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Panel Bayesian VAR Modeling for Policy and Forecasting
when dealing with confounding and latent effects

Antonio Pacifico

Abstract

The paper develops empirical implementations of the standard time-varying Panel Bayesian

VAR model to deal with confounding and latent effects. Bayesian computations and mixed

hierarchical distributions are used to generate posteriors of conditional impulse responses and

conditional forecasts. An empirical application to Eurozone countries illustrates the function-

ing of the model. A survey on policy recommendations and business cycles convergence are

also conducted. The paper would enhance the more recent studies to evaluate idiosyncratic

business cycles, policy-making, and structural spillovers forecasting. The analysis confirms

the importance to separate common shocks from propagation of country- and variable-specific

shocks.

JEL classification: 13/A2, 13/A4, 13/A5, 13/D1, 13/D2

Keywords: Hierarchical Mixture Distributions in Normal Linear Model; Bayesian Model

Averaging; Panel VAR; Forecasting; Structural Spillovers; MCMC Implementations.
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1 Introduction

The paper develops an approach to jointly model and quantify latent behaviors1 and confound-

ing effects2. The underlying logic is very useful in econometrics in order to avoid "omitted biases"

for the case of serial correlations and not (directly) observed linkages among economic-financial

variables, mainly if the lagged endogenous variables tend to show some kind of irregular or com-

mon behaviour. I estimate a structural time-varying Extended Panel Bayesian VAR (EPBVAR)

model by specifying hierarchical priors through a mixture of distributions. In this study, Bayesian

methods and Maximum Likelihood Estimates (MLE) are used to reduce the dimensionality of the

model, put structure on the time variations, and simultaneously evaluate omitted variable biases

and issues of endogeneity. In the case of fully hierarchical priors, a MCMC implementation is

employed to calculate posterior distributions of Conditional Generalized Impulse Response Fuc-

tions (CGIRFs) and Conditional Forecasts (CFs) experiments3 to unexpected perturbations in the

innovations of the factors of the system. A Normal Linear Regression (NLR) model is evaluated

in order to work with smaller systems in which the regressors are observable, directly measured,

and time-varying linear combinations of the right-hand side variables of the structural EPBVAR.

The advantage of this approach is that it is easier to match endogenous variables with omitted

factors and the framework is valid if and only if prior assumptions are satisfied and a hierarchical

structure is provided. Thus, an analysis of joint and conditional densities and sequential factor-

izations are required.

An empirical application to a pool of the current members of the European Monetary Union

(EMU) illustrates the functioning of the model, with particular attention on the recent reces-

sion and post-crisis consolidation. To be more precise, the paper focuses on three interesting

macroeconomic-financial issues left even now unanswered. First, how dimension and intensifica-

tion of spillovers over time affect commonality, interdependence, and heterogeneity across countries

and among variables. Second, how different transmission channels essentially affect the spreading

of spillovers in real and financial dimension given an unexpected shock. Third, the importance of

economic and institutional implications in driving the transmission of shocks. A survey on policy

recommendations and business cycle convergence are also assessed. This implies that idiosyncratic
1Latent or hidden factors are variables that are not directly observed but are rather inferred from other variables

that are observed and, hence, directly measured.
2Confounding factors are variables that affect both dependent and independent variables causing spurious as-

sociation. This latter cannot be described and, hence, evaluated in terms of correlations or associations being a
causal concept.

3See e.g., Chib (1995), Chib (1996), Pesaran and Shinb (1998), and Chib and Jeliazkov (2001).
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business cycles among the G7 countries or international business cycles are not discussed, unless

they contain interesting results from the viewpoint of the present paper. Likewise, the analysis

does not review studies focusing on regional cycles in Europe. Overall, the analysis is consistent

and robust with the more recent literature on business cycles, which recognizes the importance of

accounting for both group-specifc and global factors in evaluating cross-country spillovers and to

separate common shocks from propagation of country- and variable-specific shocks when studying

economic-financial linkages.

Growth spillovers are evaluated through structural Bilateral Net Spillover Effects (BNSEs) and

Systemic Contributions (SCs). The former incorporate feedback effects from the impulse variables

and temporary or persistent long-run effects of a potential shock. The SC index represents the

amplification contribution of the impulse variable to the response variable and is able to capture

sequential feature associated with systemic events. Finally, the Generalized Theil (GT) index

is estimated in order to investigate on business cycle convergence and, hence, divergence across

member states.

The outline of this paper is as follows. Section 2 reviews the existing literature on business

cycles and cross-country spillovers. Section 3 presents the econometric model and empirical spec-

ifications. Section 4 provides the empirical analysis. The final section contains some concluding

remarks.

2 Discussion and Relationship with the literature

In recent years, several theoretical and applied models have given a new impulse to the litera-

ture on business cycles and policy making. Nevertheless, these studies often reach very different

or mixed conclusions due to the selection of variables used, diverging methodologies to identify

spillover effects and alternative ways to investigate co-movement, heterogeneity, and interdepen-

dence across countries.

For example, Blanchard and Perotti (2002) estimated dynamic effects of shocks in government

spending and taxes on U.S. activity in the postwar period, by using a mixed structural VAR model.

The results consistently show positive government spending shocks as having a positive effect on

output, and positive tax shocks as having a negative effect. However, the model developed is not

consistent with large sample and the computations are costly.

Pesaran (2006) and Pesaran et al. (2007) developed a multicountry Global Vector Autoregres-
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sion (GVAR) approach in which estimate spillover effects of a domestic budget balance shock

on the members of the EA by combining all country-specific VAR models in one multicountry

model and treating all variables as endogenous. They focused on identification of shocks to the

US economy, particularly the monetary policy shocks, and considered the time profiles of their

effects on the EA. From a policy perspective, they showed that: (i) financial shocks (equity and

bond prices) tend to be transmitted much faster than shocks to real output and/or inflation; (ii)

the transmission of real shocks is rather slow, normally taking 2-3 years, or in some cases even

more, before their full impacts are felt; (iii) the long run impacts of the real shocks are larger

than what might be expected from a simple trade perspective; and (iv) the transmission of shocks

does not take place only through trade, but also as importantly through the impact of real shocks

on financial variables with subsequent spillover effects on real variables. However, they concluded

that the GVAR presents a complicated spatio-temporal structure for the analysis of the world

economy and, hence, it need to be modified and extended further.

Geweke (2001), Raftery and Lewis (1997) and Raftery et al. (1997) developed Bayesian econo-

metrics analyses and forecasting via posterior simulations using MCMC integration. To be more

precise, they described different methods to use posterior simulation output to estimate integrated

likelihoods. They focused on the basic Laplace-Metropolis estimator for models without random

effects. For models with random effects, they introduced a compound Laplace-Metropolis estima-

tor. Then, they computed a Bayes factor as the ratio of two integrated likelihoods in order to

compare the two models. In this way, they were able to obtain good approximations for integrated

likelihoods in hierarchical models, favoring the model incorporating random effects. Nevertheless,

these methods have been discussed in time since they refer to a broad class of conditionally inde-

pendent hierarchical models and the integrals involved are of low dimension.

Canova and Ciccarelli (2009) estimated a Bayesian multicountry VAR model to assess economic-

financial linkages, to test specification hypotheses and to conduct policy exercises, with cross-unit

interdependencies, unit-specific dynamics, and time variations in the coefficients. They conducted

an empirical analysis on G7 countries by addressing Bayesian computations. Impulse responses

and conditional forecasts are obtained with the output of an MCMC routine. The transmission

of certain shocks across countries are analyzed. However, the model is devoid of a structural

framework in order to be able to add time variant factors.

Giannone et al. (2009) and Koop (1996) evaluated large Bayesian VARs through hierarchical

priors. They examined both forecasting accuracy and structural analysis of the effect of a mon-
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etary policy shock adding additional macroeconomic variables and sectoral information on the

results of De Mol and co-workers (2008). The shrinkage is obtained by using Minnesota priors

that often is uninformative since it is based on an approximation which involves replacing the

variance-covariance matrix with an estimate. Moreover, the framework is extended by using a set

of dummy variables and, hence, difficult to model.

In a quite recent work, Ciccarelli et al. (2012) investigated heterogeneity and spillovers in macro-

financial linkages across developed economies, focusing on the most recent recession. They de-

veloped a time-varying panel Bayesian VAR model including real and financial variables and

identified a statistically significant common component. The main findings they found were the

need to allow for cross-country and cross-variable interdependencies when studying real-financial

linkages and the presence of a heterogeneous pattern across members with a common component.

Nevertheless, the empirical model used is non-structural and constrained due to time-invariant or

exogenous factors in the system and, hence, unable in identifying structural and institutional dif-

ferences across countries, different reactions behind a common unexpected shock, and the causality

among real and financial variables.

According to the above-mentioned literature, my empirical specifications differ from previous

studies in four ways. First, I represents a structural time-varying approach as a sum of three

terms: (i) a vector of lagged endogenous variables; (ii) a vector of serially correlated factors to

deal with confounding effects; and (iii) a vector of latent factors to minimize further omitted

biases. All terms are treated as endogenous in order to capture and discriminate statistical rela-

tionships from structural and causal connections. Second, dynamic relationships between these

terms hold and are allowed to be country- and variable-specifics minimizing heterogeneity biases.

Third, interdependence, heterogeneity and commonality can be evaluated without overlooking the

contribution of different channels and/or structural constraints through which these effects might

have occurred. Fourth, synchronization and convergence of business cycles can be achieved and

shocks can be directly linked to policy recommendations, without imposing particular short-run

and long-run restrictions.
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3 Econometric Model and Empirical Specifications

3.1 Model Estimation

The econometric model has the form:

Yi,t = Ait,0 +
l∑

λ=1

[
Ait,j(L)Yi,t−λ +Bit,j(L)Wi,t−λ + Cit,j(L)Zi,t−λ

]
+ εit (1)

where the subscripts i, j = 1, 2, . . . , N are country indeces, t = 1, 2, . . . , T denotes time, L stands

for the lag operator, Ait,0 is an N ·1 vector of intercepts, Ait,j is an NM ·NM matrix of coefficients

for each j, Yi,t−λ is an NM · 1 vector of variables lagged, Bit,j is an NQ ·NQ matrix of coefficients

for each j, Wi,t−λ is a NQ ·1 vector including serially correlated factors, Cit,j is an NΞ ·NΞ matrix

of coefficients for each j, Zi,t−λ is a NΞ · 1 vector of hidden factors, εit ∼ i.i.d.N(0,Σ) is a N · 1

vector of disturbance terms. The subscripts λ = 1, 2, . . . , l are lags for each of the m = 1, . . . ,M

endogenous variables, q = 1, . . . , Q serially correlated factors, and ξ = 1, . . . ,Ξ hidden factos.

Firstly, let k = 1 +N [m+ q+ ξ]l be the number of coefficient in each equation of the EPBVAR,

a Nk ·Nk matrix Xt = (1, Y
′
t−1, Y

′
t−2, . . . , Y

′

t−λ,W
′
t ,W

′
t−1,W

′
t−2, . . . ,W

′

t−λ, Z
′
t , Z

′
t−1, Z

′
t−2, . . . , Z

′

t−λ)
′

can be defined containing endogenous variables, serially correlated and hidden factors. Then, I

define a Nk · 1 vector γt = vec(Γkit)
4 which contains, stacked into a vector, the intercepts and

all the M , Q and Ξ coefficients of the matrices Ait,j, Bit,j and Cit,j, respectively, with Γkit =

(A
′
it,0, A

1′
it , A

2′
it , . . . , A

m′
it , B

1′
it , B

2′
it , . . . , B

q′

it , C
1′
it , C

2′
it , . . . , C

ξ′

it )
′ . With all these definitions, I can write

the EPBVAR in terms of multivariate normal distribution:

Yt = (INk ⊗Xt)γt + Et (2)

where Yt = (y
′
1t, . . . , y

′
Nt)

′ and Et = (ε
′
1t, . . . , ε

′
Nt)

′ are N · 1 vectors containing the dependent

variables and the random disturbances of the model, respectively. Here, Et ∼ N(0,Σ ⊗ It) and

Yi,t is expressed in terms of Xt and contains, stacked, all T observations on the first dependent

variable, then all T observations on the second dependent variable, and so on. Moreover, there is

no subscript i since variables of all countries in the system are stacked in Xt.

Now, since the coefficient vectors in γt vary in different time periods for each country-variable
4The vec operator transforms a matrix into a vector by stacking the columns of the matrix one underneath the

other.
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pair and there are more coefficients than data points, following the framework in Koop (1996) and

Ciccarelli et al. (2012), a flexible factorization for γt can be assumed to estimate them without

restrictions and loss of efficiency:

γt =
K∑
k=1

Dk · βkt + ut = D · βt + ut with ut ∼ N(0,Σ⊗ V ) (3)

where Dk = [D1, D2, . . . , DK ] are conformable matrices of coefficients, with elements equal to zero

and one, ut captures unmodelled variations present in γt that are not captured from the system,

V = σ2 ·Ik is a k ·k matrix with σ2 known by assumption, and dim(βt)� dim(γt) by construction.

The idea is to shrink γt into βkt obtaining a much smaller dimensional vector.

In equation 3, all factors are permitted to be time-varying and, hence, time variant structures can

be obtained via implementations of MCMC algorithms. Moreover, time variations in the variance

of shocks ut to the factors βkt are also allowed in order to capture in Yt possible heterogeneity,

interdependence, and commonality across countries and among variables. Running equations 2

and 3 for equation 1, the factorization is:

Dk · βkt = D1 · β1t +D2 · β2t + . . .+DK · βKt (4)

Finally, the factorization of γt becomes exact as long as σ2 converges to zero.

With these specifications, the reduced-form EPBVAR model in equation 2 can be trasformed

into a Normal Linear Regression (NLR) model with an error covariance matrix of an Inverse

Wishart distribution5. By equations 2 and 3, the NLR model6 can be written as:

Yt = Θt(Dβt + ut) + Et ≡ χtβt + ηt with Θt = (INk ⊗Xt) (5)

where χt ≡ ΘtD is a N ·k matrix which stacks all the coefficients of the system, βt is a k · 1 vector

containing all the regression coefficients of the NLR model, ηt ≡ Θtut + Et is a N · 1 vector of

random disturbances and distributed as a normal with zero-mean and covariance matrix equals

to a N ·N matrix Ω, with Ω = (Σ⊗ IkT ) by assumption7.
5The Wishart distribution is a multivariate extension of χ2 distribution and, in Bayesian statistics, corresponds

to the conjugate prior of the inverse covariance-matrix of a multivariate normal random vector.
6To be more precise, it would correspond to the parsimonious Seemingly Unrelated Regression (SUR) model

developed in literature. See for istance, Canova and Ciccarelli (2009) and Ciccarelli et al. (2012).
7See e.g., Kadiyala and Karlsson (1997).
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By construction, χit are linear combinations of right-hand side variables of the system and

correlated among each other. The correlation decreases as k increases. The vectors of M endoge-

nous variables, Q serially-correlated factors and Ξ hidden factors depend on a small number of

observable indices, χit, and the factors βit load on the indices. They are time-varying vectors to

be estimated with a gain in efficiency. In fact, they are smooth (observed) linear functions of the

lagged variables.

3.2 Prior Information

In hierarchical models, many problems involve multiple parameters which can be regarded as

related in some way by the structure of the problem. A joint probability model for those pa-

rameters should reflect their mutual dependence. Typically, the dependence can be summarized

by viewing these parameters as a sample from a common population distribution. Hence, the

problem can be modelled hierarchically, with observable outcomes (Yi) created conditionally on

certain parameters (αt), which themselves are assigned a distribution in terms of further (pos-

sibly common) parameters, hyperparameters (φ). This hierarchical thinking may help solve the

trade-off between inaccurate fit and overfitting, and also plays an important role in developing

computational strategies.

Given the NLR model described in equation 5, accounting for j and stacking all i country

indices, it can be alternatively written as:

Yj = χjβ + ηj with i = 1, 2, . . . , N and j = 1, 2, . . . , J (6)

where Yj = (Y1j, Y2j, . . . , YNj)
′ is a N · 1 vector, χj = diag(χ

′
1j, χ

′
2j, . . . , χ

′
Nj) is a N · k matrix,

β = (β1, β2, . . . , βN)
′ is a k·1 vector, and ηj = (η1j, η2j, . . . , ηNj)

′ is aN ·1 vector, with ηj ∼ N(0,Σ).

Stacking further:

Y = χβ + η with η ∼ N(0,Ω) and Ω = (Σ⊗ I) (7)

where Y = (Y1, Y2, . . . , YJ)
′ , χ = (χ1, χ2, . . . , χJ)

′ , η = (η1, η2, . . . , ηJ)
′ , and Ω = diag(Σ

′
,Σ

′
, . . . ,Σ

′
).

The specifications in equations 6 and 7 allow heteroskedasticity and assume zero correlation

across countries in order to obtain no perfect collinearity. The non-zero covariances imply that
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equation 7 is related and individual regressions are tied into a system of equations that can be

analyzed together. However, variances can also differ across j, while ηj are independent across i.

Possible heterogeneity, interdependence, and commonality across countries and among variables

are absorbed in the coefficient vectors βt, assuming the following state-space structure:

Yt = χtβt + ηt (8)

βt = βt−1 + υt with υt ∼ N(0,H) (9)

where υt ∼ N(0,Σ ⊗ V ), H = diag(H̄1, . . . , H̄F ) is a block diagonal matrix, and Hf = hf · I,

with f = 1, . . . , F and hf controls the tightness of factor i in the coefficients. In the model 8,

it is assumed a general AR structure and the block diagonality of H is needed to guarantee the

orthogonality of the factors, which is preserved a-posterior and, hence, their identifiability. In this

way, prior assumptions can be specified and, hence, Bayesian computations are feasibles.

3.3 Prior Assumptions

Let φ0 = (Ω−1, hf , β0) to be the prior densities, two tentative beliefs (assumptions) can be

defined accounting for the model described in equation 7. (i) Conditional Normality: p(η|φ0) =

N(0,Ω). This is a hierarchical prior for η. (ii) Conditional Independence: p(η|φ0) = p(η|φ0)p(χ|φ0).

A hierarchical prior for η has been already specified. Thus, in order to complete the model, a

prior moments on (Ω−1, hf , β0) need to be defined. The likelihood function can be derived from

the sampling density p(Y |φ0) and it can be shown to be of a form that breaks into a mixture of

distributions. In words: (i) A Normal distribution for factors β given Ω; (ii) a Wishart distribution

for Ω−1; (iii) an Inverse Gamma distribution for hf , where hf = vec(H). That is:

β|Ω−1, Y ∼ N(β̂,Ω−1 ⊗ (χ
′
χ)−1) (10)

Ω−1|Y ∼ W (S−1, T − k − 1) (11)
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hf |Y ∼ IG

{
ω̄

2
,
vS

2

}
(12)

where β̂ = (
∑

t χ
′
tχt)

−1(
∑

t χ
′
tYt) is the OLS estimate of β, S = (Yt − β̂χt)

′
(Yt − β̂χt) is the sum

of squared errors, and Σ̂ = S/(T − k) is the OLS estimate of Σ.

Furthermore, such prior assumptions will generally be influenced, for example, by common

or subjective beliefs about marginal effects of economic variables. Hence, Independent Normal

Wishart Prior is used in this analysis, since it assumes that tentative beliefs on φ0 = (β0,Ω
−1, hf )

derive from separate considerations.

According to equations 8 and 9, a MCMC methods and alternatives can be employed to conduct

inference on the time-varying βt (with Hit 6= 0) and construct their exact posterior distributions.

The result would be a Bayesian Model Averaging (BMA). Let data run from (−τ, T ), where (−τ, 0)

is a training sample used to estimate features of the prior, when such a sample is unavailable, it

is sufficient to modify the expressions for the prior moments in equations 10, 11, and 12 as:

p(Ω−1, hf , β0) = p(Ω−1) · Πfp(hf ) · p(β0) (13)

where, p(Ω−1) = W (β1, z1), p(hf ) = IG
(
ω̄0

2
, S0

2

)
, p(β0|F−1) = N(β̄0, R̄0), and F−1 denotes the

information available at time -1. Here, N() stands for Normal, W() for Wishart, and IG() for

Inverse Gamma distributions. The prior for β0 and the law of motion for the factors imply that

p(βt|F−1) = N(β̄t−1|t−1, R̄t−1|t−1 +Ht), where β̄t−1|t−1 and R̄t−1|t−1 are, respectively, the mean and

the variance-covariance matrix of the conditional distribution of β̄t|t. The hyperparameters are

all known. To be more precise, collecting them in a vector δ, where δ = (z1, Q1, ω̄0, S0, β̄0, R̄0),

they are treated as fixed and are either obtained from the data to tune the prior to the specific

applications (this is the case for β̄0 and β1) or selected a-priori to produce relatively loose priors

(this is the case for z1, S0, R̄0).

Whenever Ω is not replaced by an estimate8, the only fully Bayesian approach which leads to

analytical results requires the use of a natural conjugate prior. Here, the prior, likelihood and

posterior come from the same family of distribution. According to the equations 10, 11, and 12,

and letting time variant factors, the natural conjugate prior has the form:
8For istance, the Minnesota priors are based on an approximation which involves replacing Ω with an estimate,

Ω̂. See Doan et al. (1984) and Litterman (1986).
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βt|Ω−1, Y T ∼ N(β̄t|t,Ω ∝ R̄t|t) or p(βt|Ω−1, Y T ) = N(β̄t|t,Ω ∝ R̄t|t) (14)

Ω−1|Y T ∼ W (β1, z1) or p(Ω−1|Y T , β) = W (β1, z1) (15)

where, β̄t|t and R̄t|t, correspond to hyperparameters collected in the vector δ, and GIRFs and CFs

can be obtained with the same approach by Monte Carlo integration. That is, draws of H derive

from equation 9, Ω−1 can be obtained from equation 8 and, conditional on these, draws of β can

be taken from equation 8. Then, draws of impulse responses can be computed using these drawn

values of Ω−1 and β. If H = 0, allowing for time variant factors, draws of hf can be taken from a

Normal-Inverse Gamma distribution.

According to the natural conjugate prior, βt|Ω and Ω−1 have Normal and Wishart distributions,

respectively. The fact that the prior for βt depends on Ω implies that βt and Ω are not independent

of one another. To be more precise, the estimation works with a prior which has VAR coefficients

and error covariance being independent of one another. To allow for different equations in the

VAR to have different explanatory variables, previous specification have to be modified. Given

the NLR model in equation 8, a general prior which does not involve the restrictions inherent in

the natural conjugate prior is the independent Normal-Wishart prior:

p(βt,Ω
−1|Y T ) = p(βt|Y T ) · p(Ω−1|Y T ) (16)

where,

βt|Y T ∼ N(β̄t|t, R̄t|t) or p(βt|Y T ) = N(β̄t|t, R̄t|t) (17)

Ω|Y T ∼ iW (z1, β1) or p(Ω|Y T ) = iW (z1, β1) (18)

where iW () stands for inverse Wishart distribution. Here, the prior allows for the prior covariance

matrix, R̄t|t
9, to be anything the researcher chooses, rather the restrictive

(Ω|Y T ⊗ R̄t|t) form of the natural conjugate prior.

9These implementations do not allow to use the Minnesota prior since its covariance matrix is written in terms
of blocks which vary across equations.
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3.4 Posterior Distributions and MCMC Integration

The posterior distributions for φ = (Ω−1, hf , {βt}Tt=1) are calculated combining the prior with

the (conditional) likelihood on initial conditions of the data, which is proportional to:

L(Y T |φ) ∝ (Ω)−
T
2 exp

{
− 1

2

[
Σt(Yt − (ΘtD)βt)

′
Ω−1Σt(Yt − (ΘtD)βt)

]}
(19)

where, Y T = (Y1, . . . , YT ) denotes the data, φ = (Ω−1, hf , {βt}) refers to the unknowns whose

joint distribution needs to be found, with φ−k standing the vector φ excluding the parameter k.

Despite the dramatic parameter reduction obtained with equation 8, analytical computation

of posterior distributions (φ|Y T ) is unfeasible. Thus, through Monte Carlo techniques, a variant

of Gibbs sampler approach can be used in this framework by making use of Kalman filter10 so

it only requires knowledge of the conditional posterior distribution of φ. The latter is extremely

useful for investigating the issue of parameters constancy, because it is an updating method

producing estimates for each time period based on the observations available up to the current

period. To be more precise, the Kalman filter technique consists of two equations: the transition

equation describing the evolution of the state variables and the measurement equation describing

how the observed data are generated from the state variables. For the conditional posterior of

(β1, . . . , βT |Y T , φ−βt), it gives the following recursions:

βt|t = β̃t−1|t−1 +
[
R̃t|t−1(ΘtD)F−1

t|t−1

][
Yt − (ΘtD)θt

]
(20)

Rt|t =
[
I − R̃t|t−1(ΘtD)

′
F−1
t|t−1(ΘtD)

](
R̃t−1|t−1 +H

)
(21)

Ft|t−1 = (ΘtD)
′
R̃t|t−1(ΘtD) + Ωt (22)

Hence, in order to obtain a sample {βt} from the joint posterior distribution

(β1, . . . , βT |Y T , φ−βt), the output of the Kalman filter is used to simulate βT from N(βT |T , RT |T ),

βT−1 from N(βT−1, RT−1), and β1 from N(β1, R1). The recursion can be started choosing R0|0 to be

diagonal with elements equal to small values, whereas β0|0 can be estimated in the training sample

or initialized using a constant coefficient version of the model. Convergence only requires the

algorithm to be able to visit all partitions of the parameter-space in a finite number of iterations.
10See e.g., Chib and Greenberg (1995).
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Thus, the marginal distributions of βt can be computed averaging over draws in the nuisance

dimensions and the posterior distributions for φ are:

βt|Y T , φ−βt ∼ N(β̃t|T , R̄t|T ) or p(βt|Y T , φ−βt) = N(β̃t|T , R̄t|T ) (23)

Ω|Y T , φ−Ω ∼ iW (ẑ1, β̂1) or p(Ω|Y T , φ−Ω) = iW (ẑ1, β̂1) (24)

hf |Y T , φ−hf ∼ IG

{
ω̄f
2
,
S̄

2

}
or p(hf |Y T , φ−hf ) = IG

{
ω̄f
2
,
S̄

2

}
(25)

where,

β̃t|T = R̃t|T

[
R̄−1
t|T β̄ +

T∑
t=1

(ΘtD)
′
Ω−1(ΘtD)β̂

]
(26)

R̃t|T =

[
R̄−1
t|T +

T∑
t=1

(ΘtD)
′
Ω−1(ΘtD)

]−1

(27)

The β̂ is the GLS estimator, with β̂ =
[
(ΘtD)

′
Ω−1(ΘtD)

]−1 · (ΘtD)
′
Ω−1Yt. Rearraging terms,

the equation 26 can be rewritten as:

β̃t|T = R̃t|T

[
R̄−1
t|T β̄ +

T∑
t=1

(ΘtD)
′
Ω−1Yt

]
(28)

where β̃t|T and R̃t|T denote the smoothed one-period-ahead forecasts of βt and of the variance-

covariance matrix of the forecast error, respectively, ẑ1 = z1 + T , β̂1 = β1 +
∑

t(Yt − (ΘtD)βt),

ω̄f = K + ω̄0, S̄ = S0 + Σt(β
f
t − β

f
t−1)

′
(βft − β

f
t−1), with βft denoting the f th subvector of βt and f

refers to the factors described in equation 3.

In this framework, it is common to burn some number of samples at the beginning and, hence,

consider only any nth sample when averaging values to compute expectation. Moreover, the

regressors of the NLR model in equation 8 are correlated, but the presence of correlation, even of

extreme form, does not create problems in identifying the loadings as long as the priors are proper.

In addition, the choice of making Et and ut correlated allows conjugation between the prior and

the likelihood, avoids identification issues, and greatly simplifies the computation of the posterior.

Here, the forecast error η = Yt − (XtΞ)βt has the form (η|σ2) ∼ N(0, σtΩ) and, unconditionally,
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ηt has a multivariate t-distribution centered at 0, with a scale matrix proportional to Ω and νn

degrees of freedom. Hence, the innovations of the model described in equation 8 are endogenously

allowed to have fat tails. Finally, since the fit improves when σ2 → 0, the model in equation 8

presents an exact factorization of γt.

4 Application

4.1 Theoretical Background

The Euro Area is an unique form of a monetary union without historical precedence. The

member states of the euro have assigned the framing of monetary policy to a common monetary

authority, the European Central Bank (ECB), set up as a highly independent central bank to

insure that it will be able to carry out a policy of price stability. The adoption of a common mon-

etary policy in Europe has eliminated the possibility to use monetary policy for the stabilization

of country-specific shocks. This is generally considered as the main cost of forming a monetary

union. How large this cost actually is depends on what alternative mecchanisms are available

to ensure economic adjustment to idiosyncratic shocks. As monetary policy can no longer ad-

dress country-specific shocks and factor mobility does not solve the problem being notoriously low

within and across countries, the only remaining instrument in the hands of national authorities

and capable to stabilize local macroeconomic-financial conditions is fiscal policy. In the context

of the European Monetary Union (EMU), fiscal flexibility is hampered by large public debts and

formal institutional constraints (such as the Maastricht rules and the Stability and Growth Pact).

Thus, policy coordinations became an important issue in order to assess whether decisions about

a given policy instrument should be taken at the central level or be decentralized. Even though

the interaction with the ECB is a key aspect to determine whether coordination is desirable, the

debate often remain focused on the magnitude and the signs of the cross-country spillovers that

could justify or not a more cooperative approach in the member states in response to bad shocks.

Nevertheless, the theoretical literature does not provide a clear-cut analytical answer. For istance,

in classic analyses of policy coordination11, ad-hoc fixed-price models generally assume direct and

positive demand spillovers. By contrast, micro-founded models12 of EMU tend to conclude in
11See e.g., Mundell (1961), Imbs (2006b), Imbs (2006a), and Tabellini (1990).
12See e.g., Sorensen and Yosha (1998), Blanchard and Perotti (2002), and Beetsma and Jensen (2005).
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favour of negative spillovers.

In the last decade, the recent financial crisis that started in mid-2007 and affected the whole

world by September 2008 was one of the most challenge episodes for policy makers both at gov-

ernments and central banks since the introduction of the euro. In a worldwide context, the effects

of this disruption was not limited to the financial sector. Global real output and trade declined

dramatically, and central banks took unprecedented coordinated action, in part, to alleviate the

adverse impacts of the financial markets shocks on real activity. To be more precise, the theoretical

literature13 achieved three main findings. First, there are institutional and economic interdepen-

dencies across countries, specially between Eurozone countries having relinquished independent

monetary and exchange rate policies. Second, there may still be a substantial degree of hetero-

geneity with some common behaviours in economic-financial linkages across countries and that

those linkages may have changed over time due to different transmission channels. Third, the need

to allow for cross-country and cross-variable interdependencies when studying real and financial

linkages. Nevertheless, when dealing with multicountry data, these studies have not yet achieved

an empirical consensus or have reached very different conclusions. Most of these differences can

be related to diverging methodologies to assume structural relationships or lagged interdependen-

cies across factors and alternative ways to assess spillover effects (such as, time invariant factors,

exogenous variables, restrictions on selected priors).

For the above reasons, it makes sense to try to estimate the structural EPBVAR model as

described in Section 3. To be more precise, I focused on a pool of the current members of the

EMU addressing three important macroeconomic-financial issues, with particular attention on the

recent financial crisis and post-crisis consolidation. First, how dimension and intensification of

spillovers over time affect commonality, interdependence, and heterogeneity across countries and

among variables. Second, how different transmission channels essentially affect the spreading of

spillovers in real and financial dimension given an unexpected shock. Third, the importance of

economic and institutional implications in driving the transmission of shocks. A survey on policy

recommendations and business cycle convergence are also assessed.
13For istance, I refer to some main studies, such as: Lane and Milesi-Ferretti (2007); Mastrogiacomo et al. (2017);

Facchini et al. (2017); Degiannakis et al. (2016); Crespo-Cuaresma and Fernandez-Amadorb (2013); Canova and
Marrinan (1997); Reinhart and Rogoff (2009); and Ciccarelli and Rebucci (2007).
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4.2 Empirical Analysis

My baseline model consists of 8 EA countries: Italy (IT ), Spain (ES ), France (FR), Austria

(AT ), Germany (DE ), Ireland (IE ), Greece (GR), and Portugal (PT ). The dataset contains the

following collection of variables. (i) Six endogenous variables are involved to describe real (realit,j)

and financial (finit,j) economy, so split: three real variables (general government spending, gross

fixed capital formation, GDP growth rate) and three financial variables (general government debt,

current account balance, interest rate). (ii) Bilateral flows of trade (rweightsit,j) and capital

(fweightsit,j) are used to capture inter-linkages between country- and variable- specific factors

in real and financial dimension. (iii) Five (directly) observed variables are used as proxy for

accounting for latent macroeconomic-institutional implications (structuresit,j), so shared: one

indicator monitoring external positions (net international investments); one indicator capturing

competitiveness developments and catching-up effects (nominal labour cost); and three indicators

reflecting internal imbalances (general government consumption, private sector consumption, and

change of unemployment rate). (iv) The productivity is used to evaluate the effects of structural

spillovers on total economy given an unexpected shock and corresponds to the logarithm of the

GDP per capita for each country. The weightsit,j14 and the structuresit,j components are treated

endogenously and used to investigate confounding and latent effects, respectively.

The series are expressed in standard deviation with respect to the same quarter of the previous

year (qt/qt−1) and seasonally and calendar adjusted. All EA data points are originated from the

Eurostat database. The estimation sample covers the period from March, 1999 to December,

2013. It amounts, without restrictions, to 3360 regression parameters. To be more precise, each

equation of the structural EPBVAR has k = [1+8(6+2+5) ·1] = 105 coefficients and there are 60

equations in the system. Since this span of data includes a sufficient number of quarters describing

the recent financial crisis and fiscal consolidation, the model is able to capture not only possible

time variation around business cycle phases, but also time variation caused by possible structural

and economic changes. Finally, according to the Schwartz-Bayesian Information Criterion, the

model is estimated with only one lag of all variables and factors in the system.

Here, the structural EPBVAR(1) has the form:

Yit = Ait,0 + Ait,j(L)Yi,t−1 +Bit,j(L)Wi,t−1 + Cit,j(L)Zi,t−1 + εit (29)
14The weightsit,j component corresponds to the sum of rweightsit,j and fweightsit,j .
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where i, j = 1, 2, . . . , 8 are the country indeces, Ait,j is a [(8 ·6) · (8 ·6)] matrix of realit,j and finit,j

coefficients, Bit,j is a [(8 · 2) · (8 · 2)] matrix of weightsit,j coefficients, Cit,j is a [(8 · 5) · (8 · 5)]

matrix of structuresit,j coefficients, Yi,t−1 is a [(8 · 6) · 1] vector of the endogenous variables lagged

containing real and financial variables, Wi,t−1 is a [(8 · 2) · 1] vector including bilateral trade and

financial flows, and Zi,t−1 is a [(8 · 5) · 1] vector containing (directly) observed variables used as

proxy for economic-institutional implications. The analysis assumes that the coefficient vector γt

in equation 3 dependes on eight factors. Each of them is the result of estimates of interaction

terms. Thus,

Dβt = D1β1t +D2β2t +D3β3t +D4β4t +D5β5t +D6β6t + +D7β7t + +D8β8t (30)

D1,it =
∑3

m1=1 ·
∑

j yitm1k1l−j and D2,it =
∑6

m2=4 ·
∑

j yitm2k1l−j are matrices of dimensions

NM1k1 · N and NM2k1 · N respectively, with k1 = [1 + NM ]l and M1,M2 ≤ M denote real

and financial variables, β1t and β2t are mutually orthogonal NM1k1 · 1 and NM2k1 · 1 vectors,

respectively. They capture movements in the coefficient vector γt which are country-specifics.

They account for the only realit,j and finit,j components in order to evaluate restricted structural

spillover effects and obtain a basis for matching additional effects.

D3,it =
∑3

m1=1 ·
∑

j yitm1k2l−j and D4,it =
∑6

m2=4 ·
∑

j yitm2k2l−j are matrices of dimensions

NM1k2 · N and NM2k2 · N respectively, with k2 = [1 + NM + Nq]l, β3t and β4t are mutu-

ally orthogonal NM1k2 · 1 and NM2k2 · 1 vectors, respectively. They capture movements in the

coefficient vector γt which are country-specifics, accounting for two components: realit,j with

rweightsit,j and finit,j with fweightsit,j. These factors are able to assess the role of transmission

channels in driving the spreading of a shock in real and financial dimension, capturing possible

homogeneous and/or heterogeneous patterns across countries.

D5,it =
∑3

m1=1 ·
∑

j yitm1kl−j and D6,it =
∑6

m2=4 ·
∑

j yitm2kl−j are matrices of dimensions NM1k ·

N and NM2k ·N respectively, with k = [1 +NM +Nq +Nξ]l, β5t and β6t are mutually orthog-

onal NM1k · 1 and NM2k · 1 vectors, respectively. They capture movements in the coefficient

vector γt which are country-specifics, accounting for two components: realit,j with rweightsit,j

and structuresit,j and finit,j with fweightsit,j and structuresit,j. These factors are able to inves-

tigate the effective importance and impact of economic-institutional implications in driving the

propagation and transmission of country-specific shocks in real and financial dimension, capturing

possible hidden and/or not directly observed interdependencies across countries.
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D7,it =
∑8

i=1 ·
∑

j yitmg l−j is a matrix of dimension NMk ·Mg and β7t is mututally orthogonal

NMg · 1 vector capturing movements in γt which are variable-specifics, where Mg = 1, 2, 3, 4 ≤M

denotes the number of variable groups. Thus, it corresponds to four groups of variables: (i) realit,j

with rweightsit,j; (ii) finit,j with fweightsit,j; (iii) realit,j with rweightsit,j and structuresit,j;

and (iv) finit,j with fweightsit,j and structuresit,j. The factor is able to capture possible com-

monality, heterogeneity and interdependence across variables accounting for both confounding and

latent effects.

D8,it =
∑8

i=1

∑2
mc=1 ·

∑
j yitmcl−j is a matrix of dimension NMck · 1 and β8t is mutually orthog-

onal N · 1 vector capturing movements in γt which are common across all countries and variables,

with Mc = 1, 2 ≤ M denotes the number of common variable groups. Thus, it accounts for two

groups: realit,j and finit,j with weightsit,j and realit,j and finit,j with structuresit,j. It highlights

possible reasons about different reactions or co-movements across countries and variables given a

common unexpected shock.

Hence, βt = (β
′
1t, β

′
2t, β

′
3t, β

′
4t, β

′
5t, β

′
6t, β

′
7t, β

′
8t)
′ is a (54 ·1) vector and the parsimonius NLR model

having the form:

Yt =
8∑
i=1

X i
t(Dfβft + ut) + Et

≡ χftβft + ηt ≡

≡ χ1tβ1t + χ2tβ2t + . . .+ χ8tβ8t + ηt with f = 1, 2, . . . , 8 (31)

where χt ≡ Xt · D, with D = [D1, D2, D3, D4, D5, D6, D7, D8], βt = βt−1 + υt, and f stands for

the factorization assumed for γt in order to construct hierarchical priors and obtain posterior

mixed distributions. In equation 31, χ1tβ1t, χ2tβ2t, χ3tβ3t, χ4tβ4t, χ5tβ5t, and χ6tβ6t are observable

country-specific indicators for Yt, χ7tβ7t = χ1
7tβ

1
7t, χ

2
7tβ

2
7t, χ

3
7tβ

3
7t, χ

4
7tβ

4
7t is observable cross-country

variable-specific groups indicator for Yt, and χ8tβ8t = χ1
8tβ

1
8t, χ

2
8tβ

2
8t is observable common indi-

cator for Yt. The hyperparameters are all known15. To be more precise, the values used are:

z1 = N · (M + 4 + 2), Q1 = Q̂1, ω̄0 = 104+2, S0 = 1.0, θ̄0 = θ̂0, and R̄0 = If . Here, Q̂1 is a

block diagonal matrix, with θ̂1 = diag(Q11, . . . , Q1N) and Q1i is the estimated covariance matrix

for each country VAR, and β̂0 is obtained with the OLS version of equation 31.

In order to show how dynamic analysis can be undertaken, accurate simulations are run. To
15Own computations.
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be more precise, the total number of draws is 5000 + 1000 = 6000, which corresponds to the sum

of final number of draws to discard and draws to save, respectively. The study checked conver-

gence recursively calculating the first two moments of the posterior of the parameters using 1000,

2000, 3000, 4000, 5000 draws and found that convergence is obtained about 1000 draws. A total

of 1000 draws were used to conduct posterior inference at each t. The CGIRFs are computed

as the difference between conditional16 and unconditional17 projection of output growth for each

country in the period 1999q1 : 2016q1. Here, outcomes absorb conditional forecasts computed on

the time frame of 9 quarters (2.25 years). The natural conjugate prior refers to two subsamples,

2006q4-2009q4 and 2010q1-2013q4, in order to highlight the impact of the recent financial crisis

and fiscal consolidation, respectively.

Finally, Table 1 shows some main diagnostic tests in order to verify the robustness and consis-

tency of the model. The estimates would be asymptotically consistent given the absence of serial

correlations between residuals. According to time variant factors and the Schwarz approximation,

the (conditional) ML is tested. The latter confirms the exact γt’s factorization as the p-value of

the test equals 1.41e−4.

Table 1: Diagnostic Tests
Test Test Statistics degree of freedoms p-value
LGBm 5762 2430 0.00
Pm 1137.2 1215 0.9451

MLEf 38.22 12 0.000141

Here, LGBm stands for Multivariate Ljung-Box Test on the series, with lags
m = 30. Pm refers to Portmanteau (Asymptotic) Test on the residuals, with
lags m = 30. MLEf is the Marginal (Conditional) Likelihood Estimation
Test obtained through the Schwartz approximation, with f = 8.

4.3 Spillover Effects and Shock Transmission

Given the benchmark model in equation 31, structural spillover effects given an unexpected

shock in real and financial dimension, accounting for both counfounding and latent effects, can

be assessed. The output deriving from the model is able to absorbe each single draw obtained

from the posterior of regression coefficients. Firstly, I construct a spillover matrix (Table 2) in

order to define (individual) Bilateral Spillover Effects (BSEs). The latter describe the dynamics of
16The conditional projection for output growth is the one the model would have obtained over the same period

conditionally on the actual path of unexpected shock for that period.
17The unconditional projection is the one the model would obtain for output growth for that period based only

on historical information and consistent with a model-based forecast path for the other variables.
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impulse responses from a shock in real and financial variables within the EA as weighted average

of responses of each variable. Since BSEs can either be negative or positive, two components can

be defined: the average sum of the impulse responses to others defines Bilateral OUT Spillover

Effects (equation 32) and the average sum of the impulse responses from others defines Bilateral

IN Spillover Effects (equation 33). They incorporate feedback effects from the impulse variables

and temporary or persistent long-run effects of a potential shock.

Table 2: Structural Spillover Matrix

Shock/Response y1 y2 . . . yn To Others
y1 IRy1→y1 IRy1→y2 . . . IRy1→yn

∑N
j=1 IRy1→yj j 6= 1

y2 IRy2→y1 IRy2→y2 . . . IRy2→yn
∑N

j=1 IRy2→yj j 6= 2
...

...
... . . . ...

...
yn IRyn→y1 IRyn→y2 . . . IRyn→yn

∑N
j=1 IRyn→yj j 6= n

From Others
∑N

j=2 IRyj→y1
∑N

j=1 IRyj→y2 . . .
∑N−1

j=1 IRyj→yn
∑N

j=1(IRyi→yj − IRyj→yi)

Note: Row variables are the origin of the unexpected shock. Column variables are
the respondents or spillover receivers.

BSEOUT ,yi→∗ =
N∑
j=1

IRyi→yj with i = j = 1, . . . , 8 (32)

BSEIN,∗→yi =
N∑
j=1

IRyj→yi with i = j = 1, . . . , 8 (33)

By the same token, Bilateral Net Spillover Effects (BNSEs) can be defined as the difference

between the conditional impulse responses sent and received to/from another variable (equation

34). When the BNSE is positive/negative, the variable (country) is a net sender/net receiver of

the system, respectively.

BNSEyi,j = BSEOUT ,yi→∗ −BSEIN,∗→yi with i = j = 1, . . . , 8 (34)

where
∑N

j=1(IRyi→yj − IRyj→yi) = 0.

Thus, I have suitable instruments to study dimension and intensification of spillover effects. To

be more precise, I calculate the Systemic Contribution index, defined as the ratio between the

BNSEs and the Total Net Positive Spillover (TNPS) of the system (equation 35). It represents the

amplification contribution of the impulse variable to the response variable and is able to capture

sequential feature associated with systemic events.
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SCyi,j =
BNSEyi,j
TNPSyi,j

(35)

The Figure 1, in which I consider the first two country-specific indicators, confirms that the

literature reached. Overall, there is a heterogenous pattern across countries in financial dimension

(Ŝfin = 0.310) and even more in real dimension (Ŝreal = 0.342), with some common behaviors.

These commonalities seem to be larger in financial dimension (Figure 1b). There are not signifi-

cant findings about the signs of the spillovers, confirming the need to consider further empirical

evidence. In real dimension (Figure 1a), most countries tend to be net receivers of the system and,

hence, unexpected country-specific shocks directly affect own output growth in financial dimension

and then in real economy because of consistent cross-country interdependencies.

(a) χ1tβ̂1t Factor
Overall Period

(b) χ2tβ̂2t Factor
Overall Period

Figure 1: Systemic Contributions of the productivity given a 1% shock to real and financial dimension are
drawn in standard deviation of the variables in the system. They account for realit,j (plot a) and finit,j (plot b)
components, corresponding to χ1tβ̂1t and χ2tβ̂2t cross-country indicators, respectively.

Accounting for the weightsit,j and structuresit,j components (Figure 2), important modelling

and policy perspectives are found.

Firstly, focusing on the only weightsit,j component (Figures 2a and 2b), a significant common

pattern emerges in both real and financial dimension. In the latter, commonalities tend to largely

occurr. From a modelling perspective, it highlights that the transmission is more intense across

countries in their financial dimension and, from a policy perspective, that consolidations over time

occurred simultaneously behind more coordinated fiscal actions across member states. Focusing on

the spreading of spillovers, there is a larger intensification, while their signs do not show significant

considerations. A deeper homogeneity is observed in financial dimension. Moreover, a consistent

degree of heterogeneity persists across countries, mainly in real dimension (Ŝreal = 0.375) than in

financial dimension (Ŝfin = 0.306).

Finally, considering both components (Figures 2c and 2d), I prove that economic and institu-



22

tional differences among national policy are implicitly involved when assessing growth spillovers

and different transmission channels. To be more precise, most countries are net receivers in

real economy and net senders in financial dimension, proving that shock transmissions are larger

among capital flows than trade exposures. Cross-country homogeneity and co-movements in fi-

nancial dimension are driven by large public debts and formal institutional constraints18 (e.g., the

Maastricht rules and the Stability and Growth Pact, which forbids public deficits exceeding 3%

of GDP). Higher heterogeneity is observed across countries in their real dimension (Ŝreal = 0.342)

and, hence, despite a common monetary policy, national policies of investments and structural

reforms in labour and complementary markets remain heterogeneous across the EA. It might have

contributed to the current emergence of different country-specific developments of competitiveness,

consumption, investment, and production affecting national economy. From a policy perspective,

despite its large size, Germany shows a limited role in generating growth spillovers. This result,

in part, reflects Germany’s own dependence on growth in the rest of the Eurozone. Furthermore,

inward spillovers tend to be greater than outward spillovers, proving large trade exposures with

other european countries. Finally, PIIGS countries19 show larger conditional responses due to

their high dimension in cross-border trade accounts.

(a) χ3tβ̂3t Factor
Overall Period

(b) χ4tβ̂4t Factor
Overall Period

(c) χ5tβ̂5t Factor
Overall Period

(d) χ6tβ̂6t Factor
Overall Period

Figure 2: Systemic Contributions of the productivity given a 1% shock to real and financial dimension are drawn
in standard deviation of the variables in the system. They account for realit,j with rweightsit,j component (plot
a), finit,j with fweightsit,j component (plot b), realit,j with rweightsit,j and structuresit,j components (plot c),
and finit,j with fweightsit,j and structuresit,j components (plot d), corresponding to χ3tβ̂3t, χ4tβ̂4t, χ5tβ̂5t, and
χ6tβ̂6t cross-country indicators, respectively.

18See e.g., Eichengreen and Wyplosz (1998) and Buti et al. (1998).
19They correspond to Portugal, Ireland, Italy, and Greece (IMF, 2011).
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Different results have been found for the variable-specific factors (Figure 3). To be more precise,

accounting for the only weightsit,j component (Figure 3a), on average, countries tend to generate

larger outward growth spillovers (β̄2
7t = 0.33) in financial dimension than in real economy (β̄1

7t =

0.25). Thus, I confirm the consistent role of capital income flows in absorbing the effects of variable-

specific shocks in contrast of standard theoretical models20. In addition, despite a substantial

degree of heterogeneity, Figure 3a shows a certain homogeneity across countries and, hence, the

analysis is in line with rapidly increasing cross-border trade and financial linkages.

Matching both weightsit,j and structuresit,j components (Figure 3b), most countries tend to be

net senders of the system in financial dimension, confirming that trade channels matter relatively

less than financial channels. Moreover, outward and inward growth spillovers follow a homogeneous

pattern across members, except Spain (possibly due to larger capital exposures). Thus, highly

indebted countries were forced into equally taking wide-ranging austerity measures, having lost

access to the financial markets. This has led to call for stronger cross-country differentiation and for

temporary stimulus measures in countries not facing financial market pressure. Moreover, cross-

border spillovers seem to have hampered the effects of consolidations, accounting for a substantial

degree of heterogeneity in real dimension and a deeper interdependence in financial dynamic.

(a) χ1
7tβ̂

1
7t & χ2

7tβ̂
2
7t Factors

Overall Period
(b) χ3

7tβ̂
3
7t & χ4

7tβ̂
4
7t Factors

Overall Period

Figure 3: Systemic Contributions of the productivity given a 1% shock to real and financial dimension are drawn
in standard deviation of the variables in the system. They account for the four groups of variables: realit,j and
finit,j with weightsit,j component (plot a) and realit,j and finit,j with weightsit,j and structuresit,j components
(plot b), corresponding to χ7tβ̂7t variable-specific indicator.

The last factor described in equation 31 is drawn in Figure 4. It shows that there is a signif-

icant common component across eurozone members in financial dimension and country-specific

heterogeneities tend to matter more in real economy. In fact, in Figure 4a, in which the common

indicator is matched with the corresponding transmission channels for real and financial dimension,

I demonstrate that growth shocks appear to be predominantly transmitted via financial linkages

and there is a more important consistent common component in financial dimension because of
20See e.g.,Gordon and Bovenberg (1996) and Sorensen and Yosha (1998).
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stronger interdependencies among variables. The Figure 4b, in which the common indicator is

matched with the only variables capturing economic-institutional factors in real and financial di-

mension, shows larger heterogeneities among growth spillovers observed across countries. The

analysis confirms that, in the EA, structural reforms without coordinated national fiscal actions

negatively affect the adjustment capacity of the currency union as a whole because of high degree

of divergence.

(a) χ1
8tβ̂

1
8t Factor

Overall Period
(b) χ2

8tβ̂
2
8t Factor

Overall Period

Figure 4: Systemic Contributions of the productivity given a 1% shock to real and financial dimension are drawn
in standard deviation of the variables in the system. They account for the two common groups: realit,j and finit,j
with weightsit,j component (plot a) and realit,j and finit,j with structresit,j component (plot b), corresponding
to χ8tβ̂8t common indicator.

4.4 Crisis Period and Post-Crisis Consolidation

In recent years, the transmission of shocks is faster and deeper in financial dimension because

of stronger economic and structural interdependencies (Figure 5). I found deeper co-movents

and larger degree of homogeneity across countries in real dimension and even more in financial

dimension during the recent recession (Figures 5a and 5c) compared to successive post-crisis con-

solidations (Figures 5b and 5d). These results cast three main findings. First, interdependencies

because of strongly common economic-institutional linkages matter more during trigger events.

Second, coordinated fiscal actions do not necessarily yield better outcomes. Third, the sign of

growth spillovers are not significant in determining whether coordination should lead to a more

expansionary or more restrictive fiscal stance in the member states. Thus, although recent theo-

retical studies suggest that the imbalances have been reduced and the macroeconomic policy mix

with a discretionary fiscal expansion and a neutral monetary policy were likely to mitigate output

growth during recession and successive consolidations, without the appropriate adjustment of the

private and public sector, Eurozone imbalances and different degrees of productivity growth would

tend to persist in the future (Figure 6).



25

(a) χ5tβ̂5t Factor
Crisis Period

(b) χ5tβ̂5t Factor
Post Recession

(c) χ6tβ̂6t Factor
Crisis Period

(d) χ6tβ̂6t Factor
Post Recession

Figure 5: Systemic Contributions of the productivity given a 1% shock to real and financial dimension are drawn in
standard deviation of the variables in the system, focusing on the recent financial crisis (plots a and c) and post-crisis
consolidation (plots b and d) periods. They account for realit,j with rweightsit,j and structuresit,j components
(plots a and b) and finit,j with fweightsit,j and structuresit,j components (plots c and d), corresponding to χ5tβ̂5t
and χ6tβ̂6t cross-country indicators.

Figure 6: The Figure draws conditional forecasts of the productivity (prodea), general government debt (debtea),
real GDP growth rate (gdpgea), current account balance (currea), general government spending (govea), and the
generalized entropy index (theil) in the eurozone from 1999q1 to 2020q2. The latter corresponds to Theil’s Entropy
and is computed by weighing the GDP with the population in terms of proportions with respect to the total. It can
be viewed as a measure of divergence and economic inequality. Here, forecasts from 2016q1 to 2020q2 correspond
to conditional projections of each variable drawn in the EPBV AR(1).

Accounting for the variable-specific indicator (Figure 7), I confirm that trade channels matter

relatively less than capital linkages. In fact, most countries tend to be net senders in financial

dimension and net receivers in real economy. During post-crisis consolidations (Figure 7b), inward

growth spillovers are a lot more frequent and large because of tight institutional and economic

interdependencies. Thus, cross-border spillovers have exacerbated the negative effects of consol-

idations due to (individual) domestic policies designed to counteract the events of the recession

and that, when successive consolidations occured, proved to be ineffective and counter-productive
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for the domestic economy.

(a) χ3
7tβ̂

3
7t & χ4

7tβ̂
4
7t Factors

Crisis Period
(b) χ3

7tβ̂
3
7t & χ4
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Figure 7: Systemic Contributions of the productivity given a 1% shock to real and financial dimension are drawn
in standard deviation of the variables in the system, focusing on the recent financial crisis (plot a) and post-crisis
consolidation period (plot b). They account for realit,j and finit,j with weightsit,j and structuresit,j components,
corresponding to χ7tβ̂7t variable-specific indicator.

The common indicator (Figure 8) shows that economic-institutional interdependencies matter

more than different transmission channels in driving the spreading of common unexpected shocks.

In fact, I observe deeper commonalities in Figures 8c and 8d. Moreover, contrarily when assessing

country- and variable-specific shocks, I demonstrate that common shocks tend to spill over in a

heterogeneous way during the recent recession (Figures 8a and 8c), while a larger homogeneous

pattern showed during successive consolidations (Figures 8b and 8d). Thus, it would seem to

demonstrate that several countries actually started to put in practice a fiscal consolidation package

and national fiscal actions have been adopted in some sort of coordinated way.

(a) χ1
8tβ̂

1
8t Factor

Crisis period
(b) χ1

8tβ̂
1
8t Factor

Post Recession

(c) χ2
8tβ̂

2
8t Factor
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(d) χ2

8tβ̂
2
8t Factor
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Figure 8: Systemic Contributions of the productivity given a 1% shock to real and financial dimension are drawn
in standard deviation of the variables in the system, focusing on the recent financial crisis (plots a and c) and
post-crisis consolidation (plots b and d) periods. They account for the two common groups: realit,j and finit,j
with weightsit,j component (plots a and b) and realit,j and finit,j with structresit,j component (plot c and d),
corresponding to χ8tβ̂8t common indicator.
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5 Concluding remarks

The paper develops empirical implementations to conduct inference in time-varying coefficients

by using a structural unconstrained Panel Bayesian Multicountry VAR model, in order to deal

with confounding and latent effects. The aim of the project is to assess an analytical contribution

to the recent literature on idiosyncratic business cycles and policy making, minimizing omitted

biases that occurr when dealing with multicountry data. Bayesian computations are used to al-

low cross-unit interdependencies and unit-specific dynamics and restrict the coefficients to have

a low-dimensional time-varying factor structure. The econometric model uses hierarchical priors

for the vector of components in order to permit exchangeability, time variations, and endogeneity

in the innovations in the factors. The identified setup only requires minimal prior input from the

researcher. In this way, an overparametrized VAR can be transformed into a parsimonius Normal

Linear model, where the regressors are all (directly) observed and the loadings are the time-varying

coefficient factors. Generalized Conditional IRFs and Conditional Forecasts are obtained with the

output of an MCMC routine and a variant of Gibbs sampling.

An empirical application to a pool of the current members of the European Monetary Union

illustrates the functioning of the model, with particular attention on the recent recession and

successive consolidations. Three interesting macroeconomic-financial issues left even now unan-

swered have been addressed. First, how length and intensification of spillovers over time affect

commonality, interdependence, and heterogeneity across countries and among variables. Second,

how different transmission channels essentially affect the spreading of spillovers in real and finan-

cial dimension given an unexpected shock. Third, the importance of economic and institutional

implications in driving the transmission of shocks. The analysis is consistent and robust with

the more recent literature on idiosyncratic business cycles, which recognizes the importance to

separate common shocks from propagation of country- and variable-specific shocks when studying

economic-financial linkages.

From a modelling perspective, I demonstrate that growth schocks spill over in a heterogeneous

way across countries, although a significant common component held, mainly during the crisis pe-

riod and even more during post-crisis consolidations. Overall period, commonalities are stronger in

financial dimension where the shock transmission is more intense. The results prove the presence

of higher interdependencies among variables and that consolidations occurred simultaneously be-

hind more coordinated fiscal actions across member states. Accounting for variable-specific shocks,
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the spreading of spillovers show a homogeneous pattern across countries and deeper divergences

whether economic-institutional linkages are involved.

From a policy perspective, despite a currency union, different country-specific developments of

competitiveness, consumption, investment, and production affecting national economy should be

designed in order to shrink growth divergencies across countries. With the advent of the financial

crisis, fiscal expansion has been associated with smaller output growth loss and national fiscal

actions have been used in some sort of coordinated way. After gradual economic recovery began

to be observed, several countries started to put in practice a fiscal consolidation package. Nev-

ertheless, even though the macroeconomic policy mix with a discretionary fiscal expansion and

a neutral monetary policy were likely to mitigate output growth during recession and successive

consolidation, without coordination efforts going beyond what already exists in the set of rules

given in the Maastricht Treaty, eurozone imbalances and different degrees of productivity growth

would tend to persist in the future.
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1 Dynamic Analysis

1.1 Conditional Generalized Impulse Responses

Conditional impulse responses are generally computed as the difference between two realizations

of yt+τ , with τ = 1,2, . . . , which are identical up to time t. Thus, between t+1 and t+τ , one can

assume two time impulses in the jth component of et+τ . First, one that occurs only at time t+1.

Second, the other that no shocks take place at all dates between t+1 and t+τ . In a model with

time-varying coefficients, the approach is inadequate since it overlooks that between t+1 and t+τ ,

structural coefficients may also change. Therefore, impulse responses are obtained as the difference

between two conditional expectations of yt+τ . In both cases, they are conditioned on the history

of the data Yt and of the factors βt, the parameters of the law of motion of the coefficients, and

all future shocks. However, impulse responses are conditioned on a random draw for the current

shocks, whereas in the other the current shocks is set to its unconditional value. Hence, they are

worked out on future shocks instead of integrating them out because, computationally, such a

choice gives more stable responses, even though this makes standard error bands larger than in

the case where future shocks are integrated out. There are two potential types of impulses. First,

one to the variables of the system. Second, one to the factors.

Here, the reparametrized NLR is:

yt = χtβt + (Et +Xtut) with βt = βt−1 + υt (1)

where βt = [β
′
1t, β

′
2t, . . . , β

′
Ft]
′ , χt = [χ1t, . . . , χFt], χit = DXt, Xt = [Yt−1,Wt,Wt−1, Zt, Zt−1]. Let
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f = [(Et +Xtut)
′
, υ
′
]
′ be the vector of reduced-form shocks and Pt = [L−1

t (Et +Xtut)
′
, L−1

t υ
′
t]
′ be

the vector of structural shocks where Et = Ltvt, LtL
′
t = Ω so that var(vt) = σ2Ik and Lt = J ·Kt

where KtK
′
t = I and J is a matrix that orthogonalizes the VAR shocks.

Here, a Choleski system is obtained setting Kt = I, ∀t, and choosing J to be lower triangular

whereas more structural identification schemes are obtained letting J be an arbitrary square root

matrix and Kt a matrix implementing certain theoretical restrictions. The identification matrix

Kt is allowed to be time-varying since, when recursive estimations are used, estimates of Ω de-

pends on t.

Let Pt = (Ω, σ2, Ht,Φ), let P̄j,t be a particular realization of Pj,t and P−j,t indicate the struc-

tural shocks, excluding the one in the jth component. Let F 1
t = {Y t−1, βt,Pt, Lt, Pj,t}, with

Pj,t = {P̄j,t, P−j,t · ft+τ
t+1}, and F 2

t = {Y t−1, βt,Pt, Lt, Pj,t}, with Pj,t = {EPj,t, P−j,t · ft+τ
t+1} be two

conditioning sets. Thus, responses to a shock at t in the jth component of Pt are obtained as:

IR(t, t+ τ) = E(Yt+τ |F 1
t )− E(Yt+τ |F 2

t ) t = 1, 2, . . . (2)

In order to see what definition equation 2 involves, rewrite the original EPBVAR model in a

companion form, without intercept:

Yt+τ = At+τYt+τ−1 +Bt+τWt+τ−1 + Ct+τZt+τ−1 + Et+τ (3)

and let

γt+τ = D[βt+τ−1 + υt+τ ] + ut+τ (4)

where γt+τ = [vec(A1t+τ ), vec(Bt+τ ), vec(Ct+τ )] and A1t+τ is the first row of At+τ . Taking Y t−1 =

(Yt−1, Yt−2, . . . ,Wt−1,Wt−2, . . . , Zt−1, Zt−2, . . .), At = (At, At−1, . . .), Bt = (Bt, Bt−1, . . .), Ct =

(Ct, Ct−1, . . .), and Lt+τ = Lt for ∀τ as given. Solving backward, equations 3 and 4 can be

rewritten as:
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Yt+τ =

( τ∏
k=0

At+τ−k

)
Yt−1 +Bt+τWt+τ−1 + Ct+τZt+τ−1 +

τ∑
l=1

( l−1∏
k=0

At+τ−k

)
·

·Bt−τ−lWt+τ−l−1 · Ct−τ−lZt+τ−l−1 + Lt−τηt+τ +
τ∑
l=1

( l−1∏
k=0

At+τ−k

)
·

· Lt+τ−lηt+τ−l (5)

and as

γt+τ = Dβt−1 +D
τ∑
k=0

υt+τ−k + ut+τ (6)

Consider first the case of a (m+1)-period impulse in the jth component of υ. For example:

υj,t+k = ῡj,t+k; υ−j,t+k, k = 0, 1, 2, . . . , m and υt+m′ , with ∀m
′
> m, are restricted. Then,

IRt,t+τ = Et

[
Yt+τ |Yt−1, A

t, Bt, Ct,Pt, Lt, {η̄jt+m}mk=o, {η−jt+k}mk=0, {ηt+k}τk=m+1

]
−

− Et
[
Yt+τ |Y t−1, At, Bt, Ct,Pt, Lt, {ηt+k}τk=0

]
=

= Et

[( τ−1∏
k=0

)j
Hj
t (η̄jt − Eηjt) +

( τ−2∏
k=0

At+τ−k

)j
· Ljt+1(η̄jt+1 − Eηjt+1) + . . .

. . . +

( τ−m−1∏
k=0

At+τ−k

)j
· Ljt+m(η̄jt+m − Eηjt+m)

]
(7)

where the superscript j refers to the jth column of the matrix. It is easy to see that, when At = A,

Bt = B and Ct = C, ∀t, equation 7 reduces to standard impulse responses and, when Et and υt

are correlated (that is both the sign and the size of the shocks matter a shock in vt), may induce

changes in At, Bt or Ct.

Given 2, responses in the NLR model can be computed as follows:
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1. Choosing t, τ , and Jt. Drawing Ωδ = Lδt (L
δ
t )
′
, (σ2)

′ from their posterior distribution and uδt

from N(0, (σ2)2I ⊗ Lδt (Lδt )
′
). Computing yδt = χtβt + Ltη̄t +Xtu

δ
t .

2. Drawing Ω = Lδt+1(L
δ
t+1)

′
, (σ2)δ,Hδ

t+1, φ
δ. Drawing ηδt+1 from their posterior distribution.

Using the law of motion of the factors to compute βδt+1, δ = 1, 2, . . . ,∆, and the definition

of D to compute χt+1. Drawing uδt+1 from N(0, (σ2)δI ⊗Lδt+1(L
δ
t+1)

′
) and computing yδt+1 =

χt+1βt+1 + Lt+1η̄t+1 +Xt+1ut+1, δ = 1, 2, . . . ,∆.

3. Repeating Step 2 and computing βδt+k, yδt+k, k = 1, 2, . . . , τ .

4. Repeating Steps 1 - 3 by setting ηt+K = E(ηt+1), k = 1, 2, . . . , m and using the draws for

the shocks in 1 - 3.

Responses to structural shocks to the law of motion of the factors can be computed in the same

way. An impulse in υt = ῡ lasting (m+1) periods implies from equation 6 that:

E(γ̄t+τ − γt+τ ) = D
m∑
k=0

Ht+k(η̄t+τ−k − Eηt+τ − k) (8)

and

IRt,t+τ = Et

[ τ∏
k=0

(
Āt+1,τ−k − At+τ−k

)
Yt+1 +

τ∑
l=1

l−1∏
k=0

(
Āt+1,τ−k − At+τ−k

)
·Bt+τ−l−1 ·

· Ct+τ−l−1 +
τ∑
l=1

l−1∏
k=0

(
Āt+1,τ−k − At+τ−k

)
Lt+τ−lηt+τ−l

]
(9)

1.2 Conditional Forecasts

There are two types of conditional forecasts one can compute in this framework. Those involving

displacement of the endogenous variables Wt and Zt from their unconditional path, and those

involving a particular path for a subset of the endogenous variables from their conditional path.
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Both types of conditional forecasts can be constructed using the output of the Gibbs sampler

routine.

Consider first displacing the endogenous variables from their expected future path for m+1

periods. Calling the new path W̄t+k and Z̄t+k, k = 0, 1, . . . , m. Then, the response of Yt+τ

is:

IRt,t+τ = Et

[( τ−2∏
k=0

At+τ−k

)
Bt+1

(
W̄jt −Wjt

)
Ct+1

(
Z̄jt − Zjt

)
+

( τ−3∏
k=0

At+τ−k

)
·

·Bt+2

(
W̄jt+1 −Wjt+1

)
· Ct+2

(
Z̄jt+1 − Zjt+1

)
+ . . .+

( τ−2−m∏
k=0

At+τ−k

)
·

·Bt+m+1

(
W̄jt+m −Wjt+m

)
· Ct+m+1

(
Z̄jt+m − Zjt+m

)]
(10)

Thus, to compute conditional forecasts of this type in the NLR model, one need to:

1. Choosing t, τ , and a path {W̄t+k, Z̄t+k}mk=0. Drawing Ωδ, (σ2)δ from their posterior, drawing

Eδ
t +Xtu

δ
t and computing yδt .

2. Drawing (Ht)
δ, Ψδ from their posterior distribution; drawing υδt+1 and using the law of

motion of the factors to draw βδt+1, δ = 1, 2, . . . ,∆ and the definition of D to compute

χt+1. Then, Eδ
t+1 + Xt+1U

δ
t+1 are drawn to compute yδt+1 = χt+1β

δ
t+1 + (Eδ

t+1 + Xt+1u
δ
t+1),

δ = 1, 2, . . . ,∆.

3. Repeating Step 2 in order to compute βδt+k, yδt+k, k = 1, 2, . . . , τ .

4. Repeating Steps 1 - 3. In this way, it setsWt+k = E(Wt+k), Zt+k = E(Zt+k), k = 0, 1, . . . ,m,

using the draws for the shocks in 1 - 3.

Finally, considering the case in which the future path of a subset of Yt’s is fixed. For example,

in a system with real and financial linkages, one would like to work out on a given path for the

future growth spillovers. Hence, partioning Yt = AtYt−1 + BtWt−1 + CtZt−1 + Et in two blocks,

let Y2t+k = Ȳ2t+k be the fixed variables and Y1t+k those allowed to adjust, the Impulse Responses
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are:

IRt,t+τ = E

[
L1
t

( t−1∏
k=0

At+τ−k

)1

(η̄2t − η2t) + L1
t+1

( t−2∏
k=0

At+τ−k

)1

(η̄2t+1 − η2t+1) + . . .

. . . + L1
t+m

( t−1−m∏
k=0

At+τ−k

)1

(η̄2t+m − η2t+m)

]
(11)

where η̄2t+k = Ȳ2t+k−A21,t+kY1t−k−1−A22,t+kY2t−k−1−B2t+kWt+k−1−C2t+kZt+k−1 and the super-

script 1 refers to the first row of the matrix. Hence, to compute this type of conditional forecasts

one need to:

1. Partitioning yt = (y1t, y2t), choosing t and a path {y2t+k}τk=0. Using the model to solve for

the η̄2t that gives y2t = ȳ2t, backing out the implied yδ1t once draws for Eδ
1t, and computing

uδt from their posterior distribution. Thus, υδt+1 can de drawn using the law of motion of the

factors to obtain βδt+1, with δ = 1, 2, . . . ,∆, and the definition of D to compute χt+1.

2. Using the model to solve for η̄2t that gives y2t+1 = ȳ2t+1, backing out the implied yδ1t+1 once

draws for Eδ
1t+1, and computing uδt+1 as above. Hence, once can draw υδt+2, using the law

of motion of the factors to compute βδt+2, with δ = 1, 2, . . . ,∆, and the definition of D to

compute χt+2.

3. Repeating Step 2 and computing βδt+k, yδt+k, k = 2, 3, . . ..

4. Repeating Steps 1 - 3, once can set ηδ2t+k = E(ηt+k), ∀k using the draws for the shocks in 1

- 3.

In Step 2 of all algorithms, it has implicitly assumed that selecting a path for the shocks does not

alter neither the law of motion of the factors nor the beliefs about the true structural shocks.
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2 Data Description

Table 1: Descriptive Statistics

VARIABLES DESCRIPTION
General government spending Financial accounts for general government spending

weighted for the GDP.
Gross fixed capital formation Investments of fixed assets at current prices weighted

for the GDP.
GDP growth rate It is calculated as: Log

(
GDPit,j

GDPit−1,j

)
.

General government debt Non-financial accounts for general government debt
as percentage of GDP.

Current account balance Non-financial accounts for general government net
borrowing/lending as percentage of GDP.

Interest rate EMU convergence criterion
series.

Bilateral flows of trade Exports and imports by Member States of the EU
at current prices weighted for the GDP.

Bilateral flows of capital Financial transactions on the total economy at
current prices weighted for the GDP.

Net international investments Total international investment position in million of
euro weighted for the GDP.

Nominal labour cost It is defined as the ratio of labour costs to labour
productivity.

General government consumption Total general government expenditure at current
prices weighted for the GDP.

Private sector consumption Final consumption expenditure by resident
institutional units at current prices weighted for the GDP.

Change of unemployment rate Growth rate of the unemployment rate as percentage
of GDP.

Productivity It corresponds to logarithm of the GDP per
capita for each country.
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3 Summary Statistics

Table 2: System Contributions accounting for χ1tβ̂1t & χ2tβ̂2t Indicators
Country GOV GDPG GFCF INT DEBT CURR

IT -0.380 0.028 0.128 0.281 0.060 -0.282
ES 0.360 -0.188 -0.070 -0.259 0.103 0.545
FR 0.223 0.073 -0.417 0.119 0.307 -0.209
AT -0.215 0.899 0.205 -0.565 -0.556 -0.175
DE -0.121 -0.301 0.667 0.364 0.287 0.372
IE -0.283 -0.354 -0.129 0.237 0.243 0.082
GR -0.001 -0.084 -0.156 -0.138 -0.182 -0.274
PT 0.417 -0.074 -0.228 -0.038 -0.262 -0.060

St. Dev. 0.302 0.392 0.333 0.313 0.307 0.311

The Table refers to the conditional generalized IRFs from 1999q1 to
2016q1, absorbing outcomes from conditional forecasts computed on
the time frame of 9 quarters. It describes, in terms of standard devia-
tions, the systemic contributions of the productivity given a 1% shoch
to real and financial dimension. They correspond to χ1tβ̂1t and χ2tβ̂2t
cross-country indicators.

Table 3: System Contributions accounting for χ3tβ̂3t & χ4tβ̂4t Indicators
Country GOV GDPG GFCF INT DEBT CURR

IT 0.274 -0.410 0.416 0.285 0.372 0.181
ES -0.072 -0.115 0.280 -0.144 0.112 0.508
FR 0.035 0.045 -0.091 -0.538 -0.278 -0.136
AT -0.284 0.838 0.174 0.268 0.328 -0.275
DE -0.010 -0.234 -0.091 -0.224 -0.213 -0.142
IE -0.634 -0.200 -0.792 -0.094 -0.427 -0.447
GR 0.020 -0.041 0.130 0.429 0.189 0.193
PT 0.671 0.117 -0.027 0.018 -0.082 0.118

St. Dev. 0.381 0.377 0.367 0.318 0.294 0.306

The Table refers to the conditional generalized IRFs from 1999q1 to
2016q1, absorbing outcomes from conditional forecasts computed on
the time frame of 9 quarters. It describes, in terms of standard devia-
tions, the systemic contributions of the productivity given a 1% shoch
to real and financial dimension. They correspond to χ3tβ̂3t and χ4tβ̂4t
cross-country indicators.
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Table 4: System Contributions accounting for χ5tβ̂5t & χ6tβ̂6t Indicators
Country GOV GDPG GFCF INT DEBT CURR

IT -0.527 0.419 0.151 -0.094 -0.363 -0.046
ES 0.468 -0.514 -0.013 0.490 0.400 0.554
FR -0.072 -0.044 0.133 0.107 0.036 0.354
AT 0.071 -0.130 -0.282 0.143 0.369 -0.082
DE -0.122 0.375 -0.084 0.157 0.195 0.026
IE 0.246 0.204 0.716 -0.167 -0.221 -0.579
GR 0.214 0.001 -0.619 -0.739 -0.232 0.066
PT -0.279 -0.312 -0.003 0.104 -0.183 -0.293

St. Dev. 0.318 0.325 0.382 0.357 0.294 0.352

The Table refers to the conditional generalized IRFs from 1999q1 to
2016q1, absorbing outcomes from conditional forecasts computed on
the time frame of 9 quarters. It describes, in terms of standard devia-
tions, the systemic contributions of the productivity given a 1% shoch
to real and financial dimension. They correspond to χ5tβ̂5t and χ6tβ̂6t
cross-country indicators.

Table 5: System Contributions accounting for χ7tβ̂7t & χ8tβ̂8t Indicators
Country wreal wfin wireal wifin wcommon icommon

IT 0.249 0.442 -0.200 -0.377 0.097 -0.224
ES 0.188 -0.081 -0.319 0.488 0.095 -0.776
FR 0.038 -0.393 -0.157 0.140 -0.521 0.066
AT -0.266 0.171 0.250 0.168 0.219 0.123
DE -0.082 -0.103 -0.324 0.102 -0.089 0.004
IE -0.539 -0.371 0.505 0.102 -0.167 0.010
GR -0.114 0.387 0.229 -0.341 0.589 0.563
PT 0.525 -0.051 0.016 -0.282 -0.223 0.234

St. Dev. 0.328 0.313 0.303 0.304 0.332 0.386

The Table refers to the conditional generalized IRFs from 1999q1 to
2016q1, absorbing outcomes from conditional forecasts computed on
the time frame of 9 quarters. It describes, in terms of standard de-
viations, the systemic contributions of the productivity given a 1%
shoch to global economy. They correspond to χ7tβ̂7t variable-specific
indicator and χ8tβ̂8t common indicator.

Figure 1 draws the general government spending (plot 1a) and structures component (plot 1b).

The former proves that fiscal policy would have been countercyclical during the recent recession

and the second period of the consolidation (from 2011q1), and procyclical in the first period of the

consolidation (from 2009q1). The structures component shows an irregular path over time and the

latter would be increased in the last decade proving the huge economic-institutional constraints

which national authorities have to conform to follow domestic policies.
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(a) General Government Spendings (b) Structures Component

Figure 1: General Government Spending (plot a) and structuresit,j component (plot b) are drawn spanning the
period from 1999q1 to 2013q4.

4 Conditional GIRFs - Graphic Representation

(a) Real Dimension (b) Financial Dimension

Figure 2: Impulse responses of the productivity given a 1% shock to economy (solid lines) and 60% confidence
bands (dashed lines) are drawn in standard deviation of the variables in the system, spanning the period 1999q1

to 2016q1. They account for χ3tβ̂3t (plot a) and χ4tβ̂4t(plot b) cross-country indicators.
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(a) Real Dimension (b) Financial Dimension

Figure 3: impulse responses of the productivity given a 1% shock to economy (solid lines) and 60% confidence
bands (dashed lines) are drawn in standard deviation of the variables in the system, spanning the period 1999q1

to 2016q1. They account for χ5tβ̂5t (plot a) and χ6tβ̂6t (plot b) cross-country indicators.

(a) Real Dimension (b) Financial Dimension

Figure 4: Country-specific indicators are shown in standard deviation from the historical average of annual growth
rates, spanning the period 1999q1 to 2016q1. They correspond to χ3tβ̂3t (plot a) and χ4tβ̂4t (plot b) cross-country
indicators.
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(a) Real Dimension (b) Financial Dimension

Figure 5: Country-specific indicators are shown in standard deviation from the historical average of annual growth
rates, spanning the period 1999q1 to 2016q1. They correspond to χ5tβ̂5t (plot a) and χ6tβ̂6t (plot b) cross-country
indicators.

(a) Variable-specific Factors (b) Common Factors

Figure 6: Variable-specific (a) and common (b) indicators across all countries for real and financial dimension
are shown in standard deviation from the historical average of annual growth rates, spanning the period 1999q1 to
2016q1. They correspond to χ7tβ̂7t variable-specific indicator (plot a) and χ8tβ̂8t (plot b) common indicator.
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