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Abstract 

In this paper, we analyze the impact of transportation infrastructure quantity and quality on 

regional economic production. We exploit an extensive panel dataset on the German county 

level (N=401), expressing the capital value and condition of highways between 2007 and 2016, 

to estimate a spatially extended translog production function. The spatial specification uses 

SLX and SDEM models, with various linear and nonlinear variants estimated using FGLS and 

GMM estimators accounting for endogeneity. We find, in line with existing research, a positive 

impact of the quantity of transport infrastructure both locally and supra-regionally. We fur-

thermore provide evidence for the claim that insufficient maintenance and low infrastructure 

conditions significantly slow economic growth through a negative correlation between GDP 

and the quality grade of highways. A more detailed analysis, distinguishing different types of 

highways and constructions, confirms these findings and underlines the importance of the 

Bundesstraßen network as compared to the Autobahn system. The estimated impact of the 

quality of bridges is rather ambiguous and requires further research to achieve a better un-

derstanding. 
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1.  Introduction 

 

The role of public infrastructure within economies, the investment into these networks, and the 

quality of the provided systems are subjects of constant discussion in science and policy. The 

OECD claims that public infrastructure “supports growth, improves well-being and generates 

jobs” (OECD, 2017, p. 1), but also finds “a number of challenges” that policymakers face in 

the complex field of infrastructure investment (ibd.). The G20 defines one of these challenges 

as “a massive gap in financing for investment in new and existing infrastructure, which could 

generate a serious bottleneck to economic growth” (G20, 2019, p. 1) and stresses “the need to 

scale up infrastructure investment” (ibd.). The U.S. Congressional Research Service adds “the 

optimal level of infrastructure investment, the effectiveness of this investment, and the appro-

priate role of the federal government” as related issues (Mallett, 2018, p. 1). The existing liter-

ature on the topic makes clear that the discussion is not new: the question of sufficiency of 

public investment was raised from a policy-perspective already in Peterson (1990) and the gen-

eral idea of public investment affecting economic development dates back to Smith (1776). On 

scientific grounds, economic theory suggests that public capital increases private investment 

and economic growth (Aschauer, 1990, p. 14). This assumption is widely discussed, with con-

firmation found across a wide range of empirical studies, as our literature review shows. Ana-

lyzing the impact of infrastructure quality, we contribute to a strand of this research that is, until 

now, understudied despite its high relevance for public welfare. 

Transportation infrastructure is an important part of public capital and a major aspect of 

the political and scientific discussions. As it accounts for 6% of the total capital employed in 

the German economy (DIW, 2017, p. 41), the German Ministry of Transportation and Digital 

Infrastructure (BMVI) asserts that “wealth is created where infrastructure functions” (BMVI, 

2017, p. 3). Similarly, the U.S. government mentions it as “a key ingredient of economic de-

velopment in this country” (EOP, 2016, p. 251), fostering effects such as economies of scale, 

lower transportation and transaction costs, and access to larger markets (Carlsson, Otto, & Hall, 

2013, p. 267). In addition, investment into transport infrastructure not only has an impact on 

the area the money flows into, but has supra-regional effects due to the network characteristics 

of the infrastructure and its importance for connecting regions. Despite its obvious importance, 

transport infrastructure investment is a primary subject of the underfunding phenomenon iden-

tified by the G20, with an increasing number of stakeholders stating their dissatisfaction with 

the current state of the network. The American Society of Civil Engineers (ASCE) gave the 

U.S. transport infrastructure a D+ grade in 2017, claiming it to be in a “mostly below standard” 

condition with “significant deterioration” (ASCE, 2017, p. 13). The U.S. Council on Foreign 

Affairs even defines a “threat to human safety of catastrophic failures like bridge collapses or 

dam breaches,” besides “billions of dollars in lost economic productivity” due to inadequate 

maintenance of transport infrastructure (McBride, 2018, para. 1). Grömling & Puls (2018, p. 

94) find that 72% of 2600 surveyed companies in Germany find their undertakings negatively 

influenced by road infrastructure deficits, while an increasing number of businesses in the Ger-

man Association of German Chambers of Industry and Commerce (DIHK) limits their invest-

ments due to logistical constraints (DIHK, 2017, p. 21). Similar reports are published by a large 

number of nations around the world. In 2010, the Global Risk Report named the failure of 

transport infrastructure as a globally present risk, finding in 2019 that the situation has not im-

proved over the intervening years (WEF, 2019, pp. 82ff). 
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In any economy, limited financial resources must be balanced between transport network 

expansion and maintenance of the existing infrastructure to assure that both quantity and quality 

of the supplied systems meet the demand of businesses and individuals. Consequently, the G20 

call for a “renewed emphasis on quality infrastructure investment” (G20, 2019, p. 1), making 

clear that a focus on road quantity and the construction of new roads is not an optimal allocation 

of resources. For the German case, claims for increased maintenance investment into transport 

infrastructure are made by, among others, Daehre (2012), Arndt et al. (2013), and Kunert & 

Link (2013). Kalaitzidakis & Kalyvitis (2005) analyze the relationship for the Canadian case 

and find an inefficient allocation, while Rioja (2013) develops a theoretical background and 

analyses case studies in multiple countries with similar conclusions. 

While the economic impact of public investment generally, and transport infrastructure 

specifically, has seen great scientific attention, few publications focus on the specific effects of 

maintenance. Even more surprising, we can identify only one existing study that empirically 

addresses the topic using measured quality data, and thus real changes in quality, instead of 

monetary values. To provide a scientific foundation for this otherwise overlooked field and to 

support policy decisions on the topic, this paper empirically addresses the question “(How) 

Does fluctuating quality of transportation infrastructure, as a result of maintenance investment 

behavior, influence economic growth on a regional level in Germany?” Furthermore, it follows 

existing research on the economic impact of public capital and transport-related infrastructure 

endowment. We approach this question with three hypotheses, referring to the impact of quan-

tity, quality, and a supra-regional impact respectively: 

• H1: The quantity of transport infrastructure, measured as gross asset value, is positively cor-

related with economic growth. 

• H2: The quality of transport infrastructure, measured as condition of roads and constructions, 

has a positive impact on economic growth, i.e. better quality increases growth. 

• H3: Both effects are present locally and supra-regionally, i.e. spillovers exist. 

The paper is structured as follows: Section 2 presents a review of the existing literature 

in the field, from theory and methodology to empirical applications. Sections 3 and 4 explain 

our data and methodological approach, respectively. In addition, we use sub-section 4.2 to an-

alyze the endogeneity problem inherent in many related studies. Our results are laid out and 

discussed in section 5, before drawing scientific and policy-related conclusions in section 6. 

 

2. Literature Review 

 

The idea that public capital affects economic developments dates back to the beginnings 

of economics as a science. The theoretical fundament of most modern research on this relation-

ship is the neoclassical economic framework, within which the use of production functions 

relating inputs and output of aggregate economies or individual firms is based (cf. Cobb & 

Douglas, 1928). A contrary view developed in endogenous growth theory, claiming that eco-

nomic growth is determined endogenously within economies instead of through externally iden-

tified factors (Romer, 1986, 1990a). We do not go into detail about the background of these 

theories, instead referring interested readers to any textbook about modern economic theory. 
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The modern debate about growth effects of public investment is based on the seminal 

work of Aschauer (1989, 1990), finding an increase in total factor productivity of 0.39% for a 

1% increase in the ratio between public and private capital (Aschauer, 1989, p. 182). Compared 

to previous (cf. Eberts, 1986) and later research, the effect Aschauer estimates is extremely 

strong, suggesting implausibly high returns (Pereira & Andraz, 2013, p. 2). Overviews of the 

scientific discussion following Aschauer’s publications are provided in, among others, 

Gramlich (1994), Romp & de Haan (2007), and Pereira & Andraz (2013), suggesting econo-

metric issues including two-way causality, spurious correlations, and non-stationarity of the 

data (Gramlich, 1994, p. 1187; Romp & de Haan, 2007, p. 7). Despite being strongly criticized, 

the production function approach remains the most used methodology for the identification of 

productivity effects of public capital. Its relatively weak dependence on theoretical assumptions 

and the availability of data are arguments in favor of the method, as is the development of 

procedures accounting for the aforementioned problems. Econometrically, an important step is 

the use of generalized method of moments (GMM) estimators, driven by Arellano & Bond 

(1991) and Blundell & Bond (1998) and expanded into spatial models (see below), besides 

others, in Kelejian & Prucha (1999), Anselin (2011), and Lee & Yu (2014). A related approach 

to avoid endogeneity bias is the use of instrumental variables (IV) procedures, as suggested by 

M. N. Harris & Mátyás (2004) and Baltagi & Liu (2011). A comparison of different estimation 

methods is conducted in Kelejian & Robinson (1997). In application, the relevance of human 

capital as an input factor must be noted, introduced in Lucas (1988) and Romer (1990b). An 

empirical analysis of the German case is found in Brunow & Hirte (2009). 

Employing these advances, a vast body of empirical evidence for the impact of public 

infrastructure investment exists. An extensive review is found in Pereira & Andraz (2013), in-

cluding studies on the micro- and macroeconomic level in the U.S. and other parts of the world 

as well as providing an overview of the methodological debate. Furthermore, the meta-analyses 

of Melo, Graham, & Brage-Ardao (2013), Bom & Ligthart (2014), and Holmgren & Merkel 

(2017) analyze 563, 578, and 776 estimates, respectively, from a collection of publications. 

They calculate mean elasticities across all estimates in their respective samples of 0.06 (Melo 

et al., 2013), 0.11 (Bom & Ligthart, 2014), and 0.10 (Holmgren & Merkel, 2017), but find that 

these effects depend heavily on the specification of models. Aspects they find to influence the 

findings include the data structure and use of panel methods, the regional level of aggregation 

and use of spatial econometric techniques, the accounting for econometric issues such as en-

dogeneity, and the measurement details of variables such as public capital. Furthermore, effects 

differ between countries, time, industries, and modes of transport, explaining the wide range of 

estimates found in individual studies. Recent analyses accounting for the identified shortfalls 

fall into a more narrow range of estimates while providing evidence for many parts of the world: 

Besides others, Barzin, D’Costa, & Graham (2018) identify the impact of Colombian roads, L. 

Liu & Zhang (2018) study the high speed rail construction in China, and Arbués, Baños, & 

Mayor (2015) in Spain as well as Börjesson, Isacsson, Andersson, & Anderstig (2019) in Swe-

den focus on European countries. All authors find positive effects on production output and 

employment, as do several studies for the German case: The reports by Bertenrath, Thöne, & 

Walther (2006) and Barabas et al. (2010) provide extensive background information as well as 

estimation results that are close to the findings of the mentioned meta-analyses. The publica-

tions by Allroggen, Scheffler, & Malina (2013) and Allroggen & Malina (2014) also find pos-

itive productivity and production efficiency effects of transport infrastructure. 
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While a large share of the existing studies measures economic effects through GDP 

growth, an alternative approach focuses on the labor market, identifying changes in employ-

ment or wage levels. Duranton & Turner (2012) find a significant growth of 1.5% in regional 

employment over 20 years due to a 10% increase in highway endowment for the U.S. highways, 

and a comparable example for Germany is provided by Möller & Zierer (2018). Both studies 

build on historical infrastructure maps as instruments in order to identify causal effects. Another 

approach to public capital, which is close to the one we take in this study, is used by Fritzsche 

(2019): Instead of monetary values measuring the quantity of public infrastructure endowment, 

she uses a quality variable identifying the condition of roads for a sample of German counties. 

With these data, she finds that previously taken approaches such as instrumenting infrastructure 

quality with accident information (Kalb, 2014) are less reliable and measured quality data are 

necessary for consistent findings. Rouse, Putterill, & Ryan (1997) use a comparable dataset for 

New Zealand, leading him to similar conclusions.  

Independent of the specific focus of the analyses, the literature provides overarching sup-

port for the hypothesis that public capital, both generally and transport-specifically, fosters eco-

nomic growth. Despite this apparent congruence of production function-based studies, it is im-

portant to note that analyses finding no or even negative effects remain. The general concept is 

subject to criticism, as expressed in Felipe, Hasan, & McCombie (2008) and Felipe & 

McCombie (2012). An alternative approach within the branch of econometric methods is the 

use of cost functions, identifying effects on individual firms’ cost structure instead of explaining 

aggregate output. This method is, for example, used in Berndt & Hansson (1992), and 

Bougheas, Demetriades, & Mamuneas (2000), both finding that public capital decreases private 

costs, thus enhancing productivity. Another option are vector autoregressive frameworks, for 

which Yu, de Jong, Storm, & Mi (2013) give an overview and an application in China. 

A different methodology is applied in computable general equilibrium (CGE) models, 

which see increasing attention as more and better data become available. Project assessment 

strategies, especially for major infrastructure projects, implement CGE models in Brazil 

(Haddad, Perobelli, Domingues, & Aguiar, 2011) and Norway (Vold & Jean-Hansen, 2007), 

among others. A comprehensive presentation of the development and functioning of CGE mod-

els as well as their applications is found in Robson et al. (2018). An econometric approach 

relying on fewer assumptions than CGE models, but identifying a broader scope of relationships 

than just a production (or cost) function, is the simultaneous equations model (SEM). Each 

equation in these systems describes a relationship between variables, thus allowing to model 

two-way or indirect causalities and endogenously determined relations (Cornwell, Schmidt, & 

Wyhowski, 1992). While the methodologies for estimating several equations simultaneously 

are not new (cf. Baltagi, 1981), many of the econometric challenges inherent in growth-related 

applications have been solved more recently. This is especially true for dynamic models (Hsiao 

& Zhou, 2015) and for spatial methods (see below; X. Liu & Saraiva, 2019; Yang & Lee, 2019). 

An early empirical contribution in this field is Duffy-Deno & Eberts (1991), identifying a sig-

nificant positive impact of total public investment on private income for U.S. cities. 

Kemmerling & Stephan (2002) use data on German cities to disentangle political investment 

behavior, as do Mizutani & Tanaka (2010) for the Japanese case. 

While all these methods are based on macroeconomic or aggregated data, a growing body 

of empirical literature uses treatment effect identification strategies, which draw causal conclu-



D. Gaus, H. Link (2020) 

  6 

sions from different developments of comparable individuals, firms, or regions after a treat-

ment. The treatment is commonly identified through increased accessibility due to transport 

infrastructure improvements such as the opening of new road or rail connections. A variety of 

methods is applied in this field: Gibbons & Machin (2005) use Difference-in-Differences mod-

els with unique treatment and control groups, Ahlfeldt & Feddersen (2015) identify discontinu-

ities in their data, Yoshino & Abidhadjaev (2017) work with several treatment groups subject 

to different treatments, and Gibbons et al. (2019) estimate the effect of a continuous treatment 

intensity variable. 

An aspect that becomes more and more important in the analysis of public capital effects, 

especially in the case of infrastructure networks, is the spatial component of such investments. 

In economic theory, this development is driven by New Economic Geography and an increasing 

impact of urban and regional science practices (Fujita, Krugman, & Venables, 1999). The meth-

odological scope is widened through the use of spatial econometric methods, which are increas-

ingly important (Elhorst, 2014). The intuitive idea behind this advance is that regional economic 

development is not determined exclusively within the region, but that other areas also have an 

impact. Factors like trade, mobility, and communication require analyzing interactive systems 

instead of independent units, while aspects like urbanization and agglomeration define how 

regions interact, influencing each other’s economic development (Fingleton, 2001). In the con-

text of public investment, the existence of such spillover effects is widely accepted, even though 

several cases of no or negative effects have been found (Arbués et al., 2015). Consequently, 

models and estimation procedures in the field of spatial econometrics are increasingly sophis-

ticated: Among other examples, Elhorst (2001) introduces a time- and space-dynamic model, 

Kapoor, Kelejian, & Prucha (2007) account for spatially correlated error components, and 

Kelejian & Prucha (2004) apply spatial methods in an SEM framework. Even though the use 

of spatial econometric methods is the standard in newer research, discussions on the specifica-

tion of models continue. Halleck Vega & Elhorst (2015), describing the wide range of models 

accounting for exogenous, endogenous, and autoregressive spatial components, advocate the 

use of the simple spatial lag of X (SLX) model as a starting point instead of the commonly used 

more complex models. Harris & Kravtsova (2009) point out the challenges in defining an ap-

propriate spatial weighting matrix. Elhorst (2014, p. 17) provides a summary of available esti-

mation techniques, including maximum likelihood (ML), IV, and GMM procedures and the 

importance of their respective assumptions. Empirically, a large body of literature provides 

evidence for the existence of spillovers: Besides the seminal work of Holtz-Eakin & Schwartz 

(1995), Pereira & Roca-Sagalés (2003) analyze the effects of total public capital in Spain, while 

Arbués et al. (2015) focus on transport infrastructure. Barabas et al. (2010) undertake a similar 

analysis for Germany, Chen & Haynes (2015) use data on the U.S. Northeast Megaregion, and 

Cosci & Mirra (2018) evaluate the effects of Italian highways. 

Building on the existing body of literature, we follow the branch of production function 

approaches as the advances in this field allow for solving econometric and data-related chal-

lenges. We combine this approach, following the current standard in the field, with spatial econ-

ometric methods to account for spillovers. While the existing research focuses on the quantity 

of public capital and uses capital stock values to measure regional endowment, we identify a 

disregarded field of research in the quality of public capital. Some publications, such as Agénor 

(2005), study the allocation of public funds to construction and maintenance budgets, but we 
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do not know of any study that identifies the economic effects of changes in the quality of infra-

structure. This topic is finding increasing attention with deteriorating infrastructure especially 

in policy contexts. We therefore add to the literature by combining existing methods with a 

novel interpretation of public capital. 

 

3. Data 

 

We use yearly data at the German county (Landkreis) level from 2007 through 2016 com-

bined from various sources. The German “Volkswirtschaftliche Gesamtrechnung der Länder” 

(VGRdL, 2018) supplies GDP and labor statistics for all 401 counties, as well as the total capital 

on state level differentiated by industries and asset types. We use these data to explain the states’ 

share of the national total capital through their shares of firms differentiated by size and industry 

in a pooled-OLS panel regression and find a very good fit for this model. Consequently, we use 

the obtained estimates to approximate county-specific shares of state-level capital using the 

available county-level industry data of the VGRdL and calculate county-specific capital values. 

Furthermore, we obtain spatial information from the German Federal Agency for Cartography 

and Geodesy (BKG), retrieved via OpenDataLab (2016), and the population density from the 

database of the German Federal Institute for Research on Building, Urban Affairs and Spatial 

Development, INKAR (BBSR, 2018). To account for human capital effects, we include the 

share of workers with a university degree (cf. Brunow & Hirte, 2009, p. 806), obtained from 

the employment statistics of the federal employment agency (Arbeitsagentur, 2018). Finally, 

all financial values are deflated to 2010 prices using the CPI time series on state level from the 

German statistics office (Destatis, 2018). Table 1 shows the summary statistics of our variables. 

The part of transportation infrastructure we pay attention to in this paper is the German 

Federal Highway System (Bundesfernstraßen, BFS), for which we obtained detailed data from 

the German Federal Highway Research Institute (BASt, 2017a). This supra-regional road sys-

tem comprised 13,346km of Autobahn (BAB) and 38,597km of Bundesstraße (BS) in 2016; 

measuring individual lanes, we analyze 60,732km and 86,643km, respectively. In the context 

of the Condition Assessment and Evaluation (Zustandserfassung und -Bewertung, ZEB), the 

condition of the entire network is measured every four years, with data points being logged for 

lane sections no longer than 100m. We make use of this extensive dataset over three full periods 

from 2005 to 2016. To obtain the necessary county-level data, we aggregate in the following 

way: Firstly, we follow the methodology of BASt (2015) to calculate a grade between 1 (best) 

and 5 (worst) from the assessed damages, grooves, evenness, grip, and other measures for each 

section. Secondly, we assign geographic coordinates to the starting point of each section and 

construct the average grade for each county using all lane sections with a starting point in the 

county. As a small amount of sections is shorter than 100m (e.g., when connecting to another 

road), we use a weighted average with the weighting based on the section length. To enable a 

detailed analysis, we calculate three county-specific variables this way: CA measuring the BAB 

quality, CB describing the condition of the BS network, and C as an aggregate measure for both 

types of roads. While CA and CB are calculated using only the segments of the specific network, 

C follows the same methodology, but includes all sections of BAB and BS with no differentia-

tion. As the assessment years differ between states within the four-year cycles, we allocate them 

to the respective third year (i.e., 2007, 2011, and 2015) and linearly interpolate in between. 
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Table 1 

Summary Statistics and Sources of variables 

 Description Mean Median Var Min Max Sources 

Y GDP (bn €, in prices of 2015) 7.07 4.37 * 0.87 141.24 VGRdL: R2B1 

L Employees’ hours worked (Mill. 

h) 

144.26 97.4 * 25.27 2623.23 VGRdL: R2B2 

K Total gross capital value 

(bn €, in prices of 2015) 

39.92 30.73 * 1.65 743.28 VGRdL: R1B4 

H Share of employees with univer-

sity degree (%) 

0.11 0.10 0.003 0.03 0.36 Nat. Employment 

Statistics 

G Gross asset value of BFS system 

(Mill. €, in prices of 2015) 

575.97 530.58 * 18.99 2581.98 Own calc., BASt, 

DIW, BKG 

C Condition of BFS system (grade) 2.92 2.90 0.09 2.02 3.98 Own calc., BASt 

CA Condition of BAB (grade) 2.60 2.60 0.14 1.46 4.69 Own calc., BASt 

CB Condition of BS (grade) 3.15 3.13 0.13 1.45 4.52 Own calc., BASt 

CC Condition of bridges of BFS 

(grade) 

2.34 2.34 0.07 1.20 3.19 Own calc., BASt 

DU Dummy: City Counties 0.27     INKAR 

DE Dummy: Former GDR 0.19     INKAR 

PD Population Density (cap/km2) 520.72 198.00 * 35.6 4737.10 INKAR 

Notes: * denotes Variance > 105 

In addition, BASt supplied information describing the condition of constructions within 

this network (BASt, 2017b). These information contain the size, location, and condition grades 

on a yearly basis for all tunnels, bridges, retaining walls, noise barriers, and equipment (e.g., 

street signs) of the BAB and BS networks. As the number of tunnels is small and the impact of 

noise protection walls, retaining walls, and equipment on traffic behavior and economic growth 

is supposedly low, we focus on the quality of bridges. From the grades, which are available for 

each partial construction (e.g., a bridge consisting of separate structures for each direction 

counts as two partial constructions) and follow the pattern from 1 (best) to 5 (worst) used in the 

ZEB, we construct another variable using a procedure similar to the one described above. After 

identifying the location and assigning a county for all constructions, we calculate CC as average 

grade of all bridges within each county, weighted by bridge area (i.e., length multiplied by 

width). To increase its informative value in counties with few bridges, this variable does not 

differentiate between the BAB and BS networks. 

Highway capital data are calculated from the sophisticated transport infrastructure capital 

stock model of the BMVI/DIW publication “Transport in Figures” (Verkehr in Zahlen; DIW, 

2017). This model differentiates total capital not only by transport modes, but further distin-

guishes between earthworks, superstructure and pavement, constructions, and equipment in 

road values for different types of roads. However, although highly detailed in this dimension, 

it does not offer a valuation for subnetworks below the national level. Thus, the provided values 

are broken down based on highway length, lane availability, constructions (bridges, tunnels, 

retaining walls, noise protection walls, traffic signs), and topography. For this purpose, we use 

different measures to determine county-specific shares of the various asset classes: For earth-

works, these are shares in lane length and a topography classification, for superstructures we 

used the share in lane length, constructions are calculated based on their respective share in 

total size, and for equipment we use the share in road length. The data used for the network 

characteristics (length, lanes) are taken from the ZEB, identifying both the lane-specific area 

and the road length within counties. Furthermore, we combine the data from BASt (2017b) on 
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constructions with the data in Korn et al. (2014, p. 7) to identify the respective shares of bridges, 

tunnels, and retaining walls. Topography data are taken from the Federal Service Centre for 

Geo-Information and Geodesy and implemented following the procedure of Korn et al. (2018, 

pp. 52ff) based on their finding of 61.8% of assets being in hilly regions (i.e., height variation 

above the median) and the remaining 38.2% in flat areas. Finally the county-level asset value 

is obtained by adding up the individual components. 

With respect to the infrastructure variables, strong heterogeneity of the data can be ex-

ploited: The mean quantity increases significantly by 12% over time, with changes between -

47% and +238% over the observed ten years (10th and 90th percentile are -2% and +31%, re-

spectively). The quality points out an insignificant average improvement of 0.04 grades, signif-

icant improvement of 0.15 grades, and significant worsening of 0.02 grades for BAB, BS, and 

bridges respectively, while all three developments cover at least the range of one grade up and 

down, for BAB even two grades. 

 

4. Methodology 

 

This paper methodologically follows the strand of work started by Aschauer (1990) in 

estimating a production function with separated transport-related capital input. It expands this 

starting point into a spatial production function model with an analysis paying special attention 

to the impact of transport infrastructure quality and spillovers. We use a Translog specification 

of the function as described by Berndt & Christensen (1973), with GDP denoting output Y and 

capital K, labor L, and human capital H as production inputs. As a log-linear function, the 

Translog specification allows to account for non-linear relationships; furthermore it includes 

quadratic terms and interaction effects between the input variables and thus covers a wide range 

of functional forms (ibd.). The commonly used Cobb-Douglas function (Cobb & Douglas, 

1928) is a specific case of the Translog model, with the coefficients of the quadratic and inter-

action terms being zero. The general form of the production function we use can be written as 

ln(𝑌) = ln(𝐴) + 𝛽1 ln(𝐾) + 𝛽2 ln(𝐿) + 𝛽3 ln(𝐻) +
1

2
𝛽4 ln(K)

2 +
1

2
𝛽5 ln(𝐿)

2

+
1

2
𝛽6 ln(𝐻)

2 + 𝛽7 ln(𝐾) ln(𝐿) + 𝛽8 ln(𝐾) ln(𝐻) + 𝛽9 ln(𝐿) ln(𝐻) 

(1) 

The productivity factor A is determined by exogenous factors and allows for including further 

variables affecting productivity. Accounting for the panel structure of our data, including con-

trol variables 𝑅, and adding an idiosyncratic error term 𝜀, we can rewrite equation (1) as 

ln(𝑌𝑖𝑡) = ln(𝐴𝑖𝑡) + 𝛽1 ln(𝐾𝑖𝑡) + 𝛽2 ln(𝐿𝑖𝑡) + 𝛽3 ln(𝐻𝑖𝑡) +
1

2
𝛽4 ln(Kit)

2

+
1

2
𝛽5 ln(𝐿𝑖𝑡)

2 +
1

2
𝛽6 ln(𝐻𝑖𝑡)

2 + 𝛽7 ln(𝐾𝑖𝑡) ln(𝐿𝑖𝑡)

+ 𝛽8 ln(𝐾𝑖𝑡) ln(𝐻𝑖𝑡) + 𝛽9 ln(𝐿𝑖𝑡) ln(𝐻𝑖𝑡) + 𝜆𝑅𝑖𝑡 + 𝜀𝑖𝑡 

(2) 

We furthermore assume A to be a function of the quantity of highway capital G and its quality 

C. A multiplicative connection is established through 𝐴 = 𝐴(𝐺, 𝐶) = (𝐴0 ∗ 𝐺
𝛾1 ∗ 𝐶𝛾2) (cf. 

Aschauer, 1989). In logarithmic form as in equation (1), the expression turns into 

ln(𝐴) ≔ ln(𝐴0) + 𝛾1ln(𝐺) + 𝛾2ln(𝐶) (3) 
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To account for a possible nonlinear influence, we estimate a second model that includes quad-

ratic terms of G and C: 

ln(𝐴) ≔ ln(𝐴0) + 𝛾1ln(𝐺) + 𝛾2ln(𝐶) + 𝛾3 ln(𝐺)
2 + 𝛾4 ln(𝐶)

2 (4) 

Furthermore, we work with two specifications for highway quality. On the one hand, we esti-

mate our model with the measure C as described in section 3, describing the aggregate quality 

of the pavement of BAB and BS. This setting is described above in equations (3) and (4). On 

the other hand, we analyze the individual effects of CA, CB, and CC, describing the quality of 

BAB pavement, BS pavement, and highway constructions, respectively. The second specifica-

tion has, for the linear and nonlinear form in G and C, respectively, the forms 

ln(𝐴) ≔ ln(𝐴0) + 𝛾1ln(𝐺) + 𝛾2ln(𝐶𝐴) + 𝛾3ln(𝐶𝐵) + 𝛾4ln(𝐶𝐶) (5) 

ln(𝐴) ≔ ln(𝐴0) + 𝛾1 ln(𝐺) + 𝛾2 ln(𝐶𝐴) + 𝛾3 ln(𝐶𝐵) + 𝛾4 ln(𝐶𝐶) + 𝛾5 ln(𝐺)
2

+ 𝛾6 ln(𝐶𝐴)
2 + 𝛾7 ln(𝐶𝐵)

2 + 𝛾8 ln(𝐶𝐶)
2 

(6) 

The output elasticities, specified as first-order derivatives of ln(𝑌), provide the change in GDP 

resulting from a 1% change in the respective variable. While these elasticities are equal to the 

estimated values in the linear case, the nonlinear model requires them to be calculated manually 

and point-specifically. Following standard literature, we evaluate the respective derivatives at 

the variable mean to obtain average elasticities. Furthermore, we receive the distribution of the 

nonlinear variables using a bootstrap procedure adapted to the structure of our data. The starting 

point for this procedure is a cross-sectional block bootstrap as explained by Kapetanios (2008, 

p. 380), which means we resample county-specific blocks of the full period of 10 years into our 

bootstrap samples.  

Control variables for social and/or sociodemographic characteristics are included to avoid 

a possible bias through omitted variables (cf. Barabas et al., 2010, p. 80ff). We used several 

sets of control variables, but find insignificant or weakly significant effects for most of them. 

To keep the focus on the variables of interest, and following the results of specification tests, 

we estimate our final model controlling for county fixed effects, population density PD, and 

(through dummy variables) status of an independent city DU (i.e., cities that constitute a county 

by themselves), counties in former Eastern Germany DE, and the crisis in 2007-09 DS. 

As Kelejian & Robinson (1997, p. 116) mention, severe econometric issues are common 

in studies using production function approaches. In our case, specification tests following 

Pesaran (2004), Breusch (1978), Godfrey (1978), and Breusch & Pagan (1979) provide evi-

dence for first-order autocorrelation (AR(1)), heteroscedasticity, and cross-sectional depend-

ence in the error term. We address these problems in our estimation methodology, using a two-

step feasible generalized least squares (FGLS) estimation procedure, as suggested by Prais & 

Winsten (1954), that corrects for AR(1). This also addresses cross-sectional dependence and 

heteroscedasticity by calculating panel-corrected robust standard errors (Beck & Katz, 1995). 

The software implementation of these methods is done in R, using the package panelAR. 

 

4.1. Spatial Specification 

 

In addition to the transport-related adjustment of the production function, we implement 

a spatial specification of the model. This is based on the assumption that network infrastructure 
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like highways has an impact not only locally, but, due to its supra-regional importance, also 

influences economic developments on a larger scale. To account for such spillovers, we amend 

the model into a “Spatial Lag of X” (SLX) model with exogenous spillover effects. In this type 

of model, the dependent variable of one unit depends on the independent variables of other units 

(Elhorst, 2014). As a Moran’s I test (Moran, 1950) on a yearly basis finds spatially autocorre-

lated error terms in some specifications and years (three out of ten years in maximum), we also 

estimate a Spatial Durbin Error Model (SDEM; Elhorst, 2014), but find that results are close to 

the SLX findings. In both cases, we restrict the exogenous spatial effects to G and C following 

Halleck Vega & Elhorst (2015), turning equation (3), (4), (5), and (6) into 

ln(𝐴) ≔ ln(𝐴0) + 𝛾1ln(𝐺) + 𝛾2ln(𝐶) + 𝛾1ln(𝑊𝐺) + 𝛾2ln(𝑊𝐶) (7) 

ln(𝐴) ≔ ln(𝐴0) + 𝛾1ln(𝐺) + 𝛾2ln(𝐶) + 𝜃1ln(𝑊𝐺) + 𝜃2ln(𝑊𝐶) + 𝛾3ln(𝐺)
2

+ 𝛾4ln(𝐶)
2 + 𝜃3ln(𝑊𝐺)2 + 𝜃4ln(𝑊𝐶)2 

(8) 

ln(𝐴) ≔ ln(𝐴0) + 𝛾1ln(𝐺) + 𝜃1ln(𝑊𝐺)

+∑ (𝛾𝑟ln(𝐶𝑟) + 𝜃𝑟ln(𝑊𝐶𝑟))
𝑟∈{𝐴,𝐵,𝐶}

 
(9) 

ln(𝐴) ≔ ln(𝐴0) + 𝛾1ln(𝐺) + 𝜃1ln(𝑊𝐺) + 𝛾3ln(𝐺)
2 + 𝜃3ln(𝑊𝐺)2 

+∑ (𝛾𝑟1ln(𝐶𝑟) + 𝜃𝑟1ln(𝑊𝐶𝑟) + 𝛾𝑟2 ln(𝐶𝑟)
2 + 𝜃𝑟2 ln(𝑊𝐶𝑟)

2)
𝑟∈{𝐴,𝐵,𝐶}

 
(10) 

The spatial weighting matrix W defines the relative strength of impact between counties. 

Smith (n.d.) gives an overview on alternative specification for this matrix, as a wide range of 

options is used in the literature. Barabas et al. (2010) and Moreno & López-Bazo (2003) are 

examples for the commonly used specifications of distance decay functions and gravity models, 

respectively. The gravity model accounts for the relative importance of connections between 

agglomerations based on their respective size (Elhorst, 2018, p. 31): 

𝑤𝑖𝑗 =
𝑧𝑖
𝜌1 ∗ 𝑧𝑗

𝜌2

𝑑𝑖𝑗
𝜌3

 (11) 

While d is geometric distance, z can be any variable defining the size of a region. Based on the 

assumption that economic output proxies the relative importance of transport infrastructure 

(i.e., highway conditions in high GDP regions have a stronger effect on surrounding areas than 

those in low GDP areas), we choose the mean of GDP from 2008 to 2016 to determine the 

economic size of a region with 𝜌1 = 𝜌2 = 1. Following the standard literature, we row-normal-

ize W. To analyze the robustness of our results with respect to the specification of W, we esti-

mate the model for multiple values of 𝜌3 in the gravity model as well as for different distance 

decay parameters in a simple inverse distance specification and show the results in the appen-

dix. Our approach is supported by the findings that the results of the two specifications are close 

to each other and stable in the common range of decay parameters larger than 1. Considering it 

more meaningful, we choose the gravity model over the inverse distance matrix, but take the 

second one for robustness checks, each with a distance decay parameter of 𝜌3 = 2. 

To obtain a distribution of the elasticities of the non-linear variables, we again refer to 

Kapetanios (2008). These variables include the input factors for all specifications as well as the 
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infrastructure variables in the non-linear specifications (equations (8) and (10)). We combine 

this approach with the methodology applied by Loh (2008), which suggests using observation-

specific marks. In this approach, the spatial variables are calculated from the original sample 

and treated as marks corresponding to their spatial unit instead of to the bootstrapped spatial 

reference system. Thus, we use the spatial values calculated in the original dataset and avoid 

recalculating them for each bootstrap sample based on the sample-specific weighting matrix. It 

must be noted that, as García-Soidán, Menezes, & Rubiños (2014) point out, the spatial auto-

regressive parameter in the SDEM causes the assumption of independence to fail. In order to 

establish consistency of our bootstrap estimates, we adjust the spatial weight matrix W to each 

bootstrap sample by recalculating it for the randomly drawn set of counties. 

 

4.2. Endogeneity Control Model 

 

Severe endogeneity issues due to reverse causality are found in previous studies in the 

field, for example by Duffy-Deno & Eberts (1991) in a theoretical model and Kemmerling & 

Stephan (2008) in an empirical application. In our case, it also seems reasonable to assume that 

highway endowment does not just influence economic growth, but also depends on it: Political 

allocation processes might go either in the direction of investing more in flourishing regions, 

as there is high demand for infrastructure, or in the opposite direction of supporting left-behind 

areas to foster convergence. For the quality of infrastructure, the argument is that more eco-

nomic output increases traffic and thus wear and tear of infrastructure. To get an impression 

about these connections, we set up and estimate a control model. We start by defining the public 

capital accumulation equation and identifying the investment I from G and capital outflow D: 

𝐺𝑖𝑡 = 𝐺𝑖𝑡−1 + 𝐼𝑖𝑡 − 𝐷𝑖𝑡 => 𝐼𝑖𝑡 = 𝐺𝑖𝑡 − 𝐺𝑖𝑡−1 + 𝐷𝑖𝑡 (12) 

Incorporating the assumed relationships between investment, existing capital stock, condition, 

and output similarly to Mizutani & Tanaka (2010), we identify the following investment and 

quality equations: 

ln(𝐼𝑖𝑡) = 𝛿1ln(𝐺𝑖𝑡−1) + 𝛿2ln(𝐶𝑖𝑡−1) + 𝛿3ln(𝑌𝑖𝑡−1) + 𝛿4ln(𝑊𝑌𝑗𝑡−1) + 𝑣𝑖𝑡 (13) 

ln(𝐶𝑖𝑡) = ln(𝐶𝑖𝑡−1) + 𝜂1ln(𝐼𝑖𝑡) + 𝜂2(𝑌𝑖𝑡) + 𝜂3ln(𝑊𝑌𝑗𝑡) + 𝑢𝑖𝑡 (14) 

In these equations, we expect the following relationships: 𝛿2 is positive, as worse conditions 

lead to higher investment, while 𝛿1, 𝛿3, and 𝛿4 are either negative implying convergence or 

positive implying divergence strategies with respect to highway endowment (𝛿1), local GDP 

(𝛿3), and regional GDP (𝛿4). Similarly, we expect 𝜂1 to be negative, as higher investment im-

proves infrastructure quality, while 𝜂2 and 𝜂3 are expected to be positive, as more production 

output, leading to more traffic, decreases highway conditions. Inserting the first in the second 

equation and subtracting 𝐶𝑖𝑡−1, we can reformulate the model as  

𝛥ln(𝐶𝑖𝑡) = 𝜑1ln(𝐺𝑖𝑡−1) + 𝜑2ln(𝐶𝑖𝑡−1) + 𝜑3ln(𝑌𝑖𝑡−1) + 𝜑4ln(𝑊𝑌𝑗𝑡−1)

+ 𝜂2ln(𝑌𝑖𝑡) + 𝜂3ln(𝑊𝑌𝑗𝑡) + 𝑧𝑖𝑡 

with 𝜑1 = 𝛿1𝜂1,𝜑2 = 𝛿2𝜂1, 𝜑3 = 𝛿3𝜂1, 𝜑4 = 𝛿4𝜂1, and 𝑧𝑖𝑡 = 𝜂1𝑣𝑖𝑡 + 𝑢𝑖𝑡 

(15) 



D. Gaus, H. Link (2020) 

  13 

Mizutani & Tanaka (2010) and Kemmerling & Stephan (2008) develop similar models and 

estimate them using simultaneous equation modelling methodologies. We do not follow this 

approach due to data restrictions, especially with respect to investment. 

As county-level information on actual investment are not available, we derive values from 

the capital stock model via equation (12). These data depend strongly on our calculation proce-

dure for county-level capital values as described in the previous chapter and the assumption of 

a homogeneous outflow across counties and asset categories: We assume that a county’s share 

of the national capital stock within a category (e.g., bridges) is equivalent to the county’s share 

in the outflow of the category. This is reasonable for the capital stock model with a long-term 

averaged outflow function on the national level, but it can lead to serious distortions on the 

detailed level we estimate. This conclusion is also visible in the data: a mean outflow of 7.36 

bn Euros per year and a median of 11.52 bn Euros denote between 1.3% and 1.4% of the capital 

stock (standard error: 18.29), which is reasonable, but in 9.7% of the observations the calcula-

tion returns a negative investment with a minimum of -96.68 bn Euros. This underlines the need 

for reliable, accounting-based investment data for further research, especially in combination 

with more exhaustive methodologies such as simultaneous equation models. As such data are 

not available, we estimate the control model set up above to get an impression of the causal 

directions in our model, but we acknowledge that the estimation results can only point in a 

general direction rather than provide reliable information about specific effects.  

We estimate equations (13) and (15), while leaving out equation (14) due to the afore-

mentioned unreliability of the investment data. For equation (13), we compare a standard fixed-

effects panel estimator with individual- and time-fixed effects and the System-GMM estimator 

following Blundell & Bond (1998). Due to the lagged structure of this equation, we do not 

expect endogeneity caused by reverse causality, and thus expect both estimators to be con-

sistent. The results are presented in Table 2. 

The formulated expectations with respect to investment behavior are mostly confirmed: 

The left part of Table 2, showing the estimation of equation (13), highlights a public investment 

strategy clearly aiming for regional convergence. The coefficients of the public capital stock 

(𝛿1), the local GDP (𝛿3), and its spatially weighted counterpart (𝛿4) are negative in both mod-

els, which means that regions well-endowed with infrastructure as well as economically strong 

areas receive less highway investment, while regions lagging behind are supported through 

Table 2 

Estimation of Equations (13) (left) and (15) (right): Road Quality and Investment Model 

Symbol Variable FE-Panel System-GMM Symbol Variable System-GMM 

𝛿1 ln(𝐺𝑖𝑡−1) -9.897*** 

(0.689) 

-1.832 

(1.185) 

𝜑1 ln(𝐺𝑖𝑡−1) -0.011*** 

(0.004) 

𝛿2 ln(𝐶𝑖𝑡−1) 2.791*** 

(1.035) 

-4.209 

(3.225) 

𝜑2 ln(𝐶𝑖𝑡−1) -0.046*** 

(0.015) 

𝛿3 ln(𝑌𝑖𝑡−1) -3.332*** 

(1.242) 

-1.487 

(1.285) 

𝜑3 ln(𝑌𝑖𝑡−1) 0.026 

(0.022) 

𝛿4 ln(𝑊𝑌𝑗𝑡−1) -8.838*** 

(2.878) 

-3.147** 

(1.560) 

𝜑4 ln(𝑊𝑌𝑗𝑡−1) -0.019 

(0.022) 

    𝜂2 ln(𝑌𝑖𝑡) 0.047* 

(0.026) 

    𝜂3 ln(𝑊𝑌𝑗𝑡) -0.049* 

(0.026) 

Notes: *, **, & *** relate to significance on the 90, 95, and 99%-levels, respectively 
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higher investment. However, it must be noted that the local effects are not found to be signifcant 

using the GMM estimator and that, even though the sign is consistently negative, the estimated 

values differ severely between the two estimation procedures. Furthermore, the effect of high-

way quality (𝛿2) is estimated significantly positive with 2.79 using the panel estimator, thus 

confirming the expectation, but the GMM coefficient for this variable is insignificantly negative 

with a rather high value of -4.21. These data show that the assumption of two-way causality 

between the public capital stock and GDP is indeed reasonable, and that adequate measures 

against a potential bias should be taken in the estimation procedure. As we cannot guarantee 

the reliability of the investment data and as the results between the two estimators differ, how-

ever, no conclusions concerning the size of such dependencies can be drawn. 

The estimation of equation (15), which is given in the right part of Table 2, provides 

insights into the development and the determinants of highway quality. Due to the composite 

nature of the equation and its error term 𝑧𝑖𝑡 = 𝜂1𝑣𝑖𝑡 + 𝑢𝑖𝑡 as well as due to the expected two- 

way causal relationships, the assumption of exogeneity does not hold in equation (15). As the 

panel estimator might be biased in this situation, we use only the System-GMM procedure. 

Starting with the contemporaneous effect of local and regional production, we find 𝜂2 and 𝜂3 

to be significant on the 90% level, providing some evidence that GDP indeed affects highway 

quality. While the local effect (𝜂2) is positive, meaning that higher GDP in a county corresponds 

to worse roads in the same county, the negative spatial effect (𝜂3) states that a GDP increase in 

surrounding regions involves better highway quality. With 𝜑3 and 𝜑4, the same effects are 

found for the local and spatial GDP lagged by one year, even though these coefficients are not 

significant at a 90% level and the model interprets them as indirect effects through the invest-

ment equation. This provides evidence that the assumption of two-way causality between GDP 

and road quality is reasonable and must be taken into account. Furthermore, the GMM estima-

tion returns strongly significant negative coefficients for the lagged public capital and the 

lagged highway quality. Due to the equation structure and their multiplicative construction, we 

cannot interpret these coefficients without further assumptions. Taking the findings from equa-

tion (13) into account, we do not find support for our assumption of 𝜂1 being negative, but the 

results cannot provide evidence for the opposite case either, leaving the effect of investment on 

road quality unclear. 

This model cannot provide precise descriptions of the interdependence between GDP, 

highway quality, and investment due to the uncertain reliability of the data, but the results show 

that the assumption of two-way causality is reasonable. A Wu-Hausman test (Greene, 2012, pp. 

234ff) provides evidence for inconsistency of the OLS estimation of specifications (7), (9), and 

(10) at a 99% confidence level, supporting the use of an estimator accounting for endogeneity. 

The standard approach to avoid such problems is the use of instrumental variables (IVs). As 

strong instruments for panel data sets are hard to find, even more so for several variables, we 

exploit the spatial characteristics of our model. Instead of additional exogenous instruments, 

we use spatial, temporal, and spatiotemporal lags of the respective variables as instruments. As 

Lee & Yu (2014) and Kelejian & Robinson (1997) point out, the simultaneity problem can be 

addressed in this setting using a general method of moments (GMM) IV estimator. The con-

sistency of such an estimator using spatial lags of dependent variables as instruments is proven 

by Kelejian & Robinson (1993, p. 302). We use the R package SPLM to implement the proce-
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dure and estimate a model that accounts for the endogeneity. F-tests for weak instruments con-

firm that all our instruments are meaningful for all specifications in (7) to (10) with p<0.0001, 

so the results are less prone to simultaneity bias. 

 

5. Results 

 

We estimate the production function specified in the previous chapter using several meth-

odologies and specifications to check the robustness of our findings. These alternatives include 

the FGLS and the GMM estimation, each used to calculate a linear and a non-linear version of 

the models with an aggregate quality measure and with specific variables for BAB, BS, and 

bridge quality. Following the previously specified forms, we estimate equation (2) using spec-

ifications (7), (8), (9), and (10). The results of the specifications with an aggregated quality 

variable (equations (7) and (8)) are shown in Table 3, the estimation outcomes with disaggre-

gated quality data ((9) and (10)) are shown in Table 4. In both cases, the tables show elasticities, 

i.e. the derivation of ln(𝑌) with respect to the variable under consideration. For variables with 

a non-linear effect, the elasticity is calculated manually as the derivation at the sample mean of 

the variable and the standard errors are bootstrapped, as explained in the methodology section. 

Detailed full estimation results are presented in Table 5 and Table 6 in the appendix. Several 

aspects stick out from the data in these tables, including similar outcomes for linear and non-

linear specifications, support for our hypotheses especially in the model with a single condition 

measure, and differences between the FGLS and GMM estimation.  

 

5.1. Model with Aggregated Road Quality 

 

Starting with the model including an aggregate quality measure, we observe support for 

all our hypotheses in all specifications. Table 3 shows these results for the FGLS and GMM 

estimation of the linear (7) and non-linear (8) forms. 

As the FGLS estimates exhibit increasing returns to scale, we also develop a restricted 

version of equation (1) imposing constant returns to scale through 𝛽𝐿 + 𝛽𝐾 = 1. The detailed 

derivation of this restriction is contained in the appendix: due to the non-linearity of the Trans-

log function, the restriction is imposed on the elasticities, and thus affects all input-related co-

efficients. The elasticities estimated for the restricted model using the non-linear specification 

(7) are shown in the third column of Table 3. We attribute the increasing returns to scale in the 

unrestricted model to omitted control variables even though we do not find significant effects 

of these variables when we account for them in our model: Evans & Karras (1994) find a sig-

nificant impact of the unemployment rate, while Barabas et al. (2010) include the age structure. 

Through the restriction of our model, 𝛽𝐿 decreases in all specifications to values around 0.8. 

While the loss in model fit is negligible and the infrastructure-related estimates as well as the 

returns to capital and human capital input stay unaffected by the restriction, we see significant 

changes in the control variables. We thus conclude that indeed our findings are driven by labor- 

related omitted variables. 

The estimated effects of the input variables in the GMM, the restricted FGLS, and the 

unrestricted FGLS besides 𝛽𝐿 are in the common range for production function results (cf. Melo 

et al., 2013): the labor elasticity is found to be 0.78-0.82, the elasticity we find for capital input 
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Table 3 
Estimated Elasticities at Sample Means for Production Function with aggregated Road Quality 

(Full Estimation Results in Table 5 in the Appendix) 

 FGLS GMM 

Symbol Variable Linear (7) Nonlinear (8) Restricted Linear (7) Nonlinear (8) 

𝛼0 Intercept 16.68*** 

(2.15) 

17.32*** 

(2.47) 

16.14*** 

(2.14) 

  

𝛽𝐿 ln(L) 0.99*** 

(0.05) 

0.99*** 

(0.05) 

0.78*** 

(0.00) 

0.82*** 

(0.08) 

0.82*** 

(0.08) 

𝛽𝐾 ln(K) 0.23*** 

(0.02) 

0.23*** 

(0.02) 

0.22*** 

(0.00) 

0.24*** 

(0.03) 

0.24*** 

(0.03) 

𝛽𝐻 ln(H) 0.37*** 

(0.02) 

0.37*** 

(0.02) 

0.39*** 

(0.00) 

0.27*** 

(0.04) 

0.27*** 

(0.04) 

𝛾𝐺 ln(G) 0.01 

(0.02) 

0.03 

(0.02) 

0.01 

(0.02) 

0.07*** 

(0.02) 

0.10** 

(0.03) 

𝛾𝐶 ln(C) -0.04* 

(0.02) 

-0.04 

(0.03) 

-0.04** 

(0.02) 

-0.06*** 

(0.02) 

-0.06 

(0.04) 

𝜃𝐺 ln(WG) 0.26*** 

(0.05) 

0.25*** 

(0.06) 

0.26*** 

(0.05) 

0.26*** 

(0.04) 

0.27*** 

(0.06) 

𝜃𝐶 ln(WC) -0.14 

(0.11) 

-0.13** 

(0.07) 

-0.12 

(0.11) 

-0.08* 

(0.05) 

-0.07 

(0.08) 

𝜆𝑈 DU 0.68** 

(0.34) 

0.68** 

(0.34) 

0.39 

(0.29) 

  

𝜆𝐸 DE -0.45 

(0.45) 

-0.42 

(0.45) 

-0.85** 

(0.38) 

  

𝜆𝑆 DS -0.03** 

(0.02) 

-0.03** 

(0.02) 

-0.04** 

(0.02) 

-0.06*** 

(0.00) 

-0.06*** 

(0.00) 

𝜆𝑃𝐷 ln(PD) -0.59*** 

(0.20) 

-0.58*** 

(0.20) 

-0.47** 

(0.19) 

-0.35*** 

(0.06) 

-0.33 

(0.06) 

𝜌 Spatial AR    0.39 0.39 

𝑅2 R-squared 0.9984 0.9984 0.9893   

Notes: Standard Errors in Brackets; Bootstrapped Standard Errors in Italics; 

*, **, & *** relate to significance on the 90, 95, and 99%-Level, respectively 

(𝛽𝐾) ranges from 0.22 and 0.24, and human capital effects are between 0.27 and 0.37. These 

results and their stability across different specifications support our production function ap-

proach. In all our estimations we find higher GDP in urban counties and lower output in the 

former East German states as well as during the crisis, which is expected, whereas a significant 

negative impact of population density throughout all specifications is surprising. For the GMM 

results, no impact of the county-specific, time-constant variables can be estimated, as we also 

use county fixed effects (these can be obtained from the authors upon request). 

With respect to the transportation-related variables, the estimation results in Table 3 pro-

vide evidence for all our hypotheses. Firstly, we find a positive impact of the quantity of high-

ways, connecting better endowment in a county with a higher local output. This effect is posi-

tively significant between 0.07 and 0.10 in the GMM models accounting for potential endoge-

neity, thus in line with existing research, and insignificant between 0.01 and 0.03 in the FGLS 

case. We attribute the lower values in the FGLS estimation to reverse causality issues and ex-

pect the GMM results to be more reliable, as this estimator tackles the endogeneity issue. 

Concerning spatial effects, we find strong spillover impacts between 0.25 and 0.27, mean-

ing a 1% increase in the highway capital stock in all counties but one causes an increase in GDP 

of 0.25% in the unchanged county. This is a relatively high effect compared to existing litera-

ture, which we attribute to our specification of W without a cut-off distance and with a moderate 
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decay parameter. Our comparison over a range of decay parameters, displayed in the appendix, 

shows that a stronger decay decreases the effect of the spatial variables and increases the impact 

of the local variables. Thus, a stronger spatial decay shifts the estimated impact from spatial to 

local variables, effectively lowering the spillovers. 

Furthermore, Table 3 notes the impact of infrastructure quality on local and supra-re-

gional economic development, supporting our second hypothesis. The local effect of a change 

in highway quality is estimated to be -0.04 in the FGLS and -0.06 in the GMM model, with 

significance at levels between 90% and 99% in the linear specifications and insignificance in 

the nonlinear model due to slightly higher standard errors. As lower grades refer to better con-

dition, these results highlight that worse highway quality is correlated with a decrease in local 

economic output and that the effect is, depending on the specification, almost as strong as 

(GMM) or even stronger than (FGLS) the impact of the capital stock quantity. 

On a supra-regional level, we find spatial spillovers in all specifications, ranging from -

0.07 to -0.14. Compared to the impact of highway quantity, the quality has a lower spatial effect, 

but it is still found to be significant at the 90% or even 95% level in several specifications.  

These findings provide clear support for our hypotheses and point out the importance of 

infrastructure quality on regional GDP, both through their values and through their stability 

across specifications and estimation procedures. Finally, Table 3 shows that the non-linear ex-

pansion of the transport infrastructure terms does not add to the explanatory power of the model. 

The detailed estimates in Table 5 in the appendix support this, as the only significant non-linear 

coefficient is the estimate for ln(𝐺)2 in the GMM estimation.  

 

5.2. Model with Disaggregated Road Quality 

 

The estimation results of specifications (9) and (10), exploiting the details of our dataset through 

separate measures for the quality of BAB, BS, and bridges, are presented in Table 4. With 

respect to the variables of our general production function as specified in equation (2), a con-

siderable share of the values is identical to the numbers in the simpler model presented in Table 

3, with no severe differences found. Some shifts in the control variables are observable, while 

the returns on all three input variables stay constant. As increasing returns to scale in the FGLS 

estimation remain, we add a restricted version of specification (9) with 𝛽𝐿 + 𝛽𝐾 = 1 again, 

which is presented in the third column of Table 4. The conclusions from this estimation are the 

same as in the simpler model, so we refer to the discussion above. In general, we find the pro-

duction function to be highly robust throughout the various specifications we estimate, which 

supports the methodology. Again, the non-linear expansion leads to little improvement of the 

model fit, even though Table 6 in the appendix points out that several quadratic terms have a 

significant impact. 

The effects of the highway quantity estimated in the models with disaggregated quality 

measures also remain very close to the values of the respective base models (i.e., with only one 

quality variable as presented in Table 3), even though a decrease from 0.26 to 0.22 is observed 

for the spatial effect in the FGLS estimations. Thus, the more detailed models provide further 

evidence for the positive effects of public capital, as formulated in our first hypothesis and in 

line with existing research. Additionally, the results point out the importance of spatial spillo-

vers, as supra-regional effects of the capital stock are found to be significant at a 99% confi-

dence level in all specifications presented in Table 4 with values between 0.21 and 0.26. 
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Table 4 
Estimated Elasticities at Sample Means for Production Function with disaggregated Road Quality 

(Full Estimation Results in Table 6 in the Appendix) 

  FGLS GMM 

Estimator Variable Linear (9) Nonlinear (10) Restricted Linear (9) Nonlinear (10) 

𝛼0 Intercept 15.76*** 

(1.90) 

15.58*** 

(2.11) 

15.21*** 

(1.89) 

  

𝛽𝐿 ln(L) 1.01*** 

(0.05) 

1.01*** 

(0.05) 

0.80*** 

(0.00) 

0.85*** 

(0.08) 

0.85*** 

(0.08) 

𝛽𝐾 ln(K) 0.22*** 

(0.02) 

0.22*** 

(0.02) 

0.20*** 

(0.00) 

0.23*** 

(0.03) 

0.22*** 

(0.03) 

𝛽𝐻 ln(H) 0.36*** 

(0.02) 

0.36*** 

(0.02) 

0.39*** 

(0.00) 

0.27*** 

(0.04) 

0.27*** 

(0.04) 

𝛾𝐺 ln(G) 0.02 

(0.02) 

0.03 

(0.02) 

0.01 

(0.02) 

0.06*** 

(0.02) 

0.10** 

(0.03) 

𝛾𝐶𝐴 ln(CA) 0.01 

(0.01) 

0.01 

(0.02) 

0.01 

(0.01) 

0.01 

(0.01) 

0.01 

(0.02) 

𝛾𝐶𝐵 ln(CB) -0.02 

(0.02) 

-0.01 

(0.03) 

-0.03 

(0.02) 

-0.06*** 

(0.02) 

-0.05 

(0.03) 

𝛾𝐶𝐶 ln(CC) 0.03 

(0.02) 

0.03 

(0.03) 

0.03 

(0.02) 

0.00 

(0.02) 

0.02 

(0.06) 

𝜃𝐿 ln(WG) 0.22*** 

(0.04) 

0.21*** 

(0.05) 

0.22*** 

(0.05) 

0.25*** 

(0.03) 

0.26*** 

(0.06) 

𝜃𝐶𝐴 ln(WCA) 0.08 

(0.06) 

0.08 

(0.06) 

0.08 

(0.06) 

0.10*** 

(0.03) 

0.10 

(0.07) 

𝜃𝐶𝐵 ln(WCB) -0.27*** 

(0.05) 

-0.27*** 

(0.07) 

-0.26*** 

(0.05) 

-0.18*** 

(0.04) 

-0.17** 

(0.08) 

𝜃𝐶 ln(WCC) 0.31** 

(0.13) 

0.31*** 

(0.08) 

0.30** 

(0.14) 

0.39*** 

(0.07) 

0.36*** 

(0.11) 

𝜆𝑈 DU 0.78** 

(0.32) 

0.78** 

(0.32) 

0.47* 

(0.28) 

  

𝜆𝐸 DE -0.52 

(0.44) 

-0.50 

(0.44) 

-0.93** 

(0.37) 

  

𝜆𝑆 DS -0.04** 

(0.01) 

-0.04** 

(0.14) 

-0.04** 

(0.02) 

-0.06*** 

(0.00) 

-0.06*** 

(0.00) 

𝜆𝑃𝐷 ln(PD) -0.63*** 

(0.19) 

-0.62*** 

(0.19) 

-0.50*** 

(0.19) 

-0.37*** 

(0.06) 

-0.34*** 

(0.06) 

𝜌 Spatial AR    0.37 0.38 

𝑅2 R-squared 0.9984 0.9984 0.9895   

Notes: Standard Errors in Brackets; Bootstrapped Standard Errors in Italics; 

*, **, & *** relate to significance on the 90, 95, and 99%-Level, respectively 

As Table 4 also shows, the estimated effects of all six quality variables, which are the 

local and the spatial values of the BAB, BS, and bridge quality, respectively, are highly con-

sistent throughout all specifications. In addition, the sign of the spatial impact corresponds to 

the sign of the local effect in all three quality variables. 

For the quality of the BAB, a local effect of 0.01 is found in all specifications, and a 

spatial impact of 0.08 for all FGLS- and 0.10 for the GMM-estimations is identified. On the 

local level, the effect is insignificant at meaningful confidence levels with standard errors larger 

than the estimated values, and only the linear GMM-estimation procedure finds a significant 

effect of the spatial variable. All other specifications support insignificance of the spatial effect 

of BAB quality. Thus, we conclude that the quality of the BAB network is of minor importance 

for regional economic developments, which is understandable given its role: As a road network 

connecting main agglomerations, a large part of the German economy, especially small and 
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local businesses, does not depend on or might not even have reasonable access to this system. 

We therefore expect the much denser BS network, linking rural areas, villages, cities, and me-

tropolises throughout the country with each other, to have a more meaningful effect, and indeed 

this is confirmed by our results. 

Within counties, a BS quality decrease of 1% corresponds to a GDP slowdown of 0.01% 

to 0.03% according to the FGLS estimator and 0.05% to 0.06% in the more consistent GMM 

estimation, even though significance at common levels is found only in the GMM values of the 

linear model. This provides some support for our second hypothesis and the results of our base 

model (Table 3). Besides this local effect, the BS network is of strong importance across county 

borders, as the estimated spatial quality effect shows: In four of our five specifications, signif-

icance at the 99% confidence level is found (95% in the fifth estimation) for values of -0.26 to 

-0.27 in the FGLS- and -0.17 to -0.18 in the GMM-estimated models. These values not only 

support our quality-related hypothesis, but they also point out the contribution of our GMM-

estimation procedure to the correction of an endogeneity bias of the FGLS-estimates. We con-

clude that as the BS system is of major importance for businesses operating locally and on a 

more regional basis, it has the potential to considerably influence economic growth. 

The third quality variable, describing the condition of bridges, has an unclear effect on 

GDP. We estimate insignificant effects between 0.00 and 0.03 for the local impact, but we 

obtain estimates of 0.30-0.31 (FGLS) and 0.36-0.39 (GMM) for the spillovers, significant at at 

least the 95% confidence level. While the local values allow for the conclusion that bridge 

quality has very little effect on economic developments, if any, the spatial results strongly reject 

our quality-related hypothesis for the case of highway constructions. A possible explanation 

might be that the data on the quality of bridges are differently measured and structured than the 

surface condition data from the ZEB, or that the hypothesis is just not supported by the empir-

ical data. The result suggests that the surface quality of highways affects businesses through 

other channels than the condition of bridges, but further research is necessary to identify the 

underlying phenomena. 

Before drawing conclusions and discussing our results from a policy-oriented perspec-

tive, we want to outline the robustness of our estimation results across the different specifica-

tions. For all variables in all models, we see that the differences between the linear and the 

nonlinear case are extremely small. While the linear model has the advantage of directly ob-

servable standard errors (and thus significance levels), we expect the nonlinear case to be 

slightly more precise. We see, however, that the non-linear effects are hardly significant, and 

that the linear and non-linear models fit the data equally well. We conclude that the non-linear 

terms increase the complexity of the model while adding little to its explanatory power. 

 

5.3. Robustness Checks 

 

 To confirm our findings, we also estimate a Cobb-Douglas version of the model (Cobb 

& Douglas, 1928), i.e. we change equation (1) into 

ln(𝑌) = ln(𝐴) + 𝛽1ln(𝐾) + 𝛽2ln(𝐿) + 𝛽3ln(𝐻) (16) 

Furthermore, we estimate specifications with interaction effects between highway capital and 

quality, between inputs and the transport-related variables, and including both kinds of effects. 

In all cases, changes compared to the results presented here are negligible. As mentioned in the  
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Figure 1 –Robustness Check Models: Elasticities for GMM of Specification (7) with 95% CIs 

previous chapter, we also use different specifications of the spatial weighting matrix W and the 

spatial model specification, using both SLX and SDEM estimators. In Tables 3 and 4, we pre-

sent the SLX case for the FGLS and a SDEM for the GMM estimator, following respective 

tests as explained in the methodology section. In all cases, we find very similar results to those 

presented here, which points out the robustness of our model. 

Another aspect we pay attention to in the robustness checks is the slow development over 

time of many of our variables. While we account for autocorrelation in the estimation, we com-

pare the obtained results with two robustness check models: In the first one, we restrict our 

sample to three specific years, and in the second we introduce lags. Following the structure of 

the ZEB, we reduce the sample to include only data for the years 2007, 2011, and 2015. These 

are the years we attribute the three ZEB measurement cycles to, which means that any changes 

in the ZEB between these years are linearly interpolated. In the second robustness check, we 

replace the traffic variables with their own lags for up to three years. Figure 1 compares the 

estimated elasticities for the GMM estimation of specification (7) using the complete dataset, 

the reduced dataset for only 2007, 2011, and 2015, and the infrastructure variables lagged by 

two years. It shows that the differences in the results are, on an overall scale, small and that the 

direction of all coefficients stays constant throughout the estimations. Neither the deletion of 

70% of the information in the reduced dataset nor the inclusion of lags leads to strong changes 

in the results. 

The coefficient of the spatially weighted quality variable in the lagged model differs sig-

nificantly from the other two specifications, suggesting an unreasonably strong effect that is 

also found in the FGLS-estimated control model. However, as the impact remains negative, we 

see this as driven by data characteristics specific to the first two years. Further comparisons 

with a model leaving out the first two years provide results similar to the base model and do not 

replicate the strong impact of the spatial quality variable. Overall, the figures point out that our 
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methodology is robust with respect to the signs and, with few exceptions, size of the estimated 

coefficients and that the same conclusions can be drawn throughout all robustness checks. 

We furthermore estimate our model using several subsamples restricting years, states, or 

both, again finding that the estimation results change little. The signs and the general size of 

the coefficients stays constant throughout the specifications, providing further support for the 

robustness of our findings. The results of all robustness checks are available upon request from 

the authors. 

 

6. Conclusion 

 

In this paper, we provide evidence for the importance of endowment with, and quality of, 

transportation infrastructure for economic growth within both the region of investment and its 

surrounding area. The results of our estimations suggest that counties endowed with, and sur-

rounded by, more highways tend to be significantly more productive than less connected re-

gions. Especially the condition of the BS system has a similar, yet not as strong effect: better 

roads improve the economic prospects of regions. We conclude that public investment into 

transport infrastructure, if adjusted to demand and maintained in good shape, can foster growth. 

On the other hand, insufficient and neglected infrastructure can limit positive developments. 

Overall, the results strongly support our hypotheses. All specifications fulfil the expecta-

tion with respect to the impact of highway capital, finding support for the hypothesis that in-

vestment spurs economic growth. This is in line with findings of existing research for various 

settings. A supra-regional impact of the public capital stock is found in the literature, for which 

we provide further evidence. 

Concerning the quality effects of infrastructure, our analysis opens a new strand of re-

search. The data we use, based on the ZEB and adjusted for this application, has not been used 

in economic contexts before. Public discussions about the state of roads in Germany need sci-

entific research and our analyses show that quality has an effect on regional development. Look-

ing at an aggregate measure of highway surface quality, we find worsening infrastructure to 

correlate with economic slowdowns, with a 1% decrease in conditions corresponding to a 

0.04% to 0.06% decrease in local GDP. This effect is as strong as the impact of highway capital, 

making clear that a one-sided discussion about quantity leaves out a crucial element of the 

overall picture. Making full use of the detailed dataset, we differentiate between BAB, BS, and 

bridge conditions and draw more detailed conclusions: the effect we observe for the condition 

of the total highway network is driven by the BS system. The analysis shows that the BS net-

work in Germany has the potential to become a bottleneck for regional economic growth, if 

maintained insufficiently, but also that high road quality can be a decisive factor in favor of 

regions. This makes intuitive sense, as the BS network connects locations directly on local, 

regional, and national levels and is essential for businesses on a daily basis, whereas the BAB 

network is used mostly for longer-distance transport. Finding the expected effect for the BS 

network, but not for the BAB, we conclude with respect to the second hypothesis that the quality 

of transport infrastructure can have an impact on economic developments, but it varies between 

different types of networks. The conclusion holds on both a local level and for the spatially 

weighted variables, with strong spillovers of the total quality and the BS quality found in the 
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estimation of the single- and multiple-quality measure specifications, respectively. Further-

more, we find that higher quality of bridges correlates with lower production output especially 

in the spatial variable, which needs further research to be understood and explained.  

Another conclusion we draw is that the findings depend on the specific definition of the 

infrastructure under consideration. It is therefore crucial to keep aspects like data availability 

on different levels of aggregation and detailedness of the estimated models in mind and check 

the robustness of results. Accounting for endogeneity through a GMM estimator in comparison 

to an FGLS procedure, we see some indications for a weak bias in the FGLS results due to 

reverse causality. In addition to a GMM estimation, several methodologies can be used to ad-

dress this issue: examples are given by, among others, Mizutani & Tanaka (2010), using sim-

ultaneous equations to incorporate the autoregressive and endogenous nature of the data into 

the estimation, and Carlsson et al. (2013), using a feedback loop. Due to data availability and 

reliability reasons, we leave this for future research. 

In order to avoid insufficient highway infrastructure limiting positive economic develop-

ment in Germany, two important lessons can be learned from our findings: On the one hand, 

expanding the network can foster positive developments, especially in and around fast-growing 

regions, with highway access being an important tool to address regional divergence. On the 

other hand, it is necessary to adjust the maintenance funding of transport infrastructure in Ger-

many to rising levels of traffic before accessibility becomes a limiting factor. Increasing produc-

tivity leads to more and heavier traffic. Thus, greater investment is important to slow the de-

crease in bridge conditions, stabilize highway quality, and support further economic growth. 
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Appendix 

 

Appendix A: Derivation of Restricted Version of Equation (1) 

 

Recall Equation (1): 

ln(𝑌) = ln(𝐴) + 𝛽1 ln(𝐾) + 𝛽2 ln(𝐿) + 𝛽3 ln(𝐻) +
1

2
𝛽4 ln(K)

2 +
1

2
𝛽5 ln(𝐿)

2

+
1

2
𝛽6 ln(𝐻)

2 + 𝛽7 ln(𝐾) ln(𝐿) + 𝛽8 ln(𝐾) ln(𝐻) + 𝛽9 ln(𝐿) ln(𝐻) 

(1) 

The restriction 𝛽𝐾 + 𝛽𝐿 = 1 in full specification is expressed as follows: 

𝜕 ln(𝑌)

𝜕 ln(𝐾)
+
𝜕 ln(𝑌)

𝜕 ln(𝐿)
= 1 (17) 

The first-order derivatives of Equation (1) w.r.t. ln(𝐾) and ln(𝐿) are: 

𝜕 ln(𝑌)

𝜕 ln(𝐾)
= 𝛽1 + 𝛽4 ln(𝐾) + 𝛽7 ln(𝐿) + 𝛽8 ln(𝐻) (18) 

𝜕 ln(𝑌)

𝜕 ln(𝐿)
= 𝛽2 + 𝛽5 ln(𝐿) + 𝛽7 ln(𝐾) + 𝛽9 ln(𝐻) (19) 

We denote the sample mean of ln(𝑋) as ln(𝑋)̅̅ ̅̅ ̅̅ ̅ and evaluate the derivatives at the sample mean. 

Imposing the restriction from Equation (17) and rearranging, we reformulate as follows:  

𝛽1 + 𝛽2 + (𝛽4 + 𝛽7) ∗ ln(𝐾)̅̅ ̅̅ ̅̅ ̅ + (𝛽5 + 𝛽7) ∗ ln(𝐿)̅̅ ̅̅ ̅̅ ̅ + (𝛽8 + 𝛽9) ∗ ln(𝐻)̅̅ ̅̅ ̅̅ ̅ = 1 (20) 

Further rearranging terms, we derive the following expression: 

𝛽2 = 1 − 𝛽1 − (𝛽4 + 𝛽7) ∗ ln(𝐾)̅̅ ̅̅ ̅̅ ̅ − (𝛽5 + 𝛽7) ∗ ln(𝐿)̅̅ ̅̅ ̅̅ ̅ − (𝛽8 + 𝛽9) ∗ ln(𝐻)̅̅ ̅̅ ̅̅ ̅ (21) 

Replacing 𝛽2 in Equation (1) with this expression and rearranging to isolate the estimation co-

efficients, we finally obtain the restricted model specification to be estimated: 

ln(𝑌) − ln(𝐿) = ln(𝐴) + 𝛽1(ln(𝐾) − ln(𝐿)) + 𝛽3 ln(𝐻)

+ 𝛽4 (
1

2
ln(K)2 − ln(𝐾)̅̅ ̅̅ ̅̅ ̅ ln(𝐿)) + 𝛽5 (

1

2
ln(𝐿)2 − ln(𝐿)̅̅ ̅̅ ̅̅ ̅ ln(𝐿))

+
1

2
𝛽6 ln(𝐻)

2 + 𝛽7(ln(𝐾) ln(𝐿) − ln(𝐾)̅̅ ̅̅ ̅̅ ̅ ln(𝐿) − ln(𝐿)̅̅ ̅̅ ̅̅ ̅ ln(𝐿))

+ 𝛽8(ln(𝐾) ln(𝐻) − ln(𝐻)̅̅ ̅̅ ̅̅ ̅ ln(𝐿)) + 𝛽9(ln(𝐿) ln(𝐻) − ln(𝐻)̅̅ ̅̅ ̅̅ ̅ ln(𝐿)) 

(22) 
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Appendix B: Spatial Decay Analysis 

 

The following graphs provide the estimated elasticities based on the specification given in 

Equation (7), i.e. with an aggregate measure for road quality and in the linear specification, 

using the FGLS estimation procedure. The solid lines refer to the spatial weighting matrix based 

on the gravity model given in Equation (11); the dotted lines show the values of an inverse 

distance weighting scheme. More details are given in section 4.1. 

 
Figure 2 – Spatial Decay Analysis: Production Inputs (Solid: Gravity Model; Dashed: Inverse Distance) 

 

 
Figure 3 – Spatial Decay Analysis: Control Variables (Solid: Gravity Model; Dashed: Inverse Distance) 
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Figure 4 – Spatial Decay Analysis: Local Infrastructure Variables 

(Solid: Gravity Model; Dashed: Inverse Distance) 

 

 

 
Figure 5 – Spatial Decay Analysis: Spatial Infrastructure Variables 

(Solid: Gravity Model; Dashed: Inverse Distance) 
 

 

 

-0.025

0.000

0.025

0.050

0 1 2 3

3

E
la

st
ic

it
y

ln(G)

ln(C)

-12

-8

-4

0

4

0 1 2 3

3

E
la

st
ic

it
y

ln(WG)

ln(WC)



D. Gaus, H. Link (2020) 

  30 

Appendix C: Full Estimation Results 

 

Table 5 

Estimation of Production Function with aggregate Road Quality 

 FGLS GMM 

Symbol Variable Linear (7) Nonlinear (8) Restricted Linear (7) Nonlinear (8) 

𝛼0 ln(𝐴0) 16.68*** 

(2.15) 

17.32*** 

(2.47) 

16.14*** 

(2.14) 

  

𝛽𝐿1 ln(𝐿) -0.80** 

(0.33) 

-0.82** 

(0.33) 

-0.74 0.44 

(0.31) 

0.42 

(0.31) 

𝛽𝐾1 ln(𝐾) -1.12*** 

(0.15) 

-1.10*** 

(0.15) 

-1.01*** 

(0.17) 

-1.26*** 

(0.11) 

-1.20*** 

(0.11) 

𝛽𝐻1 ln(𝐻) 1.84*** 

(0.23) 

1.89*** 

(0.23) 

1.67*** 

(0.24) 

1.78*** 

(0.15) 

1.85*** 

(0.15) 

𝛽𝐿𝐿 ln(𝐿) ln(𝐿) 0.18*** 

(0.04) 

0.19*** 

(0.04) 

0.17*** 

(0.04) 

0.07** 

(0.03) 

0.07** 

(0.03) 

𝛽𝐾𝐾 ln(𝐾) ln(𝐾) 0.07*** 

(0.01) 

0.07*** 

(0.01) 

0.06*** 

(0.01) 

0.07*** 

(0.01) 

0.07*** 

(0.01) 

𝛽𝐻𝐻 ln(𝐻) ln(𝐻) 0.10*** 

(0.02) 

0.11*** 

(0.02) 

0.10*** 

(0.02) 

0.07*** 

(0.01) 

0.07*** 

(0.01) 

𝛽𝐿𝐾 ln(𝐿) ln(𝐾) -0.02 

(0.03) 

-0.02 

(0.03) 

-0.03 

(0.03) 

-0.05** 

(0.02) 

-0.05** 

(0.02) 

𝛽𝐿𝐻 ln(𝐿) ln(𝐻) -0.13*** 

(0.03) 

-0.14*** 

(0.03) 

-0.12*** 

(0.03) 

-0.09*** 

(0.02) 

-0.09*** 

(0.02) 

𝛽𝐾𝐻 ln(𝐾) ln(𝐻) -0.03* 

(0.02) 

-0.04** 

(0.02) 

-0.02 

(0.02) 

-0.08*** 

(0.01) 

-0.08*** 

(0.01) 

𝛾1 ln(𝐺) 0.01 

(0.02) 

-0.17*** 

(0.06) 

0.01 

(0.02) 

0.07*** 

(0.02) 

-0.31*** 

(0.11) 

𝛾2 ln(𝐶) -0.04* 

(0.02) 

-0.17 

(0.30) 

-0.04** 

(0.02) 

-0.06*** 

(0.02) 

-0.10 

(0.22) 

𝛾3 ln(𝐺)2  0.02 

(0.01) 

  0.03*** 

(0.01) 

𝛾4 ln(𝐶)2  0.06 

(0.14) 

  0.02 

(0.11) 

𝜃1 ln(𝑊𝐺) 0.26*** 

(0.05) 

0.10 

(0.51) 

0.26*** 

(0.05) 

0.25*** 

(0.04) 

0.26 

(0.44) 

𝜃2 ln(𝑊𝐶) -0.14 

(0.11) 

0.61 

(1.17) 

-0.12 

(0.11) 

-0.08* 

(0.05) 

0.84 

(0.94) 

𝜃3 ln(𝑊𝐺)2  0.01 

(0.04) 

  0.00 

(0.03) 

𝜃4 ln(𝑊𝐶)2  -0.35 

(0.53) 

  -0.42 

(0.44) 

𝜆𝑈 DU 0.68** 

(0.34) 

0.68** 

(0.34) 

0.39 

(0.29) 

  

𝜆𝐸 DE -0.45 

(0.45) 

-0.42 

(0.45) 

-0.85** 

(0.38) 

  

𝜆𝑆 DS -0.03** 

(0.02) 

-0.03** 

(0.02) 

-0.04** 

(0.02) 

-0.06*** 

(0.00) 

-0.06*** 

(0.00) 

𝜆𝑃𝐷 ln(𝑃𝐷) -0.59*** 

(0.20) 

-0.58*** 

(0.20) 

-0.47** 

(0.19) 

-0.35*** 

(0.06) 

-0.33 

(0.06) 

𝜌 Spatial AR    0.39 0.39 

Notes: Standard Errors in Brackets; 

*, **, & *** relate to significance on the 90, 95, and 99%-Level, respectively 
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Table 6 
Estimation of Production Function with disaggregated Road Quality 

  FGLS GMM 

Estimator Variable Linear (9) Nonlinear (10) Restricted Linear (9) Nonlinear (10) 

𝛼0 Intercept 15.76*** 

(1.90) 

15.58*** 

(2.11) 

15.21*** 

(1.89) 

  

𝛽𝐿1 ln(𝐿) -0.51* 

(0.30) 

-0.55* 

(0.31) 

-0.44 0.51* 

(0.30) 

0.57* 

(0.30) 

𝛽𝐾1 ln(𝐾) -1.04*** 

(0.14) 

-1.02*** 

(0.14) 

-0.92*** 

(0.16) 

-1.18*** 

(0.11) 

-1.10*** 

(0.11) 

𝛽𝐻1 ln(𝐻) 1.78*** 

(0.22) 

1.83*** 

(0.22) 

1.60*** 

(0.23) 

1.71*** 

(0.14) 

1.77*** 

(0.15) 

𝛽𝐿𝐿 ln(𝐿) ln(𝐿) 0.15*** 

(0.03) 

0.15*** 

(0.03) 

0.13*** 

(0.03) 

0.06* 

(0.03) 

0.06** 

(0.03) 

𝛽𝐾𝐾 ln(𝐾) ln(𝐾) 0.06*** 

(0.01) 

0.06*** 

(0.01) 

0.06*** 

(0.01) 

0.07*** 

(0.01) 

0.06*** 

(0.01) 

𝛽𝐻𝐻 ln(𝐻) ln(𝐻) 0.10*** 

(0.02) 

0.11*** 

(0.02) 

0.10*** 

(0.02) 

0.06*** 

(0.01) 

0.07*** 

(0.01) 

𝛽𝐿𝐾 ln(𝐿) ln(𝐾) -0.01 

(0.03) 

-0.01 

(0.03) 

-0.02 

(0.03) 

-0.04* 

(0.02) 

-0.04** 

(0.02) 

𝛽𝐿𝐻 ln(𝐿) ln(𝐻) -0.11*** 

(0.03) 

-0.11*** 

(0.03) 

-0.09*** 

(0.03) 

-0.08*** 

(0.02) 

-0.07*** 

(0.02) 

𝛽𝐾𝐻 ln(𝐾) ln(𝐻) -0.04** 

(0.02) 

-0.04** 

(0.02) 

-0.03** 

(0.02) 

-0.08*** 

(0.01) 

-0.08*** 

(0.01) 

𝛾1 ln(𝐺) 0.02 

(0.02) 

-0.17*** 

(0.06) 

0.01 

(0.02) 

0.06*** 

(0.02) 

-0.31*** 

(0.11) 

𝛾𝐴1 ln(𝐶𝐴) 0.01 

(0.01) 

0.14 

(0.11) 

0.01 

(0.01) 

0.01 

(0.01) 

0.25*** 

(0.08) 

𝛾𝐵1 ln(𝐶𝐵) -0.02 

(0.02) 

-0.30** 

(0.12) 

-0.03 

(0.02) 

-0.06*** 

(0.02) 

-0.27** 

(0.13) 

𝛾𝐶1 ln(𝐶𝐶) 0.03 

(0.02) 

-0.01 

(0.15) 

0.03 

(0.02) 

0.00 

(0.02) 

-0.50*** 

(0.17) 

𝛾3 ln(𝐺)2  0.02*** 

(0.01) 

  0.03*** 

(0.01) 

𝛾𝐴2 ln(𝐶𝐴)
2  -0.07 

(0.06) 

  -0.13*** 

(0.04) 

𝛾𝐵2 ln(𝐶𝐵)
2  0.13** 

(0.06) 

  0.10* 

(0.06) 

𝛾𝐶2 ln(𝐶𝐶)
2  0.02 

(0.09) 

  0.31*** 

(0.10) 

𝜃1 ln(𝑊𝐺) 0.22*** 

(0.04) 

0.55 

(0.49) 

0.22*** 

(0.05) 

0.25*** 

(0.03) 

0.60 

(0.43) 

𝜃𝐴1 ln(𝑊𝐶𝐴) 0.08 

(0.06) 

-0.01 

(0.22) 

0.08 

(0.06) 

0.10*** 

(0.03) 

0.02 

(0.28) 

𝜃𝐵1 ln(𝑊𝐶𝐵) -0.27*** 

(0.05) 

-0.29 

(0.84) 

-0.26*** 

(0.05) 

-0.18*** 

(0.04) 

0.89 

(0.64) 

𝜃𝐶1 ln(𝑊𝐶𝐶) 0.31** 

(0.13) 

-0.11 

(0.76) 

0.30** 

(0.14) 

0.39*** 

(0.07) 

-0.64 

(0.71) 

𝜃3 ln(𝑊𝐺)2  -0.03 

(0.04) 

  -0.03 

(0.03) 

𝜃𝐴2 ln(𝑊𝐶𝐴)
2  0.05 

(0.14) 

  0.04 

(0.15) 

𝜃𝐵2 ln(𝑊𝐶𝐵)
2  0.01 

(0.35) 

  -0.46* 

(0.28) 

𝜃𝐶2 ln(𝑊𝐶𝐶)
2  0.24 

(0.47) 

  0.57 

(0.41) 
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Table 6 (continued) 

Estimation of Production Function with disaggregated Road Quality 

  FGLS GMM 

Estimator Variable Linear (9) Nonlinear (10) Restricted Linear (9) Nonlinear (10) 

𝜆𝑈 DU 0.78** 

(0.32) 

0.78** 

(0.32) 

0.47* 

(0.28) 

  

𝜆𝐸 DE -0.52 

(0.44) 

-0.50 

(0.44) 

-0.93** 

(0.37) 

  

𝜆𝑆 DS -0.04** 

(0.01) 

-0.04** 

(0.14) 

-0.04** 

(0.02) 

-0.06*** 

(0.00) 

-0.06*** 

(0.00) 

𝜆𝑃𝐷 ln(PD) -0.63*** 

(0.19) 

-0.62*** 

(0.19) 

-0.50*** 

(0.19) 

-0.37*** 

(0.06) 

-0.34*** 

(0.06) 

𝜌 Spatial AR    0.37 0.38 

Notes: Standard Errors in Brackets; 

*, **, & *** relate to significance on the 90, 95, and 99%-Level, respectively 

 

 


