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Abstract

We study the interaction between a potential offender’s (principal) incentive to commit crimes

and the potential victims’ (agents) incentive to report crime. The probability of crime and the

credibility of reports are endogenously determined in equilibrium, and the principal is convicted if

found sufficiently likely of having committed crime by a Bayesian judge. We show that when the

punishment in case of a conviction is sufficiently large, the principal’s decisions to commit crimes

are strategic substitutes, while the agents’ decisions to report crime are strategic complements.

The tension between agents’ coordination motive and the negative correlation of their private

information causes their reports to become arbitrarily uninformative in equilibrium and lead to

a significant probability of crime. The occurrence of crime and lack of report credibility can be

mitigated by reducing the punishment to a convicted principal or by rewarding lone accusers.
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1 Introduction

Abuses and assaults are often hard to prove with incontrovertible evidence. To mitigate this difficulty,

judges, firms, other organizations, and the public at large, often use the number of accusations leveled

against an individual to assess their credibility. The presumption is that the accumulation of claims

against an individual makes it more likely that he/she was guilty of at least some of these claims.

This paper revisits this presumption in an environment between a rational potential abuser (or

principal) and a number of potential victims (or agents) who may have private motives to accuse the

principal irrespective of the abuse. We demonstrate, perhaps paradoxically, that when the principal

has much to lose from being convicted of assault, environments with a higher number of potential

victims reduce, and can even destroy, the credibility of individual reports against the principal, and

can dramatically increase the probability of abuse relative to an environment with fewer potential

victims.1

In our setting, agents incur a cost from accusing the principal unless the latter is deemed sufficiently

likely of having abused at least some agent. If, for instance, the agents are the principal’s subordinates,

they may face retaliation for accusing him unless he is convicted of abuse and removed from power.

When considering whether to accuse the principal, an agent trades off the expected cost of retaliation

with the benefit from punishing his abuser and, possibly, a private benefit of uncertain magnitude

from harming or getting rid of the principal, which is independent of the abuse.

The principal’s likelihood of guilt is a function of the number and credibility of agents’ reports,

which are endogenously determined in equilibrium. When more numerous reports of abuse increase

the posterior likelihood of wrongdoing, a rational principal strategically commits fewer abuses in order

to reduce the expected number of reports filed against him.

This strategic restraint by the principal causes agents’ reports to become less credible and, para-

doxically, increases the probability with which abuses happen in equilibrium. To see this, consider

the case of two agents and suppose that two reports are required to get the principal convicted.2

In this context, suppose that an agent has been abused. This agent knows that the other agent is

1Our equilibrium analysis sheds light on the incentives to commit and report crimes when all individuals understand
the rules of the game and the consequences of their actions. As such, our results may be better suited to describe
environments in which the institutions, laws, and norms that punish abusers have been in place for a long time and
everyone understands them. This stands in contrast to situations involving recent institutional changes, in which the
repercussions of an assault, a victims’ ability and willingness to file a report against a presumed abuser, and the credibility
of such report, may be incorrectly evaluated by some of the individuals involved in the interaction.

2In our analysis, the link between reports and conviction is determined by the posterior probability that the principal
is guilty of at least one abuse after observing the reports. When the punishment following a conviction is sufficiently large,
we show that in equilibrium two reports are required to convict the principal in all equilibria that survive a moderate
refinement (namely, monotonicity and responsiveness defined in subsection 3.1).
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unlikely of being abused, since the principal wishes to avoid generating two reports against him. The

first agent thus knows that his accusation of the principal, should he formulate one, is unlikely to be

complemented by a second accusation, and is thus more likely to result in retaliation against him than

in punishment against the principal. This reduces the abused agent’s incentive to file an accusation.

A similar phenomenon arises in the reverse direction: an agent who has not been abused knows that

the other agent is more likely of being abused and, hence, of accusing the principal. If the first agent

holds an independent grudge against the principal, this increases his incentive to file an accusation.

In summary, a negative correlation emerges between agents’ private information due to the princi-

pal’s strategic restraint. This negative correlation, combined with the endogenous complementarity of

the agents’ reports, undermines the agents’ credibility as they try to coordinate their reports regardless

of whether abuses have actually taken place.

The lowered credibility of the agents’ reports has a further perverse effect: the principal can more

easily abuse one of the agents since reports against him carry less information. We show that the

equilibrium probability of abuse is strictly higher in a setting with two agents compared to that in

the single-agent benchmark. More generally, environments with a higher number of potential victims

exhibit equilibria in which reports are less credible, less informative even after aggregating all agents’

reports, and suffer from a higher probability of abuse.

This logic leads to an extreme result as the punishment in case the principal is convicted becomes

arbitrarily large. When there are multiple agents, the agents’ incentives to coordinate their reports

and the negative correlation across their private experience of abuse cause their combined reports to

become arbitrarily uninformative. As a result, the probability of abuse converges to a significant level.

This result stands in sharp contrast with the single-agent case, in which a report of abuse becomes

arbitrarily informative and the probability of abuse vanishes to zero as the punishment to a convicted

principal becomes arbitrarily large.

Several remedies are studied to restore the informativeness of reports in environments with multiple

agents, which offset agents’ coordination motives or the negative correlation induced by the principal’s

strategic restraint. First, we consider the inclusion of transfers to the agents by a social planner.

Intuitively, rewarding an agent who stands alone accusing the principal can offset the retaliation

cost that he would face for failing to convict the principal. Rewards of this kind can restore the

informativeness of the agents’ reports close to the level in the single-agent setting.3 However, these

3We will show that the equilibrium level of informativeness under this transfer scheme coincides with that under the
single-agent benchmark when the punishment to the convicted principal becomes arbitrarily large.
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transfer schemes are not budget balanced. They subject a social planner to losses and create incentives

for collusion between the various individuals involved in the mechanism.

In fact, we show that no budget-balanced transfer scheme can fully address the weak credibility of

reports in multi-agent settings. Intuitively, a budget-balanced transfer scheme must punish an agent

who fails to accuse the principal when the other agent does. In doing so, the scheme reintroduces

a coordination motive among the agents: conditional on an agent accusing the principal, it becomes

beneficial for the other agent to also accuse the principal in order to avoid the negative transfer.

Transfers thus have limited value for addressing the reduced credibility of reports and the increased

probability of abuse that stems from an increase in the number of potential victims.

Second, we treat the punishment to the convicted principal as an instrument to lower the proba-

bility of abuse. Surprisingly, the probability of abuse may decrease when this punishment is reduced.

Intuitively, a principal facing a lower punishment has less incentive to strategically restrain his abusing

behavior, and in particular, his decisions to abuse different agents will become strategic complements.

This leads to a positive correlation between the agents’ private information and based on our previous

reasoning, their coordination motives will lead to more credible reports and lower probability of abuse

in equilibrium.

One concern of our baseline model is that it fails to take into account the potential heterogeneity

in people’s propensities to commit crimes. We extend the model to include the presence of saints

who do not enjoy committing crimes and serial assaulters whose relative value from committing crime

stands out. In our extension, the principal has private information about his marginal benefit from

committing crimes and/or his (perceived) cost of being convicted. Under our formulation, saints have

very low or even negative benefits from committing crimes and serial assaulters have high benefits from

committing crimes or low perceived costs of being convicted. In equilibrium, the former commit no

abuse, while the latter abuse all agents under his power. Our main findings, namely, the endogenous

negative correlation between the agents’ private information and their coordination motives in filing

reports, still apply as long as saints and serial assaulters occur with a low enough probability.

The rest of this article is organized as follows. We conclude this section with a review of the

relevant literature in order to clarify our contributions. We describe the baseline model in section 2

and state our main results in section 3. Section 4 examines two potential solutions to restore reporting

informativeness. Section 5 studies extensions of the baseline model and section 6 concludes.
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1.1 Related Literature

In considering the ability to aggregate and elicit information from multiple agents, our paper con-

tributes to various literatures related to collective decision making, coordination, law and economics,

and the part of mechanism design concerned with eliciting private information.

First, our analysis propose a novel explanation for the failure of information aggregation. The

literature on such failures includes “herding” models, in which social learning is subject to informa-

tional externalities (Banerjee 1992, Bikhchandani, Hirshleifer and Welch 1992, Smith and Sørensen

2000) as well as payoff externalities (Scharfstein and Stein 1990, Ottaviani and Sørensen 2000). In

these papers, agents may fail to act on their private information, but only because their predecessors’

actions are informative. By contrast, in our model agents cannot observe one another, and an increase

in the number of agents can result in agents’ reports becoming less informative, even taken collectively.

In herding models, moreover, agents’ signals are conditionally independent or positively correlated,

whereas in our setting agents’ private information (about whether a crime has taken place or not) is

negatively correlated in equilibrium. It is the combination of this negative correlation and of agents’

motives to coordinate their reports that reduces the informativeness of agents’ reports in equilibrium.4

Failures of information aggregation may also arise in voting models and, more generally, in the

context of collective decision making. For example, it can be caused by informational effects when

agent’s decision is evaluated conditional on the agent being pivotal, as pointed out by Austen-Smith

and Banks (1996) and Bhattacharya (2013), or by individual biases as in Morgan and Stocken (2008).

When voters’ payoffs from a reform are negatively correlated, Ali, Mihm and Siga (2018) point out that

collective decisions may fail to reflect the social optimum for some supermajority rules. Intuitively,

if a voter is pivotal, it suggests that many other voters are in favor of the reform, which by negative

correlation means that he himself is unlikely to benefit from the reform. In Ali, Mihm and Siga

(2018), agents’ private benefits from the reform are negatively correlated. In our paper, the negative

correlation concerns agents’ signals and, other things equal, agents benefit from coordinating their

actions. Put more broadly, a distinctive feature of our analysis is that both the voting rule and the

correlation structure of the agents’ private information are endogenous determined. This stands in

contrast to most models on voting, such as the seminal contributions of Feddersen and Pesendorfer

(1996,1997,1998), in which these ingredients are exogenous.

4Strulovici (2018) studies a sequential learning model in which agents’ signals exhibit information attrition: an agent
is less likely of having an informative signal, other things equal, if another agent has found such a signal. This information
attrition may be viewed as a form negative correlation across agents’ signals and also has adverse effects on learning.
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Second, the use of normally distributed preference shocks and the presence of agents’ coordination

motives are reminiscent of Baliga and Sjöström (2004) and Chassang and Padró i Miquel (2010), who

demonstrate the significant effects of incomplete information on the equilibrium outcomes of static

and dynamic games. In contrast to these papers, our analysis focuses on the possibility of revealing

information about an endogenously distributed state of the world (e.g., whether an abuse has taken

place) that is orthogonal to those preference shocks, which is absent in their models. The logic

underlying our results is absent from this literature. In particular, the lack of informativeness in our

model is driven by the interactions between the endogenous negative correlation between the agents’

private information and their coordination motives, while their results follow from the contagion

arguments arising in global games, à la Carlson and Van Damme (1993), Morris and Shin (1998).

Third, the failure to elicit correlated private information from multiple informed agents stands in

sharp contrast to the well-known result of Crémer and McLean (1985, 1988), who show that one can

extract all agents’ private information via a budget balanced mechanism under a convex independence

condition. As noted, budget-balanced transfers fail to elicit whether abuses occurred in our setting.

Intuitively, the difference arises because our agents’ type is two-dimensional: one dimension concerns

whether he was abused; the other concerns his private benefit from accusing the principal. This second

dimension causes Crémer and McLean’s convex independence condition to fail: agents with the same

abuse status but different private benefits hold the same belief about the other agents’ types.

Fourth, our paper contributes to the law and economics literature by studying the interactions

between a potential criminal’s incentives to commit crimes and the potential victims’ incentives to

report crimes. Recent work in this area includes Silva (2018) and Baliga, Bueno de Mesquita and

Wolitzky (2018), who consider settings with multiple potential suspects. These suspects have neg-

atively correlated types, because at most one of them has committed the crime of which they are

accused. In these papers, there is only one class of players (potential criminals, unlike the potential

criminal and and victims in our setting) and the results bear little resemblance to ours.5

Lastly, our inclusion of rational strategic abusers distinguishes our analysis from recent work fo-

cused on the incentives of potential victims, in which the potential criminal is non-strategic who me-

chanically commits crimes with some fixed probability irrespective of the stakes. Lee and Suen (2018),

5Other differences between our model and theirs include: In Silva (2018), the distribution of states is exogenous
and the judge has access to an informative signal about the state, whereas in our model, the distribution of states is
endogenous and the judge cannot use exogenous signals to evaluate the credibility of the agents’ reports. In Baliga et
al.(2018), the negative correlation between the agents’ innocence is exogenous (only one criminal has the opportunity
to attack) and the complementarity between the potential criminals’ attacking decisions arises due to an imperfect
attribution problem faced by the judge. In our model, such negative correlation arises endogenously in all equilibria and
the complementarity between the potential victims’ reports is driven by the endogenously determined voting rule.
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in particular, study the timing of reports by victims and libelers. Their analysis and ours consider

complementary aspects of reporting by potential victims. In particular, the strategic restraint which

emerges endogenously in our model is necessary for the negative correlation across agents’ reports that

lies at the heart of our analysis.

2 Model

Primitives: Consider the following game between a principal, n agents and an evaluator that unfolds

in three stages. In stage 1, the principal chooses an n-dimensional vector θ ≡ (θ1, ..., θn) ∈ {0, 1}n

where θi = 0 is interpreted as the principal abusing/committing a crime against agent i and vice versa.

In stage 2, agent i ∈ {1, 2, ..., n} privately observes the following three pieces of information before

deciding whether to file a report against the principal or not:

1. the principal’s choice of θi ∈ {0, 1};

2. the realization of a random variable ωi ∈ R;

3. whether he is strategic or mechanical.

We interpret ωi as a utility shock that affects agent i’s preference towards the principal. We assume

that ω1, ω2, ..., ωn are independently and identically distributed according to N (µ, σ2) with µ ≥ 0 and

σ > 0.6 Let Φ(·) be its cdf and φ(·) be its pdf. Each agent is strategic with probability δ ∈ (0, 1), in

which case he can flexibly choose whether to file a report or not. With complementary probability,

the agent is non-strategic and mechanically files a report with probability α, where α is an arbitrary

real number in (0, 1).7 Whether an agent is strategic or mechanical is independent of (ω1, ..., ωn) and

is also independent of whether other agents are strategic or mechanical. We are primarily interested

in settings where mechanical types are rare, namely, δ being close to 1.

In stage 3, the evaluator observes the vector of reports a ≡ (a1, ..., an) ∈ {0, 1}n and updates his

belief about Πn
i=1θi, i.e. whether the principal is guilty (in which case Πn

i=1θi = 0) or innocent (in

which case Πn
i=1θi = 1). Then he chooses s ∈ {0, 1} where s = 0 means that the principal is convicted

and s = 1 means that the principal is acquitted.

6The assumption that µ ≥ 0 is only needed for the results on comparative statics and is not required for the results
on the L→∞ limit.

7The presence of the mechanical type is a technical assumption in order to guarantee the existence of non-trivial
equilibria in settings with multiple agents. The details will be explained in Appendix B. In Appendix K, we show that
our main insights are robust under alternative specifications of the mechanical type’s strategy.
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Payoffs: The evaluator maximizes the expected value of the following quadratic function:

−
(
s− (π∗ − 1

2
)−Πn

i=1θi

)2
, (2.1)

where π∗ ∈ (0, 1) is an exogenous parameter. Intuitively, the evaluator will choose s ∈ {0, 1} in order

to minimize the distance between s and his bliss point, given by π∗ − 1
2 + Πn

i=1θi. Therefore, he will

adopt the following cutoff strategy:

s


= 0 if Pr

(
Πn
i=1θi = 0

∣∣∣a) > π∗

∈ [0, 1] if Pr
(

Πn
i=1θi = 0

∣∣∣a) = π∗

= 1 if Pr
(

Πn
i=1θi = 0

∣∣∣a) < π∗,

(2.2)

namely, he will convict the principal if and only if his posterior belief attaches probability greater or

equal to π∗ to the principal being guilty. For future reference, let

l∗ ≡ π∗

1− π∗
(2.3)

be the critical likelihood ratio for conviction.

The principal’s payoff is:
n∑
i=1

(1− θi)− L(1− s), (2.4)

where L > 0 is the punishment he receives after being convicted. Strategic agent i’s payoff is:

s(ωi + bθi − cai), (2.5)

where b > 0 measures the disutility he suffers from interacting with a principal who has abused him in

the past and c > 0 is his cost of filing a report, which is only incurred when the principal is acquitted

but can be avoided if the principal is convicted.

To interpret these payoffs, the principal strict benefits from committing more crimes but will suffer

great losses if he is believed to be guilty with high enough probability.8 This reveals his trade-off

when deciding whether to commit crimes or not as well as who to commit crimes against. For the

8Despite assuming constant marginal benefit of committing crimes, our results are even stronger when the principal
faces decreasing returns from committing additional crimes. Our results also remain robust when the principal’s benefit
from committing crimes is 0 or even negative with positive probability, as long as the probability with which those types
occur is strictly less than 1− π∗.
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most part of this paper, we will focus on cases where L is large enough relative to the benefit from

committing assaults. This models situations such as the principal is the head of an organization and

being convicted can result in the loss of power, or the principal is an influential public figure and being

convicted of misconduct could result in the loss of his reputation.

Every agent receives a status quo payoff 0 if the principal is convicted (s = 0) and his payoff when

the principal is acquitted (s = 1) depends on three terms. First, it is affected by the heterogenous tastes

towards the principal, which are modeled by the normally distributed preference shocks ω1, ω2, ..., ωn.

Second, each agent is more inclined to report against the principal when he has been abused, as

captured by the strictly positive b. Since s(ωi + bθi − cai) is agent i’s continuation utility at the

reporting stage after the abuse has taken place, b does not capture the direct utility loss from the

abuse, but rather, it should be interpreted as an agent’s disutility from continuing to interact with a

principal who has abused him in the past, his increased hazards of being abused again in the future,

his preference for justice and vengeance, etc.

Third, filing reports are costly to the agents when they fail to convict the principal.9 In applications

where the principal is a powerful person or when the agents are the principal’s subordinates, this

cost stems from the principal’s retaliation which is incurred only when he stays in power. In other

applications, such as the principal is the agents’ colleague, neighbor or friend, the cost can come

from the social stigma on individuals who make public claims on sensitive topics or it can be the

monetary cost of going through the judicial process (such as paying the lawyer fee). Common in these

applications, a potential victim’s cost of reporting is greater when he fails to convict the defendant.

Remark: In order to endogenously assess the credibility of reports, an important feature of our

model is that agents can file reports no matter whether they have been abused or not. This captures

situations where smoking-gun evidence is scarce and the potential victims’ claims are hard to verify,

which is applicable to workplace discrimination, verbal abuse, sexual harassment, etc.

Due to this reporting credibility problem, whether the principal is convicted or not depends on the

probability with which he is guilty according to a Bayesian observer’s posterior belief. Depending on

the application, the punishment to the principal can be enforced by the criminal justice system (when

the principal’s misbehavior is against the law), or it can be carried out by the board of directors of a

firm (when the manager’s behavior hurts the firm’s public image and reputation), or it can be dictated

by public opinions and is implemented by the local communities via ostracism (when the principal’s

9For our results to hold, we only need the cost of filing reports to be strictly lower when the principal is convicted
compared to the case when the principal is acquitted.
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misbehavior is legal but immoral). Therefore, π∗ measures the society’s attitude towards the trade-off

between convicting the guilty and acquitting the innocent, which we view as an exogenous parameter

that reflects the prevailing ideology instead of an endogenous choice variable.10

3 Analysis & Results

In subsection 3.1, we introduce our solution concept monotone-responsive equilibrium, which refines

the set of sequential equilibria and exist when L is large enough.11 To highlight the inefficiencies

caused by coordination motives, we compare the case with one agent (subsection 3.2) to that with two

agents (subsection 3.3). In particular, we focus on the informativeness of reports and the equilibrium

probability of crime. We explain the economic mechanisms behind our results in subsections 3.3 and

3.4. Generalizations of our main insights to settings with more than two agents as well as comparative

static results on the number of agents can be found in subsection 5.1.

3.1 Solution Concept

Let q : {0, 1}n → [0, 1] be the mapping from the vector of reports to the conviction probabilities.

The solution concept is monotone-responsive equilibria (henceforth equilibrium for short), which are

sequential equilibria that satisfy the following two additional requirements:

1. Responsiveness: q(0, 0, ..., 0) = 0.

2. Monotonicity: For every a,a′ ∈ {0, 1}n with a � a′, we have q(a) ≥ q(a′).

To understand the implications of these refinements, notice that first, responsiveness requires that

if no report is filed against the principal, then he will not be convicted. Economically, this fits well

into the motivating applications of committing and reporting crimes, i.e. no report will not lead to

conviction. Theoretically, it rules out uninteresting equilibria in which the principal commits crimes

against all agents with probability 1 and he is convicted with probability 1 under every reporting

profile. The assumption that α ∈ (0, 1) implies that every reporting profile will occur with strictly

positive probability. As a result, the ex ante probability with which the principal is guilty is strictly

less than 1 in every equilibrium that satisfies the responsiveness criteria.

10As will become clear later, despite a decrease in π∗ will reduce the probability of crime, it will increase the fraction of
innocent people among those that have been convicted. Moreover, maximizing the informativeness of reports is equivalent
to minimizing the probability of crime under the constraint that the ratio of innocent people among those being convicted
is below an exogenous upper bound 1− π∗.

11The existence of monotone-responsive equilibria will be addressed in the follow-up subsections both in the single-agent
benchmark and in the two-agent scenario.
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The monotonicity requirement rules out equilibria in which some agents are more likely to report

when they have not been abused and (or) they enjoy interacting with the principal (i.e. their ωi and

θi are high). Economically, such equilibria are unreasonable since the agents who like the principal the

most and have not been abused will file reports, suffer the reporting costs themselves for the purpose

of helping the principal to stay in power. This is at odds with the interpretation that c is the loss

from the principal’s retaliation, the cost of going through the judicial system, etc.

For a theoretical justification, notice that all equilibria are monotone if the principal can privately

commit to a retaliation plan against each agent before the game starts, as in Chassang and Padró

i Miquel (2018). To be more precise, suppose the principal can choose c̃ ≡ (c̃1, ..., c̃n), where c̃i :

{0, 1}n → [0, c] is a mapping from the set of reporting profiles to the losses suffered by agent i from

retaliation and c is the maximal damage the principal can inflict on each individual agent. Agent i

can only observe c̃i but not the retaliation plans against other agents. In this scenario, the principal’s

optimal retaliation plan is bang-bang and he will retaliate to the maximum against messages that

increase the evaluator’s belief about Πn
i=1θi = 0 and will not retaliate against other messages.

To conclude this subsection, we present an observation that crime will occur with strictly positive

probability in every equilibrium:

Lemma 3.1. In every equilibrium, Πn
i=1θi = 0 occurs with strictly positive probability.12

Proof of Lemma 3.1: Suppose towards a contradiction that (θ1, ..., θn) = (1, 1, ..., 1) occurs with prob-

ability 1. Since a mechanical type always reports and a strategic type with ωi > 0 has a strictly

dominant strategy of not reporting, every a ∈ {0, 1}n occurs with strictly positive probability. Given

the prior probability of Πn
i=1θi = 0 is 0, the posterior probability of Πn

i=1θi = 0 under any reporting

profile is also 0. Therefore, s = 1 occurs with probability 1, which gives the principal a strict incentive

to choose θi = 0 for every i ∈ {1, 2, ..., n}, leading to a contradiction.13

12This is related to a well-known conclusion on inspection games (Dresher 1962). In those models, crime cannot
happen with zero probability since otherwise, the inspector will have no incentive to conduct costly inspections which
will provide the suspect a strict incentive to commit crimes. In our model, crime cannot happen with zero probability
since the evaluator’s posterior belief will never reach π∗ no matter how many reports he has observed, and this will
provide the principal a strict incentive to commit crimes, leading to a contradiction.

13The insight from Lemma 3.1 remains robust in all sequential equilibria and also applies when there are no mechanical
types. To see this, for (θ1, ..., θn) = (1, 1, ..., 1) to occur with probability 1 in some equilibrium, it must be the case that
there exists i such that agent i reports with probability 0 on the equilibrium path. For the principal to have an incentive
not to abuse him, he will report with strictly positive probability after being abused and the principal will be convicted
with positive probability. However, this implies that agent i will also have a strict incentive to report when ωi is
sufficiently low, leading to a contradiction.
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3.2 Single-Agent Benchmark

When there is only one agent, the principal is convicted with strictly positive probability only when

the agent files a report. Let qs be the probability with which s = 0 conditional on a = 1. If the agent

has been abused (θ = 0), then he has an incentive to file a report only when:

ω ≤ (1− qs)(ω − c)

or equivalently,

ω ≤ ω∗s ≡ −c
1− qs
qs

. (3.1)

Similarly, if he has not been abused (θ = 1), then he has an incentive to file a report only when:

ω + b ≤ (1− qs)(ω + b− c)

or equivalently,

ω ≤ ω∗∗s ≡ −b− c
1− qs
qs

. (3.2)

Comparing (3.1) to (3.2), the distance between ω∗s and ω∗∗s equals to b. The informativeness of the

agent’s report is measured by the ratio between the probability with which he files a report conditional

on θ = 0 and the probability with which he files a report conditional on θ = 1, given by:

Is ≡
Pr( the agent reports | θ = 0)

Pr( the agent reports | θ = 1)
=

δΦ(ω∗s) + (1− δ)α
δΦ(ω∗∗s ) + (1− δ)α

. (3.3)

In the limiting economy where δ → 1, this informativeness ratio equals to Φ(ω∗s)/Φ(ω∗∗s ). Let π̃s be

the equilibrium probability of crime. The following proposition provides conditions on the existence

and uniqueness of equilibrium and offers a characterization:

Proposition 1. A monotone-responsive equilibrium exists if and only if:

δL
(

Φ(0)− Φ(−b)
)
≥ 1. (3.4)

When (3.4) holds with strictly inequality, there exists a unique equilibrium characterized by the quadru-

ple (ω∗s , ω
∗∗
s , qs, π̃s) ∈ R× R× (0, 1]× [0, π∗] which satisfies (3.1), (3.2),

δqs

(
Φ(ω∗s)− Φ(ω∗∗s )

)
= 1/L (3.5)
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and
π̃s

1− π̃s
=
l∗

Is
. (3.6)

Proof of Proposition 1: When (3.4) fails, then the principal’s cost of committing a crime in any

monotone-responsive equilibrium is at most:

δqsL
(

Φ(ω∗s)− Φ(ω∗∗s )
)
≤ δL

(
Φ(0)− Φ(−b)

)
,

with the maximum on the RHS attained when qs = 1, ω∗s = 0 and ω∗∗s = −b. The value of the RHS is

strictly less than 1, his benefit from committing a crime, leading to a contradiction.

When (3.4) holds, then for a fixed c, notice that ω∗s and ω∗∗s are strictly increasing in qs. Since

ω∗s , ω
∗∗
s ≤ 0, the distance between ω∗s and ω∗∗s is b and the pdf of N (µ, σ2) is strictly increasing in ω

when ω < 0, we know that Φ(ω∗s)−Φ(ω∗∗s ) is also strictly increasing in qs. This implies that the LHS

of (3.5), which is the cost of abusing the agent, is strictly increasing in qs. Inequality (3.4) ensures the

existence and uniqueness of (ω∗s , ω
∗∗
s , qs) that solves (3.1), (3.2), (3.5) and (3.6) since the LHS of (3.5)

is strictly less than 1/L when qs = 0 and is weakly more than 1/L when qs = 1.

When (3.4) holds with strictly inequality, the equilibrium level of qs is interior. Therefore, the

probability with which the principal is guilty according to the evaluator’s posterior belief equals to π∗.

As a result, π̃s is uniquely pinned down by (3.6).

Next, we assume (3.4) holds with strict inequality and perform comparative statics with respect

to the agent’s loss from retaliation c and the principal’s loss from being convicted L. We also examine

the limiting scenario where L→∞ and δ → 1, which will be useful once comparing it to the two-agent

case in the next subsection:

Proposition 2. In the single agent benchmark,

1. When c increases, qs increases, both ω∗s and ω∗∗s decrease, π̃s decreases.

2. When L increases, qs decreases, both ω∗s and ω∗∗s decrease, π̃s decreases.

3. Fix L and let c→∞, we have qs → 1 and ω∗s → ω(L) where ω(L) ∈ R− is pinned down by:

δ
(

Φ
(
ω(L)

)
− Φ

(
ω(L)− b

))
= 1/L.
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and π̃s → π̃(L) where π̃(L) is pinned down by:

Φ(ω(L))

Φ(ω(L)− b)
= l∗

/ π̃(L)

1− π̃(L)
.

4. Fix c and let L → ∞, we have qs → 0, ω∗s , ω
∗∗
s → −∞. Furthermore in the limiting economy

where δ → 1, we have Is →∞ and π̃s → 0.14

The proof is in Appendix A. Before we proceed, it is worth commenting on the limiting result

when L→∞. In particular, the proof makes use of the tail property of normal distributions that for

every b > 0,

lim
ω→−∞

Φ(ω)
/

Φ(ω − b)→∞.

That is to say, the tail events are arbitrarily informative. Our finding that the agent’s report becomes

arbitrarily informative as well as the probability of crime vanishes in the limit extends to any distri-

bution of ω as long as it has full support with the left tail thinner than exponential distributions.15

3.3 Main Results: Two-Agent Scenario

In this subsection, we characterize and analyze the game’s equilibrium outcomes when there are two

agents and compare them to the single-agent benchmark. First of all, we establish the existence of an

equilibrium that survives our refinements when L is large enough:

Proposition 3. A monotone-responsive equilibrium exists when L is large enough.

The proof is in Appendix B, which makes use of the Brouwer’s fixed point theorem. This is the

only part where we need the existence of mechanical types. The proof can be generalized by allowing

for any number of agents and alternative specifications of the mechanical types’ strategies.16

In what follows, we will focus on parameter values under which an equilibrium exists. We state

our first main result that establishes some common properties of equilibria. We will also compare the

resulting equilibrium outcome to the single-agent benchmark in terms of the agents’ strategies, the

informativeness of their reports and the equilibrium probability of crime.

14For the second part of this statement, we require δ → 1 at a faster rate compared to L→∞.
15When the distribution of ωi is exponential, the value of Φ(ω)/Φ(ω − b) is constant as ω → −∞.
16See Proposition B’ for the statement of the generalization. We allow, for example, the mechanical type to adopt

reporting strategies that are contingent on (θi, ωi) as long as the reporting probabilities conditional on each realization
of θi is strictly bounded away from 0.
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Theorem 1. There exists L : R+ × (0, 1) → R+ such that when L > L(c, δ), every equilibrium is

characterized by a quadruple (ω∗m, ω
∗∗
m , qm, π̃m) ∈ R− × R− × (0, 1)× (0, π∗) such that:

1. For every i ∈ {1, 2}, agent i will report in either one of the following two events:{
ωi ≥ ω∗m and θi = 0

}
and

{
ωi ≥ ω∗∗m and θi = 1

}
.

2. The principal chooses (θ1, θ2) = (1, 1) with probability 1 − π̃m, (θ1, θ2) = (1, 0) with probability

π̃m/2 and (θ1, θ2) = (0, 1) with probability π̃m/2.

3. q(0, 0) = q(0, 1) = q(1, 0) = 0 and q(1, 1) = qm.

4. Compared to the unique equilibrium in the single-agent benchmark, we have: ω∗m > ω∗s , ω∗∗m > ω∗∗s ,

qm > qs, π̃m > π̃s and

Is > Im ≡
Pr(two agents report | θ1θ2 = 0)

Pr(two agents report | θ1θ2 = 1)
.

The proof of Theorem 1 consists of three parts, which can be found in Appendices C (symmetry), D

(conviction probabilities) and E (comparison to the single-agent benchmark). According to Theorem

1, all equilibria share the following properties when L is large enough. First of all, the agents’ strategies

are symmetric as they adopt the same pair of reporting thresholds. Second, the principal abuses the

two agents with equal probability but will never abuse both at the same time. Third, the principal

is convicted with strictly positive probability only when there are two reports. Fourth, compared to

the single-agent benchmark, strategic agents are more likely to file reports. Moreover, conditional on

all agents unanimously report, the probability of conviction increases. Paradoxically, the equilibrium

probability of crime also increases. This is because the aggregate informativeness of the agents’ reports,

measured by Im, is strictly lower compared to Is, the informativeness of report in the single-agent

benchmark.

Our second main result examines the informativeness of the agents’ reports and the equilibrium

probability of crime in the limiting scenario where L→∞.

Theorem 2. For every (c, δ) ∈ R+ × (0, 1) and ε > 0, there exists Lε(c, δ) ≥ L(c, δ), such that for

every L > Lε(c, δ), every equilibrium under parameter configuration (L, c, δ) satisfies

ω∗m, ω
∗∗
m < −1/ε, Im < 1 + ε and π̃m ≥ π∗ − ε.
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The proof is in Appendix F. According to Theorem 2, as the punishment to the convicted becomes

sufficiently harsh, the agents’ reports are becoming arbitrarily uninformative about the principal’s

innocence even at the aggregate level. As a result, the probability of crime converges to π∗. Our

conclusion applies as long as the agents’ cost of reporting is strictly positive and moreover, it is not

sensitive to the order of limits. For example, it applies when the agents’ loss from the principal’s

retaliation is arbitrarily small (i.e. c is small), θi significantly affects agent i’s payoff (i.e. b is large)

and the mechanical types are arbitrarily rare (i.e. δ → 1) as long as L ≥ L(c, δ). This contrasts to

the limiting scenario in the single-agent benchmark where the informativeness of the agent’s report

converges to infinity and the probability of crime vanishes to 0.

Theorems 1 and 2 suggest that the informativeness of reports decreases and the probability of

crime increases when the number of potential victims increases. The comparison becomes stark when

the punishment to the convicted is large enough. Next, we argue that these effects are driven by

the coordination motives among the agents as well as the negative correlation between their private

information, i.e. θ1 and θ2, both of which arise endogenously in all monotone-responsive equilibria

when L is large enough.

To begin with, when L is large enough, the principal will only be convicted when both agents file

reports. This is because if one report is sufficient to convict the principal, then he will have a strict

incentive not to commit any crimes which will contradict the conclusion in Lemma 3.1. Therefore,

q(0, 0) = q(1, 0) = q(0, 1) = 0 and q(1, 1) ∈ (0, 1) in all equilibria when L is large enough.

Next, whether principal’s choices of θ1 and θ2 are strategic complements or substitutes is deter-

mined by the sign of:

q(1, 1) + q(0, 0)− q(1, 0)− q(0, 1). (3.7)

As will be formally shown in Lemma D.1, if (3.7) is positive, then θ1 and θ2 are strategic substitutes;

if (3.7) is negative, then θ1 and θ2 are strategic complements. As we have established that (3.7) is

strictly positive from the previous step, we know that the principal will have a strict incentive not to

abuse agent j once he has already abused agent i and vice versa. This leads to an endogenous negative

correlation between θ1 and θ2.

From the perspective of an individual agent, he has more incentives to report when he believes

that the other agent is more likely to report, as it increases his chances of avoiding the reporting cost

c. The endogenous negative correlation between θ1 and θ2 implies that if θ1 = 0, then agent 1 believes

that agent 2 is abused with probability 0 which decreases his incentives to report; if θ1 = 1, then agent
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1 believes that agent 2 is abused with significant probability which increases his incentives to report.

As a result, the coordination motives among agents will undermine the credibility of their reports,

which explains why Im < Is.

In the limiting scenario where L → +∞, two competing effects arise as ω∗m and ω∗∗m converge to

−∞. First, the probability of false positive reports vanishes to 0 as ω∗∗m → −∞, which increases

informativeness. This is the only force at work in the single-agent benchmark. Second, the distance

between the two cutoffs vanishes to 0 as both of them converge to−∞, which decreases informativeness.

Theorem 2 implies that when there are two agents, the second effect dominates even if their losses

from miscoordination c is arbitrarily small. This is because as L goes to infinity, the probability of

conviction (conditional on two reports) vanishes. This magnifies the cost of miscoordination (which is

scaled up by 1− q) relative to the benefits from reporting (which is scaled up by q). The comparison

between these magnitudes explains why any strictly positive c suffices.

Nevertheless, given the presence of mechanical types whose reports transmit no information, one

may suspect that Im → 1 is driven by the scarcity of reports filed by the strategic types rather than

their coordination motives. To address this concern, first of all, notice that the informativeness ratio

converges to 1 and the probability of crime converges to π∗ in the limit where δ → 1 and L → ∞ as

long as the relative rate of convergence satisfies L ≥ L(c, δ). Next, the comparison between (ω∗m, ω
∗∗
m )

and (ω∗s , ω
∗∗
s ) suggests that the strategic agent’s reporting thresholds are strictly higher when there

are two agents. This implies that for every given report, the probability with which it is filed by a

strategic type is strictly higher in the two-agent case compared to the single-agent benchmark. As the

agent’s report becomes arbitrarily informative in the limit of the single-agent benchmark, the result

that the aggregate of the two agents’ reports becoming arbitrarily uninformative in the limit cannot

be driven by the scarcity of reports from the strategic types. This establishes the causality between

the coordination motives among agents and the uninformativeness of reports.

In Appendix K, we show that the above insight is robust against alternative specifications of the

mechanical types’ strategies. In particular, even when the mechanical types’ reports are informative

about θ (for example, the mechanical type can adopt different reporting thresholds when θ = 0 and

θ = 1 with the reporting threshold under θ = 0 being strictly higher), it will be overturned by the

strategic types’ coordination motives when the mechanical types are sufficiently rare (i.e. δ → 1) and

the punishment to the convicted is sufficiently harsh (i.e. L→∞).
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Remark: Despite our results are obtained in static environments where reports are submitted si-

multaneously, the economic forces behind them are applicable to dynamic settings in which reports

arrive sequentially. To see this, notice that first, the negative correlation between the agents’ private

information (namely their θi) will arise endogenously whenever an opportunistic principal is aware

of the serious consequences of being convicted. Second, an individual agent will have incentives to

coordinate with other agents whenever he is unsure about whether his report is pivotal or not. Such

concerns can arise when there is a cold start (i.e. very few people have reported before as none of

them wants to be the first). It can also occur when an agent has observed many reports but he is

unsure about the number of reports needed to convict the principal (for example, he faces uncertainty

about π∗). Both of these are realistic concerns under which the coordination inefficiencies pointed out

by our results remain valid in more complicated dynamic environments.

3.4 Equilibrium Analysis

To better understand Theorems 1 and 2, we perform some analysis of the two-agent model in order to

unveil the coordination motives among agents and explain why their reports are becoming arbitrarily

uninformative in the L→∞ limit. We focus on cases where L > L(c, δ) such that all equilibria possess

the properties stated in Theorem 1, i.e. symmetric strategies, two reports are required to convict the

principal and can be characterized by a quadruple (ω∗m, ω
∗∗
m , qm, π̃m).

We start from the agents’ incentives. For every i ∈ {1, 2}, if θi = 0, then agent i has an incentive

to report if and only if:

ω ≤ ω∗m ≡ −c
1− qmQ0

qmQ0
= c− c

qmQ0
, (3.8)

where Q0 is the probability with which agent j (6= i) reports conditional on θi = 0. Similarly, if θi = 1,

then agent i has an incentive to report if and only if:

ω ≤ ω∗∗m ≡ −b− c
1− qmQ1

qmQ1
= −b+ c− c

qmQ1
, (3.9)

where Q1 is the probability with which agent j reports conditional on θi = 1. The expressions for Q0

and Q1 are given by:

Q0 = δΦ(ω∗∗m ) + (1− δ)α (3.10)

and

Q1 = δ
(
βΦ(ω∗∗m ) + (1− β)Φ(ω∗m)

)
+ (1− δ)α, (3.11)
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respectively, where

β ≡ 1− π̃m
1− π̃m/2

is the probability that agent j is not abused conditional on agent i is not abused.

The comparisons between Q0 and Q1 as well as ω∗m and ω∗∗m reveal an important difference between

the two-agent case and the single-agent benchmark. Instead of having a constant distance b, the

distance between ω∗m and ω∗∗m equals to:

b− c

qm
· −1 +Q1/Q0

Q1
. (3.12)

Lemma 3.2 shows that the value of the above expression is strictly less than b:

Lemma 3.2. When there are two agents, Q1 > Q0 and ω∗m − ω∗∗m ∈ (0, b).

Proof of Lemma 3.2: According to (3.10) and (3.11), ω∗m−ω∗∗m > 0 is equivalent to Q1 > Q0. Suppose

towards a contradiction that Q1 ≤ Q0, then (3.12) implies that ω∗ ≥ ω∗∗ + b > ω∗∗. The comparison

between (3.8) and (3.9) then yields Q1 > Q0, leading to a contradiction. Since Q1 > Q0, the term

−1+Q1/Q0

Q1
is strictly positive, and therefore, ω∗m − ω∗∗m < b.

Intuitively, an agent can avoid the reporting cost c only when the principal is convicted and the

latter can only happen when both agents report. Therefore, coordination motives among the agents

arise endogenously. Since the decisions to abuse agents are strategic substitutes from the principal’s

perspective, θ1 and θ2 are negatively correlated. Therefore, Q1 > Q0 and agent i’s desire to coordinate

with agent j increases his reporting threshold when θi = 1 and decreases his reporting threshold when

θi = 0. This reduces the distance between the two cutoffs making it strictly less than b.

Next, we examine how the reduction in ω∗m−ω∗∗m affects the informativeness of the agents’ reports

as well as the equilibrium probability of crime. First, we provide an expression for Im, the measure

of reporting informativeness when two reports are required to convict the principal:

Im ≡
Pr(two agents report | θ1θ2 = 0)

Pr(two agents report | θ1θ2 = 1)

=

(
δΦ(ω∗m) + (1− δ)α

)(
δΦ(ω∗∗m ) + (1− δ)α

)
(
δΦ(ω∗∗m ) + (1− δ)α

)2 =
δΦ(ω∗m) + (1− δ)α
δΦ(ω∗∗m ) + (1− δ)α

. (3.13)

Since qm ∈ (0, 1), the evaluator’s posterior belief attaching to θ1θ2 equals to π∗ after observing two
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reports, which implies that the equilibrium probability of crime π̃m solves:

π̃m
1− π̃m

=
l∗

Im
. (3.14)

One can then express β and 1− β as functions of Im, which are given by:

β =
2Im

l∗ + 2Im
and 1− β =

l∗

l∗ + 2Im
. (3.15)

Therefore,
Q1

Q0
= β + (1− β)Im =

(l∗ + 2)Im
l∗ + 2Im

, (3.16)

with the RHS being a strictly increasing function of Im. Applying (3.8) and (3.9) and plug in the

expression for Q1/Q0 in (3.16), we obtain:

|ω∗m − c|
|ω∗∗m − c+ b|

=
−c/qmQ0

−c/qmQ1
=
Q1

Q0
=

(l∗ + 2)Im
l∗ + 2Im

. (3.17)

This ratio between the absolute values of cutoffs leads to the following lemma, which reveals another

distinction between the single-agent benchmark and the multi-agent scenario:

Lemma 3.3. When ω∗m → −∞, we have Im → 1 and π̃m → π∗.

Proof of Lemma 3.3: Since ω∗m − ω∗∗m ∈ (0, b), the difference between |ω∗m − c| and |ω∗∗m − c + b| is at

most b. That is to say, the LHS of (3.17) converges to 1 as ω∗m → −∞. Since the RHS of (3.17) is

strictly increasing in Im, we know that the limiting value of Im equals to 1, and according to (3.14),

the limiting value of π̃m converges to π∗.

Finally, we argue that both ω∗m and ω∗∗m will converge to −∞ as L → ∞. This is driven by the

principal’s indifference condition:

1

δL
= qm

(
δΦ(ω∗∗m ) + (1− δ)α

)(
Φ(ω∗m)− Φ(ω∗∗m )

)
. (3.18)

As L→∞ and suppose towards a contradiction that ω∗m and ω∗∗m converge to some bounded number,

then either qm → 0 or ω∗m − ω∗∗m → 0. If qm → 0, then (3.8) and (3.9) imply that ω∗m also converges

to −∞. If ω∗m − ω∗∗m → 0, namely the distance between the reporting cutoffs converges to 0 while the

two cutoffs converge to an interior number, then the agents’ coordination motives disappear so the

distance between their two reporting cutoffs should be b, leading to a contradiction.
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4 Restore Reporting Credibility

In this section, we explore how to restore the informativeness of reports in order to decrease the

probability of crime. We proceed along two directions: (1) mitigating the punishment to the convicted

principal and (2) reshaping the agents’ incentives via report-contingent monetary transfers.

Our results imply that (1) when punishments are moderate, the principal’s decisions to abuse agents

are strategic complements and coordination motives among agents will increase the informativeness

of their reports; (2) monetary transfers can restore reporting informativeness by compensating an

agent when he is the only one that reports; (3) when transfer schemes are required to be budget

balanced, reporting informativeness is uniformly bounded from above. This unveils the tension between

eliminating coordination inefficiencies and discouraging false positive reports.

4.1 Mitigating Punishment to the Convicted

In this subsection, we show that one can restore the informativeness of reports and reduce the prob-

ability of crime by mitigating the punishment to the convicted principal. This is because under a

moderate L, the principal’s decisions to abuse the two agents are strategic complements and coordi-

nation motives among the agents will increase the informativeness of reports.

Due to the multiplicity problem, computing the optimal L requires to take a strong stance on

equilibrium selection among those monotone-responsive equilibria. To circumvent this issue, we show

that for every δ, one can find an open interval of L such that the probability of crime vanishes to 0 as

c becomes sufficiently large. This is stated as Proposition 4:

Proposition 4. For every ε > 0, there exists c > 0 such that for every c > c, there exists an

open interval (L,L) such that for every L ∈ (L,L), there exists a symmetric monotone-responsive

equilibrium in which the probability of crime is less than ε.

The proof is in Appendix I.1 that constructs a symmetric equilibrium in which the principal’s

decisions are strategic complements and the convicting probabilities are such that q(1, 1) = 1, q(1, 0) =

q(0, 1) ∈ [1/2, 1) and q(0, 0) = 0.17 In equilibrium, the principal will either abuse no agent or will abuse

both agents at the same time. Consequently, θ1 and θ2 will be positively correlated. The coordination

motives among the agents will increase the distance between the two reporting thresholds, making

it strictly larger than b. This increases the informativeness of reports and decreases the probability

17In order to address the concerns for equilibrium multiplicity, we will show in Appendix I.2 that for any given (c, δ),
there exists an open interval of L under which the value of (3.7) is non-positive in all monotone-responsive equilibria.
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of crime. In particular, the informativeness of any agent’s report will converge to infinity as his cost

from miscoordination, c, increases.

Proposition 4 and our results in subsection 3.3 imply that in order to minimize the probability of

crime, the optimal L is interior when there are multiple potential victims, as opposed to the single-agent

benchmark in which the probability of crime decreases as L increases. This provides a novel rationale

for mitigating the punishment to the convicted compared to the alternative explanations in the law

and economics literature. Our logic applies to settings where objective evidence is scarce and the

potential victims’ claims are hard to verify: due to the lack of evidence, the potential victims wish to

coordinate their reports in order to improve the chances of conviction. Moderating the punishment to

the convicted enhances reporting credibility by endogenously generating positive correlations between

the potential victims’ private information. Under this positive correlation, an agent’s coordination

motive will discourage him from reporting when he has not witnessed a crime and will encourage him

to report when he has witnessed a crime.

4.2 Monetary Transfers

In this subsection, we maintain the assumption that L is large and explore the possibility of mitigating

coordination inefficiencies via monetary transfers that can be contingent on the vector of reports. Let

ti(a) ∈ R be the transfer to agent i under reporting profile a. A transfer scheme achieves budget

balance if and only if
∑2

i=1 ti(a) = 0 for all a ∈ {0, 1}2.

We focus on equilibria where q(0, 0) = q(1, 0) = q(0, 1) = 0 under a given transfer scheme t :

{0, 1}2 → R2, which is without loss of generality when L is large enough. Since transfer schemes can

be asymmetric across agents, it is no longer without loss to focus on symmetric equilibria. To address

this issue, we start from analyzing the principal’s incentives in order to provide the right formula for

the informativeness of reports by taking these potential asymmetries into account.

To start with, the informativeness of reports is measured by:

Im ≡
Pr(a1 = a2 = 1| θ1θ2 = 0)

Pr(a1 = a2 = 1| θ1θ2 = 1)
,

as two reports are required to convict the principal. For every i ∈ {1, 2}, let Ψ∗i be the probability

with which agent i reports conditional on θi = 0 and let Ψ∗∗i be the probability with which he reports
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conditional on θi = 1. Let Ii ≡ Ψ∗i /Ψ
∗∗
i . One can write Im as a convex combination of I1 and I2:

Im ≡
p1

p1 + p2
I1 +

p2

p1 + p2
I2 (4.1)

where pi is the probability with which agent i is mistreated. Our first observation is that the overall

informativeness of reports equals to the minimal informativeness of the two individual reports:

Lemma 4.1. For any given transfer scheme, in every monotone-responsive equilibrium where

q(0, 0) = q(1, 0) = q(0, 1) = 0, we have Im = min{I1, I2}.

Intuitively, this is because the principal’s marginal cost of abusing an agent is strictly lower when

the latter’s report is strictly less informative. As a result, when I1 < I2, the principal will abuse the

agent 2 with zero probability and in equilibrium, all the variations in θ1θ2 are driven by the variations

in θ1 instead of the variations in θ2. As a result, I2 carries zero weight in the formula of Im.

Proof of Lemma 4.1: The ratio between the principal’s cost of mistreating agent 1 and that of mis-

treating agent 2 equals to:
Ψ∗∗2 (Ψ∗1 −Ψ∗∗1 )

Ψ∗∗1 (Ψ∗2 −Ψ∗∗2 )

which is strictly greater than 1 if and only if I1 > I2. In this case, p1 = 0 and according to (4.1),

we have Im = I2. Similarly, if I1 < I2, then p2 = 0 and Im = I1. If I1 = I2, since Im is a convex

combination of I1 and I2, we have Im = I1 = I2 for all values of p1 and p2.

Next, we construct a transfer scheme that eliminates the coordination inefficiencies, in the sense

that the aggregate informativeness of reports converge to infinity and the probability of crime vanishes

to 0 in the L→∞ limit.

Proposition 5. For every c > 0 and ε > 0, there exists L > 0 such that when L > L and under

the following transfer scheme:

t1(a1, a2) =

 c if (a1, a2) = (1, 0)

0 otherwise
t2(a1, a2) =

 c if (a1, a2) = (0, 1)

0 otherwise

Im exceeds 1/ε and the probability of crime is less than ε in all monotone-responsive equilibria.

The proof is in Appendix G.1. According to Proposition 5, a designer can overcome the coordi-

nation inefficiencies and restore reporting informativeness by compensating an agent when he is the
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only one that reports. The amount to be transferred exactly offsets an agent’s cost of reporting. This

transfer scheme eliminates the agents’ incentives to coordinate, as in every equilibrium, the distance

between each agent’s reporting cutoffs is exactly b. However, this is not to say that under this transfer

scheme, the equilibrium outcome coincides with that of the single-agent benchmark. Due to the differ-

ence in the principal’s incentive constraint, the cutoffs are strictly higher compared to the single-agent

benchmark. As a result, the informativeness of reports is strictly lower and the probability of crime

is strictly higher under a fixed L. Nevertheless, as stated in Proposition 4, the informativeness of

reports and the equilibrium probability of crime coincide with those in the single-agent benchmark in

the L→∞ limit.

Despite the above transfer scheme can effectively reduce the probability of crime when L is large,

two potential drawbacks emerge. First, the designer needs to incur a budget deficit with positive

probability. This deficit is large when the agent’s loss from the principal’s retaliation is large. Second,

it encourages collusion between the principal and the two agents, in the sense that the principal can

commit not to retaliate when only one agent reports. After the reporting agent obtains the designer’s

transfer c, he can then share it with the other agent and the principal. Motivated by these observations,

we explore the possibility of restoring reporting informativeness via budget balanced transfer schemes,

which addresses the above concerns. However, it turns out that the informativeness ratio is uniformly

bounded from above, which reveals the tension between improving the informativeness of reports,

eliminating the budget deficit and deterring collusion.

Proposition 6. There exist I > 1 and π ∈ (0, π∗) such that for all monotone-responsive equilibria

under all budget balanced transfer schemes for all L > L(δ, c), the informativeness ratio Im is less

than I and the equilibrium probability of crime π̃m is greater than π.

The proof is in Appendix G.2. Intuitively, this is driven by the tension between offsetting the

harmful coordination motives, which can only be achieved via increasing ∆1 ≡ t1(1, 0) − t1(0, 0) and

∆2 ≡ t2(0, 1)− t2(0, 0), while at the same time, deterring false positives, i.e. decreasing ω∗∗1 and ω∗∗2 .

The budget balance requirement forbids the principal from achieving two goals at the same time,

leading to bounded informativeness and non-vanishing probability of crime.

The key challenge to prove this result arises from flexibility to choose transfers and therefore,

the symmetry part of Theorem 1 no longer applies. As a result, the previous argument to bound

informativeness, based on the ratio condition (3.17), is no longer applicable. This is because in a

general asymmetric equilibrium, if an agent is abused with probability close to 0, the RHS of (3.17)
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approaches 1 even when Im is large. Moreover, the denominator and numerator of the LHS of (3.17)

also need to be adjusted according to the promised monetary transfers. As will become clear in the

proof, whether the denominator and numerator need to plus or minus a common term depends on the

sign of

X ≡ 1

q

(
t1(1, 0) + t1(0, 1)− t1(1, 1)− t1(0, 0)

)
. (4.2)

When the absolute value of X is large enough, two complications arise. First,

ω∗i − c− |X|
ω∗∗i − c+ b− |X|

→ 1

does not imply that Im → 1 since the probability that agent i being abused approaches 0. Second,

ω∗j − c+ |X|
ω∗∗j − c+ b+ |X|

may not converge to 1 when ω∗j → −∞ due to the effect of a large |X|.

To address these issues, we use the observation that informativeness can be unbounded only when

both ω∗∗1 and ω∗∗2 are arbitrarily small and moreover, X needs to be arbitrarily large. To derive a

contradiction, we exploit the comparisons between the two agents’ reporting cutoffs in asymmetric

equilibria to derive uniform upper bounds on |ω∗∗1 |, |ω∗∗2 | or |X| for all large enough Im. The existence

of a uniform upper bound on either |ω∗∗1 |, |ω∗∗2 | or |X| will contradict the previous assumption that

Im can grow without bound, which implies that the informativeness of reports is uniformly bounded

from above under every budget balanced transfer scheme.

5 Extensions

In this section, we examine the robustness of our main insights under two variations of the baseline

model. In subsection 5.1, we analyze games with more than two agents. In subsection 5.2, we examine

the game’s equilibrium outcome when the principal’s payoff is unknown to the agents and the evaluator.

5.1 More Than Two Agents

We generalize our findings in section 3 to environments with more than two agents and perform

comparative statics on the number of agents. We focus on symmetric equilibria in which q(a) > 0 if

and only if a = (1, 1, ..., 1), which we call unanimous equilibria. Using similar arguments as those in
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the proof of Theorem 1, one can show that unanimous equilibria exist and focusing on them is without

loss of generality when L is large enough.

Abusing notation, we use subscript n ∈ N to denote the value of variables in an environment with

n agents. For every i ∈ {1, 2, ..., n}, agent i’s reporting cutoff is

ω∗n = c− c

qnQ0,n
(5.1)

when θi = 0, and is

ω∗∗n = −b+ c− c

qnQ1,n
, (5.2)

when θi = 1, where

Q0,n ≡
(
δΦ(ω∗∗n ) + (1− δ)α

)n−1
(5.3)

and

Q1,n ≡
nIn

(n− 1)l∗ + nIn

(
δΦ(ω∗∗n ) + (1− δ)α

)n−1

+
(n− 1)l∗

(n− 1)l∗ + nIn

(
δΦ(ω∗∗n ) + (1− δ)α

)n−2(
δΦ(ω∗n) + (1− δ)α

)
. (5.4)

Since n reports are required to convict the principal, the aggregate informativeness of agents’ reports

is given by the ratio between the probability with which n agents report conditional on Πn
i=1θi = 0

and the probability with which n agents report conditional on Πn
i=1θi = 1. This is denoted by In and

equals to:

In ≡
Pr(there are n reports | Πn

i=1θi = 0)

Pr(there are n reports | Πn
i=1θi = 1)

=
δΦ(ω∗n) + (1− δ)α
δΦ(ω∗∗n ) + (1− δ)α

.

As in the two-agent economy, there exists a one-to-one mapping between the informativeness ratio In

and the equilibrium probability of crime π̃n, which is given by:

In =
π∗

1− π∗
/ π̃n

1− π̃n
. (5.5)

In every equilibrium where L is large enough, the principal is indifferent between abusing one agent

and abusing no agent, which gives the following indifference condition:

1

δL
= δqn

(
Φ(ω∗n)− Φ(ω∗∗n )

)(
δΦ(ω∗∗n ) + (1− δ)α

)n−1
. (5.6)

We have the following result that generalizes Theorems 1 and 2 to settings with n (≥ 2) agents:



5 EXTENSIONS 27

Proposition 7. There exists Ln : R+× (0, 1) ∈ R+ such that for every (L, c, δ) with L > Ln(c, δ),

there exists an unanimous equilibrium satisfying (5.1), (5.2), (5.5) and (5.6).

Moreover, for every ε > 0, there exists Ln,ε(c, δ) ≥ Ln(c, δ) such that in every unanimous equilibrium

when L > Ln,ε(c, δ), we have:

ω∗n, ω
∗∗
n < −1/ε, In < 1 + ε and π̃n ≥ π∗ − ε.

According to Proposition 7, the main insights from the two-agent scenario extend to settings with

more than two agents. In particular, coordination motives among agents and negative correlations

between their private informative arise endogenously, which will undermine the credibility of their re-

ports and increase the probability of crime. The proof of equilibrium existence uses a similar argument

as that of Proposition 3, which we will briefly discuss in Appendix B.2. In what follows, we will show

that In → 1 and π̃n → π∗ once L→∞, which is similar to what we have seen in subsection 3.4.

Proof of Proposition 7: First, we show that ω∗n − ω∗∗n ∈ (0, b). Suppose towards a contradiction that

ω∗n − ω∗∗n ≤ 0, then the comparison between (5.3) and (5.4) suggests that Q0,n ≥ Q1,n. Plugging this

into (5.1) and (5.2), it implies that ω∗m ≥ ω∗∗m +b. On the other hand, since ω∗n−ω∗∗n > 0, we know that

Q0,n < Q1,n. The expressions for the cutoffs the imply that ω∗n − ω∗∗n < b, leading to a contradiction.

Next, we show that In → 1 as ω∗n → −∞. To see this, apply the expressions of ω∗n and ω∗∗n in (5.1)

and (5.2), we have:

|ω∗n − c|
|ω∗∗n + b− c|

=
Q1,n

Q0,n
=

(n− 1)l∗

(n− 1)l∗ + nIn
In +

nIn
(n− 1)l∗ + nIn

. (5.7)

Since ω∗n − ω∗∗n ∈ (0, b), the LHS converges to 1 as ω∗n → −∞, which implies that the RHS also

converges to 1. This can only be the case when In → 1.

In the last step, we show that ω∗n → −∞ as L → ∞. Suppose towards a contradiction that there

exists an interior accumulation point ω∗ ∈ R−, then as the LHS of (5.6) converges to 0 when L→∞,

we know that either qn → 0 or Φ(ω∗n)−Φ(ω∗∗n )→ 0 or both. The latter implies that ω∗n − ω∗∗n → 0 as

ω∗n → ω∗ and ω∗ is interior.

Suppose qn → 0, then ω∗n → −∞ according to (5.1). Next, suppose towards a contradiction that

qn is bounded away from 0 along some subsequence, i.e strictly greater than some q > 0, then we know



5 EXTENSIONS 28

that ω∗n − ω∗∗n → 0. Subtracting the expression of ω∗n from that of ω∗∗n , we obtain:

qn
c

(
ω∗n − (ω∗∗n + b)

)
=

(n− 1)l∗

(n− 1)l∗ + n

( 1

δΦ(ω∗n) + (1− δ)α
− 1

δΦ(ω∗∗n ) + (1− δ)α

)
. (5.8)

The absolute value of the LHS is no less than qb/c in the limit as ω∗n − ω∗∗n → 0. The absolute value

of the RHS converges to 0 as Φ(ω∗n) − Φ(ω∗∗n ) → 0, leading to a contradiction. This suggests that

ω∗n → −∞ in every equilibrium as L→∞.

The three parts together imply that as L→∞, ω∗n and ω∗∗n go to−∞, the aggregate informativeness

of reports, In, will converge to 1 and the equilibrium probability of crime π̃n will converge to π∗.

Next, we state a result that establishes some comparative statics on the number of agents.

Proposition 8. For every k, n ∈ N with k > n, when L is large enough such that unanimous

equilibria exist under k and n, then compare any unanimous equilibrium under k to any unanimous

equilibrium under n, we have: ω∗k > ω∗n, ω∗∗k > ω∗∗n , ω∗k − ω∗∗k < ω∗n − ω∗∗n , π̃k > π̃n and In > Ik.

The proof is in Appendix H. According to Proposition 8, as the number of agents increases,

each individual agent is more likely to report no matter whether he has been abused or not, the

distance between the reporting cutoffs decrease and the aggregate informativeness of their reports

also decreases. As a result, the equilibrium probability of crime increases. The driving force behind

such comparative statics is still the interaction between the coordination motives among agents and

the negative correlation between their private information. Such effects are more pronounced when

information is more dispersed among the agents.

5.2 Uncertainty about the Principal’s Payoff

In this subsection, we examine the robustness of our insights when there is uncertainty about the prin-

cipal’s payoff. The primary motivation is to accommodate the presence of saints (i.e. morally upright

people who hates committing crimes) and serial assaulters. This is captured by the heterogeneity

in the principal’s L, which measures his loss from conviction relative to his benefit from committing

crimes.

To formalize these ideas, consider the following variation of the baseline model in which the prin-

cipal’s preference is his private information. This is modeled as a random variable L̃ ∈ [0,+∞], which

replaces L in the baseline model. For illustration purposes, we focus on environments where there are

two agents and L̃ can take two possible values, Ll and Lh, with 0 ≤ Ll < Lh ≤ +∞. We consider
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two cases separately, which together explain the robustness of our results to the presence of saints and

serial assaulters, as long as both of these types occur with low enough probability.

Saints: Suppose Ll is larger than the lower bound on L required by Theorem 1 and the probability

with which L = Lh is strictly less than 1 − π∗. Monotone-responsive equilibria in this environment

take a similar form as those in Theorem 1, with the only difference being, type Lh never commits

any crime and type Ll commits a crime with probability π̃/Pr(L̃ = Ll), where π̃ is the unconditional

probability of crime. Intuitively, this is because type Ll is indifferent between committing and not

committing a crime. Given type Ll’s indifference, type Lh will have a strict incentive not to commit

any crimes according to the standard supermodularity argument. The same insight extends when we

replace the presence of type Lh with types that receive zero or even negative benefit from committing

crimes.

Serial Assaulters: Suppose next that Lh is larger than the lower bound on L required by Theorem

1 while Ll is strictly less than 1.18 We assume that L̃ = Ll occurs with small but strictly positive

probability, denoted by ε. In this environment, type Ll principal is interpreted as the bad apples who

have very high propensity to commit crimes and will be the serial assaulters in the equilibrium of

our model. The following result demonstrates the robustness of the endogenous negative correlation

between θ1 and θ2, which is the key driving force behind the coordination inefficiencies identified by

our results:

Proposition 9. For every ε > 0 small enough, there exists R > 1 such that for every R ∈ (1, R),

there exist δ ∈ (0, 1), Lh : [δ, 1) → R+ and an equilibrium {ω∗, ω∗∗, π̃, q} under each (ε, δ, Lh(δ), Ll)

such that:

1. The probability of crime is π̃, the reporting thresholds are ω∗ and ω∗∗ and the principal is con-

victed with positive probability if and only if there are two reports.

2. The conviction probability following two reports is q.

3. Type Ll assaults both agents with probability 1. Type Lh assaults agent i with probability

π̃ − ε
2(1− ε)

18Assuming Ll < 1 is a simplification that facilitates the exposition. For our result to hold, we only need Ll to be
relatively small compared to Lh such that type Ll has an incentive to commit two crimes.
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for every i ∈ {1, 2} and assaults no agent with probability (π̃ − ε)/(1− ε).

4. The likelihood ratio
δΦ(ω∗) + (1− δ)α
δΦ(ω∗∗) + (1− δ)α

(5.9)

equals to R, the informativeness of report is given by

I ≡ ε

π̃
R2 +

(
1− ε

π̃

)
R, (5.10)

and the equilibrium probability of crime π̃ satisfies:

π̃/(1− π̃) = l∗/I. (5.11)

According to Proposition 9, for every R close enough to 1 and ε close enough to 0, there exists

Lh such that the likelihood ratio of a monotone-responsive equilibrium under (ε, Lh) equals to R. As

indicated by (5.10) and (5.11), the aggregate informativeness of reports I is also close to 1 and the

equilibrium probability of crime is close to π∗.

Compared to Theorems 1 and 2 that address the common properties of all equilibria, Proposition

9 only demonstrates the existence of an equilibrium in which θ1 and θ2 are negatively correlated, the

informativeness of reports is close to 1 and the probability of crime is close to π∗. This is because the

presence of serial assaulters leads to a larger variety of self-fulfilling beliefs with different qualitative

features, even when those types occur with arbitrarily small probability.

To understand the intuition, let us start from an agent’s equilibrium strategy, which are summarized

by two cutoffs (ω∗, ω∗∗), in an environment without serial assaulters, i.e. when ε = 0. Once ε becomes

strictly positive, it undermines the negative correlation between θ1 and θ2, which encourages agent i

to report when θi = 0 and discourages him from reporting when θi = 1. The increase in the distance

between ω∗ and ω∗∗ will then increase the informativeness of the agent’s report and in equilibrium,

will decrease the net probability of crime. Since the probability of the principal being a serial assaulter

is fixed to be ε, a decrease in the total probability of crime increases

Pr(θ1 = θ2 = 0|θ1θ2 = 0). (5.12)

This further weakens the negative correlation between θ1 and θ2, which will in turn increase the

informativeness of report and decrease the probability of crime. Therefore, one can iterate the above
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argument until it reaches a new fixed point. The probability of crime could be close to ε, or close to

π∗, or somewhere in between depending on the starting point.

6 Conclusion

We analyze the interactions between a potential assaulter’s incentives to commit crimes and the poten-

tial victims’ incentives to report crimes. In our model, the conviction process, the credibility of reports

and the probability of crime are all endogenous. We find that when the punishment to the convicted is

sufficiently large, the assaulter’s strategic restraint induces negative correlation between the potential

victims’ private information. This together with their endogenous incentives to coordinate reduce the

credibility of reports and increase the probability of crime.

On the other hand, one can restore the credibility of reports and reduce the probability of crime

by rewarding an agent when he is the only one that reports, or by mitigating the punishment to

the convicted principal. The first solution offsets agents’ coordination motives. The second solution

induces positive correlation between the agents’ private information and as a result, their incentives

to coordinate will enhance their reporting credibility.

We conclude with several remarks on the applicability and robustness of our main results. First,

our results are derived under an equilibrium analysis. That being said, they address people’s behaviors

when they understand the rules of the game, the payoff consequences of their actions and know how

to play their equilibrium strategies. This is well-suited for settings with stable institutions, laws

and norms such that play has converged to an equilibrium and the potential assaulters, victims and

evaluators (e.g. judges, public opinions, headquarters of firms) are likely to follow their equilibrium

strategies.19 On the other hand, our results are less relevant for situations where there have been

recent changes in the environment, such as a sudden crack down of crimes, the introduction of new

laws and regulations, drastic shifts of norms and perceptions, etc.

Second, the insights from our baseline model are robust against a variety of alternative specifica-

tions on players’ payoffs and information structures. Aside from the extensions discussed in section

5, all our results remain robust when the principal’s marginal benefit from committing crimes is de-

creasing in the number of crimes he has already committed, or the principal receives noisy private

information about the agents’ ωs. They are also robust when there exists ex post evidence against

false positive claims. For example, if agent i files a false positive report (i.e. choosing ai = 1 when

19See Fudenberg and Levine (1995) for theories on how equilibrium emerges in the long-run when players adopt heuristic
learning processes, such as smooth fictitious play, etc.
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θi = 1) that gets the principal convicted, then with probability p∗, some ex post evidence will arrive

that can reveal the principal’s innocence. In this case, every agent who files a false positive claim will

receive a penalty k > 0. Our analysis still goes through and all our qualitative results remain to be

true as the presence of ex post evidence is equivalent to an increase in b.20

20To see this, agent i’s indifference condition when θi = 1 is now given by:

qmQ1(ωi + b) = −c(1− qmQ1)− qmQ1p
∗k.

The expression for the cutoff is then given by

ω∗∗m ≡ −b− p∗k − c
1− qmQ1

qmQ1
= −b− p∗k + c− c

qmQ1
.

The above expression is qualitatively the same as (3.9) except one needs to replace b with b+ p∗k.
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A Proof of Proposition 2: Comparative Statics

Our proof will repeatedly use the observation that when ω∗s and ω∗∗s decrease while keeping the distance

between them constant, Φ(ω∗s)− Φ(ω∗∗s ) decreases and Φ(ω∗s)/Φ(ω∗∗s ) increases.

Proof of Statements 1 and 3: When c increases, according to (3.1) and (3.2), both ω∗s and ω∗∗s

will decrease for fixed qs. Therefore, qs increases in equilibrium so that the LHS of (3.5) equals to the

RHS. Since the RHS of (3.5) remains unchanged and the LHS is increasing in qs, we know that both

ω∗s and ω∗∗s will decrease. Therefore, Is increases and π̃s decreases.

When c → ∞ while holding L constant, if qs converges to any number strictly below 1, then

according to (3.1) and (3.2), both ω∗s and ω∗∗s will converge to −∞ and the LHS of (3.5) will converge

to 0, leading to a contradiction. Therefore, qs → 1 and the limit value of ω∗s and ω∗∗s are given in

statement 3.

Proof of Statements 2 and 4: When L increases, the RHS of (3.5) decreases. As a result, either

qs decreases or ω∗s and ω∗∗s decrease or both. As ω∗s is strictly increasing in qs, we know that qs, ω
∗
s

and ω∗∗s will decrease. As a result, Is increases and π̃s decreases.

When L → ∞ while holding c constant, the RHS of (3.5) converges to 0, and as a result, qs → 0

and ω∗s , ω
∗∗
s → −∞. In the limiting economy where δ → 1, we have:

lim
ω∗s→−∞

lim
δ→1

δΦ(ω∗s) + (1− δ)α
δΦ(ω∗s − b) + (1− δ)α

=∞.

As a result, the probability of crime π̃s will vanish to 0.

B Existence of Equilibrium

B.1 Proof of Proposition 3

We show that when L is large enough, there exists a symmetric equilibrium in which (i) q(a) > 0 if

and only if a = (1, 1); (ii) the principal either abuses no agent or abuses one agent. The main step of

the proof is to establish the following proposition:

Proposition B. For every (c, δ) ∈ R+× (0, 1), there exists L > 0 such that for every L > L, there
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exists a triple (ω∗m, ω
∗∗
m , qm) ∈ R− × R− × (0, 1) that solves the following three equations:

qm
c

(ω∗m − c) = − 1

δΦ(ω∗∗m ) + (1− δ)α
(B.1)

qm
c

(ω∗∗m − c+ b) = − l∗

l∗ + 2
· 1

δΦ(ω∗m) + (1− δ)α
− 2

l∗ + 2
· 1

δΦ(ω∗∗m ) + (1− δ)α
(B.2)

1

δL
= qm

(
δΦ(ω∗∗m ) + (1− δ)α

)(
Φ(ω∗m)− Φ(ω∗∗m )

)
. (B.3)

Proof of Proposition B:. The proof consists of two steps. In Step 1, we show that once fixing qm to

be 1, the value of the following expression:

A ≡ inf
(ω∗m,ω

∗∗
m ) that solves (B.1) and (B.2) when qm = 1

δ
(

Φ(ω∗m)− Φ(ω∗∗m )
)(
δΦ(ω∗∗m ) + (1− δ)α

)
(B.4)

is strictly bounded away from 0. We establish this bound by putting lower bounds on Φ(ω∗∗m ) and

Φ(ω∗m)− Φ(ω∗∗m ), respectively. To see this, first,

ω∗∗m ≥ −b+ c− c

(1− δ)α

and therefore,

Φ(ω∗∗m ) ≥ Φ
(
− b+ c− c

(1− δ)α

)
. (B.5)

Next, let ∆ ≡ ω∗m − ω∗∗m , which has to be strictly between 0 and b. Deducting equation (B.2) from

(B.1) and plugging in qm = 1, we have:

b−∆

c
=

δl∗

l∗ + 2

(
δΦ(ω∗m) + (1− δ)α

)−1(
δΦ(ω∗∗m ) + (1− δ)α

)−1(
Φ(ω∗m)− Φ(ω∗∗m )

)
. (B.6)

Consider two cases:

1. When ∆ ≥ b/2, then

δ
(

Φ(ω∗m)− Φ(ω∗∗m )
)
≥ bδ

2
φ(ω∗∗m ) ≥ bδ

2
φ
(
− b+ c− c

(1− δ)α

)
, (B.7)

which uses the assumption that the density of ω is increasing when ω < 0.
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2. When ∆ < b/2, then (B.6) implies that:

δ
(

Φ(ω∗m)− Φ(ω∗∗m )
)
≥ b(l∗ + 2)

2l∗c

(
δΦ(ω∗m) + (1− δ)α

)(
δΦ(ω∗∗m ) + (1− δ)α

)
.

≥ b(l∗ + 2)

2l∗c

(
δΦ
(
− b+ c− c

(1− δ)α
)

+ (1− δ)α
)2
. (B.8)

Taking the minimum of the right-hand sides of (B.7) and (B.8), we obtain a lower bound for δ
(

Φ(ω∗m)−

Φ(ω∗∗m )
)

. This together with (B.5) implies a lower bound for (B.4), which is strictly bounded above 0.

We use A to denote the lower bound we obtained in Step 1. In Step 2, we show that when

L > A−1, there exists a solution to (B.1), (B.2) and (B.3) using a fixed point argument. For every

(Φ∗,Φ∗∗, q) ∈ [0, 1]2× [1/L, 1], let f ≡ (f1, f2, f3) : [0, 1]2× [1/L, 1]→ [0, 1]2× [1/L, 1] be the following

mapping:

f1(Φ∗,Φ∗∗, q) = Φ
(
c− c

q(δΦ∗∗ + (1− δ)α)

)
, (B.9)

f2(Φ∗,Φ∗∗, q) = Φ
(
− b+ c− cl∗

q(l∗ + 2)

1

δΦ∗ + (1− δ)α
− 2c

q(l∗ + 2)

1

δΦ∗∗ + (1− δ)α

)
, (B.10)

f3(Φ∗,Φ∗∗, q) = min
{

1,
1

δL

1(
δΦ∗∗ + (1− δ)α

)(
Φ∗ − Φ∗∗

)}. (B.11)

Since f is continuous, the Brouwer’s fixed point theorem implies the existence of a fixed point.

Next, we show that if (Φ∗,Φ∗∗, q) is a fixed point, then q < 1. This will imply that every solution

to the fixed point problem solves the system of equations (B.1), (B.2) and (B.3) as (B.11) and (B.3)

are the same when q < 1. Suppose towards a contradiction that q = 1, then Φ−1(Φ∗) and Φ−1(Φ∗∗) is

a solution to (B.1) and (B.2) once we fix q to be 1. According to Part I of the proof, the assumption

that L > A−1 implies that
1

δL

1(
δΦ∗∗ + (1− δ)α

)(
Φ∗ − Φ∗∗

) < 1.

Therefore the RHS of (B.11) is strictly less than 1. This contradicts the claim that (Φ∗,Φ∗∗, 1) is a

fixed point of f , which implies that the value of q at the fixed point is strictly less than 1.

Given the triple (ω∗m, ω
∗∗
m , qm) ∈ R−×R−× (0, 1), one can then uniquely pin down π̃m ∈ (0, 1) via:

δΦ(ω∗m) + (1− δ)α
δΦ(ω∗∗m ) + (1− δ)α

= l∗
/ π̃m

1− π̃m
. (B.12)

According to the analysis in subsection 3.4, equations (B.1), (B.2), (B.3) and (B.12) are sufficient con-
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ditions for a monotone-responsive equilibrium {ω∗m, ω∗∗m , qm, π̃m} satisfying q(1, 1) = qm and q(0, 0) =

q(1, 0) = q(0, 1) = 0. The existence of monotone-responsive equilibrium in the two-agent case imme-

diately follows.

B.2 Generalizations

We generalize our existence proof by allowing for more than two agents and alternative specifications

of the mechanical types’ reporting strategies. Assume that when agent i is mechanical, he will report

with probability p0 when θi = 0 and with probability p1 when θi = 1, with p0, p1 > 0.21 We show

that for every {c, δ, p0, p1}, there exists L > 0 such that for every L > L, there exists a monotone-

responsive equilibrium in symmetric strategies satisfying: (i) q(a) > 0 if and only if a = (1, 1, ..., 1);

(ii) the principal either abuses no agent or abuses only one agent. Similar to the proof of Proposition

3, the key step is to establish the following result:

Proposition B’. For every (c, δ, p0, p1) ∈ R+× (0, 1)× (0, 1)× (0, 1), there exists L > 0 such that

for every L > L, there exists a triple (ω∗, ω∗∗, q) ∈ R− × R− × (0, 1) that solves the following three

equations:
q

c
(ω∗ − c) = − 1

(Ψ∗∗)n−1
(B.13)

q

c
(ω∗∗ − c+ b) = − n

n+ (n− 1)l∗
1

(Ψ∗∗)n−1
− (n− 1)l∗

n+ (n− 1)l∗
1

(Ψ∗∗)n−2Ψ∗
(B.14)

1

δL
= q(Ψ∗∗)n−1(Ψ∗ −Ψ∗∗) (B.15)

where

Ψ∗ ≡ δΦ(ω∗) + (1− δ)p0 and Ψ∗∗ ≡ δΦ(ω∗∗) + (1− δ)p1.

The proof of Proposition B’ follows from similar steps as that of Proposition B, which will be

available upon request. Notice that (B.13), (B.14), (B.15) together with (B.12) are sufficient for a

monotone-responsive equilibrium, where π̃ can be computed via (B.12) after fixing {ω∗, ω∗∗, q}.

C Proof of Theorem 1: Symmetry

In this part, we establish the symmetric properties of all monotone-responsive equilibria satisfying

q(0, 0) = q(1, 0) = q(0, 1) = 0. We will show that the conviction probabilities in all monotone-

21In principle, we can also allow the mechanical types of different agents to adopt different reporting probabilities. For
notation simplicity, we focus on environments where agents are symmetric.
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responsive equilibria has this property in Appendix D. The conclusion in this section is summarized

by the following proposition:

Proposition C. In every monotone-responsive equilibrium where q(0, 0) = q(1, 0) = q(0, 1) = 0,

the principal chooses (θ1, θ2) = (0, 1) and (θ1, θ2) = (1, 0) with the same probability and the two agents

share the same pair of reporting thresholds.

Proof of Proposition C:. For i ∈ {1, 2}, let βi be the probability that θi = 1 conditional on θj = 1.

We have the following expressions on the cutoff types:

ω∗i = −c1− qQ0,j

qQ0,j
(C.1)

and

ω∗∗i = −b− c1− qQ1,j

qQ1,j
(C.2)

with

Q0,j ≡ δΦ(ω∗∗j ) + (1− δ)α

and

Q1,j ≡ δ
[
βjΦ(ω∗∗j ) + (1− βj)Φ(ω∗j )

]
+ (1− δ)α.

Without loss of generality, suppose the probability with which θi = 0 is weakly higher compared to

the probability with which θj = 0. then βi ≤ βj and moreover, given that the equilibrium probability

of misbehavior is interior, the principal’s incentive constraints imply that the cost of setting θi = 0

conditional on θj = 1 is no more compared to the cost of setting θj = 0 conditional on θi = 1:

δqΦ(ω∗∗j )
(

Φ(ω∗i )− Φ(ω∗∗i )
)

δqΦ(ω∗∗i )
(

Φ(ω∗j )− Φ(ω∗∗j )
) ≤ 1,

which is equivalent to:
Φ(ω∗i )Φ(ω∗∗j )

Φ(ω∗j )Φ(ω∗∗i )
≤ 1. (C.3)

First, we show that ω∗1 = ω∗2 and ω∗∗1 = ω∗∗2 when the probability of θ1 = 0 and the probability of

θ2 = 0 are equal, i.e. β1 = β2. In this case, both probabilities are interior, which implies that (C.3)

holds with equality. Suppose towards a contradiction that ω∗1 < ω∗2, then (C.1) implies that ω∗∗1 > ω∗∗2 .

But then we have Φ(ω∗1)Φ(ω∗∗2 ) < Φ(ω∗2)Φ(ω∗∗1 ), contradicting the equality in (C.3).

Next, we show that β1 = β2 in every equilibrium. Suppose towards a contradiction that β1 < β2,
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i.e. θ1 = 0 occurs with strictly higher probability. Consider the following three cases:

1. If ω∗1 > ω∗2, then (C.1) implies that ω∗∗1 < ω∗∗2 . This contradicts the requirement in (B.3) that

Φ(ω∗1)Φ(ω∗∗2 ) ≤ Φ(ω∗2)Φ(ω∗∗1 ).

2. If ω∗1 = ω∗2, then (C.1) implies that ω∗∗1 = ω∗∗2 . However, (C.2), ω∗1 = ω∗2, ω∗∗1 = ω∗∗2 and β1 < β2

together imply that ω∗∗1 6= ω∗∗2 , leading to a contradiction.

3. If ω∗1 < ω∗2, then ω∗∗1 > ω∗∗2 and we have Φ(ω∗1)Φ(ω∗∗2 ) < Φ(ω∗2)Φ(ω∗∗1 ). Therefore, the principal

faces strictly lower cost to set θ1 = 0. Therefore in equilibrium, he will set θ1 = 0 with positive

probability while setting θ2 = 0 with zero probability. This implies that β2 = 1 and therefore

ω∗∗1 = −b− c1− δqΦ(ω∗∗2 )− (1− δ)α
δqΦ(ω∗∗2 ) + (1− δ)α

.

Therefore, ω∗1 −ω∗∗1 = b. On the other hand, β1 ∈ (0, 1) implies that ω∗2 −ω∗∗2 < b. However, the

previous conclusions that ω∗1 < ω∗2 and ω∗∗1 > ω∗∗2 imply that ω∗2 − ω∗∗2 > ω∗1 − ω∗∗1 , leading to a

contradiction.

D Proof of Theorem 1: Conviction Probabilities

In this part, we show that q(0, 0) = q(1, 0) = q(0, 1) = 0 in all monotone-responsive equilibria when L

is large enough. The conclusion is summarized by the following proposition:

Proposition D. For every δ ∈ (0, 1) and c > 0, there exists L(δ, c) > 0 such that q(0, 0) =

q(1, 0) = q(0, 1) = 0 and q(1, 1) ∈ (0, 1) in every responsive equilibrium when L > L(δ, c).

To prove Proposition D, we rule out the possibilities of other types of equilibria when L is large

enough. For notation simplicity, let Φ∗i ≡ Φ(ω∗i ) and for i ∈ {1, 2}, let

Ψ∗i ≡ δΦ∗i + (1− δ)α and Ψ∗∗i ≡ δΦ∗∗i + (1− δ)α.

D.1 Complementarity & Substitutability of Principal’s Actions

Our analysis starts from Lemma D.1 that formally establishes the complementarity and substitutability

between the principal’s choices of θ1 and θ2.
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Lemma D.1. In every equilibrium where ω∗i > ω∗∗i for i ∈ {1, 2}, then the principal’s choice of θ1

and θ2 are strategic substitutes if the value of (3.7) is strictly positive and are strategic complements

if the value of (3.7) is strictly negative.

Proof of Lemma D.1: Given that θ2 = 0, the principal increases the probability of losing power by:

(Ψ∗1 −Ψ∗∗1 )
(

(1−Ψ∗∗2 )
(
q(1, 0)− q(0, 0)

)
+ Ψ∗∗2

(
q(1, 1)− q(0, 1)

))
if he changes θ1 from 0 to 1. Similarly, given that θ2 = 1, the principal increases the probability of

losing power by:

(Ψ∗1 −Ψ∗∗1 )
(

(1−Ψ∗2)
(
q(1, 0)− q(0, 0)

)
+ Ψ∗2

(
q(1, 1)− q(0, 1)

))
if he changes θ1 from 0 to 1. The first expression is greater than the second one if and only if:

(Ψ∗1 −Ψ∗∗1 )(Ψ∗2 −Ψ∗∗2 )
(
q(1, 0) + q(0, 1)− q(0, 0)− q(1, 1)

)
> 0

and vice versa. Since ω∗i > ω∗∗i for both i, we know that (Ψ∗1−Ψ∗∗1 )(Ψ∗2−Ψ∗∗2 ) > 0, and therefore, the

above inequality is equivalent to

q(1, 0) + q(0, 1)− q(0, 0)− q(1, 1) > 0,

which concludes the proof of Lemma D.1.

The rest of the proof is organized as follows. In subsection D.2, we examine equilibria in which

θ1 and θ2 are strategic substitutes from the principal’s perspective. In subsection D.3, we examine

equilibria in which θ1 and θ2 are strategic complements. In subsection D.4, we examine equilibria in

the knife-edge case where the value of (3.7) equals to 0. To maintain the flow of the analysis, we will

relegate the proofs of one of the technical lemma to subsection D.5.

D.2 Value of (3.7) is Positive

In this subsection, we focus on equilibria in which the principal’s decisions are strategic substitutes,

i.e. q(1, 0) + q(0, 1) < q(0, 0) + q(1, 1).

First, we claim that if either q(0, 1) or q(1, 0) is strictly positive, then q(1, 1) = 1. To understand

why, suppose towards a contradiction that q(1, 0), q(1, 1) ∈ (0, 1). Then whether agent 2 reports or
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not will lead to the same posterior belief about the variable of interest θ1θ2. This can only be the

case where a2 is uninformative about θ2, which implies that ω∗2 = ω∗∗2 and hence Φ(ω∗2) = Φ(ω∗∗2 ).

This implies that the principal’s cost of abusing agent 2 is 0 as it is proportional to Φ(ω∗2)− Φ(ω∗∗2 ),

contradicting the fact that his probability of abusing agent 2 is strictly less than 1.

Given that q(1, 1) = 1 and q(0, 0) = 0, we have the following expressions for player 1’s reporting

cutoffs when he has and has not been abused:

ω∗1 ≡ −c
(1−Ψ∗∗2 )(1− q(1, 0))

q(1, 0) + Ψ∗∗2 (1− q(1, 0)− q(0, 1))
, (D.1)

ω∗∗1 ≡ −b− c
(1−X2)(1− q(1, 0))

q(1, 0) +X2(1− q(1, 0)− q(0, 1))
, (D.2)

where

X2 ≡
1− p1 − p2

1− p1
Ψ∗∗2 +

p2

1− p1
Ψ∗2 (D.3)

and pi is the probability with which θi = 0. One observation is that ω∗1 is increasing in Ψ∗∗2 and

q(1, 0), and is decreasing in q(0, 1); ω∗∗1 is increasing in X2 and q(1, 0), and is decreasing in q(0, 1).

The distance between the two cutoffs is given by:

ω∗1 − ω∗∗1 = b− (Ψ∗2 −Ψ∗∗2 )C1 (D.4)

where

C1 ≡ c(1− q(0, 1))(1− q(1, 0)) · p2

1− p1

· 1

q(1, 0) +X2(1− q(1, 0)− q(0, 1))
· 1

q(1, 0) + Ψ∗∗2 (1− q(1, 0)− q(0, 1))
. (D.5)

Symmetrically, one can obtain the expressions for ω∗2 and ω∗∗2 as well as the distance between them.

Conditional on θ2 = 1, the probability with which the principal loses power is increased by:

(Ψ∗1 −Ψ∗∗1 )
(
q(1, 0) + Ψ∗∗2 (1− q(1, 0)− q(0, 1))

)
(D.6)

if he chooses to set θ1 = 0. Similarly, if he sets θ2 = 0 given that θ1 = 1, this probability is increased

by:

(Ψ∗2 −Ψ∗∗2 )
(
q(0, 1) + Ψ∗∗1 (1− q(1, 0)− q(0, 1))

)
(D.7)

In equilibrium, neither (D.6) nor (D.7) can exceed 1/L. In what follows, we establish a lower bound
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for the maximum of these two expressions, which does not depend on L. This will be sufficient to rule

out equilibria of this form when L is large enough. Throughout the proof, we assume that ω∗1 ≥ ω∗2,

which is without loss of generality. This leads to the following lemma on the comparison between

q(1, 0) and q(0, 1), the proof of which can be found in subsection D.5:

Lemma D.2. In every equilibrium where ω∗1 ≥ ω∗2, we have q(1, 0) ≥ q(0, 1).

Lower Bound on ω∗1: For every ε > 0,

1. Suppose q(1, 0) ≥ ε, then

ω∗∗1 ≥ −b− c
1− ε
ε

. (D.8)

2. Suppose q(1, 0) < ε, then q(0, 1) ∈ (0, ε) according to Lemma D.1. Therefore, we have:

ω∗2 = −c (1−Ψ∗∗1 )(1− q(0, 1))

q(0, 1) + Ψ∗∗1 (1− q(1, 0)− q(0, 1))

≥ −c

(
1− δΦ(ω∗1 − b)− (1− δ)α

)
(1− q(0, 1))

q(0, 1) +
(
δΦ(ω∗1 − b) + (1− δ)α

)(
1− q(1, 0)− q(0, 1)

)
≥ −c

(
1− δΦ(ω∗2 − b)− (1− δ)α

)
(1− q(0, 1))

q(0, 1) +
(
δΦ(ω∗2 − b) + (1− δ)α

)(
1− q(1, 0)− q(0, 1)

)
≥ −c 1− δΦ(ω∗2 − b)− (1− δ)α

(1− ε)
(
δΦ(ω∗2 − b) + (1− δ)α

) . (D.9)

As have shown in Appendix A, there exists a solution to the following equation:

ω∗2 = −c 1− δΦ(ω∗2 − b)− (1− δ)α

(1− ε)
(
δΦ(ω∗2 − b) + (1− δ)α

) ,
which is denoted by ω∗(ε) such that (D.9) is satisfied only when ω∗2 ≥ ω∗(ε). Since ω∗(ε) is

decreasing in ε, a lower bound for ω∗1 is then given by:

ω∗1 ≡ sup
ε∈[0,1]

{
min

{
− b− c1− ε

ε
, ω∗(ε)

}}
, (D.10)

which is finite and moreover, does not depend on L.
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Upper Bound on C1: The key to bound C1 is to bound the term

1

q(1, 0) + Ψ∗∗2 (1− q(1, 0)− q(0, 1))
(D.11)

from above. For every ε > 0, consider the following two cases:

1. If q(1, 0) ≥ ε, then (D.11) is no more than 1/ε.

2. If q(1, 0) < ε, then q(0, 1) < ε according to Lemma D.1. Let ω∗∗2 (ε) be the smallest root of the

following equation:

ω ≡ −b− c 1− δΦ(ω)− (1− δ)α(
δΦ(ω) + (1− δ)α

)
(1− ε)

, (D.12)

which is a lower bound for ω∗∗2 given that q(1, 0), q(0, 1) ∈ [0, ε]. The upper bound of (D.11) is

then given by:
1

q(1, 0) + Ψ∗∗2 (1− q(1, 0)− q(0, 1))
≤ 1

Φ(ω∗∗2 (ε))(1− 2ε)
. (D.13)

Summarizing these two cases, we have:

C1 ≤ cY 2 (D.14)

where

Y ≡ inf
ε∈[0,1]

{
max

{
1/ε,

1

Φ(ω∗∗2 )(1− 2ε)

}}
.

Lower Bound on the Maximum of (D.6) and (D.7): In this last step, we establish a lower

bound on the maximum of (D.6) and (D.7). A useful inequality that will be used is that for every

ω′, ω′′ with ω′ > ω′′,

Φ(ω′)− Φ(ω′′) ≥ (ω′ − ω′′) min
ω∈[ω′,ω′′]

φ(ω). (D.15)

We consider two cases. First, consider the case in which Φ(ω∗1)−Φ(ω∗∗1 ) ≥ Φ(ω∗2)−Φ(ω∗∗2 ). Using the

fact that Ψ∗i −Ψ∗∗i = δ(Φ(ω∗i )− Φ(ω∗∗i )), we have:

δ

minω∈[ω∗∗1 ,ω∗1 ] φ(ω)

(
Φ(ω∗1)− Φ(ω∗∗1 )

)
≥ ω∗1 − ω∗∗1 = b− C1(Ψ∗2 −Ψ∗∗2 ) ≥ b− C1(Ψ∗1 −Ψ∗∗1 ). (D.16)

This together with (D.14) gives an lower bound for Ψ∗1 −Ψ∗∗1 . Moreover,

q(1, 0) + Ψ∗∗2 (1− q(1, 0)) ≥ q(1, 0) + Ψ∗∗2
(
1− q(1, 0)− q(0, 1)

)
≥

c
(
1− q(1, 0)

)
(1−Ψ∗∗2 )

|ω∗1|
, (D.17)



D PROOF OF THEOREM 1: CONVICTION PROBABILITIES 43

where the last inequality uses (D.1) as well as the previous conclusion that ω∗1 is a lower bound of ω∗1.

This gives a lower bound on q(1, 0). The two parts together imply a lower bound on (D.6).

Second, consider the case in which Φ(ω∗1)− Φ(ω∗∗1 ) < Φ(ω∗2)− Φ(ω∗∗2 ). Let

β ≡ ω∗1 − ω∗∗1
b

. (D.18)

Since X2 > Ψ∗∗2 , we have β ∈ (0, 1). First, recall that ω∗1 is the lower bound on ω1, we have:

1

δ
(Ψ∗1 −Ψ∗∗1 ) = Φ(ω∗1)− Φ(ω∗∗1 ) ≥ βbφ(ω∗1 − b). (D.19)

On the other hand, (D.4) and (D.14) imply that:

Ψ∗2 −Ψ∗∗2 = (1− β)b/C1 ≥
(1− β)bY 2

c
(D.20)

Since the pdf of normal distribution increases in ω when ω < 0, (D.20) leads to a lower bound on ω∗∗2 .

We denote this lower bound by ω̃(β). By definition, ω̃(β) decreases with β.

1. When β ≥ 1/2, (D.19) implies a lower bound for Φ(ω∗1) − Φ(ω∗∗1 ). Applying (D.17),22 one can

obtain a lower bound for q(1, 0). These together lead to a lower bound on (D.6).

2. When β < 1/2, we have ω∗∗2 ≥ ω̃(1/2) and furthermore,

Ψ∗2 −Ψ∗∗2 ≥
b

2C1
.

The lower bound on ω∗∗2 also leads to a lower bound on q(0, 1) + Ψ∗∗1 (1 − q(1, 0) − q(0, 1)), as

(D.2) implies:

ω̃(1/2) ≤ ω∗∗2 ≤ ω∗2 = −c (1−Ψ∗∗1 )(1− q(0, 1))

q(0, 1) + Ψ∗∗1 (1− q(1, 0)− q(0, 1))
,

which leads to:

q(0, 1) + Ψ∗∗1 (1− q(1, 0)− q(0, 1)) ≥ (1−Ψ∗∗1 )(1− q(0, 1))

−ω̃(1/2)/c
. (D.21)

Since 1−Ψ∗∗1 ≥ δ−δΦ(0) and 1−q(0, 1) ≥ 1/2, the lower bound on q(0, 1)+Ψ∗∗1 (1−q(1, 0)−q(0, 1))

is strictly bounded away from 0. This leads to a uniform lower bound on (D.7).

22The validity of inequality (D.17) does not depend on the sign of Ψ∗1 −Ψ∗∗1 −Ψ∗2 + Ψ∗∗2 .



D PROOF OF THEOREM 1: CONVICTION PROBABILITIES 44

D.3 Value of (3.7) is Negative

Next, we study the case where q(1, 0) + q(0, 1) > q(0, 0) + q(1, 1), or in another word, the choice of θ1

and θ2 are strategic complements from the principal’s perspective. Lemma D.1 implies that conditional

on abusing one agent, the principal will have a strict incentive to abuse the other agent. Therefore in

such equilibria, either both agents are abused or no agent is abused.

We start from two observations. First, q(1, 1) = 1 in all such equilibria. This is because if

q(1, 1) ∈ (0, 1) and q(1, 0) + q(0, 1) > q(0, 0) + q(1, 1), then one of the agent’s report is not informative

about the state, leading to a contradiction. Second, due to the strategic complementarity between θ1

and θ2, agent i’s belief about agent j’s probability of submitting a report is strictly higher when θi = 0

compared to θi = 1. This implies that:

min{ω∗1 − ω∗∗1 , ω∗2 − ω∗∗2 } ≥ b. (D.22)

By setting θ1 = θ2 = 1, the principal’s probability of losing power is increased by at least

(Ψ∗1−Ψ∗∗1 )
(

Ψ∗2(1−q(0, 1))+(1−Ψ∗2)q(1, 0)
)

+(Ψ∗2−Ψ∗∗2 )
(

Ψ∗∗1 (1−q(1, 0))+(1−Ψ∗∗1 )q(0, 1)
)
, (D.23)

compared to the case in which he sets θ1 = θ2 = 0. Therefore, the value of (D.23) cannot exceed 2/L.

The rest of this proof establishes a lower bound on (D.23) that applies uniformly across all L. This in

turn implies that when L is large enough, equilibria that exhibit strategic complementarities between

θ1 and θ2 do not exist.

First, max{q(0, 1), q(1, 0)} ≥ 1/2 since q(0, 1) + q(1, 0) ≥ 1. Without loss of generality, we assume

that q(1, 0) ≥ 1/2. Second, agent i has a dominant strategy of not reporting when ωi > 0, so

1−Ψ∗i ≥ δ(1− Φ(0)). Third, player 1’s reporting threshold when θ1 = 0 is:

ω∗1 = −c (1−QH2 )(1− q(1, 0))

QH2 (1− q(0, 1)) + (1−QH2 )q(1, 0)
(D.24)

where QH2 is the probability with which player 2 submits a report conditional on θ1 = 0. One can

verify that the RHS of (D.24) is strictly increasing in QH2 . Therefore,

ω∗1 ≥ −c
1− q(1, 0)

q(1, 0)
≥ −c.
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According to (D.22), we have:

1

δ
(Ψ∗1 −Ψ∗∗1 ) = Φ(ω∗1)− Φ(ω∗∗1 ) ≥ b min

ω∈[−b−c,0]
φ(ω). (D.25)

The uniform lower bound on (D.23) is then given by:

(Ψ∗1 −Ψ∗∗1 )︸ ︷︷ ︸
use (D.25)

(
Ψ∗2(1− q(0, 1))︸ ︷︷ ︸

≥0

+ (1−Ψ∗2)︸ ︷︷ ︸
≥δ(1−Φ(0))

q(1, 0)︸ ︷︷ ︸
≥1/2

)
+ (Ψ∗2 −Ψ∗∗2 )

(
Ψ∗∗1 (1− q(1, 0)) + (1−Ψ∗∗1 )q(0, 1)︸ ︷︷ ︸

≥0

)

≥ δ2b

2
(1− Φ(0)) min

ω∈[−b−c,0]
φ(ω), (D.26)

which concludes the proof.

D.4 Value of (3.7) equals to 0

Part I: We show that each agent is being abused with strictly positive probability and q(1, 1) = 1.

The implications of these conclusions are:

1. q(1, 0) + q(0, 1) = 1.

2. The marginal cost of abusing each agent is the same.

(Ψ∗1 −Ψ∗∗1 )q(1, 0) = (Ψ∗2 −Ψ∗∗2 )q(0, 1). (D.27)

Suppose towards a contradiction that agent 1 is abused with probability 0, then whether agent 1’s

reports or not does not change the posterior belief about θ1θ2. Given that c > 0, agent 1 will never

report, which implies that the principal will have a strict incentive to abuse him. This contradicts the

responsiveness requirement.

Suppose towards a contradiction that q(1, 1) ∈ (0, 1), then either q(1, 0) ∈ (0, 1) or q(0, 1) ∈ (0, 1)

or both. Suppose q(1, 0) ∈ (0, 1), then whether agent 2’s reports or not does not change the posterior

belief about θ1θ2. Given that c > 0, agent 2 will never report, which implies that the principal will

have a strict incentive to abuse him. This contradicts the responsiveness requirement.

Part II: We place a lower bound on the value of (D.27) that uniformly applies across all L. Without

loss of generality, we assume that q(1, 0) ≥ q(0, 1), and therefore, q(1, 0) ≥ 1/2. The expressions for
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agent 1’s reporting cutoffs are given by:

ω∗1 = −cq(0, 1)

q(1, 0)

(
1− pxΨ∗2 − (1− px)Ψ∗∗2

)
and

ω∗∗1 = −b− cq(0, 1)

q(1, 0)

(
1− pyΨ∗2 − (1− py)Ψ∗∗2

)
for some px, py ∈ [0, 1], which are agent 1’s beliefs about θ2 conditional on the realization of θ1. The

difference between them is then:

ω∗1 − ω∗∗1 = b− cq(0, 1)

q(1, 0)
(px − py)(Ψ∗2 −Ψ∗∗2 ). (D.28)

where the absolute value of

c
q(0, 1)

q(1, 0)
(px − py)

is at most c. To bound the LHS of (D.27) from below, we proceed in two steps.

Substep 1: Lower bound on ω∗1 According to the expression for ω∗1 and using the assumption

that q(1, 0) ≥ q(0, 1), we have:

ω∗1 ≥ −c
(

1− pxΨ∗2 − (1− px)Ψ∗∗2

)
≥ −cδ(1− Φ(0)). (D.29)

Let this lower bound be ω∗1.

Substep 2: Lower bound on (D.27) This can be accomplished by establishing strictly positive

lower bounds on either of the following expressions: Ψ∗1 − Ψ∗∗1 or q(0, 1)(Ψ∗2 − Ψ∗∗2 ). The former is

sufficient since q(1, 0) ≥ 1/2.

The case in which px − py ≤ 0 is trivial, as ω∗1 − ω∗∗1 ≥ b. The lower bound on ω∗1 then implies a

strictly positive lower bound on Ψ∗1 − Ψ∗∗1 . The case in which px − py > 0 follows similarly from the

last step of subsection C.2. To illustrate the details, we consider two cases separately.

First, suppose Ψ∗1 −Ψ∗∗1 ≥ Ψ∗2 −Ψ∗∗2 , then we have:

Ψ∗1 −Ψ∗∗1
φ(ω∗1 − b)

≥ ω∗1 − ω∗∗1 = b− c(Ψ∗2 −Ψ∗∗2 ) ≥ b− c(Ψ∗1 −Ψ∗∗1 ). (D.30)

which yields a strictly positive lower bound on Ψ∗1 −Ψ∗∗1 .
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Second, suppose Ψ∗1 −Ψ∗∗1 < Ψ∗2 −Ψ∗∗2 , then let β ≡ (ω∗1 − ω∗∗1 )/b which is between 0 and 1 due to

the assumption that px − py > 0. Equality (D.28) implies that:

ω∗1 − ω∗∗1 = b− cq(0, 1)

q(1, 0)
(px − py)(Ψ∗2 −Ψ∗∗2 ) ≥ b− c(Ψ∗2 −Ψ∗∗2 )

which yields

Ψ∗2 ≥ Ψ∗2 −Ψ∗∗2 ≥ (1− β)b/c. (D.31)

This leads to a lower bound on the cutoff ω∗2 for each β. We denote this lower bound by ω̃(β), which

is a decreasing function of β. On the other hand, we also have:

1

δ
(Ψ∗1 −Ψ∗∗1 ) = Φ(ω∗1)− Φ(ω∗∗1 ) ≥ βbφ(ω∗1 − b). (D.32)

Now consider two subcases, depending on the comparison between β and 1/2.

1. If β ≥ 1/2, then (D.32) implies that

Ψ∗1 −Ψ∗∗1 ≥ bδφ(ω∗1 − b)/2. (D.33)

2. If β < 1/2, then (D.31) implies that:

Ψ∗2 −Ψ∗∗2 ≥ b/2c (D.34)

Since

ω∗2 = −c(1−Q)
q(1, 0)

q(0, 1)
≥ ω2(β) (D.35)

where Q is some number between 0 and (1− δ)α+ δΦ(0). This yields the following lower bound

on q(0, 1), namely

q(0, 1) ≥ −c(1−Q)q(1, 0)

ω2(β)
≥ − c

2ω2(β)
(D.36)

which is strictly bounded above 0 for all β < 1/2. This together with (D.34) lead to the following

lower bound on the RHS of (D.27):

q(0, 1)(Ψ∗2 −Ψ∗∗2 ) ≥ − b

4ω2(β)
. (D.37)
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D.5 Proof of Lemma D.2

Suppose towards a contradiction that in some equilibrium with strategic substitutability, ω∗1 > ω∗2 but

q(1, 0) < q(0, 1), then (D.1) implies that Φ(ω∗∗2 ) > Φ(ω∗∗1 ) or equivalently, ω∗∗2 > ω∗∗1 . This together

with ω∗i > ω∗∗i for both i imply that:

ω∗∗1 < ω∗∗2 < ω∗2 < ω∗1. (D.38)

We start from showing that p1, p2 > 0. Suppose towards a contradiction that p1 = 0 and p2 > 0, then

(D.3) implies that X1 = Ψ∗∗1 . Therefore, ω∗2 − ω∗∗2 = b > ω∗1 − ω∗∗1 , contradicting (D.38). Suppose

towards a contradiction that p1 > 0 and p2 = 0, then

p1
Ψ∗1
Ψ∗∗1

+ p2
1−Ψ∗2
1−Ψ∗∗2

> p2
Ψ∗2
Ψ∗∗2

+ p1
1−Ψ∗1
1−Ψ∗∗1

, (D.39)

which is to say that the public’s posterior belief attaching to θ1θ2 = 0 is strictly higher when agent 1 is

the only one that reports compared to the case where agent 2 is the only one that reports. Therefore,

q(1, 0) ≥ q(0, 1), leading to a contradiction.

Given that we have already shown that p1, p2 > 0, while the responsiveness requirement implies

that θ1θ2 = 0 with probability less than 1, i.e. p1, p2 < 1, we know that both of them are interior so

that (D.6) and (D.7) must be equal. Applying the expression for reporting threshold (D.1) to both

agents, we have:

∣∣∣ω∗1
ω∗2

∣∣∣ =
1−Ψ∗∗2
1−Ψ∗∗1

· 1− q(1, 0)

1− q(0, 1)
· q(0, 1) + Ψ∗∗1 (1− q(1, 0)− q(0, 1))

q(1, 0) + Ψ∗∗2 (1− q(1, 0)− q(0, 1))
.

=
1−Ψ∗∗2
1−Ψ∗∗1

· 1− q(1, 0)

1− q(0, 1)
· Ψ∗1 −Ψ∗∗1

Ψ∗2 −Ψ∗∗2
. (D.40)

Since
1−Ψ∗∗1
1−Ψ∗∗2

<
Ψ∗1 −Ψ∗∗1
Ψ∗1 −Ψ∗∗2

≤ Ψ∗1 −Ψ∗∗1
Ψ∗2 −Ψ∗∗2

Plugging this back in, we have:

1 ≥
∣∣∣ω∗1
ω∗2

∣∣∣ > 1− q(1, 0)

1− q(0, 1)
> 1, (D.41)

leading to a contradiction.
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E Proof of Theorem 1: Comparisons

First, we show that ω∗m > ω∗s . Suppose towards a contradiction that ω∗m ≤ ω∗s , then the comparison

between (3.1) and (3.8) implies that

qm

(
δΦ(ω∗∗m ) + (1− δ)α

)
≤ qs.

Therefore,

qm

(
δΦ(ω∗∗m ) + (1− δ)α

)(
Φ(ω∗s)− Φ(ω∗∗s )

)
≤ qs

(
Φ(ω∗s)− Φ(ω∗∗s )

)
= 1/δL = qm

(
Φ(ω∗m)− Φ(ω∗∗m )

)(
δΦ(ω∗∗m ) + (1− δ)α

)
. (E.1)

On the other hand, since ω∗m − ω∗∗m < b = ω∗s − ω∗∗s and ω∗m < ω∗s , we have:

Φ(ω∗m)− Φ(ω∗∗m ) < Φ(ω∗s)− Φ(ω∗∗s ). (E.2)

Inequality (E.2) implies that

(
δΦ(ω∗∗m ) + (1− δ)α

)(
Φ(ω∗s)− Φ(ω∗∗s )

)
>
(
δΦ(ω∗∗m ) + (1− δ)α

)(
Φ(ω∗m)− Φ(ω∗∗m )

)
, (E.3)

which contradicts (E.1). This implies that ω∗m > ω∗s . Moreover, according to Lemma 3.2,

0 < ω∗m − ω∗∗m < b = ω∗s − ω∗∗s ,

we know that ω∗m > ω∗s implies ω∗∗m > ω∗∗s . The comparison between Is and Im immediately follows,

as ω∗∗m > ω∗∗s and ω∗m − ω∗∗m < ω∗s − ω∗∗s imply that Is > Im. The comparison between π̃s and π̃m can

then be obtained by comparing (3.6) to (3.14), which yields π̃s < π̃m.

Next, we show qm > qs. Given that ω∗m > ω∗s , then the comparison between (3.1) and (3.8) implies

that qmQ0 > qs. That is 1 ≥ Q0 > qs/qm, which implies that qm > qs.

F Proof of Theorem 2

According to Lemma 3.3, we only need to show that ω∗m → −∞ as L → ∞. Suppose towards a

contradiction that for some (c, δ) ∈ R+ × (0, 1) and ε > 0, there exists ω∗ ∈ R− such that for every

L > L(c, δ), there exists (L, c, δ) with L ≥ L and a monotone-responsive equilibrium under (L, c, δ) in
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which the first cutoff ω∗m ∈ B(ω∗, ε).

Consider a sequence of such equilibria as L→∞. The principal’s indifference condition:

1

δL
= qm

(
δΦ(ω∗∗m ) + (1− δ)α

)(
Φ(ω∗m)− Φ(ω∗∗m )

)
(F.1)

implies that as L → ∞, the LHS converges to 0. Therefore, either qm → 0 or Φ(ω∗m) − Φ(ω∗∗m ) → 0.

As ω∗m ≥ ω∗ − ε and according to Lemma 3.2, |ω∗m − ω∗∗m | ∈ (0, b), we know that ω∗m − ω∗∗m → 0 once

Φ(ω∗m)− Φ(ω∗∗m )→ 0.

Next, we show that ω∗m → −∞ as qm → 0. According to (3.8), suppose towards a contradiction that

ω∗m is finite, then the LHS converges to 0 while the RHS is strictly negative, leading to a contradiction.

Lastly, we rule out the possibility that ω∗m − ω∗∗m → 0 when qm is bounded away from 0, i.e. there

exists q ∈ (0, 1) such that qm ≥ q along this sequence. To see this, rewrite (3.8) and (3.9) as:

qm
c

(ω∗m − c) = − 1

δΦ(ω∗m) + (1− δ)α
(F.2)

and
qm
c

(ω∗∗m + b− c) = − 2

l∗ + 2

1

δΦ(ω∗m) + (1− δ)α
− l∗

l∗ + 2

1

δΦ(ω∗∗m ) + (1− δ)α
. (F.3)

Subtracting (F.3) from (F.2), we obtain:

qm
c

(
ω∗m − (ω∗∗m + b)

)
=

l∗

l∗ + 2

( 1

δΦ(ω∗m) + (1− δ)α
− 1

δΦ(ω∗∗m ) + (1− δ)α

)
. (F.4)

The RHS of (F.4) converges to 0 as Φ(ω∗m) − Φ(ω∗∗m ) → 0 while the LHS is strictly less than −qb/c

since ω∗m − ω∗∗m → 0, which leads to a contradiction.

G Proof of Propositions 5 & 6

According to Theorem 2, when c > c∗ and L > L(δ, c), q(0, 0) = q(1, 0) = q(0, 1) = 0, q(1, 1) ∈ (0, 1)

in every responsive equilibrium, which will be the focus of this proof.

G.1 Proof of Proposition 5

We start from analyzing the agents’ incentives. Agent 1’s reporting cutoffs are given by:

ω∗1 = c+
1

qΨ∗∗2

{
Ψ∗∗2

(
t1(1, 1)− t1(0, 1)

)
+ (1−Ψ∗∗2 )

(
t1(1, 0)− t1(0, 0)

)
− c
}
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and

ω∗∗1 = −b+ c+
1

qQ2

{
Q2

(
t1(1, 1)− t1(0, 1)

)
+ (1−Q2)

(
t1(1, 0)− t1(0, 0)

)
− c
}

where

Q2 ≡
1− p1 − p2

1− p1
Ψ∗∗2 +

p2

1− p1
Ψ∗2.

Using the equilibrium condition that:

Im =
π∗

1− π∗
/ p1 + p2

1− p1 − p2
,

we know that:

p1 + p2 =
l∗

l∗ + Im
.

One can then obtain:

Q2 = Ψ∗∗2
Im + (1− α)l∗I2

(1− α)l∗ + Im
,

where α ≡ p1/(p1 + p2). Let ∆1 ≡ t1(1, 0)− t1(0, 0) and ∆2 ≡ t2(0, 1)− t2(0, 0). Subtracting ω∗∗1 from

ω∗1, we get:

ω∗1 − ω∗∗1 = b+
1

q

( 1

Ψ∗∗2
− 1

Q2

)
(∆1 − c). (G.1)

Similarly, the distance between agent 2’s reporting cutoffs is given by:

ω∗2 − ω∗∗2 = b+
1

q

( 1

Ψ∗∗1
− 1

Q1

)
(∆2 − c). (G.2)

That is, whether ω∗i − ω∗∗i is larger or smaller than b only depends on the sign of ∆i − c.

Under the transfer scheme in Proposition 5, each agent’s incentive to report does not depend on

his belief about the other agent’s strategy, i.e.

ω∗1 = ω∗2 = c− c

qm
, ω∗∗1 = ω∗∗2 = −b+ c− c

qm
.

The principal’s incentive constraint is given by following indifference condition:

1/L = qm(Ψ∗1 −Ψ∗∗1 )Ψ∗∗2 = qm(Ψ∗2 −Ψ∗∗2 )Ψ∗∗1 .

As qm → 0 when L → ∞, we know that ω∗, ω∗∗ → −∞. The informativeness ratio Im converges to

∞ and the equilibrium probability of crime, equals to p1 + p2, converges to 0.
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G.2 Proof of Proposition 6

Recall the definitions of ∆1 and ∆2. Without loss of generality, let t1(0, 0) = t2(0, 0) = 0. Then

t1(1, 0) = −t2(1, 0) = ∆1, −t1(0, 1) = t2(0, 1) = ∆2. Let t1(1, 1) = T , then t2(1, 1) = −T . The two

players’ reporting cutoffs are then given by:

ω∗1 = c+
1

q
(T + ∆2 −∆1) +

1

qΨ∗∗2
(∆1 − c), (G.3)

ω∗∗1 = −b+ c+
1

q
(T + ∆2 −∆1) +

1

qQ2
(∆1 − c), (G.4)

ω∗2 = c+
1

q
(∆1 −∆2 − T ) +

1

qΨ∗∗1
(∆2 − c), (G.5)

ω∗∗2 = −b+ c+
1

q
(∆1 −∆2 − T ) +

1

qQ1
(∆2 − c). (G.6)

We consider three cases separately, depending on the signs of ∆1 − c and ∆2 − c.

G.2.1 Case 1: ∆1,∆2 ≥ c

Suppose ∆1,∆2 ≥ c, then

ω∗∗1 ≥ −b+ c+
1

q
(T + ∆2 −∆1) and ω∗∗2 ≥ −b+ c+

1

q
(∆1 −∆2 − T )

Therefore,

ω∗∗1 + ω∗∗2 ≥ −2b+ 2c, (G.7)

which implies that max{ω∗∗1 , ω∗∗2 } ≥ −b+ c. Since Im = min{I1, I2}, we know that

Im ≤
1

δΦ(−b+ c) + (1− δ)α
≤ 1

δΦ(−b+ c)
, (G.8)

which establishes the uniform upper bound.

G.2.2 Case 2: ∆1,∆2 < c

Let

X ≡ 1

q
(∆1 −∆2 − T ).
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Without loss of generality, assume X ≥ 0. Let β ∈ (0, 1) be the probability with which agent 1 is

abused conditional on the principal being guilty. The expressions for the two cutoffs imply that:

ω∗2 − c−X
ω∗∗2 + b− c−X

=
(1− β)l∗I1 + Im
(1− β)l∗ + Im

and
ω∗1 − c+X

ω∗∗1 + b− c+X
=
βl∗I2 + Im
βl∗ + Im

. (G.9)

We start with the following Lemma:

Lemma G.1. There exists a function ε : R+ × [0, 1] → R+ such that for every η ∈ (0, 1), if

β ≤ 1− η and ω∗2 < −M , then Im < 1 + ε(M,η).

Proof of Lemma G.1: Since ∆2 < c, we know that ω∗2 − ω∗∗2 < b. Since X ≥ 0, ω∗2 − c −X < 0 and

ω∗∗2 + b− c−X < 0,

ω∗2 − c−X
ω∗∗2 + b− c−X

<
ω∗2 − c

ω∗∗2 + b− c
≤ M + c

M + c− b
= 1 +

b

M + c− b

On the other hand, since I1 ≥ Im ≥ 1, we know that:

1 +
b

M + c− b
≥ (1− β)l∗I1 + Im

(1− β)l∗ + Im
≥ (1− β)l∗Im + Im

(1− β)l∗ + Im
≥ ηl∗Im + Im

ηl∗ + Im

This places an upper bound on Im, which converges to 1 as M → −∞.

Lemma G.1 implies that for every η ∈ (0, 1), if β ≤ 1− η, the informativeness of report is bounded

from above by:

max
M∈R+

{
min{1 + ε(M,η),

1

Φ(−M − b)
}
}
, (G.10)

which is bounded from above for every given η. Therefore, in order to establish a uniform upper

bound on Im, we only need to show that unbounded informativeness cannot arise when α is close to

or equals to 1. That is to say, it is without loss to consider cases in which β ≥ 1/2. Therefore, agent

1 is abused with strictly positive probability, which implies that Im = I1 ≤ I2.

Suppose towards a contradiction that for every I > 0, there exists {∆1,∆2, X} under which there

exists an equilibrium in which Im > I. In what follows, we consider two subcases separately.

Subcase 1: ω∗
1 − ω∗∗

1 ≥ ω∗
2 − ω∗∗

2 Since I1 ≤ I2, we know that ω∗∗1 ≥ ω∗∗2 . According to the

assumption that ω∗1 − ω∗∗1 ≥ ω∗2 − ω∗∗2 , we know that ω∗1 ≥ ω∗2. Therefore:

X +
∆2 − c
qΨ∗∗1

≤ −X +
∆1 − c
qΨ∗∗2
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or equivalently,

X ≤ 1

2

( |c−∆1|
qΨ∗∗2

− |c−∆2|
qΨ∗∗1

)
(G.11)

On the other hand,

ω∗2 − ω∗∗2 = b− |c−∆2|
qΨ∗∗1

· β(I1 − 1)l∗

Im + βl∗I1
> 0,

which implies that for every ε > 0, there exists I∗ such that whenever Im > I∗,

|c−∆2|
qΨ∗∗1

≤ b1 + βl∗

βl∗
+ ε.

Since β ≥ 1/2 and the RHS is decreasing in β, we know that when Im is sufficiently large,

X ≤ b

2
· 1 + l∗/3

l∗/3
. (G.12)

Given this uniform upper bound on X, we know that as ω∗1 → −∞,

ω∗1 − c+X

ω∗∗1 + b− c+X
→ 1.

The second part of (G.9) together with β ≥ 1/2 implies that I2 is uniformly bounded from above as

ω∗1 → −∞, which contradicts the assumption that I is unbounded.

Subcase 2: ω∗
1 − ω∗∗

1 < ω∗
2 − ω∗∗

2 Since β ≥ 1/2, the distance between ω∗1 and ω∗∗1 is at most b

and
ω∗1 − c+X

ω∗∗1 + b− c+X
=
βl∗I2 + Im
βl∗ + Im

,

if Im is unbounded, then ω∗1 − c+X is bounded from below. That is, there exists A ∈ R+ such that

|ω∗1 − c+X| = |c−∆1|
qΨ∗∗2

≤ A. (G.13)

Since ω∗1 − ω∗∗1 < ω∗2 − ω∗∗2 , we know that when Im is sufficiently large,

|c−∆1|
qΨ∗∗2

· 1− β
1 + (1− β)l∗

≤ |c−∆2|
qΨ∗∗1

· β

1 + βl∗
. (G.14)

Therefore,
|c−∆2|
qΨ∗∗1

≤ |c−∆1|
qΨ∗∗2

· 1− β
β
· (1 + l∗) ≤ A(1 + l∗)

1− β
β

. (G.15)
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According to Lemma G.1, β → 1 and ω∗1 → −∞ are required when Im →∞. Therefore, X →∞ and

|c−∆2|
qΨ∗∗1

→ 0.

But according to the expression that

ω∗2 = c+X +
|c−∆2|
qΨ∗∗1

,

we know that ω∗2 is strictly positive when Im is sufficiently large. Therefore ω∗∗2 ≥ ω∗2 − b ≥ −b and

therefore, Im ≤ I2 ≤ 1/Φ(−b), leading to a contradiction.

G.2.3 Case 3: ∆1 ≥ c and ∆2 < c

Define X in the same way as in the previous subsection. If X ≤ 0, then

ω∗∗1 ≥ −b+ c

which implies that I ≤ 1/Φ(−b+ c).

If X > 0, then
ω∗2 − c−X

ω∗∗2 + b− c−X
→ 1

as ω∗2 → −∞. Since
ω∗2 − c−X

ω∗∗2 + b− c−X
=

(1− β)l∗I1 + Im
(1− β)l∗ + Im

,

we know that in order for Im → ∞, we need ω∗2 → −∞ and β → 1. Therefore, it is without loss to

consider situations in which

β ≥ β ≡ max{1− 1/l∗, 1/2}.

When β ≥ β, we know that Im = I1 ≤ I2. Since ω∗1 − ω∗∗1 ≥ b > ω∗2 − ω∗∗2 , we know that ω∗∗2 < ω∗∗1 ,

which further implies that ω∗2 < ω∗1. This implies that

X +
∆2 − c
qΨ∗∗1

≤ −X +
∆1 − c
qΨ∗∗2

which is equivalent to:

X ≤ 1

2

( |∆1 − c|
qΨ∗∗2

+
|c−∆2|
qΨ∗∗1

)
.
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Since ω∗2 − ω∗∗2 > 0, we know that for every Im above some threshold,

|c−∆2|
qΨ∗∗1

≤ b1 + β̃l∗

β̃l∗
,

where β̃ ≡ β/2. Therefore

ω∗∗1 = −b+ c−X +
∆1 − c
qΨ∗∗2

· (1− β)l∗ + Im
Im + (1− β)l∗I2

≥ −b+ c− |c−∆2|
2qΨ∗∗1

− |∆1 − c|
2qΨ∗∗2

+
|∆1 − c|
qΨ∗∗2

· (1− β)l∗ + Im
Im + (1− β)l∗I2

≥ −b+ c− b1 + β̃l∗

2β̃l∗
+
|∆1 − c|
qΨ∗∗2

( (1− β)l∗ + Im
Im + (1− β)l∗I2

− 1

2

)
(G.16)

The coefficient
(1− β)l∗ + Im
Im + (1− β)l∗I2

− 1

2

is strictly positive when β ≥ β and Im is sufficiently large. Therefore (G.16) implies that

ω∗∗1 ≥ ω∗∗1 ≡ −b+ c− b1 + β̃l∗

2β̃l∗
(G.17)

which further implies that

Im = I1 ≤ Φ(ω∗∗1 )−1.

H Proof of Proposition 8

The proof consists of two parts, which studies the comparative statics on the reporting cutoffs (subsec-

tion H.1) and the informativeness of reports as well as the equilibrium probability of crime (subsection

H.2), respectively.

H.1 Reporting Cutoffs & Distance Between Cutoffs

In this subsection, we show that ω∗k > ω∗n. Suppose towards a contradiction that ω∗k ≤ ω∗n, then

according to (5.1), we have:

qk

(
δΦ(ω∗∗k ) + (1− δ)α

)k−1
≤ qn

(
δΦ(ω∗∗n ) + (1− δ)α

)n−1
. (H.1)
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Therefore, qkQ0,k ≤ qnQ0,n which is equivalent to:

qk

(
δΦ(ω∗∗k ) + (1− δ)α

)k−1(
Φ(ω∗n)− Φ(ω∗∗n )

)
≤ qn

(
δΦ(ω∗∗n ) + (1− δ)α

)n−1(
Φ(ω∗n)− Φ(ω∗∗n )

)

= qk

(
δΦ(ω∗∗k ) + (1− δ)α

)k−1(
Φ(ω∗k)− Φ(ω∗∗k )

)
.

This implies that

Φ(ω∗n)− Φ(ω∗∗n ) ≤ Φ(ω∗k)− Φ(ω∗∗k ). (H.2)

Since ω∗k ≤ ω∗n, (H.2) can only be true when

ω∗n − ω∗∗n ≤ ω∗k − ω∗∗k , (H.3)

which in turn implies that ω∗∗k ≤ ω∗∗n and therefore qkQ1,k ≤ qnQ1,n. Computing the two sides of (H.3)

by subtracting (5.2) from (5.1), we have:

ω∗n − ω∗∗n = b− c

qn

Q1,n −Q0,n

Q1,nQ0,n
and ω∗k − ω∗∗k = b− c

qk

Q1,k −Q0,k

Q1,kQ0,k
.

Due to the previous conclusion that qkQ0,k ≤ qnQ0,n and qkQ1,k ≤ qnQ1,n, (H.3) is true only when

qn(Q1,n −Q0,n) ≥ qk(Q1,k −Q0,k). (H.4)

Since

Q1,n −Q0,n =
(n− 1)l∗

(n− 1)l∗ + nIn
δ
(

Φ(ω∗n)− Φ(ω∗∗n )
)(
δΦ(ω∗∗n ) + (1− δ)α

)n−2

and the term

δ
(

Φ(ω∗n)− Φ(ω∗∗n )
)(
δΦ(ω∗∗n ) + (1− δ)α

)n−2
= L−1q−1

n

1

δΦ(ω∗∗n ) + (1− δ)α

according to (5.6), we know that (H.4) is equivalent to:

(n− 1)l∗

(n− 1)l∗
(
δΦ(ω∗∗n ) + (1− δ)α

)
+ n

(
δΦ(ω∗n) + (1− δ)α

)

≥ (k − 1)l∗

(k − 1)l∗
(
δΦ(ω∗∗k ) + (1− δ)α

)
+ k
(
δΦ(ω∗k) + (1− δ)α

)
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which in turn reduces to:

(n− 1)(k − 1)l∗
(
δΦ(ω∗∗k ) + (1− δ)α

)
+ (n− 1)k

(
δΦ(ω∗k) + (1− δ)α

)
≥ (n− 1)(k − 1)l∗

(
δΦ(ω∗∗n ) + (1− δ)α

)
+ (k − 1)n

(
δΦ(ω∗n) + (1− δ)α

)
The above inequality cannot be true as δΦ(ω∗∗k ) + (1− δ)α < δΦ(ω∗∗n ) + (1− δ)α, δΦ(ω∗k) + (1− δ)α <

δΦ(ω∗n) + (1 − δ)α and moreover, as k > n, we know that (n − 1)k < (k − 1)n. This leads to a

contradiction which shows that ω∗k > ω∗n whenever k > n.

Notice that up until the last step, we did not use the fact that k > n. Given the previous conclusion

that ω∗k > ω∗n and repeat the same reasoning up until (H.3), we know that

ω∗n − ω∗∗n > ω∗k − ω∗∗k , (H.5)

and this further implies that ω∗∗k > ω∗∗n .

H.2 Informativeness & Probability of Crime

In this subsection, we establish the comparison between informativeness by showing that In > Ik,

i.e. having more agents decreases the net informativeness of reports. Due to the one-to-one mapping

between net informativeness and the probability of at least one assault taking place, this will also

imply that π̃k > π̃n, i.e. the probability of crime increases.

Applying (5.1) and (5.2) to both n and k, we obtain the following expression for the ratios:

ω∗n − c
ω∗k − c

=
qkQ0,k

qnQ0,n
and

ω∗∗n + b− c
ω∗∗k + b− c

=
qkQ0,k(βk + (1− βk)Ik)
qnQ0,n(βn + (1− βn)In)

. (H.6)

First, we show that
ω∗n − c
ω∗k − c

>
ω∗∗n + b− c
ω∗∗k + b− c

. (H.7)

Suppose towards a contradiction that the opposite of (H.7) is true, then

ω∗∗n + b− c− (ω∗n − c)
ω∗∗k + b− c− (ω∗k − c)

≥ ω∗n − c
ω∗k − c

. (H.8)

The RHS of (H.8) is strictly greater than 1 as 0 > ω∗k > ω∗n. The LHS of (H.8) being greater than 1
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is equivalent to

b− (ω∗n − ω∗∗n ) > b− (ω∗k − ω∗∗k )

which contradicts the previous conclusion in (H.5). This establishes (H.7). This together with (H.6)

imply that

βk + (1− βk)Ik < βn + (1− βn)In.

Plugging in the expressions of In and Ik in (5.5), we have:

Ik
(
k + (k − 1)l∗

)(
nIn + (n− 1)l∗

)
< In

(
n+ (n− 1)l∗

)(
kIk + (k − 1)l∗

)
.

Let ∆ ≡ Ik − In, the above inequality reduces to:

(k − n)In(In + ∆− 1) < k∆−
(
l∗(k − 1)(n− 1) + nk

)
∆.

Suppose towards a contradiction that ∆ ≥ 0, then the LHS is strictly positive since I > 1 and k > n.

The RHS is negative as l∗(k − 1)(n − 1) + nk > k. This leads to a contradiction which implies that

∆ < 0 and therefore, In > Ik.

I Mitigating Punishment to the Convicted

In Appendix I.1, we prove Proposition 4 by constructing equilibria in which the principal’s decisions

are strategic complements when L belongs to an open interval. In Appendix I.2, we show there exist

values of L such that focusing on equilibria where the principal’s decisions are strategic complements

is without loss of generality. Namely, the value of (3.7) is non-positive in all equilibria.

I.1 Proof of Proposition 4

Consider equilibria where q(1, 1) = 1, q(1, 0) = q(0, 1) = q and q(0, 0) = 0 with q ≥ 1/2. According to

Lemma D.1, the value of (3.7) is strictly negative, which implies that the principal’s decisions to abuse

agents are strategic complements. Therefore in equilibrium, the principal either chooses θ1 = θ2 = 1

or chooses θ1 = θ2 = 0 but he will never abuse only one agent. Agent i will report if ωi is below

ω∗ ≡ −c(1− q)(1−Ψ∗)

q + Ψ∗(1− 2q)
(I.1)
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and θi = 0, or if ωi is below

ω∗∗ ≡ −b− c(1− q)(1−Ψ∗∗)

q + Ψ∗∗(1− 2q)
. (I.2)

when θi = 1. The principal’s indifference condition is given by:

2/L = (Ψ∗ −Ψ∗∗)
(

(1− 2q)(Ψ∗ + Ψ∗∗) + 2q
)
, (I.3)

where

Ψ∗ ≡ δΦ(ω∗) + (1− δ) and Ψ∗∗ ≡ δΦ(ω∗∗) + (1− δ).

Moreover, the equilibrium probability of crime, denoted by π̃m, is pinned down by:

Ψ∗(1−Ψ∗)

Ψ∗∗(1−Ψ∗∗)
=

π∗

1− π∗
/ π̃m

1− π̃m
, (I.4)

where

I ≡ Ψ∗(1−Ψ∗)

Ψ∗∗(1−Ψ∗∗)

measures the aggregate informativeness of reports. This is because in such equilibria, one report is

sufficient to convict the principal, and therefore, the evaluator is indifferent between s = 1 and s = 0

when there is exactly one report.

Comparing (I.1) to (I.2), we know that ω∗ − ω∗∗ > b. Rewrite (I.1) and (I.2) as:

ω∗

c
= − 1−Ψ∗

Ψ∗ + (1−Ψ∗) q
1−q

(I.5)

and
ω∗∗ + b

c
= − 1−Ψ∗∗

Ψ∗∗ + (1−Ψ∗∗) q
1−q

, (I.6)

notice that the RHS is bounded within [−1−q
q , 0] and is continuous with respect to q. For every c > 0,

both (I.4) and (I.5) admit a unique solution. Moreover, for every q < 1 and A ∈ R+, there exists c > 0

such that for every c > c and q ∈ [1/2, q], the solution satisfies |ω∗| > A. Since ω∗−ω∗∗ > b, we know

that the aggregate reporting informativeness in the δ → 1 limit also goes to infinity, that is,

lim
c→∞

lim
δ→1

δΦ(ω∗) + (1− δ)α
δΦ(ω∗∗) + (1− δ)α

=∞.

Therefore, when c is large enough and by setting L to be in an open set consisting of the values of
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(I.3) when q ∈ [1/2, q], the informativeness ratio I goes to infinity and the equilibrium probability of

crime converges to 0.

I.2 Complementarity in Principal’s Actions

For every (c, δ), let (ω∗0, ω
∗∗
0 ) be the unique solution to

ω∗0
c

= Ψ∗0 − 1 and
ω∗∗0 + b

c
= Ψ∗∗0 − 1,

where Ψ∗0 ≡ δΦ(ω∗0) + (1− δ) and Ψ∗∗0 ≡ δΦ(ω∗∗0 ) + (1− δ). Let

L0 ≡
2

Ψ∗0 −Ψ∗∗0
. (I.7)

According to the analysis in subsection I.1, we know that (ω∗0, ω
∗∗
0 ) are the agents’ reporting cutoffs

when L0 is the punishment to the convicted and the conviction probabilities are given by q(1, 1) = 1,

q(0, 1) = q(1, 0) = 1/2 and q(0, 0) = 0. We show the following proposition:

Proposition 10. There exists an open neighborhood of L0 such that for every L belonging to this

neighborhood, the value of (3.7) is non-positive in every equilibrium.

The proof of Proposition 10, which can be found in subsections I.3 and I.4, shows that whenever

there exists a monotone-responsive equilibrium in which the principal’s choices of θ1 and θ2 are strategic

substitutes, then L needs to be strictly larger than L0. This together with the existence of equilibrium

implies that the principal’s decisions are strategic complements in all equilibria. The proof considers

two cases separately, depending on the conviction probabilities.

I.3 Case 1: q(1,0) or q(0,1) is Strictly Positive

Suppose towards a contradiction that there exists a monotone-responsive equilibrium in which either

q(0, 1) or q(1, 0) is strictly positive or both. For notation simplicity, let q1 ≡ q(1, 0) and q2 ≡ q(0, 1).

For i ∈ {1, 2}, let pi be the probability with which θi = 0. Let ω∗i and ω∗∗i be the agent i’s reporting

cutoffs, with expressions given by:

ω∗i = −c
(1−Ψ∗∗j )(1− qi)

qi + Ψ∗∗j (1− q1 − q2)
(I.8)
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and

ω∗∗i = −b− c (1−Xj)(1− qi)
qi +Xj(1− q1 − q2)

(I.9)

where j ≡ 3− i and

Xi ≡
1− p1 − p2

1− pi
Ψ∗∗i +

pj
1− pi

Ψ∗i .

According to the conclusions in Appendix D, it is without loss to focus on equilibria in which the

principal’s cost of abusing the two agents are equal. This leads to the indifference condition:

L =
1

(Ψ∗1 −Ψ∗∗1 )
(

Ψ∗∗2 (1− q1 − q2) + q1

) =
1

(Ψ∗2 −Ψ∗∗2 )
(

Ψ∗∗1 (1− q1 − q2) + q2

) . (I.10)

Without loss of generality, we assume q1 ≤ q2. Since q1 + q2 ≤ 1, we know that

L =
1

(Ψ∗1 −Ψ∗∗1 )
(

Ψ∗∗2 (1− q1 − q2) + q1

) ≥ 2

Ψ∗1 −Ψ∗∗1
.

In what follows, we will show that
2

Ψ∗1 −Ψ∗∗1
> L0

or equivalently,

Ψ∗0 −Ψ∗∗0 > Ψ∗1 −Ψ∗∗1 . (I.11)

According to the expression of ω∗1 in (I.8), we know that:

ω∗1 = −c(1−Ψ∗∗2 )(1− q)
q + Ψ∗∗2 (1− 2q)

≤ −c(1−Ψ∗∗1 ) ≤ c(Ψ∗1 − 1).

Therefore, ω∗1 is strictly below the unique solution of the equation:

ω = c
(
δΦ(ω) + (1− δ)α︸ ︷︷ ︸

≡Ψ(ω)

−1
)

which equals to ω∗0. Furthermore, since ω∗0 − ω∗∗0 > b > ω∗1 − ω∗∗1 , one can obtain (I.11).

I.4 Case 2: q(1,0) = q(0,1) = 0

Given that we have already shown in Appendix C that symmetric equilibria is without loss of generality

when q(0, 0) = q(1, 0) = q(0, 1) = 0, we will be focusing on symmetric equilibria. Let q ≡ q(1, 1) ∈
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(0, 1]. Let ω∗1 and ω∗∗1 be the agents’ reporting cutoffs, which are the same across agents. The

expressions for the cutoffs are the same as those for ω∗m and ω∗∗m , which are given by (3.8) and (3.9),

respectively. The principal’s indifference condition is given by:

1

L
= Ψ∗∗1 (Ψ∗1 −Ψ∗∗1 ).

To show L > L0, one only needs to show that:

Ψ∗0 −Ψ∗∗0 > Ψ∗∗1 (Ψ∗1 −Ψ∗∗1 ). (I.12)

According to (3.8), we have:

ω∗1 = c− c

qΨ∗1
≤ c− c

Ψ∗1
≤ c(Ψ∗1 − 1).

Similar to the previous case, we know that ω∗1 is strictly below ω∗0. Since ω∗0 − ω∗∗0 > b > ω∗1 − ω∗∗1 , we

know that

Ψ∗0 −Ψ∗∗0 > Ψ∗1 −Ψ∗∗1 . (I.13)

This in turn implies (I.12).

J Proof of Proposition 9

We start from listing the sufficient conditions for equilibria in which q(0, 0) = q(1, 0) = q(0, 1) = 0

and q(1, 1) ∈ (0, 1). Since the posterior attaches to θ1θ2 = 0 reaches π∗ after observing two reports,

the relationship between the equilibrium probability of crime π̃ and the informativeness of reports I

is given by (5.11), which according to (5.10) can be rewritten as:

π̃ =
l∗ + εR− εR2

R+ l∗
. (J.1)

The expressions for the cutoffs are given by:

ω∗ = −c1− qQ0

qQ0
and ω∗∗ = −b− c1− qQ1

qQ1
(J.2)
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where Qi = βiΨ
∗ + (1− βi)Ψ∗∗ = (βi + 1−βi

R )Ψ∗ for i ∈ {0, 1} with

β0 ≡
2ε(R+ l∗)

2R+ l∗ + ε(l∗ +R2)
(J.3)

and

β1 ≡
l∗ − ε(R2 + l∗)

l∗ + 2R− ε(2R−R2 + l∗)
. (J.4)

Rewrite (J.2) by plugging into the definition of R, we have:

− ω∗ − c
c

=
1

ξ0(R, ε)Ψ∗q
and − ω∗∗ + b− c

c
=

1

ξ1(R, ε)Ψ∗q
(J.5)

where

ξ0(R, ε) = β0 + (1− β0)
1

R
and ξ1(R, ε) = β1 + (1− β1)

1

R
. (J.6)

Notice that both ξ0 and ξ1 are continuous functions with values no more than 1. The values of both

functions equal to 1 when R = 1 and ε = 0. More importantly, the values of ξ0 and ξ1 are fixed once

we fix R and ε.

Next, consider the following mapping f ≡ (f1, f2) : [0, 1]× [0, 1]→ [0, 1]× [0, 1]:

f1(Ψ∗∗, q) ≡ Ψ
(
− b+ c− c

qξ1RΨ∗∗

)
(J.7)

f2(Ψ∗∗, q) ≡ min
{

1,
c

ξ0Ψ∗(c− ω∗)

}
, (J.8)

where for given Ψ∗∗, Ψ∗ (and hence ω∗) is pinned down via Ψ∗/Ψ∗∗ = R. Since f is continuous, the

Brouwer’s fixed point theorem implies the existence of a fixed point. In what follows, we show that

q = 1 cannot be part of any fixed point of f when ε is close to 0 and R is close to 1. For this purpose,

we need to show that:
c

ξ0Ψ∗(c− ω∗)
< 1 (J.9)

for every Ψ∗∗ solving the equation:

− ω∗∗ + b− c
c

=
1

Rξ1Ψ∗∗
. (J.10)
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To see this, first, (J.10) admits at least one solution as Ψ∗∗ ≥ (1− δ)α. Second, (J.9) is equivalent to:

ξ1

ξ0

|ω∗∗|+ |c| − b
|ω∗|+ |c|

< 1. (J.11)

The above inequality holds as first, ξ1ξ0 → 1 as R→ 1 and ε→ 0; and second, |ω∗| > |ω∗∗|− b whenever

β0 < β1, the latter is true when ε is small enough.

Since every fixed point features q ∈ (0, 1), the fixed point of f is also the level of (Ψ∗,Ψ∗∗, q) in

one of the monotone-responsive equilibrium. One can then pin down Lh via:

1

δLh
= δ(Φ(ω∗)− Φ(ω∗∗))(δΦ(ω∗∗) + 1− δ). (J.12)

Let π̃ be given by (J.1). We know that (ω∗, ω∗∗, q, π̃) is an equilibrium under (Lh, Ll, ε).

K Alternative Commitment Types

In this Appendix, we examine the robustness of our findings against alternative specifications of

mechanical types. In particular, the mechanical types’ reports can be informative about the principal’s

innocence. We show that when commitment types are rare and the principal’s loss from being convicted

is sufficiently large, the informativeness of reports vanishes to 1 and the probability of crime converges

to π∗ as in the baseline model. This confirms the robustness of our findings. For illustration purposes,

we will again focus on the comparison between one and two agents.

K.1 Model & Result

Consider the following modification of the baseline model. With probability δ, the agent is a strategic

type maximizes payoff function given by (2.5). With probability 1− δ, the agent is a mechanical type

whose reporting cutoff is ω when θi = 0 and ω when θi = 1. We assume that both ω and ω are finite

with ω ≥ ω, that is, the mechanical type’s report could be informative about θ.23 An example of such

mechanical types are agents who are immune to retaliation, that is, they maximize:

(ωi + bθi)s. (K.1)

23Our analysis also applies when mechanical types are using arbitrary strategies contingent on (θi, ωi), as long as
conditional on each realization of θi, the probability with which the mechanical type reports is interior, and moreover,
this conditional probability is weakly higher when θi = 0 compared to θi = 1.
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In this example, ω = 0 and ω = −b.

When there is only one agent, his reporting cutoffs ω∗s and ω∗∗s are given by (3.1) and (3.2). The

probability with which the principal is convicted after one report is qs, with (qs, ω
∗
s , ω

∗∗
s ) satisfying:

qs

(
δ(Φ(ω∗s)− Φ(ω∗∗s )) + (1− δ)(Φ(ω)− Φ(ω))

)
= 1/L. (K.2)

One can show that when δ → 1 and L is larger than some cutoff L(δ), the informativeness of report:

Is ≡
δΦ(ω∗s) + (1− δ)Φ(ω)

δΦ(ω∗∗s ) + (1− δ)Φ(ω)

converges to ∞, namely, the agent’s report becomes arbitrarily informative in the limit.

In the two-agent case, for every i ∈ {1, 2}, agent i’s probability of filing a report is Ψ∗ ≡ δΦ(ω∗m) +

(1 − δ)Φ(ω) conditional on θi = 0; his probability of filing a report is Ψ∗∗ ≡ δΦ(ω∗∗m ) + (1 − δ)Φ(ω)

conditional on θi = 1. The strategic agent’s reporting cutoffs are given by:

ω∗m ≡ c−
c

qmΨ∗∗
and ω∗∗m ≡ −b+ c− c

qm

(
βΨ∗∗ + (1− β)Ψ∗

) . (K.3)

Let Im ≡ Ψ∗/Ψ∗∗. When L is large enough, the conviction probabilities in every monotone-responsive

equilibrium satisfies q(0, 0) = q(0, 1) = q(1, 0) = 0 and q(1, 1) ∈ (0, 1). Therefore, the expressions for

β and 1− β remain the same as in (3.15). The distance between the two cutoffs is given by:

ω∗m − ω∗∗m = b− c

qm

(1− β)(Im − 1)

Ψ∗∗(β + (1− β)Im)
= b− c

qmΨ∗∗
l∗

2 + l∗
Im − 1

Im
. (K.4)

One can then show that ω∗m − ω∗∗m < b. This is because for ω∗m − ω∗∗m to be greater or equal to b, we

need Im ≤ 1 which can only be true when ω∗m ≤ ω∗∗m , leading to a contradiction.

Different from the baseline model, when mechanical types’ reports are informative about the prin-

cipal’s innocence, the strategic types’ coordination motives can reverse the ordering between the two

cutoffs. That is to say, ω∗m can be strictly smaller than ω∗∗m in equilibrium. As a result, the argument

that shows Im → 1 when ω∗m → −∞ in Lemma 3.3 no longer applies. This is because in principle,

ω∗m could be much smaller than ω∗∗m , so the ratio between the absolute values in (3.17) can converge

to something strictly above 1 as ω∗m and ω∗∗m converge to −∞. To circumvent this problem, we take

an alternative approach based on the comparison between ω∗m and ω∗s . The result in this subsection

is the following proposition:
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Proposition 11. There exists L : R+ × (0, 1) → R+ such that when L > L(c, δ), an equilibrium

exists. Compared to the single-agent benchmark, qm > qs, ω
∗
m > ω∗s and ω∗∗m > ω∗∗s .

Moreover, as δ → 1 and L→∞ with the relative speed of convergence satisfying L ≥ L(c, δ), we have

ω∗m, ω
∗∗
m → −∞, Im → 1 and π̃m → π∗.

The proof is in the next subsection that treats two cases separately. Intuitively, in the regular

case where ω∗m ≥ ω∗∗m , one can still apply the ratio condition (3.17) to show that as ω∗m → −∞, the

LHS converges to 1 which implies that Im → 1. In the irregular case where ω∗m < ω∗∗m , the distance

between |ω∗m − c| and |ω∗∗m + b − c| can be strictly larger than b and can explode as ω∗m → −∞.

However, since ω∗m > ω∗s and the informativeness in the single-agent benchmark grows without bound

as L → ∞, it places an upper bound on the informativeness of reports in the two-agent scenario.

Since informativeness is entirely contributed by the mechanical types in the irregular case, the value of

the aforementioned upper bound will converge to 1 as Is →∞. Summing up the two cases together,

we know that the agents’ reports are arbitrarily uninformative in the limit even when the mechanical

types’ reports are informative.

K.2 Proof of Proposition 11

We start from establishing the comparisons between the single-agent benchmark and the two-agent

scenario when mechanical types’ reports can be informative about θ, captured by the two exogenous

reporting cutoffs ω and ω with ω ≥ ω.

Suppose towards a contradiction that ω∗m ≤ ω∗s , the expressions for these cutoffs imply:

qm

(
δΦ(ω∗∗m ) + (1− δ)Φ(ω)

)
≤ qs.

Therefore,

qmΨ∗∗
(
δΦ(ω∗s) + (1− δ)Φ(ω)− δΦ(ω∗∗s )− (1− δ)Φ(ω)

)
≤ qs

(
δΦ(ω∗s) + (1− δ)Φ(ω)− δΦ(ω∗∗s )− (1− δ)Φ(ω)

)
= 1/L

= qmΨ∗∗
(
δΦ(ω∗m) + (1− δ)Φ(ω)− δΦ(ω∗∗m )− (1− δ)Φ(ω)

)
or equivalently

Φ(ω∗m)− Φ(ω∗∗m ) ≥ Φ(ω∗s)− Φ(ω∗∗s ). (K.5)
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On the other hand, since ω∗m − ω∗∗m < b = ω∗s − ω∗∗s and ω∗m < ω∗s , we have:

Φ(ω∗m)− Φ(ω∗∗m ) < Φ(ω∗s)− Φ(ω∗∗s ). (K.6)

which contradicts (K.5). This contradiction implies that ω∗m > ω∗s . Since ω∗m−ω∗∗m < b = ω∗s −ω∗∗s , we

know that ω∗∗m > ω∗∗s . Moreover, ω∗m > ω∗s implies that qmΨ∗∗ > qs. That is 1 ≥ Ψ∗∗ > qs/qm, which

implies that qm > qs.

Next, we establish the informativeness of the agents’ reports when there are two agents and δ and

L being sufficiently large. First, for every X ∈ R+, there exists δ ∈ (0, 1) and L∗ : (δ, 1) → R+ such

that when δ > δ and L > L∗(δ), the resulting cutoffs in the single-agent case satisfies:

δΦ(ω∗s) + (1− δ)Φ(ω)

δΦ(ω∗s − b) + (1− δ)Φ(ω)
> X, (K.7)

which implies that

δΦ(ω∗s) > (1− δ)
(
XΦ(ω)− Φ(ω)

)
. (K.8)

Next, we establish an upper bound on the informativeness of reports in the limit of the two-agent case.

Consider a two-agent economy under parameter values (L, c, δ) such that L ≥ L(c, δ), i.e. monotone-

responsive equilibria exist In equilibria where ω∗m ≥ ω∗∗m , the expressions for ω∗m and ω∗∗m imply that:

|ω∗m − c|
|ω∗∗m − c+ b|

=
(l∗ + 2)Im
l∗ + 2Im

. (K.9)

The LHS converges to 1 as ω∗m → −∞ so the RHS also converges to 1, which implies that Im → 1.

In equilibria where ω∗m < ω∗∗m , since ω∗s < ω∗m, we have:

Im ≤
δΦ(ω∗m) + (1− δ)Φ(ω)

δΦ(ω∗m) + (1− δ)Φ(ω)
≤︸︷︷︸

since Im>1 and ω∗m>ω
∗
s

δΦ(ω∗s) + (1− δ)Φ(ω)

δΦ(ω∗s) + (1− δ)Φ(ω)

≤
(1− δ)

(
XΦ(ω)− Φ(ω)

)
+ (1− δ)Φ(ω)

(1− δ)
(
XΦ(ω)− Φ(ω)

)
+ (1− δ)Φ(ω)

=
XΦ(ω)

XΦ(ω)− Φ(ω) + Φ(ω)
(K.10)

which also converges to 1 as X →∞.

To summarize, since ω∗m → −∞ and X → ∞ as δ → 1 and L → ∞, we know that the informa-

tiveness ratio Im converges to 1 no matter whether ω∗m ≥ ω∗∗m or ω∗m < ω∗∗m .
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