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Abstract

Recent technologies enable matching intermediaries to engage in unprecedented levels of tar-

geting, whereby matches finely depend on the agents’ characteristics, but also favor customized

(i.e., match-specific) pricing. Yet, novel regulations on the transfer of personal data, as well as a

renewed trend towards market decentralization, are expected to hinder price customization and

favor uniform pricing (whereby the price of a match charged to agents on a given side of a market

is invariant in the agents’ observable characteristics). To assess the impact of these developments,

we build a matching model in which agents’ preferences are both vertically and horizontally dif-

ferentiated. Mirroring current practices, we show how, absent regulations, platforms maximize

profits through price customization, link the latter to structural elasticities, and assess the tar-

geting e↵ects of market power. Perhaps surprisingly, we show that uniform pricing may either

increase or decrease targeting levels and consumer welfare, depending on testable properties of

demand. The analysis has implications for online shopping, ad-exchanges, and media platforms.
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1 Introduction

Over the last two decades, new technologies have permitted the development of matching interme-

diaries of unprecedented scale engaging in unparalleled level of targeting. Notable examples include

ad exchanges, matching publishers with advertisers, business-to-business platforms, matching firms

with mutually beneficial commercial interests, and dating websites, matching agents with common

passions. The same advances in technology that favored high levels of targeting also enabled greater

price customization, whereby the price of a match finely depends on observable characteristics of the

matching partners.

For instance, in advertising exchanges, the assignment of, and payments from, advertisers depend

on scores that summarize the compatibility of the ads with each publisher’s content.1 A similar

trend can be found in other markets, not traditionally analyzed through the lens of matching. In

online shopping, for example, it is common practice among retailers to use customers’ personal data

to set personalized prices. In one of the most publicized cases, Orbitz, an online travel agency,

reportedly used information about customers’ demographics to charge targeted customers higher

hotel fees.2 Similarly, Safeway, an online grocery chain, often proposes individualized price o↵ers

and quantity discounts to customers with certain profiles.3 The retailers’ knowledge about consumers’

characteristics often comes from data brokers, who collect and sell personal information (in the form

of demographics, geolocation, browsing history, etc).4

In the markets mentioned above, price customization is easy to enforce, as the agents’ “hori-

zontal” characteristics are observable (for instance, in ad exchanges, the advertisers’ profile is often

revealed by the ads’ content) or can be learnt from third parties (for example, in online retailing, in-

formation about consumers can often be obtained from data brokers or a�liated websites). In other

markets, instead, the agents’ horizontal characteristics that are relevant for price customization have

to be indirectly elicited, and this may require bundling.5 A case in point is that of media markets

(for instance, satellite/cable TV providers), that use sophisticated pricing strategies that condition

payments on the entire bundle of channels selected by the subscribers.6

1See, for example, https://support.google.com/adxseller/answer/2913506?hl=en&ref topic=3376095. Moreover, ad

exchanges use advertiser-specific reservation prices which are easily automated using proxy-bidding tools. Ad exchanges

also price discriminate on the publisher side, by making the payments to the publishers depend on the publishers’ profile

and on the volume of impressions.
2See the article “On Orbitz, Mac Users Steered to Pricier Hotels,” the Wall Street Journal, August 23, 2012.
3See https://www.bloomberg.com/news/articles/2013-11-14/2014-outlook-supermarkets-o↵er-personalized-pricing.
4According to The New York Times, the data broker industry’s revenue reached $156 billion in 2013 (see the article

“The Dark Market for Personal Data,” August 16, 2014).
5For instance, Ad exchanges have recently developed new contractual arrangements that allows them to bundle

di↵erent ads as a way of screening the publishers’ unobservable preferences (see, Mirrokni and Nazerzadeh (2017)).
6Most satellite/cable TV providers price discriminate on the viewer side by o↵ering viewers packages of channels

whereby the baseline configuration can be customized by adding channels at a cost that depends on the baseline

configuration originally selected (see, among others, Crawford (2000), and Crawford and Yurukoglu (2012)). For

example, in the US, Direct TV o↵ers various vertically di↵erentiated (i.e., nested) packages (both in English and in
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While having a long history in the policy debate, price customization has attracted renewed

attention due to the two-sided nature of matching intermediaries, and the amount of information

now available for target pricing.7,8 The concern is that, by leveraging the platforms’ market power,

price customization hinders the e�ciency gains permitted by better targeting technologies. Recent

regulations speak directly to these issues. In the European Union, for example, the General Data

Protection Regulation (GDPR) and the ePrivacy Regulation (ePR) mandate that businesses ask for

consumers’ consent prior to collecting and transmitting personal data. Such regulations hinder price

customization based on data from third parties.9,10

Market decentralization poses yet another challenge to price customization. The same techno-

logical progress of the last few years that has facilitated the growth of matching markets is now

expected to favor a gradual transition of such markets from a centralized structure, where matching

is controlled by platforms, to a more decentralized structure where one side (typically, the “seller”

side) posts stand-alone prices, while the other side (typically, the “buyer” side) then constructs the

matching sets. For example, in the market for media content, several analysts believe that the in-

crease in the speed of fiber-optic and broadband internet connection will favor a gradual transition

to a market structure whereby viewers will pay directly the content providers, bypassing the inter-

mediation of media platforms (such as satellite or cable TV providers).11 In decentralized markets,

price customization is often hindered by the absence of data about consumers’ tastes (for instance,

due to privacy regulation), along with the di�culty of tracking consumers’ purchases with other

vendors. This is in contrast to centralized matching markets where price customization can often be

implemented through bundling (see footnote 6).

The aim of this paper is to understand how targeting and price customization shape the match-

ing opportunities o↵ered by profit-maximizing platforms, and study the impact on targeting and

consumer welfare of uniform pricing (whereby payments to the platforms do not depend on the “hor-

izontal characteristics” of the agents’ profiles), be it a result of regulation or market decentralization.

Spanish). It then allows viewers to add to these packages various (horizontally di↵erentiated) premium packages, which

bundle together channels specialized in movies, sports, news, and games. In addition, viewers can further customize

the packages by adding individual sports, news, and movie channels.
7In the US, the first law to regulate price discrimination is the Robinson-Patman Act of 1936.
8In the case of media markets, see, for example, the Federal Communications Commission 2004 and 2006 reports

on the potential harm of price customization through bundling. In the case of online retailing, see the UK O�ce of

Fair Trading 2010 eponymous report on online targeting in advertising and pricing.
9See Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the processing

of personal data and on the free movement of such data.
10In the US, the Federal Trade Commission (FTC) recommended in 2014 legislation increasing the trans-

parency of the data broker industry and giving consumers greater control over their personal information.

See https://www.ftc.gov/news-events/press-releases/2014/05/ftc-recommends-congress-require-data-broker-industry-

be-more.
11A similar trend is also taking place in online advertising, where many publishers now prefer employ-

ing direct-sales channels so as to avoid the commissions charged by the platforms. See, for instance,

https://digiday.com/media/advertisers-are-often-left-flying-blind-in-ad-exchanges/.
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To examine these issues, we develop a model where agents’ preferences exhibit elements of both

vertical and horizontal di↵erentiation. Certain agents value being matched with agents from the

other side of the market uniformly more than others (vertical di↵erentiation). At the same time,

agents from the same side may disagree on the relative attractiveness of any two agents from the

opposite side (horizontal di↵erentiation). We capture the two dimensions of di↵erentiation by letting

agents’ types be located on a cylinder, where the height represents the vertical dimension, while

the radial position determines the horizontal preference. Each agent’s utility from interacting with

any other agent from the opposite side increases with the agent’s vertical dimension. Fixing the

vertical dimension, each agent’s utility is single-peaked with respect to the horizontal dimension.

More specifically, we identify each agent’s radial position with his bliss point. Accordingly, each

agent’s utility for interacting with any other agent from the opposite side decreases with the distance

between the agent’s bliss point (his radial position) and the partner’s location (the partner’s radial

position). Such preference structure, in addition to its analytical convenience, mirrors the one in

the “ideal-point” models typically used in the empirical literature on media and advertising markets

(see, for example, Goettler and Shachar 2001).

A key element of our analysis is the focus on matching tari↵s, which describe how the payments

asked by the platform vary with the matching sets demanded by the agents. A tari↵ exhibits

uniform pricing if all agents from a given side face the same price schedule for di↵erent quantities of

the matches with agents at a given location on the opposite side. Formally, uniform tari↵s are tari↵s

that do not condition an agent’s payment to the platform on the agent’s own radial position (i.e,

the horizontal dimension of the agent’s preferences). A particularly simple type of uniform pricing

often proposed as a potential regulatory remedy to the market power enjoyed by media platforms is

stand-alone linear pricing (for a discussion, see Crawford and Yurukoglu 2012).

Absent any regulation, platforms typically o↵er customized tari↵s on both sides, whereby the

customization is obtained by means of menus of matching plans. Each plan is defined by its baseline

configuration (i.e., a baseline set of partners from the opposite side), a baseline price, and a collection

of prices describing the cost to the subscriber of customizing the plan by adding extra matches. The

cost of the customization is typically non-linear in the volume of matches of any given type added

to the plan (second-degree price discrimination). Importantly, the cost of the customization is also a

function of the baseline plan selected by the subscriber. Because di↵erent plans are targeted to agents

from di↵erent “locations,” such tari↵s thus also display a form of third-degree price discrimination.

As the analysis reveals, when neither the vertical nor the horizontal dimensions defining the agents’

preferences are observable by the platform, information about such dimensions is elicited through a

careful design of the baseline plans and the associated price-customizing schedules.

Our first main result derives conditions under which the profit-maximizing tari↵s exhibit price

customization. Equipped with these conditions, we then o↵er a convenient representation of the

optimal price schedules. The representation yields a formula describing the price each agent from

each given location has to pay to include in his matching set any feasible amount of matches from
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any location on the opposite side of the market. The formula links location- and volume-specific

prices to the various local elasticities of the demands on the two sides of the market. In this sense it

constitutes the analog in a matching market of the familiar Lerner-Wilson formula of optimal non-

linear pricing. The formula di↵ers from the traditional one in that it accounts for (a) the reciprocity

of the matching, and (b) the fact that the platform combines second-degree price discrimination

(higher vertical types self-select into larger matching plans) with third-degree price discrimination

(the total price paid by each subscriber depends on the horizontal dimension of the subscriber’s

preferences, both when the latter are observed by the platform and when they are indirectly elicited

through self-selection).

Our characterization of the profit-maximizing matching tari↵s reveals interesting patterns of

cross-subsidization, unique to matching environments. Namely, optimal tari↵s induce a form of

negative assortative matching at the margin: at any given location, agents with a low value for

matching (a low vertical dimension) are matched only to those agents from the other side whose

value for matching is su�ciently high. This form of negative assortativeness naturally takes into

account the agents’ mutual attractiveness, as determined by their joint locations. As a result, the

matching sets of any two agents from the same side are nested only if the two agents share the same

dimension of horizontal preferences.

We also leverage on this characterization to study the interplay between targeting and market

power. Specifically, we derive conditions on primitives (on the agents’ utilities and distributions

of their preferences) under which the under-provision of matches under profit maximization (rela-

tive to the e�cient level) is either magnified or alleviated as the distance of a partner’s location

from an agent’s bliss point increases. This analysis has no parallel in the standard models of price

discrimination, which are not amenable to study the e↵ects of market power on targeting levels.

Our second set of results investigates the e↵ects on prices, the composition of the matching

demands, and consumer welfare of uniform pricing on a given side of the market. Analogously to the

generalized Lerner-Wilson formula discussed above, we provide a novel representation of the optimal

price schedules that uses local elasticities to describe the prices agents on each side have to pay per

quantity of matches from each location on the opposite side. Relative to the case of customized

pricing, this new pricing formula identifies the relevant aggregate elasticities in environments where

location-specific pricing is not possible. The typical marginal revenue and marginal cost terms (which

determine the optimal cross-subsidization pattern) are now averages that take into account not only

the uniformity of prices, but also how the procurement costs of matches are a↵ected by the horizontal

component of the agents’ preferences. From a more theoretical perspective, the characterization

contributes to the mechanism design literature by developing a novel technique to handle constraints

on the transfer rule employed by the principal (as opposed to the familiar constraints on the allocation

rules, which are typically easier to analyze using standard techniques).

We then put this characterization to work, revealing how uniform pricing a↵ects targeting and

welfare. Intuition might suggest that uniform pricing should increase targeting by preventing plat-
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forms from charging higher prices for the matches involving the most preferred partners. This simple

intuition, however, may fail to account for the fact that platforms re-optimize their entire price

schedules to respond to aggregate elasticities. Perhaps surprisingly, uniform pricing can either de-

crease or increase the equilibrium level of targeting, depending on how match-demand elasticities

vary with location. We derive su�cient conditions in terms of primitives (on the modularity and

convexity of the agents’ utilities, as well as the distributions of vertical preferences) under which

targeting is higher (alternatively, lower) under uniform pricing (alternatively, customized pricing).

The usefulness of these results is illustrated in three applications (online shopping, online advertising,

and media markets), where we specialize the model to identify testable properties of demand under

which targeting is higher (alternatively, lower) under uniform pricing.

We then use such conditions to look into the welfare e↵ects of uniform pricing. Exploiting a

novel connection between uniform pricing in matching markets and the literature on third-degree

price discrimination, we show how to adapt the elegant analysis in Aguirre et al. (2010) to the

matching markets under examination. The results identify su�cient conditions for uniform pricing

to increase consumer surplus (in the side where prices are uniform). These results, once combined

with appropriate empirical work, can guide the design of regulatory interventions in platform markets

where price customization is a concern.

Lastly, we show that the same analysis that permits us to uncover the welfare e↵ects of uniform

pricing can be adapted to shed light on the welfare e↵ects of a transition to a decentralized market

structure (where sellers independently post stand-alone prices), thus contributing a novel angle to

the policy debate over whether or not such transition should be encouraged.

Outline of the Paper. The rest of the paper is organized as follows. Below, we close the

introduction by briefly reviewing the pertinent literature. Section 2 presents the model. Section 3

identifies conditions under which the profit-maximizing matching tari↵s are customized, and derives

properties of the associated pricing schedules. Section 4 studies the e↵ects of uniform pricing and of

the transition from a centralized to a decentralized structure. Section 5 concludes. All proofs are in

the Appendix at the end of the document.

Related Literature

This paper studies many-to-many matching (with monetary transfers) in markets where the agents’

preferences are both vertically and horizontally di↵erentiated. Particularly related are Jeon, Kim and

Menicucci (2017) and Gomes and Pavan (2016). The first paper studies the provision of quality by a

platform in a setting where quality provision enhances match values. The second paper studies the

ine�ciency of profit maximization in many-to-many matching markets. Both papers abstract from

the possibility that agents’ preferences be horizontally di↵erentiated (in tastes and match values),

thus ignoring the issues of targeting and price customization that are the heart of the analysis in the

present paper. Fershtman and Pavan (2017) considers many-to-many matching in a model with a
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rich preference structure similar to the one in the present paper, combining elements of vertical and

horizontal di↵erentiation. Contrary to the present paper, however, it focuses on dynamic markets in

which agents learn the attractiveness of the partners and experience shocks to their preferences over

time.

Related are also Jullien and Pavan (2017), and Tan and Zhou (2017). The former paper studies

platform competition in markets where agents’ preferences for the di↵erent platforms are heteroge-

nous but where agents value homogeneously the interactions with agents from the opposite side of the

market. The latter paper studies price competition in a model where multiple platforms compete by

o↵ering di↵erentiated services to the various sides of the market, and where agents’ preferences are

heterogenous with both within-side and across-sides network e↵ects. While considering rich prefer-

ence structures, both papers abstract from price discrimination. The latter is examined in Damiano

and Li (2007) and Johnson (2013). Contrary to this paper, these works consider markets where

matching is one-to-one and agents’ preferences are di↵erentiated along a vertical dimension only.

This paper considers a many-to-many matching market where agents might disagree on the

relative attractiveness of any two agents from the other side (horizontal di↵erentiation). Similar

preferences structures are examined in the matching literature surveyed in Roth and Sotomayor

(1990) (for a more recent treatment, see Hatfield and Milgrom (2005)), and in the literature on

the school assignment problem (see, for example, Abdulkadiroglu, Pathak and Roth (2005a, 2005b)

and Abdulkadiroglu and Sonmez (2003)). These literatures are methodologically distinct from the

current paper, in that they focus on solution concepts such as stability and do not allow for transfers.

More broadly, markets where agents purchase access to other agents are the focus of the broad

literature on two-sided markets (see Belleflamme and Peitz (2017) for the most up-to-date overview).

Most of this literature, however, restricts attention to a single network, or to mutually exclusive

networks. Ambrus, Calvano and Reisinger (2016) relax this structure by proposing a model of

competing media platforms with overlapping viewerships (i.e., multi-homing). By contrast, we stick

to a monopolistic market, but introduce a richer preferences structure (displaying horizontal tastes

for matches), what enables us to study targeting and price customization in such markets.

Our discussion of market decentralization is related to Loertscher and Niedermayer (2017), who

compare the agency and wholesale business models by a platform that faces competition from an

independent bilateral exchange. To focus on the substitutability between market places, that paper,

however, abstracts from targeting and price-customization.

The study of price customization is related to the literature on price discrimination. In the case of

second-degree price discrimination, Mussa and Rosen (1978), Maskin and Riley (1983), and Wilson

(1997) study the provision of quality/quantity in markets where agents possess private information

about a vertical dimension of their preference. Our study of price customization in many-to-many

matching markets introduces two novel features relative to the standard monopolistic screening

problem. First, the platform’s feasibility constraint (namely, the reciprocity of the matches) has

no equivalent in markets for commodities. Second, agents’ preferences are di↵erentiated along both
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a vertical and a horizontal dimension. This richer preferences structure calls for a combination of

second- and third-degree price discrimination, and leads to novel cross-subsidization patterns.12

The paper also contributes to the literature on third-degree price discrimination. In addition to

the paper by Aguirre et al. (2010) mentioned above, see Bergemann, Brooks, and Morris (2015) for

an excellent overview and for recent developments. The latter paper characterizes all combinations

of producer and consumer surplus that arise from di↵erent information structures about the buyers’

willingness-to-pay (alternatively, from di↵erent market segmentations). Our setup di↵ers from theirs

in many respects. First, the informational costs incurred by the intermediary are endogenous, and

depend on its price-customization strategies on both sides of the market (the information structure is

exogenous in Bergemann, Brooks, and Morris (2015)). Second, the preferences structure is di↵erent,

reflecting specific features of the applications under consideration.

Related is also the literature on bundling (see, among others, Armstrong (2013), Hart and Reny

(2015), and the references therein). The present work di↵ers from that literature in two important

aspects. First, while preferences are multi-dimensional both in the present paper and in that liter-

ature, in our setting, preferences can be orthogonally decomposed into a vertical and a horizontal

dimension. The bundling literature, instead, assumes a more general preference structure, which,

however, hinders the characterization of the optimal price schedules, except in certain special cases.

Second, reflecting the practices of many-to-many matching intermediaries, we assume that sales are

monitored, so that prices can condition on the entire matching set of each agent. The bundling

literature, by contrast, typically assumes that purchases are anonymous.

Lastly, the paper contributes to the literature on targeting in advertising markets (see, for ex-

ample, Bergemann and Bonatti (2011, 2015) and Cox et al. (2017) and the references therein). Our

work contributes to this literature by introducing a richer class of (non-linear) pricing strategies and

by comparing the matching outcomes that emerge under a decentralized structure to their counter-

parts in platform markets where the matching between the advertises and the publishers (or content

providers) is mediated. Contrary to some of the papers in this literature, however, we abstain from

platform competition. Importantly, we also assume that agents can perfectly communicate their

preferences, and face no informational frictions regarding the desirability of the matches. Eliaz and

Spiegler (2016) relax these assumptions, and consider the mechanism design problem of a platform

that wants to allocate firms into search pools created in response to noisy preference signals provided

by the consumers. Relatedly, Eliaz and Spiegler (2017) consider the problem of a profit-maximizing

advertising platform who wants to elicit the advertisers’ profiles so as to match them to consumers

with preferences for diversity. These papers do not investigate the e↵ects of uniform pricing, but

rather focus on the incentives of firms to truthfully reveal their “ideal audiences.”

12Related is also Balestrieri and Izmalkov (2015). That paper studies price discrimination in a market with hori-

zontally di↵erentiated preferences by an informed seller who possesses private information about its product’s quality

(equivalently, about the “position” of its good in the horizontal spectrum of agents’ preferences). The focus of that

paper is information disclosure, while the focus of the present paper is matching, targeting, and price customization.
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2 Model

A monopolistic platform matches agents from two sides of a market. Each side k 2 {a, b} is populated
by a unit-mass continuum of agents. Each agent from each side k 2 {a, b} has a bi-dimensional type

✓k = (vk, xk) 2 ⇥k ⌘ Vk ⇥ Xk which parametrizes both the agent’s preferences and the agent’s

attractiveness.

The parameter xk, which describes the agent’s location, captures horizontal di↵erentiation in

preferences. For convenience, we assume that agents are located on a circle of perimeter one, in

which case Xk = [0, 1], k = a, b. The parameter vk 2 Vk ⌘ [vk, vk] ✓ R [ {+1}, on the other hand,

captures heterogeneity in preferences along a vertical dimension. It controls for the intensity of the

agent’s matching utility across locations (i.e., the overall utility the agent derives from interacting

with a generic agent from the opposite side, before doing any profiling). Hereafter, we let Int[Vk]

denote the interior of the set Vk.

We assume that the vertical dimensions vk are the agents’ private information. As for the hori-

zontal dimensions, i.e., the locations xk, we consider both cases where they are publicly observable, as

well as cases where they are the agents’ private information. In particular, we consider the following

four scenarios:

• Scenario (i): Locations are publicly observable on both sides;

• Scenario (ii): Locations are private information on side a and publicly observable on side b;

• Scenario (iii): Locations are publicly observable on side a and private information on side b;

• Scenario (iv): locations are private information on both sides.

Agents derive higher utility from being matched to agents whose locations are closer to their own.

Their utility also increases, over all locations, with their vertical type. We assume the utility that

an agent from side k 2 {a, b} with type ✓k = (vk, xk) derives from being matched to an agent from

side l 6= k with type ✓l = (vl, xl) is represented by the function

uk(vk, |xk � xl|),

where |xk � xl| is the circular (minimal) distance between the two agents’ locations. The function

uk is Lipschitz continuous, bounded, strictly increasing in vk, and weakly decreasing in |xk � xl|. To
make things interesting, we assume uk is strictly decreasing in |xk � xl| on at least one side. The

following examples illustrate the type of preferences covered by the aforementioned specification.

Example 1. (online shopping) The platform is an online intermediary matching consumers from

side a with sellers from side b. We identify with each location xb one product variety, and let xa

describe a consumer’s most preferred variety. The utility that a consumer of type ✓a = (va, xa)

derives from purchasing a product of variety xb is given by

ua(va, |xa � xb|) = va �  (|xa � xb|) ,
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where va > 0 is the consumer’s utility from her most preferred variety, and the increasing function

 (·), satisfying  (0) = 0, measures the loss of utility from purchasing varieties other than the most

preferred one. Each consumer is interested in buying only one good from each seller (unit-demand),

but is interested in purchasing multiple goods of the same variety from di↵erent sellers. Each seller is

characterized by the product variety it produces, xb, and by her constant marginal cost of production

vb. Accordingly, the gross profit that each seller of type ✓b = (vb, xb) derives from selling each unit

of her good is equal to ub(vb, |xb � xa|)) = vb < 0 (being therefore invariant to the buyers’ type).

While each seller’s product variety xb is publicly observable, each consumer’s most preferred variety

(her bliss point) might be known to the platform (for example, when the latter has access to data

about consumers’ characteristics), which corresponds to Scenario (i), or be the consumer’s private

information, which corresponds to Scenario (ii). }

The following example is also of particular interest.

Example 2. (ad exchange) The platform is an ad exchange matching advertisers from side a to

publishers from side b. The expected profit that an advertiser of type ✓a = (va, xa) obtains from an

impression at the website of a publisher of type ✓b = (vb, xb) is given by

ua(va, |xa � xb|) = va� (|xa � xb|) ,

where va is the advertiser’s profit per sale and where the strictly decreasing function � : [0, 1
2

] ! [0, 1]

describes how the probability of a conversion (i.e., the probability the ad view turns into a sale) varies

with the distance between the publisher’s profile, xb, and the advertiser’s ideal audience, xa. By

contrast, publishers can be viewed (to a first approximation) as indi↵erent with respect to the kind

of advertisement displayed at their websites. The matching (dis)utility of a publisher reflects the

opportunity cost of not using the advertisement space to sell its own products, or from not selling the

ad slot outside of the platform. Accordingly, the profit that a publisher of type ✓b = (vb, xb) derives

from displaying the ad of an advertiser of type ✓a = (va, xa) is given by ub(xb, |xa � xb|) = vb  0,

all xa, xb 2 [0, 1]. The informational environment that best suits such market is Scenario (i), as both

an advertiser’s ideal type of audience and a publisher’s profile are typically observable by the ad

exchange. }

Another example that shares the preference structure of Example 2 is that of a lobbying firm

(platform) matching interest groups from side a with public o�cials from side b (see Kang and

You (2016) for a detailed description of this market). The value of the connection to each interest

group is the product of its gain from a policy change, va, and the valence (or influence) of the

public o�cial, � (|xa � xb|). The latter decreases with the distance between the interest group’s core

business, xa, and the public o�cial’s policy field, xb. The public o�cial’s (electoral or legal) costs

of capture are captured by vb, which can be viewed (to a first approximation) as independent of the

characteristics of the interest group. In this example, it seems natural to assume that each interest

10



group’s core business as well as each public o�cial’s policy field are observable by the lobbying firm,

which corresponds to Scenario (i) above.

Example 3. (media platform) The platform is a media outlet matching viewers from side a

with content providers from side b. The utility that a viewer of type ✓a = (va, xa) derives from

having access to the content of a provider of type ✓b = (vb, xb) is given by the constant-elasticity-of-

substitution (CES) function

ua(va, |xa � xb|) =
h

↵ · (va)� + (1� ↵) · � (|xa � xb|)�
i

1
� ,

where ↵ 2 [0, 1] captures the relative importance of the viewer’s vertical and horizontal preferences,

with Va ⇢ R
+

. In turn, the strictly decreasing function � : [0, 1
2

] ! R
+

describes how the viewer’s

utility declines with the distance between the viewer’s ideal type of content, xa, and the provider’s

content, xb. Finally, � 2 R/{0} measures the elasticity of substitution between the vertical and

horizontal dimensions. By contrast, to a first approximation, content providers might be viewed

as indi↵erent with respect to the profile of the viewers that access their content. The matching

(dis)utility of a content provider reflects the extra revenue from advertisers (as advertisers typically

pay more to content providers with a higher exposure to viewers), or the expenses from broadcasting

rights paid to third parties (which are proportional to the audience reached). In this case, for any

vb 2 Vb, any xa, xb 2 [0, 1], ub(vb, |xb � xa|)) = vb, with vb > 0 under the first interpretation, and

vb < 0 under the second interpretation. In this case, the informational environment that best suits

this market is that of Scenario (ii), as each viewer’s ideal type of content is likely to be his own private

information, whereas each content provider’s profile (the type of content provided) is observable by

the platform. }

The preference structure of Example 3 follows closely the ones typically assumed in the empirical

literature on media markets (see, for example, Goettler and Shachar 2001).

The type ✓k = (vk, xk) of each agent from each side k 2 {a, b} is an independent draw from the

absolutely continuous distribution Fk with support ⇥k. We denote by F v
k (alternatively, F x

k ) the

marginal distribution of Fk with respect to vk (alternatively, xk), and by F
v|x
k the distribution of vk

conditional on xk. We denote by fv
k the density of F v

k and by �vk ⌘ fv
k /[1� F v

k ] its hazard rate. We

use analogous notation for the densities and hazard rates of the conditional distributions F v|x
k .

Let ⌃(⇥l) be the Borel sigma algebra associated with the set ⇥l. The total payo↵ that an agent

from side k 2 {a, b} with type ✓k = (vk, xk) obtains from being matched, at a price p, to a set of

types sk 2 ⌃(⇥l) from side l 6= k is given by

⇡k(sk, p; ✓k) =

Z

s
k

uk (vk, |xk � xl|) dFl(✓l)� p, (1)

whereas the payo↵ that the same agent obtains outside of the platform (where no matches are formed

and no payments are made) is equal to zero.13

13The representation in (1) assumes the agent is matched to all agents from side l 6= k whose type is in s
k

. That
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Remark 1. The specification in (1) implies that the utility that each agent derives from each match

is independent of who else the agent is matched with. It also implies that such utility is invariant in

each partner’s vertical type. In a previous version, we considered a more general setting where such

assumptions are relaxed. In particular, we assumed that (a) each agent’s attractiveness depends on

both the agent’s location and other traits that are correlated with the agent’s vertical dimension,

and (b) that the utility that each agent derives from each matching set sk is given by a concave

(alternatively, convex) transformation of
R

s
k

uk(·)dFl(✓l), where the concavity/convexity of the trans-

formation captures decreasing/increasing returns to match quality. Because both the exposition and

the analysis are significantly more tedious under such richer specifications, we opted here for the

convenience of the representation in (1).

Tari↵s and Matching Demands

The platform o↵ers matching tari↵s to each side k 2 {a, b}. A matching tari↵ Tk specifies the

(possibly negative) total payment Tk (sk) that each agent from side k must pay to the platform for

being matched to the set of types sk 2 ⌃(⇥l) from side l 6= k.

Given the tari↵ Tk, the matching demand of each agent from side k with type ✓k = (vk, xk) is

given by the set

ŝk(✓k;Tk) 2 arg max
s
k

2⌃(⇥

l

)

⇢

Z

⇥

l

uk (vk, |xk � xl|) dFl(✓l)� Tk (sk)

�

. (2)

To guarantee participation by all agents, we require that Tk (sk) = 0 if sk = ;.

Definition 1. The tari↵s Tk, k = a, b, are feasible if, for all (✓k, ✓l) 2 ⇥k ⇥⇥l, k, l 2 {a, b}, l 6= k,

✓l 2 ŝk(✓k;Tk) () ✓k 2 ŝl(✓l;Tl). (3)

A pair of feasible matching tari↵s thus induces reciprocal demands. That is, if an agent from side

k with type ✓k finds it optimal to be matched to all agents from side l 6= k with type ✓l, then all

agents from side l with type ✓l find it optimal to be matched to all agents from side k with type ✓k.

Given any matching set sk 2 ⌃(⇥l), any location xl, we denote by qx
l

(sk) the “mass” of agents

from side l located at xl included in the matching set sk.14

Definition 2. The tari↵ Tk o↵ered by the platform to the side-k agents, k 2 {a, b}, is consistent with
uniform pricing if there exists a collection of price schedules pk : [0, 1]2 ! R, one for each location

matching sets are described by the types from the opposite side an agent has access to, as opposed to the identities of

the agents in the matching set, reflects the property that, under both the welfare- and the profit-maximizing tari↵s,

each agent from each side k = a, b who decides to include in his matching set some agent from side l 6= k whose type

is ✓
l

optimally chooses to include in his matching set all agents from side l whose type is ✓
l

.
14Hereafter, we abuse of terminology by referring to the density of agents of a certain type as the “mass” of agents

of that type.
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xl 2 [0, 1], such that the total payment asked by the platform for each matching set sk 2 ⌃(⇥l) is

given by

Tk(sk) =

Z

1

0

pk(qx
l

(sk)|xl)dxl. (4)

Conversely, the tari↵ Tk is discriminatory if there are no price schedules such that Tk is consistent

with Condition (4), for all sk.

Hence, under uniform pricing, the tari↵ o↵ered by the platform to the side-k agents consists

of a collection of non-linear price schedules, (pk(·|xl))x
l

2[0,1], with each schedule pk(q|xl) specifying

the total price each side-k agent has to pay to be matched to q agents from side l 6= k located at

xl 2 [0, 1]. Importantly, the price pk(q|xl) is independent of the agent’s own characteristics, ✓k, and

of the mass of agents from other locations included in the matching set sk.

The next definition describes a type of discriminatory tari↵s that plays an important role in the

analysis below.

Definition 3. The tari↵ Tk is customized if there exists a collection of matching plans

{(sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) : xk 2 [0, 1]} ,

one for each side-k location xk 2 [0, 1], such that each side-k agent selecting the basic plan sk(xk)

and then selecting the customization sk 2 Sk(xk) ✓ ⌃(⇥l) is asked to make a total payment equal

to15

T k(xk) +

Z

1

0

⇢k(qx
l

(sk)|xl;xk)dxl, (5)

with ⇢k (qx
l

(sk(xk)) |xl;xk) = 0 all xl 2 [0, 1].

Under customized tari↵s, the platforms thus o↵er to the side-k agent a menu of matching plans,

one for each side-k location xk. Each plan specifies (a) a baseline configuration, formally captured

by the default set of types sk(xk) ✓ ⇥l from side l 6= k included in the package, (b) a baseline price

T k(xk), (c) a collection of possible customizations Sk(xk) ✓ ⌃(⇥l), and (d) a collection of non-linear

schedules ⇢k(q|xl;xk), one for each location xl 2 [0, 1], that jointly define the cost of customizing

the plan. As in the case of uniform pricing, each non-linear schedule ⇢k(q|xl;xk) specifies the price

charged to the side-k agents for being matched to q agents from side l 6= k located at xl. Contrary

to the case of uniform pricing, though, the price depends on the plan selected by the side-k agent,

15The payment specified by the tari↵ for any matching set s
k

/2 {[S
k

(x
k

) : x
k

2 [0, 1]} can be taken to be arbitrarily

large to guarantee that no type finds it optimal to select any such set. The existence of such payments is guaranteed

by the assumption that u

k

is bounded, k = a, b. Furthermore, in case locations are private information on side k, the

collection of matching plans is required to have the property that for any set s
k

2 S
k

(x
k

) \ S
k

(x0
k

), the total payment

associated with s
k

is the same no matter whether the set is obtained by selecting the plan x

k

or the plan x

0
k

. When,

instead, locations are public, the collection of matching plans {(s
k

(x
k

), T
k

(x
k

), ⇢
k

(·|·;x
k

),S
k

(x
k

)) : x
k

2 [0, 1]} may

entail multiple prices for the same matching set s
k

. However, because, in this case, each agent can be constrained to

choosing the plan designed for his location, de facto each agent faces a tari↵ specifying a single price for each set.
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which is conveniently indexed by the side-k location, xk. A menu of customized tari↵s thus combines

elements of second-degree price discrimination (each price function ⇢k (q|xl;xk) is possibly non-linear

in q) with elements of third-degree price discrimination (each non-linear price function ⇢k (q|xl;xk)
depends on the plan, and hence the location, of the side-k agents). That ⇢k (qx

l

(sk(xk)) |xl;xk) = 0,

all xl 2 [0, 1], in turn means that an agent making no changes to a baseline plan is asked to make

no further payments to the platform beyond T k(xk). Customized tari↵s capture important features

of real-world matching plans o↵ered by platforms such as cable TV providers, ad Exchanges, and

online retailers.

The platform’s problem consists in choosing a pair of feasible matching tari↵s Tk, k = a, b, that

maximizes its profits, which are given by

X

k=a,b

Z

⇥

k

Tk(ŝk(✓k;Tk))dFk(✓k). (6)

Hereafter, we denote by T ⇤
k the profit-maximizing tari↵s and by s⇤k the induced matching sets, k = a, b.

3 Customized Tari↵s

We start by studying the platform’s problem when no restrictions are imposed on the matching tari↵s

it can o↵er. Before describing the results, we introduce a few conditions that play an important role

in the analysis below.

Condition 1. [R] Regularity: For any k, l 2 {a, b}, l 6= k, (✓k, ✓l) 2 ⇥k ⇥⇥l, the virtual values

'k (✓k, ✓l) ⌘ uk (vk, |xk � xl|)�
1� F

v|x
k (vk|xk)

f
v|x
k (vk|xk)

· @uk
@v

(vk, |xk � xl|)

are continuous, non-decreasing in vk, and non-increasing in |xk � xl|.

Condition R imposes that “virtual values” 'k (✓k, ✓l) have the same monotonicity properties of the

true values, which is the natural analog of standard regularity conditions (see, e.g., Myerson (1981))

in matching environments. We assume that this condition holds throughout the entire analysis.

Condition 2. [Ik] Independence on side k: for any ✓k = (vk, xk) 2 ⇥k, Fk(✓k) = F x
k (xk)F

v
k (vk).

Condition Ik requires that the vertical parameters vk be drawn independently from the locations

xk. In the media market application, this condition implies that knowing a viewer’s “bliss point”,

i.e., his preferred type of content, carries no information about the overall importance the viewer

assigns to media content.

Condition 3. [Sk] Symmetry on side k: for any ✓k = (vk, xk) 2 ⇥k, Fk(✓k) = xkF
v
k (vk).
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Condition Sk strengthens the independence condition by further requiring that locations be uni-

formly distributed over Xk = [0, 1], as typically assumed in models of horizontal di↵erentiation.16 As

we show below, this condition disciplines the agents’ matching demands on side k, when locations

are private information on side l 6= k.

We then have the following result:

Lemma 1. (properties of the optimum) Suppose the environment satisfies the properties of one

of the following four cases: Scenario (i); Scenario (ii) along with Conditions Ia and Sb; Scenario

(iii) along with Conditions Sa and Ib; Scenario (iv) along with Conditions Sa and Sb. Then, under

the profit-maximizing tari↵s, for any k 2 {a, b},

1. the matching tari↵ T ⇤
k is customized;

2. the matching sets s⇤k exhibit negative assortativeness at the margin: there exist functions t⇤k :

⇥k ⇥ [0, 1] ! Vl such that

s⇤k(✓k) = {(vl, xl) 2 ⇥l : vl > t⇤k (✓k, xl)} ,

with the threshold function t⇤k non-increasing in vk and non-decreasing in |xk � xl|. Finally,

when locations are public on side k 2 {a, b}, without loss of optimality, the side-k customized

tari↵s do not need to restrict the set of possible customizations, i.e., for each xk 2 [0, 1],

Sk(xk) = ⌃(⇥l).

The conditions in Lemma 1 guarantee that the platform can price discriminate along the agents’

locations, without leaving the agents rents for the private information the agents may possess re-

garding their locations. That is, in Scenarios (ii)-(iv), these conditions guarantee that the platform

obtains the same profits as when locations are publicly observable, as in Scenario (i).

To gain some intuition, consider first Scenario (ii). Under Conditions Ia and Sb, the platform’s

pricing problem on side a is symmetric across any two locations. This is because of two reasons. First,

the location of any agent from side a provides no information about the agent’s vertical preferences

(this is guaranteed by Condition Ia). Second, when the platform o↵ers the same tari↵s as in Scenario

(i), the gross utility that each type ✓k = (va, xa) obtains from the matching set s⇤a(✓k) coincides

with the gross utility obtained by type (va, xa + d) from choosing the matching set s⇤a(va, xa + d),

d 2 [0, 1/2]. This occurs because the matching set s⇤a(va, xa + d) is a parallel translation of the

matching set s⇤a(va, xa) by d units of distance, along the horizontal dimension (this is guaranteed

by Condition Sb). As a result, when, in Scenario (ii), the platform o↵ers the same matching plans

and tari↵s as in Scenario (i), the matching sets demanded by any two agents with types (va, xa) and

(va, xa+d) are parallel translations of one another, and are priced identically. Note that, to guarantee

that agents reveal their locations when the latter are the agents’ private information, the platform

16Similar assumptions are typically made also in the targeting literature; see, for example, Bergemann and Bonatti

(2011, 2015), and Cox et al. (2017).
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Figure 1: Matching sets under profit-maximizing tari↵s. The shaded area in the figure describes the

matching set for an agent from side a located at xa = 1/2.

may need to restrict the set of possible customizations at each location, Sk(xk), to coincide with

the matching sets demanded under Scenario (i).17 The above properties, together with a judicious

restriction on the set of possible customizations Sk(xk), imply that the matching demands and

payments induced in Scenario (i) are implementable also under Scenario (ii). A symmetric situation

applies to Scenario (iii).

Arguments similar to the ones above for Scenarios (ii) and (iii) imply that, in Scenario (iv), where

locations are private information on both sides, when the platform o↵ers the same matching plans

and tari↵s as in Scenario (i) to each side, agents continue to choose the same matching sets as in

Scenario (i), provided that Condition Sk holds on both sides of the market.

Importantly, under the optimal tari↵s of Lemma 1, for any given location xk, the matching sets

demanded by those agents with higher vertical types are supersets of those demanded by agents with

lower vertical types. In this sense, the induced matching sets s⇤k exhibit negative assortativeness at

the margin. Side-l agents located at xl with a low vertical type vl are included in the matching sets

of the side-k agents located at xk only if the latter’s vertical types vk are large enough.

To gain further intuition for the result in Lemma 1, consider Scenario (i), bearing in mind that the

same conclusions apply to Scenarios (ii)-(iv) under the additional conditions in the lemma. Because

locations are observable, the marginal profits the platform obtains by matching type ✓l = (vl, xl)

from side l to type ✓k = (vk, xk) from side k are positive if, and only if,

'k (✓k, ✓l) + 'l (✓l, ✓k) � 0. (7)

Echoing Bulow and Roberts (1989), the above condition can be interpreted as stating that two

agents are matched if, and only if, their joint marginal revenue to the platform is weakly positive

17In the absence of such restrictions, an agent of type ✓

k

= (v
k

, x

k

) misrepresenting his location to be x

0
k

6= x

k

may

find it optimal to select a matching set that no agent located at x0
k

would have demanded under Scenario (i).
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(we elaborate on this point further in the next subsection). Condition R guarantees that 'l (✓k, ✓l)

is non-decreasing in vl. This implies existence of a threshold t⇤k (✓k, xl) such that Condition (7) is

satisfied if, and only if, vl � t⇤k (✓k, xl). Moreover, the threshold t⇤k (✓k, xl) is non-increasing in vk

and non-decreasing in the distance |xk � xl|. This means that, as vk increases, the matching set

of type ✓k expands to include new agents with lower vertical types. Moreover, as vk increases, the

vertical type of the marginal agents located at xl added to the matching set s⇤k(vk, xk) are higher the

“farther” away the location xl is from xk. Figure 1 illustrates the above properties by depicting the

matching set of a representative agent from side a located at xa = .5.

Remark 2. Lemma 1 describes symmetry conditions under which customized tari↵s are o↵ered by

profit-maximizing platforms under imperfect information about the agents’ locations. These condi-

tions rule out the optimality of bunching and other complications (such as lotteries over tari↵s and

matching sets), while enabling us to highlight the role of price customization. These conditions can

be relaxed by considering a model with a finite number of locations equidistant in the unit-circle.

In a discrete setup, the agents’ incentive to lie over the horizontal dimensions are diminished. We

opted, here, for a continuum of locations for its greater analytical convenience, especially for pricing,

as we show below.

3.1 Lerner-Wilson formula for matching schedules

We now derive further properties of the customized tari↵s that maximize the platform’s prof-

its. To facilitate the exposition, hereafter, we assume that locations are public on both sides

(that is, the environment satisfies the properties of Scenario (i)). As explained in the proof of

Lemma 1, in this case, because each side-k agent located at xk is constrained to choosing the plan

(sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)), designed for him, there is no need for the platform to restrict

the set of possible customizations Sk(xk) each xk-agent can choose from; that is, without loss of

optimality, the platform can set Sk(xk) = ⌃(⇥l), for all xk 2 [0, 1]. To ease the notation, hereafter,

we then drop the sets Sk(xk) from the specification of the matching plans.

Next, consider the problem of a side-k agent of type ✓k = (vk, xk) under the plan

(sk(xk), T k(xk), ⇢k(·|·;xk)).

The mass of agents located at xl demanded by type ✓k is given by

q̂x
l

(✓k) 2 arg max
q2[0,fx

l

(x
l

)]

{uk(vk, |xk � xl|) · q � ⇢k(q|xl;xk)} .

Assuming the price schedule ⇢k(·|xl;xk) is convex and di↵erentiable, with derivative ⇢0k(·|xl;xk), it
follows that q̂x

l

(✓k) is a solution to the following first-order condition18

uk(vk, |xk � xl|) = ⇢0k (q̂x
l

(✓k)|xl;xk) (8)

18The strict convexity of the price function ⇢

k

(·|x
l

;x
k

) over the set of quantities purchased in equilibrium is a direct

implication of the supermodularity of the agents’ payo↵s u
k

(v
k

, |x
k

� x

l

|) · q in (v
k

, q).
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whenever q̂x
l

(✓k) 2 (0, fx
l (xl)). For future reference, for any pair of locations xk, xl 2 [0, 1], and any

marginal price

⇢0k 2 [uk(vk, |xk � xl|), uk(v̄k, |xk � xl|)] ,

let v̂x
l

(⇢0k|xk) denote the value of vk that solves the equation

uk(vk, |xk � xl|) = ⇢0k. (9)

If, instead, ⇢0k /2 [uk(vk, |xk � xl|), uk(v̄k, |xk � xl|)], we let v̂x
l

(⇢0k|xk) = vk for all ⇢0k < uk(vk, |xk �
xl|), and v̂x

l

(⇢0k|xk) = v̄k for all ⇢0k > uk(v̄k, |xk � xl|).
Note that, because the price function ⇢k(·|xl;xk) is strictly convex over the range of quantities

purchased in equilibrium, the marginal price ⇢0k uniquely identifies the quantity q. Furthermore,

because agents with higher vertical types demand larger matching sets, the demand for the q-th unit

of the xl-agents by the xk-agents, at the marginal price ⇢0k, is given by19

Dk

�

⇢0k|xl;xk
�

⌘
h

1� F
v|x
k

�

v̂x
l

�

⇢0k|xk
�

|xk
�

i

fx
k (xk), (10)

where, as above, we dropped the arguments (q|xl;x) of the marginal price to lighten the notation.

Accordingly, Dk (⇢0k|xl;xk) coincides with the mass of agents from side k located at xk whose vertical

type exceeds v̂x
l

(⇢0k|xk).
Using (10), we then define the elasticity of the demand by the side-k agents located at xk (in

short, the xk-demand) for the q-th unit of the xl-agents with respect to its marginal price ⇢0k by

(once again, the arguments of the marginal price ⇢0k are dropped to ease the notation)

"k
�

⇢0k|xl;xk
�

⌘ �
@Dk (⇢0k|xl;xk)

@
�

⇢0k
� ·

⇢0k
Dk

�

⇢0k|xl;xk
� . (11)

Note that, when ⇢0k 2 [uk(vk, |xk � xl|), uk(v̄k, |xk � xl|)],

"k
�

⇢0k|xl;xk
�

= �
v|x
k

�

v̂x
l

�

⇢0k|xk
�

|xk
�

·


@uk
@v

�

v̂x
l

�

⇢0k|xk
�

, |xk � xl|
�

��1

· ⇢0k, (12)

where �v|xk (vk|xk) is the hazard-rate of the conditional distribution F
v|x
k . The next proposition

characterizes the price schedules associated with the profit-maximizing customized tari↵s of Lemma

1 in terms of the location-specific elasticities of the demands on both sides of the market.

Proposition 1. (Lerner-Wilson price schedules) Suppose the environment satisfies the proper-

ties of Scenario (i). The price schedules ⇢⇤k(·|xl;xk) associated with the profit-maximizing customized

tari↵s T ⇤
k are di↵erentiable and convex over the equilibrium range [qx

l

(sk(vk, xk)), qx
l

(sk(vk, xk))],

19By the demand for the q-th unit of the x

l

-agents by the x

k

-agents we mean the mass of agents from side k located

at x
k

who demand at least q matches with the x

l

-agents.
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k = a, b. Moreover, ⇢⇤a and ⇢⇤b jointly satisfy the following Lerner-Wilson formulas for all pairs

(xa, xb) and (qa, qb) such that qa = Db (⇢⇤b
0(qb|xa;xb)|xa;xb) and qb = Da (⇢⇤a

0 (qa|xb;xa) |xb;xa):

⇢⇤a
0(qa|xb;xa)

✓

1� 1

"a (⇢⇤a
0(qa|xb;xa)|xb;xa)

◆

| {z }

net e↵ect on side-a profits

(13)

+ ⇢⇤b
0(qb|xa;xb)

 

1� 1

"b
�

⇢⇤b
0(qb|xa;xb)|xa;xb

�

!

| {z }

net e↵ect on side-b profits

= 0.

The Lerner-Wilson formulas (13) jointly determine the price schedules on both sides of the mar-

ket. Intuitively, these formulas require that the marginal contribution to profits from adding to

the matching sets of the xk-agents the qk-th unit of the xl-agents coincide with the marginal con-

tribution to profits from adding to the matching sets of the xl-agents the ql-th unit of the xk-

agents, where qk and ql are jointly related by the reciprocity condition in the Proposition (that is,

qa = Db (⇢⇤b
0(qb|xa;xb)|xa;xb) and qb = Da (⇢⇤a

0 (qa|xb;xa) |xb;xa). As for the standard Lerner-Wilson

formula for monopoly/monopsony pricing, on each side, the marginal contribution to profits of such

an adjustment has two terms: the term ⇢⇤k
0(qk|xl, xk) captures the marginal benefit from adding

the extra agents, whereas the semi-inverse-elasticity term ⇢⇤k
0(qk|xl, xk) ["k (⇢⇤k 0(qk|xl;xk)|xl;xk)]

�1

capture its associated infra-marginal losses.

Importantly, as anticipated above, the quantities qk and ql at which the conditional price schedules

are evaluated have to clear the market, as required by the reciprocity condition (3). The result in the

proposition uses the fact that the demands under the optimal tari↵s satisfy the threshold structure in

Lemma 1 to establish that the mass of xk-agents that, at the marginal price ⇢⇤k
0(qk|xl, ;x), demand qk

agents or more of type xl coincide with the mass Dk (⇢⇤k
0 (qk|xl;xk) |xl;xk) of xk-agents with vertical

type above v̂x
l

(⇢⇤k
0|xk), where recall that v̂x

l

(⇢⇤k
0|xk) is the vertical type at which the utility of the xk

agents for the xl matches equals the marginal price ⇢⇤k, as defined in (9). Together with reciprocity,

Lemma 1 then also implies that the mass qk of xl-agents that, at the marginal price ⇢⇤l
0(ql|xk, xl),

demand ql = Dk (⇢⇤k
0 (qk|xl;xk) |xl;xk) or more of the xk-agents coincides with the mass of xl-agents

with vertical type above v̂x
k

(⇢⇤l
0|xl).

Finally, that the price schedules ⇢⇤k(qk|xl;xk) are convex in qk reflects the fact that the matching

demands of the xk-agents for the xl-agents are increasing in the vertical types vk. As a result, the

marginal price ⇢⇤k
0(qk|xl, xk) for the qk-unit of the xl-agents has to increase with qk.

The formulas in (13) also reveal how profit-maximizing platforms optimally cross-subsidize in-

teractions among agents from multiple sides of the market while accounting for heterogeneity in

preferences along both vertical and horizontal dimensions. In particular, the price schedules o↵ered

at any two locations xk and xl are a function of the location-specific demand elasticities "k (·|xl;xk)
at these locations. This reflects the fact that, at the optimum, platforms make use of information

about horizontal preferences to o↵er matching tari↵s that extract as much surplus as possible from
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agents from both sides. As we show below, the ability to tailor price schedules to locations (a form

of third-degree price discrimination) has important implications for the composition of the demands

prevailing under optimal tari↵s.

A platform with knowledge of the distribution of preferences in the market can use Proposition

1 to construct the profit-maximizing price schedules, or, alternatively, identify the thresholds that

describe the optimal matching demands (as in Lemma 1). Conversely, Proposition 1 can also be used

in empirical work, as it provides a system of structural equations that allows the econometrician to

recover the distribution of the agents’ preferences from price schedules and match volumes. The

work by Kahn and You (2016) follows a related approach in the matching market for lobbying, but

abstracting from horizontal di↵erentiation. Proposition 1 might help in extending their empirical

analysis to markets where horizontal di↵erentiation is expected to play an important role.

3.2 Distortions and Horizontal Di↵erentiation

We now investigate how distortions in the supply of matching opportunities (relative to e�ciency)

due to market power vary with the agents’ horizontal preferences. In particular, we are interested in

whether distortions increase or decrease as one considers locations farther away from an agent’s bliss

point. The analysis in this section, which, to the best of our knowledge, has no parallel in the price

discrimination literature, has important implications for how policy makers may consider regulating

mediated matching markets.

Let
X

k=a,b

Z

⇥

k

Z

ˆs
k

(✓
k

;T
k

)

uk (vk, |xk � xl|) dFj(✓j)dFk(✓k), (14)

denote the welfare associated with a feasible pair of matching tari↵s Tk, k = a, b. It is straight-

forward to see that a pair of tari↵s T e
k , k = a, b, maximizes social welfare if, and only if, the induced

matching demands satisfy the following property: For any two agents with types ✓k = (vk, xk) and

✓l = (vl, xl),

✓l 2 ŝk(✓k;T
e
k ) () uk (vk, |xk � xl|) + ul (vl, |xk � xl|) � 0.

In turn, this means that, given any pair of welfare-maximizing tari↵s T e
k , k = a, b, there must exist

threshold functions tek (✓k, xl) such that ✓l 2 ŝk(✓k;T e
k ) if, and only if, vl � tek (✓k, xl). Arguments

similar to those establishing Lemma 1 and Proposition 1 then imply that the welfare-maximizing

tari↵s T e
a and T e

b are customized, and their associated marginal price schedules (⇢ek)
0, jointly solve

⇢ea
0(qa|xb;xa) + ⇢eb

0(qb|xa;xb) = 0,

at any pair qa and qb such that qa = Db (⇢eb
0(qb|xa;xb)|xa;xb) and qb = Da (⇢ea

0 (qa|xb;xa) |xb;xa).
The following example illustrates the di↵erences between the matching sets sustained under

welfare maximization and their counterparts under profit maximization, when preferences are as in

Example 1.
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Figure 2: The welfare-maximizing demand threshold tea (✓a, xb) (dashed blue curve) and the profit-

maximizing demand threshold t⇤a (✓a, xb) (solid black curve) for agents on side a located at xa = .5

under the preferences of Example 1, when  (|xa � xb|) = exp {|xa � xb|}, and vertical dimensions

vb are drawn from a shifted exponential distribution.

Example 4. (online shopping - continued) Consider the market described in Example 1, and

assume that the environment satisfies the properties of Scenario (i), and Condition Ik holds, for

k = a, b. Consider a consumer with preferences ✓a = (va, xa) and a product of variety xb for which

the profit- and the welfare-maximizing allocations are interior (that is t⇤a(✓a, xb), t
e
a(✓a, xb) 2 Int[Vb]).

Then, the distortions due to market power are captured by the discrepancy

t⇤a (✓a, xb)� tea (✓a, xb) =
1

�vb (t
⇤
a (✓a, xb))

+
1

�va(va)
.

Such discrepancy is invariant in the distance |xa � xb| if vb is drawn from a shifted exponential

distribution, as illustrated in Figure 2.20 By contrast, distortions are decreasing (resp., increasing)

with distance if the hazard rate �b(vb) is increasing (resp., decreasing) in vb. }

The above example is special, in that the match utility of the side-a agents is modular (i.e., the

cross-derivative of ua in va and d = |xa � xb| is zero), and the match utility of the side-b agents is

modular and linear in vb. To obtain more general conclusions, we first need to introduce a definition:

Definition 4. (distortions and distance) Distortions on side k 2 {a, b} decrease (alternatively,

increase) with distance if, and only if, for any ✓k 2 ⇥k,

ul (t
⇤
k(✓k, xl), |xl � xk|)� ul (t

e
k(✓k, xl), |xl � xk|)

decreases (alternatively, increases) with |xk � xl|.
Hence, fixing the type ✓k = (vk, xk) of a side-k agent, distortions increase with distance when

the di↵erence between the minimal utility asked by a profit-maximizing platform and a welfare-

maximizing platform to each xl-agent to be matched with type ✓k increases with the distance between

20That is, F v

b

(v
b

) = 1� exp

n

�̃

b

(v
b

�K)}
o

for K < 0 and �̃

b

< 0, with V

b

= [K,+1).
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the two agents’ locations. Note that the di↵erence in utilities, as in Definition 4, reduces to the

di↵erence in the thresholds, as in Example 4, when the side-l’s preferences are invariant to locations.

Proposition 2. (distortions under customized pricing) Suppose the environment satisfies the

properties of Scenario (i), and Conditions Ik hold, k = a, b.21 Consider any (✓k, xl) 2 ⇥k ⇥ [0, 1] for

which t⇤k(✓k, xl), t
e
k(✓k, xl)2 Int[Vl].22 The following statements are true for k, l = a, b, l 6= k:

1. If uk is submodular, ul is submodular and concave in vl, and F v
l has an increasing hazard rate,

distortions on side k decrease with distance;

2. If uk is supermodular, ul is supermodular and convex in vl, and F v
l has a decreasing hazard

rate, distortions on side k increase with distance.23

The next two examples specialize the conclusions of Proposition 2 to advertising and media

markets. To avoid repetitions, we assume in these examples that the environment satisfies the

properties of Scenario (i) and that Conditions Ik hold, k = a, b. As explained above, the conclusions

in all these examples extend to environments in which locations are private on one, or both, sides

of the market, provided that condition Ik is replaced with condition Sk on the side of the market

opposite to the one where locations are private information, as per Lemma 1.

Example 5. (ad exchange - continued) Consider the advertising market of Example 2. Note

that the agents’ preferences under this specification are consistent with the conditions of Part 1

in Proposition 2 (ua is strictly submodular, whereas ub is linear in vb and invariant in |xa � xb|).
Therefore, when F v

b has an increasing hazard rate, under profit maximization, advertisers (on side

a) are more often matched (relative to e�ciency) to those publishers whose profile is more distant

from their ideal audience. Figure 3 illustrates this situation. }

Example 6. (media platform - continued) Consider the media market of Example 3. When

the elasticity of substitution �  1, the viewers’ preferences on side-a are submodular. In this case,

distortions decrease with distance provided F v
b has an increasing hazard rate. This means that,

under profit maximization, the media consumption of viewers is distorted by excluding primarily

those types of content that viewers like the most. Conversely, when � � 1, the viewers’ preferences

21The conclusions in the proposition continue to hold if the environment satisfies the properties of Scenarios (ii),

(iii), or (iv), and Condition I

k

is replaced by S

k

on the side of the market opposite to the one in which locations are

private information, as per Lemma 1.
22The results for the case in which either t

⇤
k

(✓
k

, x

l

), or t

e

k

(✓
k

, x

l

), coincide with the extreme points of V

l

are not

particularly interesting. When t

e

k

(✓
k

, x

l

) = v̄

l

, t⇤
k

(✓
k

, x

l

) = v̄

l

. In this case, distortions are invariant in the distance. If,

instead, te
k

(✓
k

, x

l

) = v

l

, then distortions are weakly increasing in the distance. Finally, if t⇤
k

(✓
k

, x

l

) = v̄

l

then clearly

distortions are weakly decreasing in distance. In these cases, the monotonicity of the di↵erence in the utilities does not

depend on the hazard rate of the distributions, nor on the modularity of the match values.
23Strictly so, if at least one of the conditions is strict (in Parts 1 and 2).
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Figure 3: The welfare-maximizing demand threshold tea (✓a, xb) (dashed blue curve) and the profit-

maximizing demand threshold t⇤a (✓a, xb) (solid black curve) for agents on side a located at xa = .5

under the preferences specification of Example 2.

are supermodular, and distortions increase with distance provided F v
b has a decreasing hazard rate.24

}

Proposition 2 identifies natural conditions on primitives (match utilities and distributions) that

lead to location-specific elasticities that increase or decrease with distance. To understand the

result, consider Part 1 first. When ua is submodular, the e↵ect of vertical di↵erentiation on match

utility declines with the distance in locations. This implies that the location-specific semi-elasticity

"a (⇢0a|xb;xa) /⇢0a of the side-a demand, evaluated along the matching demand of type ✓a, is higher at

locations xb that are farther from xa (as implied by equation (12)). Holding ⇢0b fixed, this property of

elasticities contributes to marginal prices on side a being lower (relative to their e�cient counterparts)

at locations xb that are farther from xa, as implied by the Lerner-Wilson formulas (13). Likewise,

when F v
b has an increasing hazard rate and ub is submodular and concave in vl, the side-b location-

specific semi-elasticity "b (⇢0b|xa;xb) /⇢0b, evaluated along the matching demand of type ✓a, is also

higher at locations xb that are farther from xa (as implied by equation (12)). Holding ⇢0a fixed,

this property of elasticities thus contributes to marginal prices on side b being lower (relative to

their e�cient counterparts) at locations xb that are farther from xa (as implied by the Lerner-Wilson

formulas (13)). Because matchings is reciprocal, the side-amarginal prices then also decrease (relative

to their e�cient counterparts) as distances increase.

The two e↵ects described above point in the same direction: Namely, the discrepancy between

the side-a profit-maximizing marginal prices and their e�cient counterparts are relatively lower at

locations xb that are farther from xa. When this is the case, distortions decrease with distance.

24To see how the results follow from parts 1 and 2 in Proposition 2, recall that, in this example, the preferences of

the side-b agents are linear in v

b

and invariant in |x
a

� x

b

|; hence they are both weakly submodular and concave in v

b

,

and weakly supermodular and convex in v

b

.
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Mutatis mutandis, a similar explanation applies to the environment considered in Part 2 in the

proposition.

4 Uniform Pricing

Stringent regulations on the transfer of personal data, as well as a renewed trend towards market

decentralization, are expected to hinder the customization of prices and favor instead uniform pricing.

In this section, we study platforms’ behavior under uniform pricing. After doing so, we discuss how

our results can be adapted to study the e↵ects of market decentralization, whereby matches are

unmediated and prices are de facto uniform on a given side of the market.

Uniform Pricing and Aggregate Demand Elasticities

Suppose the platform is forced to adopt a uniform price schedule pa(·|xb) on side a (with marginal

schedule p0a(·|xb)). Recall that, for each location xb 2 [0, 1], and each quantity q 2 [0, fx
b (xb)], such a

schedule specifies the price that the side-a agents have to pay to be matched to q agents from side

b located at xb. Under such schedule, the aggregate demand (over all locations xa) for the q-th unit

of the xb-agents at the marginal price p0a (q|xb) is equal to

D̄a

�

p0a|xb
�

⌘
Z

1

0

Da

�

p0a|xb;xa
�

dxa =

Z

1

0

n

1� F v|x
a

�

v̂x
b

�

p0a|xa
�

|xa
�

o

fx
a (xa)dxa,

where, as in the previous section, Da (p0a|xb;xa) denotes the mass of agents located at xa that demand

q units or more of the xb-agents, and where, as in the previous section, the arguments (q|xb) of the
marginal prices p0a (q|xb) have been dropped, to ease the exposition.

The elasticity of the aggregate demand for the q-th unit of the xb-agents with respect to its

marginal price p0a (q|xb) is then equal to

"̄a
�

p0a|xb
�

⌘ �@D̄a (p0a|xb)
@ (p0a)

· p0a
D̄a (p0a|xb)

= E
¯H(x̃

a

|x
b

,p0
a

)

⇥

"a
�

p0a|xb; x̃a
�⇤

,

where "a (p0a|xb;xa) is as defined in (11), and where the expectation is over Xa = [0, 1], under the

distribution H̄ (·|xb, p0a) whose density is equal to

h̄
�

xa|xb, p0a
�

⌘ Da (p0a|xb;xa)
R

1

0

Da (p0a|xb;x0a) dx0a
.

Hereafter, we refer to "̄a (·|xb) as to the aggregate elasticity of the side-a demand for the xb-

matches. This elasticity measures the percentage variation in the mass of agents from side a that

demand at least q matches with the side-b agents located at xb in response to a percentage change

in the marginal price for the q-th unit of the xb-agents. It is also equal to the average (over the

side-a locations) elasticity of the xa-demands for the q-th unit of the xb-agents with respect to the

marginal price p0a, where the average is under a distribution that assigns to each location xa a weight
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proportional to the mass of agents Da (p0a|xb, xa) located at xa demanding q units, or more, of the

xb-agents.

The next proposition derives the optimal tari↵s employed by a platform that is constrained to

not engage in third-degree price discrimination on side a (equivalently, to price uniformly on side a).

Consistently with the previous two propositions, we ease the exposition by assuming that locations

are public information on both sides (that is, the environment satisfies the properties of Scenario (i)),

with the understanding that the results extend to the other scenarios under the extra assumptions

of Lemma 1. We denote by T u
a and T u

b the profit-maximizing tari↵s on sides a and b, respectively,

when the platform is constrained to price uniformly on side a.

Proposition 3. (uniform pricing) Suppose the environment satisfies the properties of Scenario

(i) and that the platform is constrained to price uniformly on side a (but is free to o↵er a customized

tari↵ on side b). The profit-maximizing price schedules pua(·|xb) and ⇢ub (·|xa;xb) are di↵erentiable

and convex over the equilibrium ranges,25 and jointly satisfy the following optimality conditions for

all xb 2 [0, 1], all q  fx
b (xb),

pua
0(q|xb)

✓

1� 1

"̄a (pua
0(q|xb))

◆

| {z }

net e↵ect on side-a profits

+EH(x̃
a

|x
b

,p0
a

)

2

6

4

⇢ub
0(q̂b(q; x̃a;xb)|x̃a;xb)

 

1� 1

"b
�

⇢ub
0(q̂b(q; x̃a;xb)|x̃a;xb)|x̃a;xb

�

!

| {z }

3

7

5

= 0,

net e↵ect on side-b profits

(15)

where H (xa|xb, p0a) is the distribution over Xa = [0, 1] whose density is given by

h
�

xa|xb, p0a
�

⌘ @Da (p0a|xb;xa)
@ (p0a)

✓

@D̄a (p0a|xb)
@ (p0a)

◆�1

,

and where q̂b(q;xa;xb) ⌘ Da (pua
0(q|xb)|xb;xa) is the mass of side-a agents located at xa that demand

q or more matches with the side-b agents located at xb when the (uniform) marginal price for the

q-th unit of the xb-agents is equal to pua
0(q|xb).

The result in the proposition provides structural equations similar to those corresponding to the

Lerner-Wilson formulas in (13), but adapted to account for the imposition of uniform pricing on

side a. Such structural conditions jointly determine the price schedules on both sides of the market.

Under uniform pricing, the price schedule on side a for the sale of the side-b matches cannot condition

on the location of the side-a agents. As a result, the markup for the sale of the q-th unit of the xb-

matches is constant across all side-a locations xa. The relevant elasticity for determining this markup

is then the aggregate elasticity "̄a(·|xb), rather than the location-specific elasticities "a (·|xb;xa) in

25Namely, at any q

a

2 [q
xb(sa(va, xb

+ .5)), q
xb(sa(va, xb

))] and q

b

2 [q
xa(sb(v

b

, x

b

)), q
xa(sa(vb, xb

))].
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the Lerner-Wilson formula (13). Interestingly, even if the platform can price discriminate on side b

by o↵ering a customized tari↵ to the side-b agents, when it is constrained to price uniformly on side

a, the cost of procuring the side-b agents is the average (mark-up augmented) price

EH(x̃
a

|x
b

,p0
a

)

2

6

4

⇢ub
0(q̂b(q; x̃a;xb)|x̃a;xb)

 

1� 1

"b
�

⇢ub
0(q̂b(q; x̃a;xb)|x̃a;xb)|x̃a;xb

�

!

| {z }

3

7

5

net e↵ect on side-b profits

charged to the xb-agents for their interactions with the various xa-agents demanding q, or more,

xb-matches.

Also note that, by virtue of the reciprocity condition (3), the quantities qa and qb at which the

conditional price schedules are evaluated have to clear the market for any pair of locations (xa, xb).

For this to be possible, it is important that the platform be able to employ a customized tari↵ on

side b, as the latter ensures that the platform has enough price instruments to procure the side-b

matches demanded by the side-a agents, while respecting reciprocity.

Finally, as in the case where price customization is allowed on both sides, the convexity of the

price schedules pua(·|xb) and ⇢ub (·|xa;xb) in q reflects the fact that the matching demands of those

agents with a higher vertical type are supersets of those with a lower vertical type.

As revealed by the pricing formulas (13) and (15), the e↵ects of the imposition of uniform pricing

on side a on the composition of the matching sets on both sides hinge on the comparison between the

aggregate inverse-elasticity 1/"̄a and the location-specific inverse-elasticities 1/"a (·|xb, xa) on side a,

as well as the comparison between the average inverse-elasticity EH(x̃
a

|x
b

,p0
a

)

[1/"b (·|x̃a;xb)|x̃a;xb)] of
the xb-demands for the various xa-matches and the inverse-elasticities 1/"b (·|x̃a;xb)|x̃a;xb) of the

same demands for the specific matches. In turn, such comparisons naturally reflect how the average

virtual valuations on both sides compare to their location-specific counterparts. To see this, first

note that
1

"̄a (pua
0(q|xb))

= EH(x̃
a

|x
b

,p0
a

)



1

"a (pua
0(q|xb)|xb; x̃a))

�

. (16)

That is, the inverse aggregate elasticity of the side-a demand for the q-th unit of the xb-matches

is equal to the average of the various location-specific inverse elasticities of the side-a agents for

the same unit of the same xb-matches, where the average is under the same measure H (xa|xb, p0a)
introduced in the proposition. Let v̌b(q;xb) be implicitly defined by

⇣

1� F
v|x
b (v̌b(q;xb)|xb)

⌘

fx
b (xb) = q.

Note that v̌b(q;xb) denotes the value of the vertical dimension of the xb-agents such that the mass

of xb-agents with a vertical type higher than v̌b(q;xb) is equal to q. Using the characterization in
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Lemma 1, we then have that the optimality condition (15) can be re-written as

EH(x̃
a

|x
b

,p0
a

)

⇥

'a

��

v̂x
b

�

p0a|x̃a
�

, x̃a
�

, (v̌b(q;xb), xb)
�⇤

| {z }

+

net e↵ect on side-a profits

EH(x̃
a

|x
b

,p0
a

)

⇥

'b

�

(v̌b(q;xb), xb)) ,
�

v̂x
b

�

p0a|x̃a
�

, x̃a
��⇤

| {z }

= 0.

net e↵ect on side-B profits

(17)

Hereafter, we assume that the left-hand side of (17) is monotone in the marginal price p0a, which

amounts to quasi-concavity of the platform’s profit function with respect to the marginal price, after

accounting for the cost of procuring the xb-agents, as explained in the proof of Proposition 3. The

above property implies that the necessary condition in (17) is also su�cient for optimality.

Now recall that, under price customization (on both sides), the platform matches a pair of agents

✓a = (va, xa) and ✓b = (vb, xb) if, and only if, type-✓a’s virtual value for interacting with type ✓b is

large enough to compensate for the virtual value that type ✓b derives from interacting with type ✓a

(formally, ✓a and ✓b are matched if, and only if, 'a(✓a, ✓b) + 'b(✓b, ✓a)� 0). Under uniform pricing

(on side a), instead, the platform matches the above pair of agents if, and only if, the following

is true: if all side-a agents with the same true value for interacting with type ✓b as type ✓a were

to be matched to type ✓b, the average virtual value among such agents for the match with type ✓b

would compensate for the average virtual value that type ✓b derives from being matched with all

such agents. Formally, under uniform pricing (on side a), types ✓a and ✓b are matched if, and only

if,
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This observation plays an important role in determining how targeting and welfare are a↵ected by

the imposition of uniform pricing, as we show below.

4.1 Targeting under Uniform and Customized Pricing

Digital technology is often praised for its ability to increase match precision (or targeting) in a

variety of markets. Yet, technology alone is no guarantee of large targeting gains, as the matching

demands enjoyed by agents obviously depend on the pricing practices followed by platforms. Price

customization allows a platform to charge agents prices that directly depend on their horizontal

preferences. To the extent that agents value the most those matches of higher proximity, one might

expect price-customization to hinder targeting, as it permits platforms to set higher prices for those

matches the agents like the most. Without further inquiry, this observation seems to lend support

to policies that impose uniform pricing. Indeed, recent proposals, requiring stringent protection of

consumer privacy (de facto banning price customization), stand-alone pricing for media content, or

anonymous pricing for advertising slots, appear to follow this line of reasoning. This intuition is,
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however, incomplete, as it ignores the (endogenous) changes in prices that the platform undertakes

in response to uniform pricing. The analysis below provides some guidelines when it comes to the

comparisons of uniform and customized pricing on targeting.

Definition 5. (targeting) Customized pricing (on both sides) leads to more targeting than uniform

pricing (on side a) if, for each ✓a = (va, xa), there exists d(✓a) 2 (0, 1
2

) such that

t⇤a(✓a, xb)� tua(✓a, xb)

(

< 0 if |xa � xb| < d(✓a)

> 0 if |xa � xb| > d(✓a).

Conversely, uniform pricing on side a leads to more targeting than customized pricing on both sides

if, for each ✓a = (va, xa), there exists d(✓a) 2 (0, 1
2

) such that

t⇤a(✓a, xb)� tua(✓a, xb)

(

> 0 if |xa � xb| < d(✓a)

< 0 if |xa � xb| > d(✓a).

Intuitively, customized pricing (on both sides) leads to more targeting than uniform pricing (on

side a) if, under the profit-maximizing customized tari↵s, agents demand more matches close to

their ideal points, and less matches far from their ideal points, relative to what they do under

uniform pricing. Accordingly, the threshold function t⇤a(✓a, xb) under customized pricing is below

the corresponding threshold function tua(✓a, xb) for nearby matches (i.e., for locations xb such that

|xa�xb| < d(✓a)), and above tua(✓a, xb) for more distant matches (for which |xa�xb| > d(✓a)). Figure

4 illustrates the situation captured by the above definition.

Note that, because matching is reciprocal, the above definition has an analogous implication for

side b. Namely, when customized pricing (on both sides) leads to more targeting than uniform pricing

(on side a), then the side-b threshold function under customized pricing, t⇤b(✓b, xa), also single-crosses

its counterpart under uniform pricing, tub (✓b, xa), only once, and from below, as a function of the

distance |xa � xb|.
The next proposition identifies primitive conditions under which uniform pricing on side a (for

short, uniform pricing) leads to more targeting that customized pricing on both sides (for short,

customized pricing).

Proposition 4. (comparison: targeting) Suppose the environment satisfies the properties of

Scenario (i), Condition Ia holds, and preferences on side b are location-invariant, that is, for all

xa, xb 2 [0, 1], all vb 2 Vb, ub(vb, |xb � xa|) = vb. Then the following statements are true.

1. If the match value function ua is submodular and concave in va, and F v
a has an increasing

hazard rate, then uniform pricing leads to more targeting than customized pricing.

2. If the match value function ua is supermodular and convex in va, and F v
a has a decreasing

hazard rate, then customized pricing leads to more targeting than uniform pricing.

Proposition 4 helps understanding the e↵ects of price customization on targeting in a variety of

markets. In the examples below, we assume the environment satisfies the properties of Scenario (i)

and Condition Ia holds.
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Figure 4: The threshold function t⇤a(✓a, xb) under customized pricing (solid black curve) and uniform

pricing tua(✓a, xb) (dashed blue curve) when customized pricing (on both sides) leads to more targeting

than uniform pricing (on side a).

Example 7. (online shopping - continued) Consider the online shopping market of Example 1.

Price customization leads to more (respectively, less) targeting than uniform pricing when F v
a has a

decreasing (respectively, increasing) hazard rate. Therefore, the targeting consequences of stringent

consumer privacy regulations (de facto banning price customization) depend on the distribution of

consumers’ vertical tastes, but not on the intensity of niche preferences determining the disutility

from the mismatches (formally captured by the  function). The same conclusions remain valid if

the environment satisfies the properties of Scenario (ii) and Condition Sb also holds. }

Example 8. (ad exchange - continued) Consider the ad exchange market of Example 2. Price

customization leads to less targeting than uniform pricing (as the match function ua is submodular

and linear in va) when F v
a has an increasing hazard rate (e.g., a uniform or exponential cdf). Under

this condition, anonymous pricing for advertising slots (e.g., as a result of regulation) makes adver-

tisers be more often matched (relative to laissez-faire) to those publishers whose profile is closer to

their ideal audience. }

Example 9. (media platform - continued) Consider the media market of Example 3. Price cus-

tomization leads to more targeting than uniform pricing when the viewers’ elasticity of substitution

is high (namely, when � > 1) and F v
a has a decreasing hazard rate (e.g., a Pareto cdf). By contrast,

price customization leads to less targeting than uniform pricing when the viewers’ elasticity of sub-

stitution is low (namely, when � < 1) and F v
a has an increasing hazard rate (e.g., a uniform cdf).26

The e↵ects on targeting of regulation requiring stand-alone pricing for media content therefore jointly

depend on the viewers’ elasticity of substitution and the distribution of their vertical preferences.

26When the hazard rate is constant (that is, F

v

a

is a shifted exponential distribution), the e↵ect of uniform (as

opposed to customized) pricing on targeting solely depends on the viewers’ elasticity of substitution.
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The same conclusions remain valid if the environment satisfies the properties of Scenario (ii) and

Condition Sb also holds. }

The primitive conditions in Proposition 4 have implications for how location-specific elasticities

on both sides of the market compare to the average elasticities. To obtain intuition, consider first

Part 1 and fix the side-b location xb. Let ⇢0a be a short-cut for the marginal price ⇢0a (q|xb;xa) for the
q-th unit of the xb-agents charged to the side-a agents located at xa under customized pricing. To

make things interesting, assume ⇢0a 2 (ua(va, |xb � xa|), ua(v̄a, |xb � xa|)). We then have that, under

customized pricing, the semi-price elasticity27
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b
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, |xb � xa|
�

��1

of the demand for the q-th unit of the xb-agents by the side-a agents is increasing in the distance

|xb�xa|. By contrast, under uniform pricing, the aggregate counterpart of the above semi-elasticity,

which is given by

"̄a
�

pua
0|xb

� �

pua
0��1

,

where pua is a short-cut for pua(q|xb), is constant in xa (and therefore in the distance |xb � xa|),
as the marginal price pua for the q-th unit of xb-matches is the same for all xa-locations. As a

consequence of the above property, under the assumptions in Part 1, the relevant semi-elasticity

in the customized-pricing regime is lower (alternatively, higher) than in the uniform-pricing regime

when the distance |xb � xa| is small (alternatively, large). This implies that the marginal price

⇢⇤a
0 for the q-th unit of xb-matches charged to the xa-agents under the customized-pricing regime is

lower than the corresponding price pua under the uniform-pricing regime when locations are far apart,

whereas the opposite is true at nearby locations. Accordingly, there is more targeting under uniform

pricing than under customized pricing.

Mutatis mutandis, the assumptions in Part 2 in the proposition imply that, under customized

pricing, the semi-price elasticity of the demand for the q-th unit of the xb-agents by the side-a agents

is strictly decreasing in |xb � xa|, in which case customized pricing leads to more targeting than

uniform pricing.

Remark 3. To simplify the exposition, Proposition 4 assumes that, on side b, preferences are location-

invariant and that, on side a, the vertical and horizontal dimensions are independent (that is, condi-

tion Ia applies). The result, however, applies more generally. To see this, let t⇤k(·) be the threshold

functions describing the matching sets optimally induced by the platform when it can o↵er customized

tari↵s on both sides of the market. Let L : [0, 1]⇥⇥b ! R be the function defined by

L(xa|✓b) ⌘ 'b (✓b, (t
⇤
b(✓b, xa), xa))�

1� F
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for all (xa, ✓b) 2 [0, 1] ⇥ ⇥b. Then uniform pricing (on side a) leads to more (respectively, less)

targeting than customized pricing, on both sides, if, for any ✓b, the function L(·|✓b) is nondecreasing
(respectively, non-increasing) in |xb � xa|. The conditions in Parts 1 and 2 of Proposition 4 are

su�cient for the function L(·|✓b) to be monotone in |xb � xa| for any ✓b, (nondecreasing and non-

increasing, respectively). The proof in the Appendix deals with the more general case described

above.

4.2 Welfare under Uniform and Customized Pricing

The result in Proposition 4 can also be used to study the welfare implications of price customization.

To see this, suppose the market satisfies the conditions in Part 1 in the proposition. Then, under

uniform pricing on side-a, the side-a agents face lower marginal prices p0a (q|xb) for the xb-agents they
like the most and higher marginal prices for those side-b agents whose location is far from their bliss

point.

The above findings permit us to adapt results from the third-degree price discrimination literature

to the matching environment under consideration here to identify conditions under which welfare of

the side-a agents increases with the imposition of uniform pricing on side a. Formally, recall that,

under uniform pricing, the demand by the xa�agents for each q-th unit of the xb-matches is given

by

Da
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where, to ease the notation, we dropped (q|xb) from the arguments of the marginal price p0a(q|xb).
Now let

CDa

�
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2Da (p0a|xb;xa)

@ (p0a)
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✓

@Da (p0a|xb;xa)
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p0a

denote the convexity of the demand by the xa-agents for the q-th unit of the xb-agents with respect

to the marginal price p0a.
28 Before proceeding, we have to impose the following regularity condition.

Condition 4. [IR] Increasing Ratio: For any (xa, xb) 2 [0, 1]2, any q 2 [0, fx
b (xb)], the function

za
�

p0a|xb;xa
�

⌘ p0a
2� CDa (p0a|xb;xa)

is nondecreasing in the marginal price p0a for the q-th unit of the xb-agents.

We then have the following result:

Proposition 5. (comparison: welfare) Suppose the environment satisfies the properties of Sce-

nario (i), Condition IR holds, and either one of the following alternatives is satisfied:

1. The assumptions in Part 1 of Proposition 4 hold and, for any p0a and xb, the convexity

CDa (p0a|xb;xa) of the demands by the xa-agents for the q-th unit of the xb-agents declines with the

distance |xa � xb|.
28Note that CD
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2. The assumptions in Part 2 of Proposition 4 hold and, for any p0a and xb, the convexity

CDa (p0a|xb;xa) of the demands by the xa-agents for the q-th unit of the xb-agents increases with the

distance |xa � xb|.
Then welfare of the side-a agents is higher under uniform pricing on side a than under customized

pricing on both sides.

The next examples apply Proposition 5 to assess the welfare e↵ects of uniform pricing in di↵erent

applications. We assume that, in addition to the conditions of Proposition 4, Condition IR holds

across all the considered specifications.

Example 10. (online shopping - continued) Consider the online shopping market of Example 1.

When F v
a has a increasing hazard rate and the density fv

a (va) is log-convex, shoppers’ welfare is higher

under uniform pricing, and so is the level of targeting. When, instead, F v
a has a decreasing hazard

rate and the density fv
a (va) is log-concave, uniform pricing leads to lower targeting but shoppers’

welfare is higher under uniform pricing than under customized pricing.29 }

Example 11. (ad exchange - continued) Consider the ad exchange market of Example 2. Ad-

vertisers’ profits are higher under uniform pricing, and so is the level of targeting, when F v
a has an

increasing hazard rate and its convexity function

CF v
a (va) ⌘ �d2F v

a

dv2a

✓

dF v
a

dva

◆�1

va = �fv
a
0 (va)

fv
a (va)

va

is decreasing. The latter condition is weaker than the requirement that the density fa(va) is log-

convex. }

Condition IR, as well as the convexity properties of the demand functions in Proposition 5, parallel

those in Aguirre et al (2010). The value of the proposition is in showing how our results about the

connection between targeting and customized pricing also permit us to apply to the environment

under examination here the welfare results from the third-degree price discrimination literature.

Note that Proposition 4 is key to the result in Proposition 5. It permits us to identify “stronger

markets,” in the sense of Aguirre et al. (2010), with those for matches involving agents from closer

locations (Part 1) or more distant locations (Part 2). Once the connection between targeting and

price customization is at hand, the welfare implications of customized pricing then naturally parallel

those in the third-degree price discrimination literature.

Also note that the result in Proposition 5 is just an illustration of the type of welfare results that

Proposition 4 permits. Paralleling the analysis in Proposition 2 in Aguirre et al. (2010), for example,

we can also identify primitive conditions under which welfare is higher under price customization

than under uniform pricing, as well as conditions under which price customization impacts negatively

one side of the market and positively the other.

29The conclusions remain valid if the environment satisfies the properties of Scenario (ii) and, in addition, Condition

S
b

holds.
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4.3 Centralized vs Decentralized Markets

In the market for media content, several analysts believe that the increase in the speed of fiber-

optic and broadband internet connection will favor a gradual transition of the market to a structure

whereby viewers will pay directly the content producers, thus bypassing current market intermediaries

such as cable TV providers. This corresponds to a decentralized market (where matching is governed

by agents on one side of the market posting prices for their matches with the other side), as opposed

to the centralized markets considered so far in this paper (where matching and pricing are controlled

by a platform). As it turns out, the results above also permit us to assess the e↵ects of market

decentralization on matching allocations and welfare.

To illustrate, consider a matching market where side a is populated by “buyers” and side b

is populated by “sellers”. Unlike in the baseline model, suppose sellers post prices independently

and sell the “match” directly to the buyer (i.e., the market is decentralized). Absent data about

consumers’ tastes (for instance, due to privacy regulation), we can assume that buyers’ locations are

private information, whereas sellers’ locations (their product variety) is observable by the buyers. In

this environment, provided sellers are not able to monitor the purchases that each buyer makes with

the other sellers, customized pricing on side a is infeasible. This is to be contrasted to a centralized

matching market, where, as described in Lemma 1, location-dependent prices can be implemented

by the platform (even when locations are private information) through customized matching plans (a

form of bundling), that induce buyers to reveal their locations while receiving no further informational

rents.

Therefore, a move from a centralized to a decentralized market is akin to a uniform-pricing

requirement, in that sellers have to set (for lack of information and pricing instruments) the same

prices for all buyers. But there is more: Decentralization also brings a reduction in the prices set by

the sellers, due to the elimination of the monopsony mark-up applied by the platform in a centralized

market. Combining this extra e↵ect with the ones identified in Propositions 4 and 5 permits us to

conclude that, whenever uniform pricing increases the welfare of the side-a agents, so does market

decentralization. The conditions in Proposition 5 are therefore su�cient to conclude that consumer

surplus (i.e., the welfare of the side-a agents) is higher in a decentralized market than in a centralized

one. This observation may help policymakers identify markets where the transition to a decentralized

structure should be promoted, for example through fiscal incentives and/or direct subsidies.

5 Concluding Remarks

This paper studies many-to-many matching in markets in which agents’ preferences are both verti-

cally and horizontally di↵erentiated. The analysis delivers the following results. First, it identifies

primitive conditions under which profit-maximizing platforms engage in price customization. That

is, they o↵er agents the possibility to customize their matching set by including partners of di↵erent
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profiles based on their horizontal preferences, with the price for such customization varying with

the configuration of the baseline plan. We show that the optimal tari↵s induce negative assortative

matching at the margin. As the matching sets expand, the marginal agents from each location in-

cluded in the set are always those with the lowest value for matching. The composition of the pool

of marginal agents, however, naturally respects horizontal di↵erences in preferences, with most of

the marginal agents coming from “locations” close to the subscriber’s bliss-point. We then provide a

formula relating the optimal prices to location-specific elasticities of the demands on both sides of the

market that can be used in empirical work for testing and structural estimation and that permits us

to study how the distortions in the provision of matching services vary with the horizontal dimension

of the agents’ preferences.

Second, the paper studies the e↵ects on prices, the composition of matching sets, and welfare,

of uniform-pricing obligations that hinder platforms’ possibility to condition prices on subscribers’

“locations”, as in the case of privacy regulations preventing online retailers to condition buyers’

prices on their age, gender, of physical location. Finally, the paper contributes to the policy debate

about the desirability of mediation in matching markets by o↵ering a new angle relating the welfare

e↵ects of decentralization to the targeting and price-customization implications of di↵erent market

structures.

We believe the results have useful implications for various markets. Consider, for example, online

shopping. As mentioned in the introduction, recent regulation requiring consumers’ consent for the

di↵usion of personal information is likely to hinder price customization when third-party data is

needed. Perhaps surprisingly, our analysis shows that this may either increase or decrease targeting

levels, depending on testable characteristics of consumer demand. Related conditions can also be

used to evaluate whether or not the pricing e↵ects of privacy regulation are welfare-increasing.

Another natural application of our framework is the market for online advertising (see, among

others, Bergemann and Bonatti (2011) for an overview of such markets). Ad exchanges such as

AppNexus, AOL’s Marketplace, Microsoft Ad Exchange, OpenX, Rubicon Project Exchange, and

Smaato, use sophisticated pricing algorithms where prices depend not only on volumes but on ad-

vertisers’ and publishers’ profiles. Such algorithms thus enable price-customization practices that

appear similar, at least in spirit, to those studied in the present paper. While such algorithms have

initially been praised for the customization possibilities they o↵er, more recently they have been

associated with targeting and price-discriminatory practices often seen with suspicion by consumers

and regulators. The policy debate about the desirability of regulations imposing uniform pricing,

or about the pros and cons of market decentralization, lacks a formal model shedding light on how

matching demands and welfare are a↵ected by such changes. Our paper contributes to such debate

by o↵ering a stylized yet flexible framework that one can use to study both the distortions associated

with price customization, as well as the market outcomes under uniform pricing.

Next, consider the market for cable TV. Most providers price discriminate on the viewer side

by o↵ering viewers packages of channels whereby the baseline configuration can be customized by
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adding channels at a cost that depends on the baseline configuration originally selected (see, among

others, Crawford (2000), and Crawford and Yurukoglu (2012)). Such industry is evolving fast and

many analysts predict a transition to a market structure whereby viewers will purchase content

directly from the channels, thus bypassing the intermediation of the current providers. Our analysis

sheds some light on how prices set by individual channels compare to their counterparts in markets

where the interactions between the channels and the viewers are mediated by cable companies, and

identifies conditions under which the transition to a decentralized structure is advantageous to the

viewers.

We conclude by discussing a few limitations of our analysis and venues for future research. First,

our analysis abstracts from platform competition. Second, and related, it assumes platform have

the power to set prices on both sides of the market. While these assumptions are a natural starting

point, there are many markets where multiple platforms compete on multiple sides and their ability

to set prices is hindered by their lack of bargaining power. For example, the market for cable TV

is populated by multiple providers. Furthermore, as indicated in Crawford and Yurukoglu (2012),

large channel conglomerates enjoy nontrivial bargaining power vis-a-vis cable TV providers, which

suggests that prices are likely to be negotiated on the channel side instead of being set directly by the

platforms. Extending the analysis to accommodate for platform competition and limited bargaining

power on one, or multiple, sides of the market is expected to provide further insights on the bundling

and pricing strategies of many platforms.

Furthermore, certain platforms, most notably B2B platforms, have recently expanded their ser-

vices to include e-billing and supply-management. These additional services open the door to more

sophisticated price-discriminatory practices that use instruments other than the composition of the

matching sets. Extending the analysis to accommodate for such richer instruments is another inter-

esting direction for future research (see, e.g., Jeon, Kim, and Menicucci (2016)).

Lastly, in future work, it would be desirable to extend the analysis to accommodate for “within-

side” network e↵ects (e.g., congestion and limited attention) and dynamics.
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6 Appendix

Proof of Lemma 1. We establish the result using mechanism design techniques. Let

(sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

denote a direct revelation mechanism, where agents are asked to report their types and where

(sk(✓k), pk(✓k)) denotes the allocation (matching set and total transfer) specified by the mechanism

for each side-k agent reporting ✓k.

By familiar envelope arguments, a necessary condition for each type ✓k = (vk, xk) 2 ⇥k, k = a, b,

to prefer reporting truthfully to lying with respect to the vertical dimension vk while reporting

truthfully the horizontal dimension xk is that transfers satisfy the envelope conditions
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where Uk(vk, xk) is the payo↵ of a side-k agent with type (vk, xk).

Using (18), the platform’s profits under any incentive-compatible mechanism can then be written

as
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Using the definition of the virtual-value functions 'k (✓k, ✓l) in the main text, we then have that the

platform’s profits are maximal when Uk(vk, xk) = 0 for all xk 2 Xk, k = a, b, and when the matching

sets are chosen so as to maximize

X
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subject to the reciprocity condition

✓l 2 sk(✓k) () ✓k 2 sl(✓l), l, k 2 {a, b}, k 6= l. (20)

Hereafter, we first describe the matching sets that maximize (19) subject to the above reciprocity

condition and then show that, under the assumptions in the proposition, the platform can implement

the allocations (sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

, where the functions sk(·) are those that maximize (19) subject

to (20), and where the functions pk(·) are as in (18), with Uk(vk, xk) = 0, all xk 2 Xk, k = a, b.

Define the indicator function mk(✓k, ✓l) 2 {0, 1} taking value one if and only if ✓l 2 sk(✓k), that

is, if and only if the two types ✓k and ✓l are matched. Then define the following measure on the

Borel sigma-algebra over ⇥k ⇥⇥l:

⌫k(E) ⌘
Z

E
mk(✓k, ✓l)dFk(✓k)dFl(✓l). (21)
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Reciprocity implies that mk(✓k, ✓l) = ml(✓l, ✓k). As a consequence, the measures ⌫k and ⌫l satisfy

d⌫k(✓k, ✓l) = d⌫l(✓l, ✓k). Equipped with this notation, the expression in (19) can be rewritten as

X

k,l=a,b, l 6=k
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l

'k (✓k, ✓l) d⌫k(✓k, ✓l)
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l

4k(✓k, ✓l)mk(✓k, ✓l)dFk(✓k)dFl(✓l), (22)

where, for k, l = a, b, l 6= k,

4k(✓k, ✓l) ⌘ 'k (✓k, ✓l) + 'l (✓l, ✓k) .

Note that the functions 4a(✓a, ✓b) = 4b(✓b, ✓a) represent the marginal e↵ects on the platform’s

profits of matching types ✓a and ✓b. It is then immediate that the rule (mk(·))k=a,b that maximizes

the expression in (22) is such that, for any (✓k, ✓l) 2 ⇥k ⇥⇥l, k, l = a, b, l 6= k, mk(✓k, ✓l) = 1 if and

only if

4k(✓k, ✓l) � 0.

Next, observe that, under Condition R, the function

'k (✓k, ✓l) ⌘ uk (vk, |xk � xl|)�
1� F v

k (vk|xk)
fv
k (vk|xk)

· @uk
@v

(vk, |xk � xl|)

is strictly increasing in vk, k, l = a, b, l 6= k. We conclude that the matching rule that maximizes

(19) subject to the reciprocity condition (20) can be described by means of a collection of threshold

functions t⇤k : ⇥k ⇥ Xl ! Vl, k, l = a, b, l 6= k, such that, for any ✓k = (vk, xk), any ✓l = (vl, xl),

✓l 2 sk(✓k) if, and only if, vl � t⇤k (✓k, xl). The threshold functions t⇤k (·) are such that, for any

✓k 2 ⇥k, any xl 2 [0, 1], t⇤k (✓k, xl) = vl if 4k(✓k, (vl, xl)) > 0, t⇤k (✓k, xl) = v̄l if 4k(✓k, (v̄l, xl)) < 0,

and t⇤k (✓k, xl) is the unique solution to 4k (✓k, (t⇤k (✓k, xl) , xl)) = 0 if

4k(✓k, (vl, xl))  0  4k(✓k, (v̄l, xl)).

Condition R also implies that, for ay xk, xl 2 [0, 1]2, the threshold t⇤k (✓k, xl) is decreasing in vk and

non-decreasing in |xl � xk|.
Equipped with the above result, we now show that, in each of the environments described by

the conditions in the proposition, the platform can implement the allocations (sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

,

where sk(✓k) are the matching sets described by the above threshold rule, and where the payment

functions pk(✓k) are the ones in (18), with Uk(vk, xk) = 0, all xk 2 Xk, k = a, b.

First observe that the payo↵ that each type ✓k obtains in the above direct revelation mechanism

when reporting truthfully is equal to

Uk(✓k) =

Z v
k

v
k

Z

s
k

(y,x
k

)

@uk
@v

(y, |xk � xl|) dFl(✓l)dy.

That Uk(✓k) � 0 follows directly from the fact that uk is non-decreasing in vk. This means that the

mechanism is individually rational (meaning that each type ✓k prefers participating in the mechanism
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and receiving the allocation (sk(✓k), pk(✓k)) to refusing to participate and receiving the allocation

(;, 0) yielding a payo↵ equal to zero).

Below we show that either the above direct mechanism is also incentive-compatible (meaning that

each type ✓k prefers the allocation (sk(✓k), pk(✓k)) designed for him to the allocation (sk(✓0k), pk(✓
0
k))

designed for any other type ✓0k), or it can be turned, at no cost to the platform, into a mecha-

nism implementing the same allocations as the above ones which is both incentive compatible and

individually rational.

Definition 6. (nested matching) A matching rule sk(✓k) is nested if, for any pair ✓k = (vk, xk)

and ✓̂k = (v̂k, x̂k) such that xk = x̂k, either sk(✓k) ✓ sk(✓̂k), or sk(✓k) ◆ sk(✓̂k). A direct revelation

mechanism is nested if its matching rule is nested.

Clearly, the direct mechanism defined above where the matching rule is described by the threshold

function t⇤k (✓k, xl) is nested. Now let ⇧k(✓k; ✓̂k) denote the payo↵ that type ✓k obtains in a direct

revelation mechanism (sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

by mimicking type ✓̂k .

Definition 7. (ICV) A direct revelation mechanism (sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

satisfies incentive com-

patibility along the v dimension (ICV) if, for any ✓k = (vk, xk) and ✓̂k = (v̂k, x̂k) with xk = x̂k,

Uk(✓k) � ⇧k(✓k; ✓̂k).

The following property is then true (the proof is standard and hence omitted):

Property 1. A nested direct revelation mechanism (sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

satisfies ICV if, and

only if, the following conditions jointly hold:

1. for any ✓k = (vk, xk) and ✓̂k = (v̂k, x̂k) such that xk = x̂k, vk > v̂k implies that sk(✓k) ◆ sk(✓̂k);

2. the payment functions pk(✓k) satisfy the envelope formula (18).

Clearly, the direct revelation mechanism where the matching rule is the one corresponding to the

threshold functions t⇤k(·) described above and where the payment functions pk(✓k) are the ones in

(18), with Uk(vk, xk) = 0, all xk 2 Xk, k = a, b, is not only nested but satisfies the two conditions in

the lemma. It follows that such a mechanism satisfies ICV.

Equipped with the above results, we now show that, in each of the environments corresponding

to the combination of conditions described in the proposition, the above direct revelation mechanism

is either incentive-compatible, or it can be augmented to implement the same allocations prescribed

by (sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

at no extra cost to the platform.

Consider first Scenario (i). Recall that, in this case, locations are public on both sides. That the

mechanism is ICV implies that any deviation along the vertical dimension is unprofitable. Further-

more, because locations are public on both sides, any deviation along the horizontal dimension is

detectable. It is then immediate that the platform can augment the above direct revelation mech-

anism by adding to it punishments (in the form of large fines) for those agents lying along the
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horizontal dimension. The augmented mechanism is both individually rational and incentive com-

patible and implements the same allocations as the original mechanism (sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

at no

extra cost to the platform.

Next suppose the environment satisfies the properties of Scenario (ii) and, in addition, Conditions

Ia and Sb hold. Again, because locations are public on side b, incentive compatibility on side b can

be guaranteed by augmenting the mechanism as described above for Scenario (i). Thus consider

incentive compatibility on side a. The latter requires that

Ua(va, xa) � ⇧a((va, xa); (v̂a, x̂a)),

for all (xa, x̂a, va, va) 2 X2

a ⇥ V 2

a . The above inequality is equivalent to
Z v

a

v
a

Z

s
a

(y,x
a

)

@ua
@v

(y, |xa � xb|) dFb(✓b)dy �
Z v̂

a

v
a

Z

s
a

(y,x̂
a

)

@ua
@v

(y, |x̂a � xb|) dFb(✓b)dy (23)

+

Z

s
a

(v̂
a

,x̂
a

)

[ua (va, |xa � xb|)� uk (v̂a, |x̂a � xb|)]dFb(b).

It is easy to see that, for any ✓a = (va, xa) 2 ⇥a,
Z

s
a

(v
a

,x
a

)

@ua
@v

(va, |xa � xb|) dFb(✓b) =

Z

d2[0,1/2]

@ua (va, d)

@v
dW (d; ✓a), (24)

where W (d; ✓a) is the measure of agents whose distance from xa is at most d included in the matching

set sa(va, xa) of type ✓a under the proposed mechanism. It is also easy to see that, under Conditions

Ia and Sb, the expression in (24) is invariant in xa. That is, W (d; ✓a) = W (d; ✓0a) for any d 2 [0, 1/2],

any ✓a, ✓0a 2 ⇥a with va = v0a.
30 This means that

Z v̂
a

v
a

Z

s
a

(y,x̂
a

)

@ua
@v

(y, |x̂a � xb|) dFb(✓b)dy =

Z v̂
a

v
a

Z

s
a

(y,x
a

)

@ua
@v

(y, |xa � xb|) dFb(✓b)dy.

By the same arguments,
Z

s
a

(v̂
a

,x̂
a

)

ua (v̂a, |x̂a � xb|) dFb(✓b) =

Z

s
a

(v̂
a

,x
a

)

ua (v̂a, |xa � xb|) dFb(✓b).

Furthermore, under Condition R, the threshold functions t⇤k (✓k, xl) and non-decreasing in the dis-

tance |xl � xk|. In turn, this implies that
Z

s
a

(v̂
a

,x̂
a

)

ua (va, |xa � xb|) dFb(✓b) 
Z

s
a

(v̂
a

,x
b

)

ua (va, |xb � xa|) dFb(✓b).

It follows that the right hand side of (23) is smaller than
Z v̂

a

v
a

Z

s
a

(y,x
a

)

@uk
@v

(y, |xa � xb|) dFb(✓b)dy

+

Z

s
a

(v̂
a

,x
a

)

[ua (va, |xa � xb|)� ua (v̂a, |xa � xb|)]dFb(✓b),

30Conditions I
k

, k = a, b, su�ce to guarantee that the function �
k

(✓
k

, ✓

l

) depends only on v

k

, v

l

, and |x
l

� x

k

|. The
strengthening of Condition I

b

to S
b

is, however, necessary to guarantee that the mass of agents of a given distance d

included in the matching sets of any pair of types ✓
a

, ✓

0
a

2 ⇥
a

with v

a

= v

0
a

is the same.
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which is the payo↵ that type ✓a = (va, xa) obtains by announcing (v̂a, xa) (that is, by lying about

the vertical dimension but reporting truthfully the horizontal one). That the inequality in (23) holds

then follows from the fact that the direct revelation mechanism (sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

satisfies ICV.

The arguments for an environment satisfying the properties of Scenario (iii) along with Conditions

Ib and Sa are symmetric to those for an environment satisfying the properties of Scenario (ii) along

with Conditions Ia and Sb, and hence the proof is omitted.

Finally, consider an environment satisfying the properties of Scenario (iv) along with Conditions

Sa and Sb. That the proposed mechanism is incentive compatible follows from the same arguments

as for Scenario (ii) above, now applied to both sides of the market.

We conclude that, in each of the environments considered in the proposition, the allocations

(sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

, where the matching sets sk(✓k) are the ones specified by the threshold functions

t⇤k(·) described above, and where the payments are the ones in (18) with Uk(vk, xk) = 0, all xk 2 Xk,

k = a, b can be sustained in a mechanism that is both individually rational and incentive compatible.

The result in the proposition then follows from the fact that (a) such allocations are profit-maximizing

among those consistent with the rationality of the agents (i.e., satisfying the IC and IR constraints),

and (b) can be induced by o↵ering customized tari↵s

{(sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) : xk 2 [0, 1]}

satisfying the properties described below. For each plan xk 2 [0, 1], the baseline configuration is

given by

sk(xk) = sk(vk, xk),

the baseline price is given by

T k(xk) = pk(vk, xk) =

Z

s
k

(v
k

,x
k

)

uk (vk, |xk � xl|) dFl(✓l),

the set of possible customizations is given by

Sk(xk) = {sk(vk, xk) : vk 2 Vk} ,

and the price schedules ⇢k(q|xl;xk) are such that, for q = qx
l

(sk(vk, xk)), ⇢k(q|xl;xk) = 0, while for

q 2 (qx
l

(sk(vk, xk)) , qx
l

(sk(v̄k, xk))],

⇢k(q|xl;xk) = quk (vk(q;xk, xl), |xk � xl|)�
Z v

k

(q;x
k

,x
l

)

v
k

qx
l

(sk(y, xk))
@uk
@v

(y, |xk � xl|) dy � T k(xk)

(25)

where

vk(q;xk, xl) = inf {vk 2 Vk : qx
l

(sk(vk, xk)) = q} .

Any agent selecting the plan (sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) and then choosing a matching set

sk /2 Sk(xk) is charged a fine large enough to make the utility of such a set, net of the payment,
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negative for all types. Likewise, when locations are public on side k, any side-k agent selecting a

plan other than (sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) is charged a large enough fine to make the choice

unprofitable for any type. Note that the existence of such fines is guaranteed by the assumption that

uk is bounded, k = a, b.

That the above customized tari↵ implements the same allocations as the direct mechanism

(sk(✓k), pk(✓k))
k=a,b
✓
k

2⇥
k

then follows from the following considerations. Each type ✓k = (vk, xk), by

selecting the plan (sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) designed for agents with the same location as

type ✓k and then choosing the customization sk(vk, xk) specified by the direct mechanism for type

✓k is charged a total payment equal to

T k(xk) +
R

1

0

h

qx
l

(sk(vk, xk))uk (vk, |xk � xl|)�
R v

k

v
k

qx
l

(sk(y, xk))
@u

k

@v (y, |xk � xl|) dy
i

dxl � T k(xk)

=
R

s
k

(✓
k

)

uk (vk, |xk � xl|) dFl(✓l)�
R v

k

v
k

R

s
k

(y,x
k

)

@u
k

@v (y, |xk � xl|) dFl(✓l)dy

= pk(✓k),

exactly as in the direct mechanism. That each type ✓k maximizes his payo↵ by selecting the plan

(sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) and then choosing the customization sk(vk, xk) specified for him

by the direct mechanism then follows from the fact that (a) the direct mechanism is incentive com-

patible, (b) the payment associated with any other plan (sk(x̂k), T k(x̂k), ⇢k(·|·; x̂k),Sk(x̂k)) followed

by the selection of a set sk is either equal to the payment specified by the direct mechanism for some

report (v̂k, x̂k), or is so large to make the net payo↵ of such selection negative.

Finally, to see that, when locations are public on side k, without loss of optimality, the side-k

customized tari↵ does not need to restrict the agents’ ability to customize their matching sets (that

is, Sk(xk) = ⌃(⇥l), all xk) recall that, in this case, each side-k agent located at xk can be induced

to select the matching plan (sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) designed for agents located at xk by

setting the fee associated with the selection of any other plan su�ciently high. The separability of

the agents’ preferences then implies that, once the plan sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) is selected,

even if Sk(xk) = ⌃(⇥l), because the price schedules ⇢k(·|·;xk) satisfy (25), type ✓k prefers to select

qx
l

(sk(vk, xk)) agents from each location xl to any other mass of agents from the same location xl,

irrespective of the mass of agents from other locations type ✓k includes in his matching set. Q.E.D.

Proof of Proposition 1. Fix a pair of locations xa, xb 2 [0, 1]. From Lemma 1, the profit-

maximizing tari↵s are customized and induce agents to select matching sets satisfying the thresh-

old property of Lemma 1. Furthermore, from the proof of Lemma 1, for any ✓k = (vk, xk), any

xl 2 [0, 1], the threshold t⇤k is such that t⇤k (✓k, xl) = vl if 4k(✓k, (vl, xl)) > 0, t⇤k (✓k, xl) = v̄l if

4k(✓k, (v̄l, xl)) < 0, and t⇤k (✓k, xl) is the unique solution to 4k (✓k, (t⇤k (✓k, xl) , xl)) = 0 if

4k(✓k, (vl, xl))  0  4k(✓k, (v̄l, xl)).
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This means that, for any qk 2 (0, fx
l (xl)), either there exists no vk 2 Vk such that qx

l

(sk(vk, xk)) = qk,

or there exists a unique vk 2 Vk such that qx
l

(sk(vk, xk)) = qk. Now take any qk 2 (0, fx
l (xl)) for

which there exists vk 2 Vk such that qx
l

(sk(vk, xk)) = qk. As explained in the main text, for any such

qk, the unique value of vk such that qx
l

(sk(vk, xk)) = qk is also the unique value of vk that solves

uk (vk, |xk � xl|) = ⇢0k (qk|xl;xk) . (26)

Now let v̂x
l

(⇢0k|xk) be the unique solution to (26) and v0l(qk;xl) be the unique solution to

h

1� F
v|x
l

�

v0l(qk;xl)|xl
�

i

fx
l (xl) = qk.

That the demands under the profit-maximizing tari↵s satisfy the threshold structure of Lemma 1

implies that

t⇤k
��

v̂x
l

�

⇢0k|xk
�

, xk
�

, xl
�

= v0l(qk;xl)

and that

'k

��

v̂x
l

�

⇢0k|xk
�

, xk
�

, (v0l(qk;xl), xl)
�

+ 'l

�

v0l(qk;xl), xl),
�

v̂x
l

�

⇢0k|xk
�

, xk
��

= 0. (27)

Lastly, observe that, for any such qk,

"k
�

⇢0k|xl;xk
�

=
f
v|x
k (v̂x

l

(⇢0k|xk) |xk)
1� F

v|x
k (v̂x

l

�

⇢0k|xk
�

|xk)



@uk
@v

�

v̂x
l

�

⇢0k|xk
�

, |xk � xl|
�

��1

⇢0k (qk|xl;xk) . (28)

Using the definition of 'k from the main text together with (26) and (28), we then have that, for

any such qk,

'k

��

v̂x
l

�

⇢0k|xk
�

, xk
�

, (v0l(qk;xl), xl)
�

= ⇢0k (qk|xl;xk)
"

1� 1

"k
�

⇢0k|xl;xk
�

#

. (29)

Likewise, when ql =
h

1� F
v|x
k (v̂x

l

(⇢0k|xk) |xk)
i

fx
k (xk),

'l

��

v0l(qk;xl), xl
�

,
�

v̂x
l

�

⇢0k|xk
�

, xk
��

= ⇢0l (ql|xk;xl)
"

1� 1

"l
�

⇢0l|xk;xl
�

#

. (30)

Combining (29) and (30) with (27), we obtain the result in the proposition. Q.E.D.

Proof of Proposition 2. Take any (✓k, xl) 2 ⇥k ⇥ [0, 1] for which t⇤k (✓k, xl) , t
e
k (✓k, xl) 2 Int[Vl].

Recall that, in this case, t⇤k (✓k, xl) is given by the unique solution to

'k (✓k, (t
⇤
k (✓k, xl) , xl)) + 'l ((t

⇤
k (✓k, xl) , xl) , ✓k) = 0

whereas tek (✓k, xl) is given by the unique solution to

uk (vk, |xk � xl|) + ul (t
e
k (✓k, xl) , |xl � xk|) = 0.
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This means that

ul (t⇤k (✓k, xl) , |xl � xk|)� ul (tek (✓k, xl) , |xl � xk|)

=
1�F v

k

(v
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)
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)
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@v
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@v
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(t⇤k (✓k, xl) , |xk � xl|) .
(31)

Now fix ✓k = (vk, xk), let µ(xk, xl) = |xk � xl| and, without loss of generality, assume xl > xk (the

results for the case xl < xk are analogous to those for the case xl > xk, after the obvious change in

sign due to the fact that, in this case, increasing distance means decreasing xl). Di↵erentiating the

expression in the right-hand-side of (31) with respect to xl at some xl for which µ(xk, xl) 2
�

0, 1
2

�

,

we obtain that
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By Lemma 1,
@t⇤

k

@x
l

(✓k, xl) � 0. Therefore, under the assumptions of Part 1, the expression above is

negative. Conversely, under the assumptions of Part 2, the expression above is positive. The result

in the proposition then follows from the above properties. Q.E.D.

Proof of Proposition 3. The platform’s problem consists in choosing a collection of side-a uniform

price schedules pa(·|xb), one for each side-b location xb 2 [0, 1], along with a collection of side-b price

schedules ⇢b(·|xa;xb), one for each pair (xa, xb) 2 [0, 1]2, that jointly maximize its profits, which can

be conveniently expressed as

R

1

0

R fx

b

(x
b

)

0

D̄a (p0a(q|xb)|xb) p0a(q|xb)dqdxb

+
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0

R fx
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)

0

Db (⇢0b(q|xa;xb)|xa;xb) ⇢0b(q|xa;xb)dqdxadxb,

subject to the feasibility constraint (3).

For any xb , q  fx
b (xb), and p0a(q|xb), let

v̂x
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p0a|xa
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>
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>

>

>
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>

>
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>

>

>
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>

>

:

va s.t. ua(va, |xa � xb|) = p0a if p0a 2 [ua(va, |xa � xb|), ua(v̄a, |xa � xb|)]

va if p0a < ua(va, |xa � xb|)

v̄a if p0a > ua(v̄a, |xa � xb|).

(32)
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Given the above definition, we have that the demand by the xa-agents for the q-th unit of the

xb-agents at the marginal price p0a(q|xb) is equal to

Da

�

p0a(q|xb)|xb;xa
�

=
h

1� F v|x
a

�

v̂x
b

�

p0a|xa
�

|xa
�

i

fx
a (xa).

Also, for any q  fx
b (xb), recall that v

0
b(q;xb) is the unique solution to

h

1� F
v|x
b (v0b(q;xb)|xb)

i

fx
b (xb) =

q. Reciprocity, along with optimality, implies that the most profitable way to deliver q units of xb-

agents to each xa-agent demanding to be matched to q units of xb-agents is to match the xa-agent

to every xb-agent whose vertical type exceeds v0b(q;xb). In other words, the optimal tari↵s induce

matching demands with a threshold structure, as in the case where tari↵s are customized on both

sides of the market (cfr Lemma 1). Now for each xa, xb 2 [0, 1], each q  fx
b (xb), let

q̂b(q;xa;xb) ⌘ Da

�

p0a(q|xb)|xb;xa
�

.

Given p0a(q|xb), the platform thus optimally selects customized prices for the xb-agents for each

quantity q̂b(q;xa;xb) of the xa-agents equal to

⇢0b(q̂b(q;xa;xb)|xa;xb) = ub(v
0
b(q;xb), |xb � xa|). (33)

Such prices guarantee that, for each xa 2 [0, 1], Db (⇢0b(q̂b(q;xa;xb)|xa;xb)|xa;xb) = q, thus clearing

the market.

The function p0a(q|xb) : R ⇥ [0, 1] ! R thus uniquely defines the matching sets on both sides of

the market. Now, from the arguments in the proof of Lemma 1, we know that the maximal revenue

the platform receives from the side-b agents when each xb-agent with vertical type vb is assigned a

matching set equal to sb(vb, xb) is given by

Z

⇥

b

(

Z

1

0

(

ub (vb, |xb � xa|)�
1� F

v|x
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f
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· @ub
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)

qx
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(sb(vb, xb))dxa

)

dFb(✓b).

In turn, this means that the platform’s problem can be re-casted as choosing a function dp
a

dq (q|xb) :
R⇥ [0, 1] ! R that maximizes

Z

1

0

Z fx

b
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)

0

�
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�

p0a(q|xb)|xb
�
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⇤ 

dqdxb

where, for each xb 2 [0, 1], each q  fx
b (xb), the function

C [p0a(q|xb)] ⌘

�
R

1

0

⇢
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Da (p0a(q|xb)|xb;xa) dxa

captures the “procurement costs” of clearing the matching demands of all side-a agents that demand

at least q matches with the xb-agents. This problem can be solved by point-wise maximization of
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the above objective function, i.e., by selecting for each xb 2 [0, 1], q  fx
b (xb) (equivalently, for each

(xb, vb) 2 [0, 1]⇥ Vb), p0a(q|xb) so as to maximize

D̄a

�

p0a(q|xb)|xb
�

p0a(q|xl)� C
⇥

p0a(q|xb)
⇤

.

The first-order conditions for such a problem are given by

p0a(q|xb)
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1� 1
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dxa.

Now observe that (33) implies that
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This means that the above first-order conditions can be rewritten as

p0a(q|xb)
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where H(xa|xb, q) is the distribution over Xa = [0, 1] whose density is given by
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The above properties imply the result in the proposition. Q.E.D.

Proof of Proposition 4. As explained in the main text, the proof below is for the more general

case in which (a), on side b, the agents’ preferences may depend on the locations, and (b) on side a,

the vertical and horizontal dimensions are possibly correlated.

Fix ✓b = (vb, xb) and let q = fx
b (xb) [1� F v

b (vb)]. The result in Proposition 3 implies that, under

uniform pricing on side a and customized pricing on side b, for any xa 2 Xa such that tub (✓b, xa) 2
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(34)
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where H (xa|xb, pua 0) is the distribution over Xa = [0, 1] whose density is given by

h
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and where pua
0 is a shortcut for pua

0(q|xb) with the latter equal to pua
0(q|xb) = ua(tub (✓b, xa), |xa � xb|).

Note that, to arrive at (34), we used the result in Proposition 3 along with the property in (16) and

the fact that, for any xa such that v̂x
b

(pua
0|xa) /2 Int[Va], h (xa|xb, pua 0) = 0, whereas for any xa such

that v̂x
b
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We also used the fact that, for any xa such that h (xa|xb, pua 0) > 0 (equivalently, v̂x
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as shown in the proof of Proposition 3.

On the other hand, under customized pricing on both sides, for any such ✓b = (vb, xb), any

xa 2 Xa such that t⇤b(✓b, xa) 2 Int[Va], the threshold t⇤b(✓b, xa) is such that

ua(t⇤b(✓b, xa), |xb � xa|)�
1�F v

a

(t⇤
b

(✓
b

,x
a

))
fv

a

(t⇤
b

(✓
b

,x
a

))
· @u

a

@v (t⇤b(✓b, xa), |xa � xb|) + 'b (✓b, (t⇤b(✓b, xa), xa)) = 0.

It is then immediate that, for any xa such that

�EH(x̃
a

|x
b

,pu
a

0
)



1�F v

a

(v̂
x

b

(pu
a

0|x̃
a

))
fv

a

(v̂
x

b

(pu
a

0|x̃
a

))
· @u

a

@v (v̂x
b

(pua
0|x̃a) , |xb � x̃a|)

�

+EH(x̃
a

|x
b

,pu
a

0
)

['b (✓b, (v̂x
b

(pua
0|x̃a) , x̃a))]

 �1�F v

a

(t⇤
b

(✓
b

,x
a

))
fv

a

(t⇤
b

(✓
b

,x
a

))
· @u

a

@v (t⇤b(✓b, xa), |xb � xa|) + 'b (✓b, (t⇤b(✓b, xa), xa))

we have that tub (✓b, xa) � t⇤b(✓b, xa), whereas, for any xa such that

�EH(x̃
a

|x
b

,pu
a

0
)



1�F v

a

(v̂
x

b

(pu
a

0|x̃
a

))
fv

a

(v̂
x

b

(pu
a

0|x̃
a

))
· @u

a

@v (v̂x
b

(pua
0|x̃a) , |xb � x̃a|)

�

+EH(x̃
a

|x
b

,pu
a

0
)

['b (✓b, (v̂x
b

(pua
0|x̃a) , x̃a))]

� �1�F v

a

(t⇤
b

(✓
b

,x
a

))
fv

a

(t⇤
b

(✓
b

,x
a

))
· @u

a

@v (t⇤b(✓b, xa), |xb � xa|) + 'b (✓b, (t⇤b(✓b, xa), xa))

we have that tub (✓b, xa)  t⇤b(✓b, xa).
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The results in the proposition then follow from the monotonicity of the function

L(xa|✓b) ⌘ 'b (✓b, (t
⇤
b(✓b, xa), xa))�

1� F
v|x
a (t⇤b(✓b, xa)|xa)

f
v|x
a

�

t⇤b(✓b, xa)|xa
�

· @ua
@v
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in the distance |xa � xb| (holding ✓b fixed), along with the fact that, by virtue of reciprocity,

tub (✓b, xa)  t⇤b(✓b, xa) if and only if

tua((t
⇤
b(✓b, xa), xa), xb)  t⇤a((t

⇤
b(✓b, xa), xa), xb)

and, likewise, tub (✓b, xa) � t⇤b(✓b, xa) if and only if

tua((t
⇤
b(✓b, xa), xa), xb) � t⇤a((t

⇤
b(✓b, xa), xa), xb).

Q.E.D.

Proof of Proposition 5. The proof follows from the combination of the results in Proposition 4 with

the results in Proposition 1 in Aguirre et al (2010). When the environment satisfies the conditions

in Part 1 of Proposition 4, starting from uniform pricing on side a, the introduction of customized

pricing on side a leads to an increase in prices for nearby locations and a reduction in prices for

distant locations. Proposition 1 in Aguirre et al (2010), along with the fact that the environment

satisfies Condition IR and that, for any xb and p0a, the convexity CDa (p0a|xb;xa) of the demands by

the xa-agents for the q-th unit of the xb-agents declines with the distance |xa�xb|, then implies that

welfare of the side-a agents is higher under uniform pricing. Likewise, under the conditions in Part

2 of Proposition 4, that welfare of the side-a agents is higher under uniform pricing follows from the

fact that, starting from uniform pricing on side a, the introduction of customized pricing on side

a leads to an increase in prices for distant locations and a reduction in prices for nearby locations.

The welfare implications of such price adjustments then follow again from Proposition 1 in Aguirre

et al (2010), along with the fact that Condition IR holds and that, for any xb and p0a, the convexity

CDa (p0a|xb;xa) of the demands by the xa-agents for the q-th unit of the xb-agents increases with the

distance |xb � xa|. Q.E.D.
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