between different units’
(Cox 1958, p.19) or stable-unit-treatment-value assumption (SUTVA) as called by Rubin (1980): It is assumed

that the potential outcomes Y;?, Y;' of individual i are not affected by the treatment receipt of other individuals.



the population. Similarly, the average treatment effect on the treated (ATET)
ar=E[Y'-Y°D=1] (2)

is the expected outcome difference for an individual randomly drawn from the subpopulation
of treatment recipients. D; € {0, 1} indicates whether an individual received treatment or not.
Neither of these two average effects (o or a) is identified by observational data, since Y'! can
only be observed for the treatment recipients (D; = 1), whereas Y is only observable for non-
recipients (D; = 0). Generally, E[Y}|D = 0] # E[Y}|D = 1] and E[Y°|D = 1] # E[Y°|D = 0]
if individuals select (or are assigned) to treatment in a non-random way. This is the well-known
selection problem, which prohibits estimating treatment effects by simple mean comparisons
(Rubin 1974, Heckman and Robb 1985, Manski 1993). One approach to avoid selection bias is to
compare the observed outcomes conditional on all confounding variables, where the confounding
variables are all variables X, that influence treatment assignment as well as the potential
outcomes.* Hence conditional on X, the probability of receiving treatment is stochastically

independent (L) of the potential outcomes:
YO viiD|X, (3)

which is known as selection on observables (Barnow, Cain, and Goldberger 1981), ignorable
treatment assignment (Rosenbaum and Rubin 1983) or conditional independence assumption
(Lechner 1999). Suppose further that X has the same support in the treated and the untreated
(control) subpopulation. This is equivalent to assuming that the probability of treatment

receipt is bounded away from 0 and 1:
0< plx)=P(D=1X=2) <1 Vo € Supp(X), (4)

where p(x) is referred to as the propensity score (Rosenbaum and Rubin 1983), i.e. the propen-

sity to receive treatment given characteristics X.

Assumptions (3) and (4) identify the treatment effects o and ap: Since the expected
potential outcomes conditional on X are independent of treatment status by (3), o and arp

are identified by an iterated expectations argument.® Estimation of E[Y?] and E[Y°|D = 1]

*In a randomized experiment with full compliance the set of confounding variables is empty.
"Because E[Y°] = E[E[Y°|X]] = E[E[Y°|X,D = 1]] and E[Y°|D = 1] = E[E[Y°|X,D = 1]|D = 1] =

E[E[Y°|X,D =0]|D = 1].



thus requires only a proper weighting of the conditional expectation functions by the relevant

distribution function of X. Define the conditional mean function
my(z) = E[Y'|X =2 = E[YYX =x,D =1],

and mgo(z) analogously. The average treatment effect o and the average treatment effect on

the treated ar can be written as

E[Y'-Y? = /(ml(m) —mg(x)) - dFx () (5)
BY' =Y p=1] = [ (m()=mo(a)- dFxpi(e).

where fx = dFx is the density of X in the whole population, and fx|p—1 = dFx|p= is the
density of X in the treated subpopulation. The conditional expectation functions m;(x) and
mo(x) are separately® identified from the treated and the control observations, respectively.
The distributions Fx(z) and Fx|p—;(x) are identified from the X observations of treated and
controls. From (5) it can be seen that the only difference between the average treatment effect o
and the average treatment effect on the treated ar is, that in the former the conditional means
difference m1(x) — mo(x) is weighted by the density dFx, whereas it is weighted by dFx p—
in the latter effect. While dFx is the density of X in the whole population, dFx|p— is the
density in a particular subpopulation. As will be seen below, this is the reason why knowledge
of the propensity score affects the variance bound of a but not of a: If the propensity score is
known, dFx|p—1 is identified from the treated and the control observations, whereas the control
observations are not informative for estimating dF'yp— if the propensity score is unknown.
On the other hand, dFx is always identified from the treated and the control observations
together, regardless of knowledge about the propensity score. In other words, knowledge of the
propensity score improves upon the estimation of dFx|p_1, but does not affect any other term

in (5).

Nonparametric estimation of m;(x) and mg(z) can be difficult in finite samples if the di-
mension of X is high, which may often be the case when numerous factors determine treatment
receipt (e.g. occurrence of non-compliance in drug trials, self-selection to active labour market

programmes). Therefore Rosenbaum and Rubin (1983) introduced the propensity score p(x) as

The joint distribution of Y°, Y is not identified, since for each individual only one of the potential outcomes

can be observed.



a way to reduce the dimension of the estimation problem. They showed that if independence
of the potential outcomes YV, Y'! and treatment assignment D holds conditional on X, then it

does also hold conditional on the probability of treatment receipt p(z) = P (D = 1|X = z):
YO viiD|x = YO YLD |p(X). (6)
As a result, the treatment effects o and ar is also identified as

B =Y = [ (mlp) =~ mo(p) - dF(p) ™)
B =Y D=1] = [ (milp) = molp) - dFyypos)

where my(p) = E[Y!|p(X) = p] = E[Y!|p(X) = p, D = 1] by (6), and mg(p) defined analo-
gously. dFj, is the density distribution of p(X) in the whole population, and dF},p—; the den-
sity distribution in the treated subpopulation. The conditional expectations m;(p) and mg(p)
can be estimated by nonparametric regression on the one-dimensional propensity score p(x),
and weighting by the corresponding density function of the propensity score yields hence a con-
sistent estimate of the treatment effects a and a7. In this sense, propensity score matching
circumvents the dimensionality problem of direct matching on X, as in (5), and is therefore
widely used in applied evaluation studies. In the case where the propensity score is unknown,
propensity matching proceeds on an estimated propensity score.

For estimating average treatment effects often a nonparametric imputation estimator is
employed. Let {(X;, D;,Y:)}?" ; be an iid sample of size n = ng + n1, where ng is the number
of control observations and ny is the number of treated observations. Consider the average

treatment effect on the treated ay. A method of moment estimator of ar based on (5) is

1 .
— (Y; —mo (X3)) - Dy,
ni

where Mg is a nonparametric estimate of mg, obtained from the ng control observations. The

analogous propensity score matching estimator is
1 PR
> (Yo (p (X)) - D,

where mg is an estimate of mg and p(z) is the (estimated) propensity score. Often 7y and

g are estimated by first-nearest-neighbour regression (=pair-matching).” However, matching

"This is the reason, why these estimators are called ’matching’ estimators, since first-nearest-neighbour

regression o (X;) matches pairs of treated and control observations.



estimators based on first-nearest-neighbour regression are inefficient (Abadie and Imbens 2001),
and Heckman, Ichimura, and Todd (1998) analyzed local polynomial regression estimators my

as a more efficient alternative.®

To analyze the efficiency of treatment effect estimators, Hahn (1998) derived the semipara-
metric efficiency bounds for nonparametric estimation of o and ag, as well for known as for

unknown propensity score.” The variance bound of the average treatment effect « is

1 oi(X) . _o5(X) 2
B |l + (m1(X) —mo(X) — : 8
no + ny p(X) 1 —p(X) (ml( ) mo( ) Oé) ( )
where 0%(z) = Var (Y} X =) = Var (Y}|X =2,D =1). The multiplicative term no}rm

in front of (8) is attached to demonstrate that the variance of the estimated treatment effect
vanishes at rate n=! = (ng +n1) .

This variance bound of « is the same for known and for unknown propensity score. In other
words, knowledge of the true propensity is not informative for estimating a. Furthermore,
a projection on the propensity score (i.e. matching on the propensity score as in (7)) is not
necessary to attain the variance bound (8), as shown in Hahn (1998). Thus from an asymptotic
perspective, propensity score matching (7) and matching on X as in (5) are equivalent, even if
the propensity score is known.

On the other hand, the variance bound of the average treatment effect on the treated ar
depends on the knowledge of the propensity score. If the propensity score is unknown, the

variance bound of a7 is

1 1 o3 (X)p(X)? )
-E 2 X X el \ekal/ o e X X) — X) —
no + N1 P2 |:0'1( )p( ) + 1 —p(X) —|—p( )(ml( ) mo( ) 04T) (9)
where P = P (D = 1) = lim ;% is the fraction of treated individuals. When the propensity

score is known, the variance bound of a is

11 {2 o (X)p(X)*

oy P2 E |o1(X)p(X) + L (%) +p2(X)(m1(X)—m0(X)—aT)2}. (10)

Again, a projection on the propensity score is not necessary to attain these bounds, i.e. asymp-

totically propensity score matching (7) does not provide any advantage to matching on X as in

8Frolich (2000) compared the finite-sample properties of various propensity score matching estimators and

found that significant precision gains are possible vis-a-vis first-nearest-neighbour regression.
9Semiparametric efficiency bounds were introduced by Stein (1956) and developed by Koshevnik and Levit

(1976), Pfanzagl and Wefelmeyer (1982), Begun, Hall, Huang, and Wellner (1983) and Bickel, Klaassen, Ritov,
and Wellner (1993). See also the survey of Newey (1990).



(5). Nevertheless, Hahn attributes the reduction of the variance from (9) to (10) to the ’dimen-
sion reducing’ property of the propensity score. As a heuristic argument, he notes that knowl-
edge of the propensity score implies knowledge of the equivalence classes X, = {z : p(x) = ¢},
which are the sets of « with the same propensity score value. As an extreme example for the di-
mension reduction due to knowledge of the equivalence classes, he considers the case of random
treatment assignment, which implies & = ap, p(x) = p for all individuals and X, = Supp(X).
In this case the bounds (8) and (10) are identical, whereas the variance bound of ap with un-
known propensity score (9) is larger, see Theorem 3 in Hahn (1998). The difference between

(9) and (10) is attributed by Hahn to the dimension reduction property of the propensity score.

However, this interpretation is rather misleading. First of all, if the propensity score would
indeed contribute to a dimension reduction, it should also improve the estimation of a. A
more suitable explanation seems to be, that knowledge of the true propensity score helps
in estimating the distribution function Fx|p—; of X in the treated subpopulation. Without
knowledge of the propensity score, the distribution Fxp—; can only be estimated from the X
observations of the n; treated individuals. The X values of the control observations contain
no information about Fxp—;. On the other hand, if the propensity score is known, also the
X observations of the control individuals are informative about the distribution of X among
the treated, since the propensity score relates the density of X between the treated and the
control subpopulations: By Bayes’ theorem p(x) = fx|p—1(z)P(D = 1)/ fx(x) and thus

p(z) _ fxip=1(x) P(D=1)
1 —p(x) fX|D:0(9U) P(D=0)’

where fx|p—o is the density in the control subpopulation. With this relationship all ng 4+ n;

(11)

observations can be used to estimate Fy|p_;.

This also explains why knowledge of the propensity score is of no use for estimating the
average treatment effect o, which is the average outcome difference m; — mg weighted by the
distribution Fx of X in the population, see (5). Since Fx can be estimated from the empirical
distribution function of all ng + n; observations, its estimation cannot be improved upon by
knowledge of the propensity score. Hence the value of the propensity score is, that it enables
using the X observations of one subpopulation (the control) to estimate the distribution of
X in a different subpopulation (the treated). Consequently, the impact of knowing the true

propensity score on the variance bound is zero, when the latter ’subpopulation’ is the whole



population (as in the estimation of the population average treatment effect a.)

By this explanation it is also obvious why the variance bounds (8) and (10) coincide in
the random assignment setting (p(x) = p), and why (9) does not (as noticed in Theorem 3
of Hahn (1998) and discussed above). With random assignment o = o and the distribution
of X is identical among the treated and the control: Fy p—; = Fxp—o = Fx. Estimation
of a would proceed by estimating Fx from the empirical distribution function of all ng + nq
observations and computing (5). The estimation of ay depends on the knowledge about the
propensity score. If the propensity score is known, the distribution Fx|p—; can be estimated
from the empirical distribution function of all ng 4+ n; observations, too, since (11) implies
Ixip=1(z)/fx|p=o(x) = 1. Hence the bounds (8) and (10) coincide. On the other hand,
if the propensity score is unknown, the distribution Fy|p—; is estimated from the empirical
distribution function of the n; treated observations, and the X observations of the controls
are completely neglected, although they have the same distribution of X. The estimator of ar
with unknown propensity score neglects ng of the available observations for estimating Fx|p—.

Thus the variance of o vanishes at rate n% instead of - which explains the difference

n1 )
between (9) and (10).!Y Knowledge of the propensity does not lead to a dimension reduction.
It simply allows a more efficient estimation of Fix|p_;.

To examine the case of non-random assignment (p(x) # p), the three variance bounds (8)

to (10) can be rewritten as

1 2 ¥ (X) 1 2 fx(X) 1 2
n—lﬁl 1(X)m t o { (X)f)gﬂ); o(X)] n0+n1E {(ml(X) mo(X) — @)
(12a)
1 f)Q(‘Dzl(X) 1 9
n_lg [03(X)] + n—og [ Q(X)fg(DZO(X) + n_lg {(ml(X) —mo(X) — ar) } (12b)
1 1 9 f)Q(\D:1(X) 1 Ixip=1(X) B RY
nlg [o1(X)] + nog { (X)fJQ(\Dzo(X) + - +m% [ P (X (m1(X) —mo(X) — ar) }

(12¢)

where Ey, [] = [ - fx)p—1(2)dx refers to the expected value in the treated subpopulation, Ey,|[]

to the expected value in the control subpopulation, and P = P (D = 1) = lim —%L— is approx-

no+ni

. The first row corresponds to the bound (8) of the average treatment effect

" Noting thdt n_1 - noinl = ﬂoinl #ll ~ noim 1P , which corresponds to the difference between (9) and (10):
noJlrm E - B[ (ma(X) - —ar) ] when p(z) = P.



a (with and without knowledge of the propensity score). The second row refers to the average
treatment effect on the treated ap with unknown propensity score (9), and the third row refers
to the bound of ay with known propensity score (10). The first term in each of these bounds
captures the variance due to estimating my(z), re-weighted by the density of X in the relevant
population. This term vanishes at rate nil, since only the n; treated observations are informa-
tive for estimating m;. Analogously, the second term represents the variance due to estimating
mo(x) and vanishes at rate n—lo, since only the control observations can be used for estimating

mg. The third term stems from estimating the distributions Fx and Fx|p—1, respectively, and

1
no+mny’

vanishes either at rate nil or

Since knowledge of the propensity score does not affect the first two terms of the bounds
(12b) and (12¢), the only channel through which the propensity score influences the variance
bound is through the third term, which corresponds to the estimation of Fx p_;. To ease the
following discussion, consider the case where the conditional expectation functions mg and my
are known. Then the first two terms of (12a)-(12c) are zero,!! and the corresponding variance

bound for « is
B [(m(X) — mo(X) — )] (13)

and the bounds for ap (without and with knowledge of the the propensity score) are

L [m(x) = mo() — ar?] (1)
1 Ix1p=1(X) )
mg{w (m1(X) = mo(X) — ar) } (14b)

1
no+mny’

The variance of « vanishes at rate since the distribution of X in the population is
identified from all observations. On the other hand, the main difference between the variance

bound of oy with knowledge (14b) and without knowledge of the propensity score (14a) is,

. . 1 - 1 . . 1 . .
that the variance vanishes at rate ;- in (14a), while it vanishes at rate ;—-— in (14b). Again
the reason for this is, that with unknown propensity score the distribution Fy|p—; is identified
from treated observations only, whereas treated and control observations are informative for
Fx|p—1 when the propensity score is known, such that its estimation can be based on all n1+nq

observations. If the distribution of X differs in the control and the treated subpopulation (non-

random assignment), the control observations are less ’efficient’ in estimating the distribution

" This follows immediately by repeating the proofs of Hahn (1998).

10



FX‘D:1,12 which is embodied in the correction term fx p—;/fx in (14b). In case of random
assignment (FX‘ p—1 = Fx), the control observations are as ’efficient’ in estimating Fx|\p=1
as the treated observations, and the bounds (14b) and (13) agree. The variance bound of
the average treatment effect « is unaffected by the propensity score, since it is based on the
distribution Fx in the whole population, such that no other subpopulations can be linked up

for its estimation via the propensity score.

This relationship between the propensity score and the distribution function Fx|p—; be-
comes even more apparent, when examining the variance bounds of the estimated distribution

function F; p—1(a). When the propensity score is unknown, the variance bound for estimating

Fyxp-1(a) is

1 p(x)
no +nq B |: [1

~~

r<a)- FXD:I(G)]z}

and when the propensity score is known it is

| p2(@) [1 (z < a) — Fxjp_(a)]’
ng + B [ P2 ]

_ 15 [fXD:l(X)
T no+m A fx(X)

(Proof in Appendix). These variance bounds have the same structure as the bounds (14a) and

1(X <a)— FX|D1<a>}2] . (16)

(14b). If the propensity score is unknown, the variance (15) vanishes at rate --, whereas the
1

1
no+ni

variance (16) vanishes at rate for known propensity score, because in the latter case the
control observations assist in estimating Fx|p—; (again with fx p—i/fx as correction factor
as in (14b)). Hence knowledge of the propensity score makes a more efficient estimator of the

distribution Fx|p—i(a) available.

This estimator uses the empirical distribution function of the control and the treated ob-
servations, to estimate the distribution Fx|p—;. Consider the estimation of the counterfactual

mean outcome E[YY|D = 1], which is the crucial ingredient in the average treatment effect on

2Because the density mass of the control observations may be located to a large extent in different regions

than the mass of the treated observations.

11



the treated ap.'® The common matching estimator of E[Y?|D = 1] = [mg(x) - dFy p_1(x) is

EVID=1]=— 3 (), (17)

n
LiDi=1

where 70 (z) is estimated from the control observations and imputed for all treated observations

(D; = 1). However, if the propensity score is known, the efficient estimator of E[Y?|D = 1] is

s 2_1o(Xi)p(Xi)

— n1+ng

M;P(Xi)

(18)

which, in contrast to (17), is a weighted average of mg for the treated and the control obser-

vations. The estimator (18) is motivated on

BYD =1 = [ o) fxpaalde = [ mo() KL g, - L@ Pl

D=1 o) fx(a)dr

and corresponds to the efficient estimator in Proposition 7 of Hahn (1998).

(19)

The value of knowing the propensity score for estimating Fx|p—; becomes even more obvi-

ous, when rewriting (19) by using (11)'* as

(©) POD=0), . Jmo(@) 725 fxip—o()da
p(z) P(D = 1) ¥I1P=0 J T2 fxipo(@)d

BEYOD =1 = /mo(m)l P

for p(z) # 1, which suggests the estimator

1 5 AN
ENID=1]=—2 - (20)
n_oi:lgzol_p(Xi)

Although the estimator (20) is inefficient, it demonstrates that, with knowledge of the propen-
sity score, the counterfactual mean for the treated (E[Y?|D = 1]) can be estimated from the
control observations, even without a single treated observation available, because the control
observations identify the distribution function Fxp—;. This is not possible, if the propensity
score is unknown.

Hence from an asymptotic point of view, knowing the propensity score leads to a more effi-
cient estimator of the distribution function of X among the treated, but it does not contribute

to any dimension reduction.

Because E[Y!|D = 1] can be estimated simply by the sample mean outcome of the treated.
- _p(@ - — Ix(@ -1 7 = =
HAnd that [ £ fxip—o(2)dz = [ p(2) b Fmsy Sxip=o(@)ds = 55y | pl@)fx (2)dz = HE=53

1—p(x) P(D=0)"

12



A Appendix

Below the semiparametric variance bound for the estimation of the distribution of X among
the treated, Fx|p—i(a), is derived, following closely the proof in Hahn (1998). Examine first
the case where the propensity score is unknown.

The joint density of (D, X) can be written as

f(d,2) = f(d|z) f(z) = p(x)*(1 - p(x)) = f(2). (21)

Consider a regular parametric submodel indexed by 6

f (d,$,9) = p(iL’, Q)d(l _p(xae))lidf(xv(g%

such that f(d,x,0p) = f(d,z). The score of f(d,z,0) is

_ Olnf(d,x,0)  Op(x,0)/00
S(d,z,0) = sg =g (1= d)

op(x,0)/00 N df(x,0)/00
1 —p(iL’,Q) f(ZL', 9)
_ d—p(z,0) op(x,0) n df(x,0)/00
p(z,0) (1 —p(z,0)) 00 f(z,0)
d—p(ib’, 9) f(x,@)

= 20— pw o) T iy

where p(x,0) = % and f(z,6) = afég’e)

The tangent space of the model is

S ={e(@) - (d—p(x,0)) + s(x)}
for all square-integrable functions ¢p(x) and all functions s(x) satisfying [ s(x)f(z)dx = 0.

The semiparametric variance bound of Fx|p_i(a) is the expected square of the projection
on ¥ of a function D(d, x), which satisfies for all regular parametric submodels

OFx|p-1(a,0)

00 |6=6 =k [@(D’X) ) S(D7X7 9)|9 = 90} . (22)

The distribution function Fx|p—i(a, ) can be written as

J1(z <a)p(z,0)f(x,0)dx

Fx|p=1(a,0) = Eg[1(X < a)|D=1] = / L s a) fapa @, 0)dr = =0

13



since p(z) = fx|p1(x)P/f(x) with P = E[D] = [ p(x)f(x)dx. Its pathwise derivative is

OFxp-1(a,0) (f 1< ) (252 f(2,0) + 2520 (x,0)) i) P

00 |0=00 - P2 (23)
(f1(z < a)p(x,0)f(z,0)dx) <] <%f(x,9) 4 o e)p(m,9)> da:)
B P2 10=0
(24)
) (2,90 z,00
_ [1(z <a) (6}7690 )flgx) 4 %p(@) da: -
- Fxip-1(a) [ (Bp(gééo)fj(x) + %p(lﬁ)) da o
(L <) = Pxpa(a) (jfg(;ﬂlf(m) + 2Ll 1)) d -
= 2 [ 116 <0) ~ Fxpaa(@)] (50 @) + () f@)) da, 2
where p(z) = %’692—’92‘9:00 and f(x) = afagé’e 1006

d=0
= ]lj/ [1(x <a) — Fx|p=i(a)] (p(x;(_lji(?(x)) () %) (x)f(x)dx
_ 113 | (L <)~ Fxjpea (@)] (9(2) £(2) + p(a) f(2) ) e = WHO

after inserting (21), integrating out d and comparing with (28).
The variance bound is the expected square of the projection of D(d,z) on the
tangent space . Notice that D(d,z) € <, because it can be written as D(d,z) =

[1(x <a) - Fx|p-1(a)] % + [1(z < a) = Fx|p=1(a)] @. Hence the projection of

14



D(d, x) is D(d,x) and the variance bound (with unknown propensity score) is thus

D2

E[®(D,X)? = E [ﬁ [1(z <a)— FXDl(a)]Q}

- E {@ [1(z<a)- FX|D:1(a)}2] .

Now, consider the case where the propensity score is known. The parametric submodel
changes to

f(d,2,0) = p(x)*(1 = p(x))'~*f(x,0),

and the score is
Oln f (d,x,0) _ of(x,0)/00
00 a flz,0)

S(d,x,0) =
The tangent space of the model is thus
= {s(x) : / s(x) f(z)dx = 0} .

Compute the pathwise derivative of

J1(z <a)p(x)f(z,0)dx

FX‘Dzl(a,Q) = fp(x)f(x, 0)dx
OFx|p-1(a,0) B ([1 (x < a)p(ﬂ%dw) P ([1(z <a)p(x)f(z,0)dr) (fp af(ze dx)
Tw:ao _ = — P2 |60=00
[1(z<a) ( )21 f0) gy Fxjp=i( (”’ jgéﬂm)

P

1o @) = Fx pes(o)] o) (222000 fo, o)

[( 1(X < a) Fx|D=1(a)]> S(D, X, 000 = 90] .

tq"ol

Hence
p() [1(z < a) — Fxjp=1(a)]
P

with ©(d,z) € 3. Accordingly the variance bound of Fx|p—i(a) with known propensity score

D(d,x) =

18

ﬁ@wuxs@—FmDﬂwf]
P2 ’

E[®(D,X)*| =E [
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