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Abstract5

We examine two-sided markets where players arrive stochastically over6

time and are drawn from a continuum of types. The cost of matching a7

client and provider varies, so a social planner is faced with two contending8

objectives: a) to reduce players' waiting time before getting matched; and9

b) to form e�cient pairs in order to reduce matching costs. We show that10

such markets are characterized by a quick or cheap dilemma: Under a large11

class of distributional assumptions, there is no `free lunch', i.e., there exists12

no clearing schedule that is simultaneously optimal along both objectives.13

We further identify a unique breaking point signifying a stark reduction in14

matching cost contrasted by an increase in waiting time. Generalizing this15

model, we identify two regimes: one, where no free lunch exists; the other,16

where a window of opportunity opens to achieve a free lunch. Remarkably,17

greedy scheduling is never optimal in this setting.18
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1 Introduction1

Many economic interactions require the dynamic matching of heterogeneous agents2

that arrive stochastically to a two-sided market. Examples include the dynamic3

matching of clients and providers in markets for jobs and services, of buyers and4

sellers in �nancial markets, of taxis and passengers on road networks, of donors5

and recipients in organ exchanges, etc.16

It is known that many of these markets vary substantially in terms of e�ciency7

(Roth and Xing, 1994, 1997). The focus of our investigation is on a crucial aspect8

of market design in this context, namely the scheduling of clearing events. The9

goal of �making a thick market� (Roth, 2012) is to �nd the best schedule of market10

clearing so that su�cient clients and providers are in the market to allow for stable11

and e�cient matches over time while not waiting excessively. Designing an optimal12

clearing policy thus requires optimizing along the following two objectives:13

1. To reduce the coexistence of agents on the two sides of the market.14

2. To match parties in such a way so as to minimize cost (or maximize produc-15

tivity).16

In pursuit of these two goals, clearing schedules need to be formulated to address17

the following key question: How long should the social planner wait between two18

clearing events?19

To illustrate the above, consider the example of a governmental employment bu-20

reau faced with a dynamically evolving job market where job o�ers and job seekers21

arrive to the system stochastically over time. The bureau has two aims, namely to22

reduce the coexistence of vacancies and job seekers, and to match vacancies with23

the skills of individual job seekers so as to maximize productivity. Waiting times24

incur costs via unemployment bene�ts, as well as costs due to productivity losses25

incurred by badly sta�ed vacancies.26

To gain in generality, we abstract away from application-speci�c details (such27

as the particular structure of the application and recruitment processes). This28

allows us to focus on the trade-o�s between two di�erent and concurrent objectives,29

waiting time and matching cost. Perhaps surprisingly, this quick or cheap dilemma30

is not easily resolvable as greedy scheduling policies are generally not optimal in31

this context.32

1More generally, we focus on markets for `nondurables'; for classic studies on product dura-
bility and market performance see Smith (1962), Smith et al. (1988), and Dickhaut et al. (2012).
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Related work1

Dating back to the 1950s, the �rst related strand of work focuses on behavioral2

aspects underlying the dynamics of unemployment and job vacancies in labor3

markets (Dow and Dicks-Mireaux, 1958). These analyses identify avenues to re-4

duce waiting � i.e., the coexistence of unemployment and vacancies � by better5

understanding the behavior of job seekers and job providers. Lines of reason-6

ing proposed to explain the coexistence of unemployment and vacancies include7

the classical search models of McCall (1970), Mortensen (1970), and Lucas and8

Prescott (1974), as well as more recent models with workforce inertia due to Shimer9

(2007).2 We complement this literature with a view that some degree of waiting10

is actually bene�cial from a social welfare perspective as it enables market thick-11

ening � which in turn enables mismatch reduction. To illustrate this, consider the12

example of Shimer (2007), where some laid-o� steel workers are not immediately13

given vacant positions as nurses. This may indeed be deemed optimal by a social14

planner when � by delaying their match � these nurse vacancies eventually are15

taken up by better nurses and the jobless steel workers �nd other jobs in the steel16

industry that might become available in the future.317

The second strand of related work comes from the matching literature and extends18

the canonical static matching framework to a dynamic setting.4 As in the exam-19

ple of steel workers and nurses above, mismatch in dynamic environments may20

occur due to temporal inconsistencies, whereby, a posteriori, better matches were21

precluded by inferior matches that were formed earlier on. Therefore, some delay22

may be optimal from a social planner perspective in order to reduce mismatch.23

From a practical viewpoint, the challenge is to identify optimal mechanisms that24

thicken and clear the market in a way that balances these two objectives.25

In this regard, Akbarpour et al. (2017), Ashlagi et al. (2019), Baccara et al. (2018),26

and Loertscher et al. (2018) break new ground in identifying optimal clearing27

schedules.5 More precisely, Akbarpour et al. (2017), in the spirit of an organ ex-28

2Note that Shimer (2007) terms his explanandum �mismatch� (as opposed to �waiting�), a
term the matching literature uses to describe suboptimal matchings, which may be confusing.

3Waiting is explained behaviorally through inertia in Shimer (2007), that is, by the argument
that steel workers stay close to their factories hoping that they reopen; Lucas and Prescott
(1974) propose a di�erent interpretation whereby waiting is due to the fact that steel workers
must actively spend some time searching for these nursing jobs elsewhere.

4The canonical static frameworks underlying our analyses were pioneered by Egervary (1931);
Koenig (1931), and Edmonds (1965); see also Gale and Shapley (1962) for matching with ordinal
preferences.

5These are inspired by some earlier papers on dynamic matching in organ exchange by Uenver
(2010); Zenios (2002). See Akbarpour et al. (2017) for a discussion. See also Bloch and Houy
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change application such as the `kidney exchange', identify the optimal mechanism1

to maximize the number of matches, that is, to minimize the number of agents2

perishing resulting from failing to get recipients matched with donors in time. In3

the model of Akbarpour et al. (2017), agents from both sides of the market arrive4

and leave stochastically and all carry identical match values, i.e., they are of the5

same type (in the spirit of each life being worth the same). However, there are6

two types of agents, as some matches are feasible and others are infeasible, thus7

rendering some agents easier � others harder � to match.6 The optimal mechanism8

identi�ed by Akbarpour et al. (2017) minimizes the number of unmatched patients9

based on information concerning arrivals and departures, which may involve delay-10

ing compatible matches. Without such information, greedy scheduling is always11

optimal in this setting. In fact, Ashlagi et al. (2019) show that greedy policies are12

generally optimal, even if information about departure times is available when the13

above kind of `kidney exchange' markets becomes large.14

In a related setting, Baccara et al. (2018) and Loertscher et al. (2018) introduce15

binary diversi�cations of agents and the notion of waiting costs instead of perishing16

rates as in Akbarpour et al. (2017). In Baccara et al. (2018), agents arrive in17

donor-recipient pairs and recipients are allowed to decline matches in order to18

remain in the market. This is motivated by the applications under scrutiny which19

include, among others, child adoption. As a result, one of the study's key focuses20

is on strategic incentives and their role in determining market outcomes. Their21

optimal clearing policy is discriminatory, in that it involves matching same-type22

pairs greedily, and delaying up to some threshold when there are only cross-type23

pairs in the market. By contrast, Loertscher et al. (2018) introduce a common24

discount factor (instead of a constant waiting cost) for both types of agents (as25

well as for the social planner).7 They focus on the analysis of the possibility of26

e�cient trade and rent extraction by the market maker.27

In theoretical computer science, the study of related questions dates back at least28

to the pioneering paper of Karp et al. (1990).8 To the best of our knowledge,29

(2012), Kurino (2014), and Leshno (2012) who study related queuing models where one side of
the market is already present (such as in the housing market).

6This can be modeled by means of a dynamically changing compatibility graph where edges
represent feasible matches.

7The discount factor is motivated by the study's focus on �nancial markets, and would be
determined by risk-free rate, beta, and risk premium. Related analyses of �nancial markets
include Budish et al. (2015) and Wah et al. (2015) (see also Wah et al. (2017) for market-making
more generally) who consider periodic clearing of order books to abate certain market phenomena
such as volatility that stem from high-frequency trading.

8Karp et al. (1990) and subsequent work � similar to its economic counterparts � focus on
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Emek et al. (2016) were the �rst in this strand of research to consider the scenario1

where all agents arrive on the market over time (instead of just one market side).2

They present a non-bipartite model where requests arrive stochastically from one3

of n di�erent locations to study the performance of di�erent algorithms in terms4

of worst-case matching and waiting cost.9 In the setting of Emek et al. (2016), the5

speci�c match costs result from the distance between agents' locations so that, for6

a patient social planner, it is optimal to wait and only match agents who are at7

the same location.8

Finally, motivated by ride-sharing applications, Ashlagi et al. (2017) extend the9

model of Emek et al. (2016) to a bipartite setting where agents independently10

arrive at di�erent locations. Ashlagi et al. (2017) study the performance of a11

family of clearing schedules along the two axes of waiting vs. mismatch separately,12

an approach that we extend in order to formulate the induced trade-o� between13

waiting time and the cost of matching.14

Contributions of the paper15

Our paper examines dynamic markets with an in�nite type space (in contrast to16

one or two types), a framework we call the dynamic clearing game. Our point of17

departure is the static assignment game of Shapley and Shubik (1972) to which we18

add a dynamic layer whereby clients and providers arrive to the market stochasti-19

cally and independently. Skills are drawn from a large class of type distributions20

so that every match is possible but some matches are more costly than others. At21

each matching event, the social planner must decide who to match with whom,22

and how long to wait before the next matching event. As such, the social planner23

is called to weigh, on the one hand, mismatches incurred from matching clients24

and providers suboptimally; and, on the other hand, the agents' waiting time. To25

address this dual issue, we study clearing schedules in terms of when to match in a26

fully heterogeneous setting where the social planner has no information regarding27

the cost of matching couples currently in the market and has no information about28

the future arrivals of individuals.29

models with two market sides, where by contrast one side is typically present to begin with and
incoming agents from the other side can only match with some of the present agents according
to a compatibility graph (see Mehta (2013) for an overview and Aggarwal et al. (2011) for
extensions to vertex-weighted matching).

9Azar et al. (2017) obtain additional results in terms of upper and lower bounds for the
original model. Emek et al. (2019) obtain sharper results for a two-location model. There are
also other extensions such as allowing for a stochastic graph (Anderson et al., 2015; Ashlagi
et al., 2018).

5



For concreteness, we start by studying a micro-level model where costs of in-1

dividual matches are distributed according to independent exponential random2

variables. Whilst our results hold for other distributions too, this model has the3

advantage of being tractable in closed form. In more detail, we �rst establish a4

class of optimal clearing schedules for two extreme types of single-objective social5

planners � that is, for social planners who only care about minimizing waiting6

time (in which case greedy is best) or mismatch costs (resulting in endless delay),7

but not both at the same time. Second, we show that these two objectives are8

mutually incompatible, and multi-objective social planners (who care about both)9

face a fundamental trade-o�. Speci�cally, there is no `free lunch', that is there is10

no clearing schedule that is approximately optimal in terms of both waiting time11

and matching cost. Remarkably, the greedy clearing schedule is sub-optimal for12

every multi-objective social planner.13

Building on the no free lunch result, we proceed to �ll the spectrum between14

matching cost and waiting time minimization. We do so by introducing a class15

of clearing schedules covering a wide range of social planning desiderata between16

waiting time and matching cost, and achieving a continuous trade-o� between the17

two. To explore the �ner aspects of this trade-o�, we introduce a utility model for18

the social planner whereby the associated utility of matching cost is of the same19

order as the agents' utility of waiting time. Under this model, we show that there20

exists a non-trivial clearing schedule achieving this balance, and we show that this21

schedule is e�ectively unique (up to asymptotic order considerations).22

Finally, we generalize our key �ndings by studying di�erent decay rates of match-23

ing costs (instead of focusing on one decay rate that results from the micro-founded24

match costs). We identify two regimes. One, where no free lunch continues to hold.25

The other, where the bene�t from waiting is growing quickly enough, such that a26

window of opportunity opens and it is possible to get a free lunch. As before, in27

both regimes, greedy scheduling is generally sub-optimal.28

Compared to the existing literature on the trade-o� between waiting and mis-29

match (both in economics and computer science) our model introduces incomplete30

information about the distribution of past and future match costs and considers31

an in�nite type space in a tractable model. As a consequence, the social planner32

tries to resolve the trade-o� between matching optimally and waiting time in light33

of incomplete information. Incomplete information in our setting implies that the34

social planner must employ clearing schedules that do not take as input the rel-35

ative strengths of current and future matches (since the latter is unknown), thus36

6



yielding qualitatively new results.1

In contrast to prior results for markets with one or two types of match costs where2

lack of information resulted in optimality of some form of greedy scheduling, we3

�nd that greedy clearing is generally not optimal in the presence of many types.4

Hence, the quick-versus-cheap trade-o� is more intricate than previously found.5

Moreover, our results may actually also have consequences for applications that6

have been studied before too (e.g. kidney exchange) if other match value metrics7

(e.g. potential years of life lost or disability-adjusted life years) are used that8

would produce more than binary match values. By studying fully heterogeneous9

match costs we have to rely on di�erent mathematical tools compared to previous10

analyses, which were often able to reduce the induced dynamics to discrete Markov11

processes.12

The key technical innovations of our paper concern the concurrent consideration of13

a continuum of types, independent arrivals, and incomplete information. In turn,14

these contributions rely on a range of previously unused tools from probability15

theory and disordered systems to obtain closed-form solutions. These underly-16

ing results are concerned with the expected matching cost for given instances of17

random, static assignment games. In particular, in static assignment games with18

the same number of clients and providers and exp(1) distributed edge weights,19

Aldous (2001) proved the long-standing conjecture that the expected minimum20

weight matching converges to π2/6 (i.e., as the number of players is growing).21

This result was later extended by Waestlund (2005) to assignment games with22

match costs drawn from non-identical exponential distributions.10 By leveraging23

the techniques of Aldous (2001) and Waestlund (2005), we are able to compute24

the expected matching cost for every `snapshot in time' of the dynamic clearing25

game. This provides strong foundations for our proofs which are then focused26

on estimating the �uctuations that result from the random arrival of clients and27

providers and their randomly drawn match costs. To achieve this, we use several28

approximation techniques (in particular, the approximation of the arrival process29

by a continuous-time Wiener process), which allow us to port over several results30

from martingale limit theory (such as the law of the iterated logarithm).31

10To the best of our knowledge, the work of Walkup (1979) is the �rst to pose the question,
while Mezard and Parisi (1987) conjectured the speci�c limit value. We also leverage the analyses
of Buck et al. (2002) and Linusson and Waestlund (2004) who obtain results for the expected
values of �nite instances of the latter models, showing � as a byproduct � that the value is
increasing with the number of agents. For a survey of this literature, we refer the reader to
Krokhmal and Pardalos (2009).
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Paper outline. The rest of the paper is structured as follows. In Section 2,1

we introduce the dynamic clearing game and the performance measures relevant2

for our analysis. In Section 3, we show that a social planner who cares about3

both waiting and mismatch faces a fundamental and non-negligible trade-o�. We4

then go on to analyze a natural selection of clearing schedules in Section 4, which5

cover the whole range of possible trade-o�s. In Section 5, we commit to a speci�c6

utility function that speci�es how the social planner values waiting time versus7

matching cost and �nd the unique optimal clearing schedule. Section 6 generalizes8

the analysis and shows that there are two regimes, one where `free lunch' is not9

achievable and one where it is achievable. Finally, in Section 7, we discuss practical10

implications and of avenues for future research.11

2 The model12

In this section, we introduce the model, which we shall refer to as the dynamic13

clearing game.14

The dynamic clearing game. Consider the following model of a dynamic two-15

sided market evolving in continuous time τ ∈ [0,∞). At each tick of a Poisson16

clock with rate 1 an agent enters the market; this agent could be either a client17

or a provider, with equal probability.11 To keep track of the number of agents in18

both sides of the market, let C(τ) and P(τ) denote the set of clients and providers19

that have entered the market by time τ (and possibly already left again), and let20

NC(τ) = |C(τ)| and NP(τ) = |P(τ)| be the respective numbers thereof. Then,21

the number of agents on the short side of the market will be written N(τ) =22

min{NC(τ), NP(τ)}.1223

As in the static assignment model of Shapley and Shubik (1972) on which we build,24

we consider a one-to-one matching market where each client is to be matched to25

at most one provider and vice versa; then, once a couple is matched, both agents26

leave the market. For example, in labor market language, each job seeker gets27

11We are using here the terms `client' and `provider' in a generic sense, just to illustrate the
di�erence between the two sides of the market. As we explain below, what is important from a
modeling perspective is that `clients' are to be matched to `providers' (as in our running example
of job vacancies and job seekers).

12In a slight (but convenient) abuse of notation, we will sometimes write NC(t), NP(t), and
N(t) to denote respectively the number of clients, providers, and agents at the short side of the
market when the t-th agent enters the market � speci�cally, letting τ(t) denote the time at which
the t-th agent enters the market, we will write NC(t) ≡ NC(τ(t)), etc.

8



at most one job, and each vacancy concerns exactly one worker; once a match1

has been made, the governmental job bureau removes the matched pair from its2

ledger, and the process continues.3

For concreteness, we shall next de�ne a speci�c family of match cost distributions.4

This is done solely to streamline our presentation: Our methodology allows us5

to be more general as we discuss in Section 6. Suppose that the quality of a6

(candidate) pair is characterized by an inherent match parameter λij where a7

higher parameter will represent a lower expected match cost. Match costs are8

independently and exponentially distributed with rate λij.
13

9

Speci�cally, we posit that the match cost wij > 0 when client i ∈ C is matched10

to provider j ∈ P is an independent draw from an exponential distribution of11

rate λij for any time τ , that is, wij ∼ exp(λij). For example, a popular model12

assumes that λij is composed by additively separable components describing the13

agents' types and a couple-speci�c term depending possibly on both the identity14

of the agents and their types (Kanoria et al., 2018). For generality, our only15

assumption regarding the rate parameters λij is that they are bounded from below16

by λ, from above by λ, and have mean value λ, that is, λ = limτ→∞[NC(τ) +17

NP(τ)]−1
∑NC(τ)

i=1

∑NP (τ)
j=1 λij.18

The social planner. Throughout the sequel, we assume the existence of a so-19

cial planner who, whenever an agent arrives on the market, observes the arrival;20

other than that, the social planner has no other information regarding the arrival21

process of the agents (or the distribution of their match costs). Due to this lack of22

information, the social planner has no basis to judge whether a particular agent23

arriving in the market is `good' or `bad', and is thus left with the challenge of24

choosing a clearing schedule with which to operate the market. In the sequel, we25

will also write A ≡ A(τ) for the number of clients/providers that have been as-26

signed a partner up to time τ , and R(τ) = NC(τ) +NP(τ)−2A(τ) for the number27

of unmatched agents up to time τ .28

With all this in hand, a clearing schedule (CS) will be a rule that determines:29

(i) At which points in time τ ∈ (0,∞) to trigger amatching event (ME), possibly30

depending on NC(τ), NP(τ) and A(τ).31

13As mentioned by Aldous (2001) and developed in detail by Janson (1999, Section 2) gener-
alizations to larger classes of distributions are easily obtained. For ease of exposition we stick to
exponential distributions with the exception of Section 6 that generalizes our main results.

9



(ii) Which players to match at a given matching event, possibly depending on1

the current match costs of agents who have already arrived to the market2

until time τ .3

After a matching event, the players who are being matched leave the market, while4

the unmatched players remain on the market.5

In what follows, we shall focus on clearing schedules that match a single couple6

per matching event. In particular, the clearing schedules we analyze will match7

the couple with the minimal matching cost in each matching event.14 Restricting8

ourselves to these kinds of clearing schedules is motivated by our aim to study9

clearing schedules that can be paired with a market mechanism (e.g., a two-sided10

auction). Myerson and Satterthwaite (1983) and Rustichini et al. (1994) show the11

general impossibility to have ex-post e�cient and budget balanced mechanisms12

for two-sided market games with private information. Their results rely on the13

assumption that, with positive probability, any given client-provider pair have14

valuations for each other such that trade is not individually rational for both at15

any price. Since the latter doesn't hold in our setting, one could micro-found16

the interaction avoiding the impossibility, that is, de�ne a mechanism that is ex-17

post e�cient and budget balanced. We shall assume throughout the analysis the18

existence of such a mechanism; however, given our focus on the social planner an19

explicit analysis of such mechanisms is beyond the scope of the present paper.20

Now, as discussed before, the social planner aims to match clients and providers21

optimally along two axes: a) to reduce the coexistence of clients and providers22

(i.e., waiting time); and b) to match clients and providers in a way that minimizes23

matching cost (i.e., mismatch). Beginning with the latter, the expected matching24

cost for the �rst A couples is de�ned as25

costCS(A) ≡ E

[
A∑
k=1

wik,jk

]
(1)

where wik,jk is the match cost of the k-th matched couple and the expectation is26

taken with respect to the random arrival of clients and providers and the random-27

ness of the match costs. Similarly, the expected waiting time of a clearing schedule28

14The only clearing schedule that we consider and which violates this principle is the �rst-come,
�rst-served (FCFS) clearing schedule which we describe in Section 3.
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until time T is de�ned as1

waitCS(T ) ≡ E
[∫ T

0

R(τ) dτ

]
(2)

where the expectation is taken with respect to the random arrival of agents in2

the market. In the sections that follow, we will explore the optimization of these3

two performance metrics, and the trade-o�s that arise when trying to minimize4

both.5

3 The trade-o� between waiting time and match-6

ing costs7

Our analysis begins with the case of a single-minded social planner. Speci�cally,8

we investigate which clearing schedule a social planner would employ if either9

only caring about the expected waiting time, or only caring about the expected10

matching cost. After we deal with these two cases separately, we shall proceed to11

show that these objectives are mutually incompatible and lead to an unavoidable12

trade-o� for the social planner.13

Single-minded social planners. First, a social planner who is optimizing the14

agents' expected waiting time will choose a clearing schedule which leaves no un-15

matched couples at any point in time. To do so, we will consider a `greedy' clearing16

schedule, denoted CSgreedy, which performs a minimum weight matching whenever17

there is exactly one unmatched client/provider pair in the market. Second, a so-18

cial planner who is optimizing the agents' expected matching cost will choose a19

clearing schedule which � ideally � waits until everyone has arrived in the market20

and then matches agents optimally (thus minimizing the sum of match costs).1521

That is, the hypothetical `patient' clearing schedule, denoted CSpatient, should be22

preferred by any social planner who is only concerned with the expected matching23

cost.24

The implementation of these schedules leads to the following matching cost and25

waiting time:26

15To make such a clearing schedule realistic, all agents would need to arrive in the market in
�nite time; since this schedule will mostly serve as a theoretical comparison baseline, we will not
consider this issue in detail.
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Proposition 1. The optimal clearing schedules for a single-objective social plan-1

ner are:2

(1) The patient clearing schedule CSpatient is optimal with respect to matching cost3

minimization; in particular, for all A ≥ 1, we have:4

log 2

λ
≤ costpatient(A) ≤ π2

6λ

(2) The greedy clearing schedule CSgreedy is optimal with respect to waiting time5

minimization; in particular, for all τ ≥ 0, we have:6

waitgreedy(τ) =
2

3
τ 3/2

Remark. In view of Proposition 1, the expected matching cost of CSpatient and the7

expected waiting time of CSgreedy will serve as the benchmark for comparing the8

matching cost and waiting time of any other clearing schedule.9

Proof of Proposition 1. We prove our claims for each of the two clearing schedules10

separately.11

Part 1: Matching cost minimization. For the �rst assertion, note that the expo-12

nential distribution is closed under scaling by a positive factor, i.e., if X ∼ exp(κ)13

then µX ∼ exp(κ/µ). In our case, this implies that14

wij ∼ exp(λij) ⇐⇒ wij ∼
1

λij
exp(1) (3)

We have that for all i ∈ C, j ∈ P , the distribution of wij is �rst-order stochastically15

dominated by λ−1 exp(1). Thus the expected weight is upper bounded by the16

simpli�ed problem where all match costs are distributed according to λ−1 exp(1).17

With this in mind, we will simplify notation in the rest of the proof by setting18

λ = 1.19

By the summation formula of Buck et al. (2002) and Linusson and Waestlund20

(2004), we have for the expected weight of the minimum A-matching (note that21

A = N , recalling that N = min{NC, NP}):22

Emin

[
N∑
k=1

wik,jk

]
=
∑
i,j≥0
i+j<N

1

(NC − i) · (NP − j)
. (4)

12



Thus, we readily have1

costpatient(N) = Emin

[
N∑
k=1

wik,jk

]
≤
∑
i,j≥0
i+j<N

1

(N − i) · (N − j)
. (5)

To proceed, by Waestlund (2009, Lemma 3.1) we have2

∑
i,j≥0
i+j<N

1

(N − i) · (N − j)
=

N∑
k=1

1

k2
≤ ζ(2), (6)

where ζ(2) =
∑∞

n=1 1/n2 = π2/6 is the Basel constant. Returning to our original3

problem, we conclude that costpatient(A) ≤ π2/(6λ), as claimed.4

To compute the lower bound, we need to consider the expected match cost for5

A = 1, because matching more players would only serve to increase the expected6

matching cost. In the patient clearing schedule for A = 1, the process terminates7

when at least one client and at least one provider have entered the market. Let8

Y ≥ 2 be the number of agents required to observe at least one client and one9

provider. Then the event Y = k+ 1 is the same event as the union of the disjoint10

events `the �rst k agents are clients and the (k+1)-th agent is a provider' and `the11

�rst k agents are providers and the (k+ 1)-th agent is a client'. Each of the latter12

events has probability 1/2k+1, so P(Y = k + 1) = 2−k. Moreover, as we prove in13

Lemma 8, for Y = k+ 1, the expected minimum match cost is given by 1
λ·k . Thus14

for A = 1, we get15

costpatient(N) =
∞∑
k=1

1

λk
P(Y = k + 1) =

1

λ

∞∑
k=1

1

2kk
=

log 2

λ
, (7)

where the last equality follows from the series expansion log(1−x) = −x−x2/2−16

x3/3− · · · applied to x = 1/2.17

Part 2: Waiting time minimization. For our second assertion, note that, at any18

point in time, there are either no clients or no providers in the market. In view19

of this, let Sτ be the di�erence of clients and providers who have arrived to the20

market until time τ , that is, Sτ = NC(τ)−NP(τ). Then, for all T > 0, we get:21

waitgreedy(T ) = E
[∫ T

0

|Sτ | dτ
]

=

∫ T

0

E[|Sτ |] dτ (8)

13



where the latter equality holds by Tonelli's theorem (since |Sτ | is non-negative).1

Applying Tonelli's theorem a second time, we can consider the case where the2

expectation with respect to the arrival times is taken �rst. To do so, consider3

the process where at the �xed points in time τ = 1, 2, . . . an agent arrives to the4

market and let S̄τ be the di�erence of clients and providers who have arrived to5

the market at time τ . We then have:6

E
[∫ T

0

|Sτ | dτ
]

=

∫ T

0

E[|Sτ |] dτ =

∫ T

0

E[|S̄τ |] dτ (9)

It is well-known that for τ → ∞ the appropriately rescaled random walk S̄τ

converges in distribution to the Wiener process Wτ (Kac, 1947). Thus, for large

T , Eq. (9) gives

E
[∫ T

0

|Sτ |dτ
]

=

∫ T

0

E[|Wτ |] dτ =

∫ T

0

√
Var(Wτ ) dτ =

∫ T

0

√
τ dτ =

2

3
T 3/2.

7

This concludes the analysis of a single-minded social planner who either only cares8

about the expected waiting time, or onlythe expected matching cost.9

Multi-objective social planners. Going beyond the narrow view of a single-10

minded social planner, we proceed below to examine the case of social planners11

that care about both the expected cost of matching and the agents' overall expected12

waiting time. Natural candidates to evaluate a clearing schedule in this context13

are the expected matching ratio and the expected waiting ratio, de�ned below as14

follows:15

1. The expected matching ratio of a clearing schedule CS is

α ≡ α(A) =
costCS(A)

costpatient(A)
. (10)

2. The expected waiting ratio of a clearing schedule CS is

β ≡ β(τ) =
waitCS(τ)

waitgreedy(τ)
. (11)

Note that CSpatient is optimal with respect to expected matching cost while CSgreedy16

is optimal with respect to expected waiting time.17

14



Going forward, note that all candidate clearing schedules can be characterized1

by a function f : R+ → R+ such that the k-th (k ∈ N) couple is matched when2

df(k)e agents are on the short side of the market. Denote a clearing schedule that3

is de�ned via a function f by CSf . Without any restrictions on f this includes all4

possible clearing schedules that always match the couple with the minimal match5

cost. However, given that we wish to analyze the asymptotic regime where enough6

agents have entered the market, we focus below on a natural class of functions7

introduced by Hardy (1910) which make such comparisons possible. Speci�cally,8

each function in this class is de�ned, for all x ≥ 0, by a �nite combination of9

the basic arithmetic operations (addition, multiplication, raising to a power, and10

their inverses), operating on the variable x and on real constants. Hardy (1910,11

Theorem, page 18) shows that for any two such functions, f and g, either f =12

ω(g), f = Θ(g), or f = o(g).13

Then, for such functions, we will use the following asymptotic notations:14

f(x) = O(g(x)) if f(x) < c · g(x) for some c > 0 constant and x su�ciently large.15

f(x) = Ω(g(x)) is the inverse O notation (f(x) > c · g(x) for x su�ciently large).16

f(x) = Θ(g(x)) if there exist two constants k,K ≥ 0 and a positive integer x017

such that kg(x) ≤ f(x) ≤ Kg(x) for all x ≥ x0.18

For g(x) non-zero f(x) = o(g(x)) if limx→∞
f(x)
g(x)

= 0 and f(x) = ω(g(x)) if19

limx→∞
f(x)
g(x)

=∞.20

In light of the above, the �rst question that arises is whether there exists a clear-21

ing schedule that is optimal along both axes (at least, asymptotically). To for-22

malize this, we say that a clearing schedule CS has �nite expected matching ratio23

if lim supA(τ)>0 α(A(τ)) < ∞; likewise, we say that clearing schedule has �nite24

expected waiting ratio if lim supτ>0 β(τ) <∞.25

The following theorem shows that the answer to the above question is a resounding26

`no':27

Theorem 2 (`No free lunch'). There exists no clearing schedule simultaneously28

achieving �nite ratios for both expected matching cost and waiting time.29

Theorem 2 illustrates that multi-objective social planners are faced with a crucial30

trade-o� independently of their speci�c utility function � provided of course that31

they care about both matching cost and waiting time in a non-trivial way. In32

addition, Theorem 2 justi�es the performance measures for the two dimensions33

of mismatch (expected matching ratio and waiting ratio) and in particular the34

su�ciency to analyze them in terms of orders of τ (or A = A(τ)).35

15



Proof of Theorem 2. We prove this result by contradiction; speci�cally, we �nd a1

necessary condition for a clearing schedule to have �nite expected matching ratio2

and then show that clearing schedules satisfying this condition cannot have a �nite3

expected waiting ratio.4

To make this precise, consider the clearing schedule CSf that matches the k-th5

couple when N − (k − 1) = df(k)e. We shall show that a necessary condition for6

a clearing schedule CSf to have �nite expected matching ratio is7

f(k) = ω(k1/2) (12)

To show this, consider the clearing schedule that matches the k-th couple when8

at least dk1/2e players are on the short side of the market; with a fair degree of9

hindsight, denote this clearing schedule as CSγ=1/2.
16 As we show in Theorem 3,10

this clearing schedule has α(A) = Θ(logA). Thus, in order for another schedule11

CSf to have �nite expected matching ratio, matching events have to happen orders12

of magnitude later than in CSγ=1/2. Concretely, for k large enough the k-th couple13

is cleared at time τCSf (k) = ω(τCSγ=1/2
(k)). It follows that Eq. (12) holds.14

We can now analyze the expected waiting time for CSf such that Eq. (12) holds15

for f . To construct a lower bound, consider the alternative arrival process, where16

clients and providers alternatingly arrive to the market. Note that for any given17

clearing schedule this process incurs lower waiting time. For the clearing schedule18

we consider the waiting time of this alternative arrival process is precisely governed19

by the fact that the k-th match takes place when at least f(k) players are on the20

short side of the market. Further, note that τ(A) is clearly smaller for this new21

arrival process compared to the original process. Given that we only need to show22

that the waiting time is increasing in A it su�ces to show that it is increasing in23

τ (not conditioned on A). Thus, the waiting time is lower bounded by using the24

approximation by the Wiener process (as in the proof of Proposition 1) and by25

observing that arrival is governed by a Poisson clock of rate 1:26 ∫ T

0

2f(τ)dτ = ω

(∫ T

0

2
√
τ dτ

)
= ω(T 3/2) (13)

By Proposition 1(ii), the optimal expected waiting time is (2/3)T 3/2, so we con-27

clude that the expected waiting ratio is lower bounded by ω(T 3/2)/T 3/2 = ω(1)28

and our proof is complete.29

16See Section 4 for detailed de�nitions.
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This concludes our �rst result for multi-objective social planners, showing that1

the trade-o� between cost of matching and waiting time is essential.2

4 Interpolating between waiting time and match-3

ing cost4

In this section, we analyze a class of clearing schedules covering a broad spectrum5

of social planning desiderata interpolating between matching cost and waiting6

time.7

To begin, recall that Proposition 1 provides the expected matching cost of the8

patient clearing schedule CSpatient (which minimizes mismatches) and the expected9

waiting time of the greedy clearing schedule CSgreedy (which minimizes waiting10

times). Interpolating between these two `extreme' schedules, we shall consider11

below a class of clearing schedules where the social planner waits for some length12

of time in order to accrue some intermediate number of agents on both sides of13

the market. Concretely, we shall study clearing schedules that match the k-th14

couple when N − k = f(k), i.e., when f(k) players are on the short side of the15

market.1716

For concreteness, we restrict ourselves to clearing schedules of the form

f(k) = Θ(kγ) for some γ ∈ [0, 1]. (14)

For γ = 0, the induced clearing schedules match players once a constant threshold17

is reached; in particular, the greedy schedule is recovered when f ≡ 1 (correspond-18

ing to γ = 0). More generally, we shall denote clearing schedules of the above form19

by CSγ and write CSγ=1/2 for the clearing schedule with γ = 1/2. Similarly we shall20

use the notation αγ for the expected matching ratio of CSγ and βγ for the expected21

waiting ratio of CSγ.22

In addition to the clearing schedules induced by the assumptions above, we shall23

also consider another natural schedule based on the principle of �rst-come, �rst-24

served (FCFS), i.e., when agents are matched as soon as possible on a �rst-come,25

�rst-served basis. This schedule, which we denote by CSFCFS, di�ers from CSgreedy26

in terms of who is matched with whom (�rst-come, �rst-served vs. minimum cost27

matching) but not regarding when a matching event occurs. As such, given that28

17Recall that N = min{NC , NP}.
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CSFCFS does not take into account matching costs, it is not reasonable to expect1

that it will perform well on any dimension other than the agents' expected waiting2

times. On the other hand, it exhibits `fairness' relative to the agents' arrival times,3

a feature which is crucial in many applications.184

Overview of results. Table 1 summarizes all clearing schedules analyzed below5

(including a `balanced' schedule, CSbalanced, that we discuss in Section 5). Our6

results (in terms of each schedule's expected matching and waiting ratio) are7

then summarized in Table 2: as can be seen, the family of schedules under study8

captures the full range between schedules that are `good' relative to mismatches9

and `bad' relative to waiting times, and vice versa.10

CSFCFS match players as soon as possible on a �rst-come, �rst-served basis

CSgreedy match players as soon as possible

CSγ
match the k-th couple when Θ(kγ) players are on the short side of
the market (0 ≤ γ ≤ 1)

CSpatient match players optimally after everyone has arrived

CSbalanced
match the k-th couple when Θ(k1/2(log k)1/3) players are on the short
side of the market.

Table 1: Overview of the various clearing schedules considered in the sequel. Note
that all schedules other than CSFCFS match the couple with the minimum match
cost at each matching event.

In view of these results, the clearing schedule CSγ=1/2 can be seen as a phase tran-11

sition between two markedly di�erent regimes. On the one hand, for γ < 1/2,12

the expected matching ratio α(A) grows as a power law in A while the expected13

waiting ratio β(τ) is �nite. On the other hand, for γ > 1/2, we have a �nite14

expected matching ratio but an expected waiting ratio that grows polynomially.15

Finally, at the critical point γ = 1/2, the expected matching ratio grows to in-16

�nity for large A, but at a slow, logarithmic rate (Θ(logA)). Notably, the phase17

transition at γ = 1/2 signi�es a discontinuity of the expected matching ratio, so it18

is a �rst-order phase transition; by contrast, the expected waiting ratio exhibits19

no such discontinuity, signifying a second-order phase transition.20

The in�nite matching ratio vis-a-vis the �nite waiting ratio for γ = 1/2 suggests21

18Indeed, this may be a desirable feature in applications such as processor time requests in dis-
tributed computing. We shall leave extensions of our analyses to include fairness considerations
for future work.
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Schedule Description Matching ratio, α Waiting ratio, β

CSFCFS FCFS matching Θ(A) 1

CSgreedy Greedy matching Ω(A1/2) 1

CS0≤γ<1/2 Subcritical rate matching Ω(A1/2−γ) Θ(1)

CSγ=1/2 Critical rate matching Θ(logA) Θ(1)

CS1/2<γ≤1 Supercritical rate matching Θ(1) Θ(τγ−1/2)

CSpatient Patient matching 1 Θ(τ1/2)

CSbalanced Balanced matching Θ((logA)1/3) Θ((logA)1/3)

Table 2: The range of expected matching and waiting ratios; CSbalanced is discussed
in Section 5. Recall from Eq. (10) and Eq. (11) the expected matching ratio

α ≡ α(A) = costCS(A)
costpatient(A)

(costpatient(A) = Θ(1)) and the expected waiting ratio

β ≡ β(τ) = waitCS(τ)
waitgreedy(τ)

(waitgreedy(τ) = Θ(τ 3/2)).

that further �ne-tuning should be possible and, indeed, the `balanced' schedule1

CSbalanced (which we de�ne and discuss in Section 5) reduces the growth of the2

expected matching ratio by a factor of (logA)2/3 while increasing the expected3

waiting ratio β(τ) by a factor of (log τ)1/3. In a sense (that we shall make precise in4

the next section) this is as close as we can get to a `free lunch' in this setting.5

Formal statements. We now proceed to provide complete statements of the6

results discussed above. To streamline our presentation, we have relegated the7

detailed proofs to Appendices A and B; however, the main pattern of the proofs8

can also be seen in Section 5 where we treat the case of CSbalanced.9

We begin with our results for the matching cost ratio α:10
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Theorem 3. The expected matching ratios for the schedules under study are as

follows:

(CSFCFS) FCFS matching: αFCFS =
6λλ

π2
A (15a)

(CSgreedy) Greedy matching: αgreedy ≥
6λ

5π2
A1/2 (15b)

(CS0≤γ<1/2) Subcritical rate matching: Cγ A
1/2−γ ≤ α0≤γ<1/2 ≤ Cγ A

1−2γ

(15c)

(CSγ=1/2) Critical rate matching:
2λ

π2
logA ≤ αγ=1/2 ≤

λ

λ

1 + logA

log 2

(15d)

(CS1/2<γ≤1) Supercritical rate matching: α1/2<γ≤1 =
λ

λ

ζ(2γ)

log 2
(15e)

(CSpatient) Patient matching: αpatient = 1 (15f)

Remark. In the above, Cγ and Cγ are positive constants, and ζ(s) =
∑∞

n=1 1/ns1

denotes the Riemann zeta function (so ζ(s) <∞ for all s > 1).2

By contrast, for the expected waiting ratio β, we have:3

Theorem 4. The expected waiting ratios for the schedules under study are as

follows:

(CSFCFS) FCFS matching: βFCFS = 1 (16a)

(CSgreedy) Greedy matching: βgreedy = 1 (16b)

(CS0≤γ<1/2) Subcritical rate matching: β0≤γ<1/2 = Θ(1) (16c)

(CSγ=1/2) Critical rate matching: βγ=1/2 = Θ(1) (16d)

(CS1/2<γ≤1) Supercritical rate matching: β1/2<γ≤1 = Θ(τ γ−1/2) (16e)

(CSpatient) Patient matching: βpatient = Θ(τ 1/2) (16f)

In closing this section, it is worth noting that the bounds for α become asymptot-4

ically `less tight' for small γ < 1
2
. As far as this gap is concerned, we conjecture5

that the upper bound is the tight one: the lower bound is obtained via a crude6

approximation using Jensen's inequality, and this could be potentially tightened7

(although we haven't been able to do so). By contrast, the approximation for the8
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upper bound seems less drastic.1

We should also note that the results in Theorem 4 are driven by the assumption2

that the arrival of either a client or a provider at every stage of the process is3

equally likely. This entails that the expected absolute di�erence of clients and4

providers |NC(τ) − NP(τ)| can by approximated by a Wiener process as detailed5

in Appendix B. For the latter we know that the expectation is
√
τ , so |NC(τ) −6

NP(τ)| ≈
√
τ in expectation. It would be interesting to consider di�erent arrival7

processes such as an urn model with delayed replacement where |NC(τ)−NP(τ)|8

would exhibit a di�erent asymptotic behavior; we leave this analysis to future9

work.10

5 A balanced social planner11

Until now, we have analyzed clearing schedules based on the trade-o� between12

waiting time and matching cost, but without explicitly comparing the two. In this13

section, we shall commit to a speci�c class of utility functions in order to make an14

explicit comparison between these otherwise incomparable quantities.15

To that end, let u(·) denote the expected utility (or `welfare') of the social planner16

given a speci�c clearing schedules. Assume further that the functions expressing17

this utility depend on both the expected matching cost and the expected waiting18

time via the additively separable expression19

u(CS) = ucost(αCS) + uwait(βCS) (17)

In order to make comparisons between the utility components ucost and uwait we20

shall �rst consider their respective maximum values. It is then natural to assume21

that ucost is maximal for the patient clearing schedule (which minimizes matching22

cost) and that uwait is maximal for the greedy clearing schedule (which minimizes23

waiting time). We shall thus assume that the two maxima are of the same order,24

viz.,25

σ · ucost(αpatient) = (1− σ) · uwait(βgreedy) (18)

where σ ∈ (0, 1) is a constant factor that speci�es the relative importances of the26

disutilities from mismatching versus waiting. Naturally, we require that the social27

planner seeks to minimize both the costs of matching and the agents' waiting time.28

As such, we make the assumption that ucost is a concave function that decreases29

in the expected matching cost, and uwait is a concave function that decreases in30
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the expected waiting time.1

In view of all this, a social planner is said to be balanced if the disutilities from2

mismatching and waiting display similar growths for large τ . That is, for a given3

clearing schedule CS with expected matching ratio α and expected waiting time4

β, we assume that5

ucost(αCS) = Θ(uwait(βCS)) whenever αCS = Θ(βCS) (19)

In this general context, we obtain the following result governing balanced social6

planning:7

Theorem 5. Let CSbalanced be the clearing schedule that matches the k-th couple8

when N − (k − 1) = dk1/2(log k)1/3e players are on the short side of the mar-9

ket. The expected matching and waiting ratios incurred by CSbalanced are both10

Θ((logA)1/3); moreover, any other schedule CSf achieving this balance has f(k) =11

Θ(k1/2(log k)1/3).12

Remark. For technical reasons we state our result in terms of the number of13

matched couples (A = A(τ)). Note that, for any clearing schedule where the pro-14

portion of matched players increases over time (more precisely, where limτ→∞
A(τ)

NC(τ)+NP (τ)
=15

1), A is growing at the same rate as τ .16

Proof of Theorem 5. Consider a clearing schedule of the form CSf that matches17

the k-th couple when df(k)e players on the short side of the market. In order18

to balance the expected matching and waiting ratios, any such clearing schedule19

would have to satisfy f(k) = ω(
√
k); otherwise, the expected matching ratio would20

dominate asymptotically the expected waiting ratio (see Table 2). Thus, without21

loss of generality, we can assume that f(k) is non-decreasing for large k.22

Let t(k, f(k)) be the stopping time for the event that for the k-th time at least23

f(k) clients and f(k) providers are in the market, assuming that every time this24

is the case one client and one provider are removed. Finally, recall that Sτ =25

NC(τ) − NP(τ) is the di�erence of clients and providers who have arrived to the26

market until τ .27
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We begin with the expected matching ratio. For the upper bound we have:

E

[
A∑
k=1

1

(df(k)e+ |St(k,f(k))|)df(k)e

]
=

A∑
k=1

E
[

1

(df(k)e+ |St(k,f(k))|)df(k)e

]

≤
A∑
k=1

df(k)e−2 (20)

For the lower bound, an algebraic argument which we make precise in Appendix A

(cf. Eq. (58)) shows that E[t(k, f(k))] < 10k. Furthermore, note that E[St] is

strictly increasing in t. Thus, by Jensen's inequality, and Lemma 9 (which is

bounding |St| via a combinatorial argument and using Stirling's formula), we get:

A∑
k=1

E
[

1

(df(k)e+ |St(k,f(k))|)df(k)e

]
≥

A∑
k=1

1

(df(k)e+ E[|S10k|])df(k)e

≥ π√
2e

A∑
k=1

1

(df(k)e+
√

10k)df(k)e

= Θ

(
A∑
k=1

1

f(k)2

)
(21)

where the last line follows from the assumption f(k) = ω(k1/2). Thus the two1

bounds together with the fact that the patient schedule has �nite matching cost2

yield the result that, for f(k) = ω(k1/2) the expected matching ratio is α(A) =3

Θ
(∑A

k=1 1/[f(k)2]
)
.4

We proceed, by considering the incurred waiting time. Recall that N(τ) − A(τ)5

is the number of agents on the shorter side of the market at time τ , so N − A =6

df(k − 1)e − 1 after the (k − 1)-st match. The number of clients and the number7

of providers that need to arrive to the market before the k-th match is thus upper8

bounded by9

df(k)e −
(
df(k − 1)e − 1

)
= 1 + df(k)e − df(k − 1)e ≤ 2 (22)

where the last inequality follows from the fact that f(k) = o(k) is a necessary10

condition for a feasible clearing schedule (that is, a clearing schedule where the11

proportion of unmatched versus matched players is decreasing). The expected12

waiting time accrued between the (k−1)-st and the k-th match is therefore upper13

23



bounded by:1

∆k := E[time s.t. ≥ 2 clients & ≥ 2 providers enter market]︸ ︷︷ ︸
=:∆1

k

·
(
2df(k)e+ dg(k)e

)︸ ︷︷ ︸
=:∆2

k

(23)

where dg(k)e is a function that we will use to upper bound |Sk|, viz., the random2

variable constituting the absolute di�erence of clients and providers in the market3

at time τ(k). For posterity, note also that ∆1
k is the expectation of the time4

between the (k − 1)-th and the k-th match and ∆2
k provides an upper bound for5

the number of agents waiting in the time interval between the (k − 1)-th and the6

k-th match.7

Given the arrival of agents is governed by a Poisson clock of rate one, we have8

∆1
k = 5, i.e., on average, �ve agents need to enter the market to have at least9

two clients and at least two providers. To see this, let Y be the number of �ips10

of a coin required to observe at least 2 heads (clients) and 2 tails (providers).11

The event `Y > k' is then equivalent to the union of the events `
(
k
k−1

)
heads' and12

`
(
k
k−1

)
tails'. The two latter events are disjoint and each has probability k

2k
. Thus13

P[Y > k] = k
2k−1 and we have14

E[Y ] =
∞∑
k=0

P(Y > k) = 1 + 2
∞∑
k=1

k

2k
= 1 + 2

∞∑
k=1

k∑
j=1

1

2k
(24)

= 1 + 2
∞∑
j=1

∞∑
k=j

1

2k
= 1 + 2

∞∑
j=1

1

2j−1
= 5 (25)

We thus have for Eq. (23)15

∆k = 5 ·
(
2df(k)e+ dg(k)e

)
(26)

Next, to choose the function g(k), note that the law of the iterated logarithm gives

lim
k→∞

|Sk|√
2k log log k

= 1. (27)

Hence, by choosing g(k) =
√

2k log log k, the random variable |Sk| is asymptoti-16

cally bounded from above by g(k) with probability one.17

We consider two cases below, which are exhaustive by Hardy (1910, Theorem,18

page 18):19
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Case 1: f(k) = Ω(g(k)). For the �rst case we have:1

5 · (2f(k) + g(k)) = Θ(f(k)) (28)

The expected waiting ratio until A pairs have been matched is bounded from above2

by A−3/2
∑A

k=1 Θ(f(k)), where we are using the fact that the expected waiting time3

for the greedy schedule is given by A3/2 (see Proposition 1). A trivial lower bound4

for the expected waiting ratio is then given by5

1

A3/2

A∑
k=1

2f(k) =
1

A3/2

A∑
k=1

Θ(f(k)) (29)

Thus, the expected waiting ratio is given by6

β(A) = Θ

(
1

A3/2

A∑
k=1

f(k)

)
(30)

Moving to the comparison of matching and waiting ratios, we recall that ucost and

uwait are decreasing and concave and are of the same order (by assumption). Thus

u = ucost + uwait is maximized if and only if α = Θ(β). In turn, this holds if and

only if

A∑
k=1

1

f(k)2
= Θ

(
1

A3/2

A∑
k=1

f(k)

)
(31)

or, equivalently, if and only if∫ A

1

1

f(x)2
dx = Θ

(
1

A3/2

∫ A

1

f(x) dx

)
(32)

where the asymptotic passage from summation to integration � i.e., from Eq. (31)7

to Eq. (32) � is made precise in Appendix C.8

We shall show that f(x) = Θ(
√
x(log x)1/3) is the unique solution to Eq. (32) up to9

order. To simplify notation, let f(x) =
√
x(log x)1/3, so the left-hand side (LHS)10

of Eq. (32) becomes11 ∫ A

1

1

x(log x)2/3
= 3(logA)1/3 + c (33)

where c is uniformly bounded and independent of A. Next, focusing on the RHS
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of Eq. (32), we get

1

A3/2

∫ A

1

√
x(log x)1/3 dx = (logA)1/3 − 1

A3/2

∫ A

1

x3/2 1

3x(log x)2/3
dx

= (logA)1/3 − 1

A3/2

∫ A

1

√
x

1

3(log x)2/3
dx︸ ︷︷ ︸

=o
( ∫A

1

√
x·(log x)1/3 dx

)
= Θ((logA)1/3) (34)

Our uniqueness claim follows by noting that the LHS of Eq. (32) is decreasing1

in f(x) (in orders of magnitude of the upper bound of the integral) while the2

right-hand side (RHS) is increasing in f(x).3

Case 2: f(k) = o(g(k)). For the second case, assume that f(k) = o(g(k)). This4

implies for the matching cost that195 ∫ A

1

1

f(τ)2
dτ = ω

(∫ A

1

1

g(τ)2
dτ

)
(35)

The integral on the RHS of Eq. (35) can then be bounded from below as follows6 ∫ A

1

1

g(τ)2
dτ =

∫ A

1

1

4τ log log τ
dτ = ω

(∫ A

1

1

4τ(log τ)2/3
dτ

)
(36)

For the integral on the RHS of Eq. (36) we have7 ∫ A

1

1

4τ(log τ)2/3
dτ = Θ

(
(logA)1/3

)
, (37)

Hence, combining these last approximations, we �nally get∫ A

1

1

f(τ)2
dτ = ω

(
(logA)1/3

)
. (38)

Thus any solution satisfying f(k) = o(g(k)) (Case 2) has expected matching cost8

that is ω(1) relative to the optimal solution. This completes the proof that f(k) =9

Θ(
√
x(log x)1/3) is the unique optimal clearing schedules for the balanced social10

planner.11

19Formally, for τ ≥ e, the integrand is not well-de�ned, but the Cauchy principal value of
the integral remains �nite, and this is the value we are using for τ ≤ e. This issue could be
side-stepped by shifting the lower limit of the integral to a higher value, but we do not do so in
order to simplify the presentation.

26



Note that, up to logarithmic factors, the balanced clearing schedule is close to1

the clearing schedule CSγ=1/2 which signi�es a �rst-order phase transition for the2

expected matching ratio. As discussed earlier, CSγ=1/2 only signi�es a second-order3

phase transition for the expected waiting ratio, thus explaining the gap between4

CSbalanced and CSγ=1/2. In practice however, CSγ=1/2 seems to be a reasonable5

approximation for a balanced social planner.6

6 Generalization7

So far, we focused our attention on dynamic clearing games with exponentially8

distributed match costs. We shall show below that the developed techniques can9

also be used to study a more abstract model. Rather than modeling match costs10

directly by de�ning the distribution of each potential match cost, wij, we take a11

macroscopic viewpoint and posit that the cost of matching a couple depends on12

the number of clients and providers currently in the market. This cost may be13

the expected cost of matching the cheapest couple or a cost associated to market14

making more generally. In practice, this cost can be learned from past data on15

clearing events. We shall thus focus our generalization on identifying breaking16

points and their respective consequences for di�erent cost regimes.17

Write MC(τ) = NC(τ) − A(τ) for the number of clients in the market at time τ18

and MP(τ) = NP(τ) − A(τ) for the number of providers respectively. Then, the19

expected cost can be written w.l.o.g. as20

g(MC,MP) (39)

where g : R+ × R+ → R+ is a non-increasing function (in either argument).2021

Intuitively, g determines how the expected minimum cost of matching decreases22

as more players coexist in the market. For example, if g(MC,MP) = 1
MC ·MP

,23

we revert to the previous analysis resulting from exponentially distributed match24

costs. This is the case since the expected minimum ofMC ·MP independent exp(1)25

random variables is equal to 1
MC ·MP

.26

In view of this, it stands to reason that the asymptotic behavior of the market will27

be captured by the rate at which the expected minimum matching cost g(MC,MP)28

vanishes as a function of MC,MP → ∞. Theorem 6 below makes this intuition29

20We de�ne the function g on the real numbers, but note that it is only the values on N× N
which enter the analysis of clearing schedules.
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precise and identi�es a speci�c threshold beyond which it is possible to get a `free1

lunch'. We restrict our analysis to the case δ > 1 to guarantee that the patient2

clearing schedule has �nite expected matching cost, i.e., costpatient <∞.3

Theorem 6. Suppose that the expected minimum matching cost decays as g(Θ(x),Θ(x)) =4

Θ(1/xδ) for some δ > 1.Then:5

(i) For 1 < δ ≤ 2 there is no `free lunch'. In particular, the critical rate6

clearing schedule, that is, the clearing schedule with expected matching7

ratio Θ(log(A)), is given by CSγ=1/δ.8

(ii) For δ > 2, `free lunch' exists. In particular, the clearing schedules CSγ9

with γ ∈ (1
δ
, 1

2
] guarantee that the expected matching and waiting ratios10

are both �nite.11

Proof of Theorem 6. We �rst consider the upper bound. Given g(Θ(x),Θ(x)) =

Θ
(

1
xδ

)
and since g is increasing in both arguments we have:

E

[
A∑
k=1

g(MC,MP)

∣∣∣∣∣min{MC,MP} = bk1/δc

]
≤

A∑
k=1

g(bk1/δc, bk1/δc)

= Θ

(
A∑
k=1

1

k

)
= Θ(logA) (40)

where the last inequality follows from the bounds for the harmonic series. Thus,12

given the optimal clearing schedule has �nite matching cost, the expected matching13

ratio is smaller than O(logA+ 1).14

For the lower bound note that E[t(k, k1/δ)] < 10k by similar arguments as in15

Eq. (58) and by recalling that δ > 1. Thus, combining Jensen's inequality ( 1
x
is16

convex) with Markov's inequality, Lemma 9, and recalling that δ ≤ 2 we get:17
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A∑
k=1

E
[
g(MC,MP)

∣∣min{MC,MP} = bk1/δc
]

=
A∑
k=1

E
[
g(MC,MP)

∣∣min{MC,MP} = bk1/δc, t(k, k1/δ) < 20k
]
· P
[
t(k, k1/δ) < 20k

]
+

A∑
k=1

E
[
g(MC,MP)

∣∣min{MC,MP} = bk1/δc, t(k, k1/δ) > 20k
]
· P[t(k, k1/δ) > 20k]

≥
A∑
k=1

E
[
g(MC,MP)

∣∣min{MC,MP} = bk1/δc, t(k, k1/δ) < 20k
]
· 1

2

= Θ

(
A∑
k=1

g(bk1/δc, bk1/δc)

)
= Θ

(
A∑
k=1

1

k

)
= Θ(logA) (41)

where we used thatMC = Θ(MP) given |St| = |NC(t)−NP(t)| = |MC(t)−MP(t)| =1

O(
√

20k) since we are in the case t(k, k1/δ) < 20k and by the assumption that for2

all λ, µ we have g(λ · x, µ · x) = Θ(xδ). Thus, given the optimal clearing schedule3

has �nite matching cost, the expected matching ratio is Ω(logA), concluding the4

proof together with the upper bound.5

To summarize, for δ ∈ (1, 2] the critical rate clearing schedule is given by CSγ=1/δ.6

Thus the critical rate clearing schedules are given by CSγ with γ ∈ (0, 1/2] and by7

Theorem 4, the expected waiting ratio for these schedules is not �nite. Note that8

the case δ = 2 is simply Theorem 2. We conclude that there is no `free lunch'.9

(2) By Theorem 4 the expected waiting ratio is �nite for all clearing schedules CSγ10

with γ ≤ 1
2
.11

We upper bound the expected matching ratio for the clearing schedule CSγ for

γ > 1
δ
: For the upper bound we have with g(Θ(x),Θ(x)) = Θ

(
1
xδ

)
:

E

[
A∑
k=1

g(MC,MP)

∣∣∣∣∣min{MC,MP} = bk1/δc

]
≤

A∑
k=1

g(bk1/δc, bk1/δc)

= Θ

(
A∑
k=1

1

kγ·δ

)
= Θ(1) (42)

where the last identity holds since γ > 1
δ
.12

Thus, for given δ the clearing schedules CSγ with γ ∈ (1
δ
, 1

2
] guarantee that the13

expected matching ratio and waiting ratio are both �nite, i.e., free lunch.14
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Theorem 6(i) extends our previous analysis by showing how the critical rate clear-1

ing schedule moves dependent on δ. In fact Theorem 6(ii) shows that the con-2

clusion of Theorem 2 does not hold for the regime δ > 2, that is, there exists3

a free lunch and in particular it is achieved by the clearing schedules CSγ with4

γ ∈ (1
δ
, 1

2
]. This is because for quickly decaying matching costs it becomes easier5

to choose a `good' schedule, and thus the `window of opportunity' is increasing in6

the derivative of g. One can build intuition for this result by reasoning about mar-7

ket settings that di�er in terms of match cost variability: in markets where match8

costs are generally rather similar, thickening the market by waiting will only lead9

to a meaningful positive e�ect in terms of expected match cost reduction when10

waiting for a long time. By contrast, when match costs vary substantially, match11

costs reduce in expectation with much less delay, thus making it more likely for a12

mechanism designer to get a free lunch. Importantly, the clearing schedule CSgreedy13

is never optimal when dealing with many types, independent of the match cost14

distribution at hand.15

7 Discussion16

In this paper, we studied the dynamic clearing game, where heterogeneous clients17

and providers arrive uncoordinatedly in order to be matched. We studied the18

trade-o� a social planner is facing between two competing objectives: a) to reduce19

players' waiting time before getting matched; and b) to form e�cient pairs in20

order to reduce matching cost.21

Our analysis of the dynamic clearing game reveals that a multi-objective social22

planner often faces a substantial trade-o�. Starting with the micro-founded model23

for match costs we showed that there exists no free lunch, that is, there is no24

clearing schedule that is approximately optimal in terms of both waiting time and25

matching cost. We identi�ed a unique breaking point where a stark reduction in26

matching cost compared to a stark increase in waiting cost occurs. In line with27

recent works by Ashlagi et al. (2017), Ashlagi et al. (2018) and many others, we28

focused on a concrete class of social welfare functions that weigh costs from waiting29

versus matching on a comparable scale and identify the optimal clearing schedule,30

namely, the clearing schedule that matches the k-th couple when Θ(
√
k(log k)1/3)31

players are on the short side of the market.32

Generalizing the model, we abstract away from modeling match costs directly33

and take a macroscopic viewpoint. Positing that the cost of matching a couple34
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depends on the number of clients and providers currently in the market we identify1

two regimes. One, where no free lunch continues to hold, the other, where there2

is a window of opportunity to be optimal along both dimensions, that is free3

lunch.4

There are multiple directions in which our analysis could be extended. Perhaps the5

most evident avenue for future research is to model market participation behavior6

game-theoretically, which would lead to new strategic considerations and probably7

induce other matchings (see, e.g., Baccara et al. 2018). This analysis could be8

pursued in more applied contexts, for instance relating to our motivating example9

of a labor market with a central employment bureau, where waiting costs could10

be interpreted as bene�ts payable by the bureau. An unemployed worker might11

forgo some of these bene�ts by (repeatedly) rejecting matches. This is the case12

because longer waiting, even though borne out of strategic behavior, may improve13

the match quality (reducing matching cost).14

A second route for further investigation is to enlarge the options of the social15

planner in terms of clearing schedules. For one, the social planner could be learning16

from market observations about the distribution of match costs, which incidentally17

we may also allow to follow other, more general classes of distributions. This would18

allow the social planner to formulate more sophisticated clearing schedules that19

incorporate match costs between players that are currently in the market. In20

particular, if the social planner learns that a given agent may be `hard to match',21

then it might be sensible to match that agent directly and not incur further waiting22

cost. Furthermore, the social planner may want to match more than one couple23

at a time.24

The study of dynamic market institutions is clearly fascinating, with tremendous25

scope for progress in (old and new) applications, where research has only just26

started. Our contribution has been to go beyond binary match values, and to iden-27

tify breaking points under incomplete information. We hope that our framework28

is able to provide fertile ground for further research, both theoretical and applied29

to real-world market contexts, in particular as regards thinking about whether30

the kinds of breaking points we describe are relevant in the optimal design of such31

markets.32
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Appendix1

A Proof of Theorem 32

Before turning to the proof we introduce the following de�nition and lemmas.3

De�nition 7. Let X1, X2, . . . be iid random variables with P[Xi = 1] = P[Xi =4

−1] = 1
2
.5

• Let Sk =
∑k

i=1Xi.6

• Let t(k, C) be the stopping time for the event that for the k-th time at least7

C clients and C providers are in the market, assuming that every time this8

is the case one client and one provider are removed.9

Lemma 8. Let wij ∼ exp(λj) for j = 1, 2, . . . , N , be a family of independent10

exponentially distributed random variables. Then11

min{wi1, wi2, . . . , wiN} ∼ exp

(
N∑
j=1

λj

)
. (43)

In particular, if for all j, λj = 1, then E[minj wij] = 1
N
.12

Proof. This proof is standard but we repeat it for the sake of completeness. The13

random variable wij has cumulative distribution function14

Fwij = P(wij ≤ x) = 1− e−λjx for all x > 0 and all j = 1, 2, . . . , N . (44)

Now, de�ne the random variable Y = min{wi1, wi2, . . . , wiN}. Then, the cumula-
tive distribution function of Y is

FY (y) = P(Y ≤ y)

= 1− P(Y ≥ y)

= 1− P(min{wi1, wi2, . . . , wiN} ≥ y)

= 1− P(wi1 ≥ y) · P(wi2 ≥ y) · . . . · P(wiN ≥ y)

= 1− e−λ1y · e−λ2y · · · · · e−λNy

= 1− e−
∑N
j=1 λjy y > 0 (45)

The latter cumulative distribution function is that of an exponential variable with15

parameter
∑N

j=1 λj.16
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Lemma 9. For Sk de�ned as above we have:211

0.67 ·
√
k /

2π

e2
·
√

2

π
·
√
k ≤ E[|Sk|] ≤

e√
π
·
√

2

π
·
√
k / 1.23 ·

√
k (46)

Proof. The starting point of our proof is an intermediate result in the proof of the

limit of the expected absolute value of the 1-d random walk, which is detailed in

Hizak and Logozar (2011, Equations 29a and 29b) and is based on combinatorial

arguments via the binomial distribution:

E[|Sk|] =


1

2k−2

k

2

(
k − 1

k/2

)
=

k

2k
k!

[(k/2)!]2
for k even,

1

2k−1

k + 1

2

(
k

(k + 1)/2

)
=
k + 1

2k+1

(k + 1)!

[((k + 1)/2)!]2
for k odd.

(47)

Since E[|S2k|] = E[|S2k−1|] it su�ces to analyze the case where k is even. To that2

end, we will use Stirling's formula to bound k! from above and below as3

√
2π · kk+1/2 · e−k ≤ k! ≤ e · kk+1/2 · e−k (48)

For k even, we may bound |Sk| from above as:

E[|Sk|] =
k

2k
k!

[(k/2)!]2
≤ k

2k
e · kk+ 1

2 · e−k

2π · (k/2)k+1 · e−k
=

e√
2π
·
√

2

π
·
√
k (49)

Next, we lower bound |Sk| for k even:

E[|Sk|] =
k

2k
k!

[(k/2)!]2
≥ k

2k

√
2π · kk+1/2 · e−k

e2 · (k/2)k+1 · e−k
=

2π

e2
·
√

2

π
·
√
k (50)

This concludes the proof for k even. For k odd we have with the observation that

|Sk| = |Sk+1|:

2π

e2
·
√

2

π
·
√
k ≤ 2π

e2
·
√

2

π
·
√

2dk/2e ≤ E[|Sk+1|] = E[|Sk|] (51a)

and

e√
π
·
√

2

π
·
√
k ≥ e√

π
·
√

2

π
· 1√

2
·
√

2dk/2e ≥ E[|Sk+1|] = E[|Sk|] (51b)

21Note that limk→∞ E[|Sk|] =
√

2
π ·
√
k (Peters, 1856).
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1

For the sake of limiting notation the proposition and proof are stated for the2

clearing schedules with f(k) = dkγe rather than for Θ(f). Adding constant upper3

and lower bounds is straightforward and thus omitted. Recall that t(k, f(k)) is4

the stopping time for the event that for the k-th time at least f(k) clients and5

f(k) providers are in the market, assuming that every time this is the case one6

client and one provider are removed.7

Proof of Theorem 3. Throughout the proof we shall simplify notation by omitting8

the fact that some of the matching schedules are de�ned via the ceiling of functions9

mapping to R+ (e.g., dkγe). The results are not changed by the omission since10

match costs are never underestimated and overestimated by very little. Further,11

while they are stated together in the proposition, we study the clearing schedules12

CSγ = 0 and CS0<γ<1/2 separately since they require di�erent arguments.13

First come, �rst served (CSFCFS) In FCFS the cost of each match is the ex-14

pectation of a single match cost, that is λ. After A matches have occurred, the15

expected incurred cost is λA. Thus, given the patient clearing schedule has cost16

bounded above by π2

6λ
, the expected matching ratio is equal to λ·A

π2/(6λ)
.17

Before stating the proofs for the other results recall from the proof of Proposition 1,18

that the exponential distribution is closed under scaling. We shall thus simplify19

notation and assume that for all i, j wij ∼ exp(1). Note that, for lower bounds20

the scaling factor 1
λ
needs to be applied and for upper bounds the scaling 1

λ
needs21

to be applied. But note that those scaling factors are constant with respect to τ22

(and thus A) and therefore do not in�uence the orders of the limiting results.23

Greedy matching (CSgreedy) The k-th match happens when the minimum of24

the number of clients and providers who already arrived to the market is k, that25

is, at time t(k, 1). The expected weight of the k-th match depends on the number26

of players currently present on the long side of the market (since on the short27

side there is only one agent). This random variable is given by |St(k,1)| + 1. By28

Lemma 8 the expected weight thus is E[ 1
|St(k,1)|+1

]. The �rst A matches thus have29

an expected cost of30

E[
A∑
k=1

1

|St(k,1)|+ 1
]. (52)
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Given that we study �xed A (the number of matches that) we have:221

E

[
A∑
k=1

1

|St(k,1)|+ 1

]
=

A∑
k=1

E[
1

|St(k,1)|+ 1
] (53)

Next, by Jensen's inequality ( 1
x
is convex) we have:2

A∑
k=1

E[
1

|St(k,1)|+ 1
] >

A∑
k=1

1

E[|St(k,1)|+ 1]
=

A∑
k=1

1

E[|St(k,1)|] + 1
(54)

We shall now approximate E[t(k, 1)]. By Lemma 9 we have E[St] < 1.23
√
t. Thus3

the short side of the market has t−1.23
√
t

2
agents. Setting k = t−1.23

√
t

2
and solving4

the quadratic equation we �nd the crude upper bound for the expectation:235

E[t(k, 1)] =
(1.23 +

√
1.232 + 8k

2

)2
<

3

4
+ 2k + 2

√
k < 5k (55)

Returning to Eq. (54) we have with Lemma 9:

A∑
k=1

1

E[|St(k,1)|] + 1
>

A∑
k=1

1

E[|S5k|] + 1
>

1

1.23

A∑
k=1

1√
5k + 1

(56)

>
1

1.23
A · 1√

5A+ 1
> A · 1

5
√
A

=

√
A

5
(57)

Thus, given the optimal schedule has costpatient(A) ≤ π2

6λ
, the expected matching6

ratio is lower bounded by
√
A

5π2/(6λ)
.7

Subcritical matching (CSγ=0) We shall �x the clearing schedule such that it8

matches a couple every time some �xed C ∈ N players are on the short side of the9

market (N − A = C) and note that it belongs to the family of clearing schedules10

CSγ=0.11

Next, note that t(k, C) = t(1, C) + t(k − 1, 1), since we assume that every time12

22Note that t (the total number of client and providers who have arrived to the market)
depends on A (and vice versa). Therefore, Wald (1944)'s equation does not apply and thus the
route of inquiry to study the matching cost at some continuous time τ does not work since we
could not interchange summation and expectation.

23We solve k = t−1.23
√
t

2 . Setting t = u2 and rearranging we solve quadratic equation u2−u−
2k

!
= 0. The solutions are:

u1,2 =
1.23±

√
1.232 + 8k

2

Given the variable transformation the positive solution is selected.
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at least C clients and C providers are in the market exactly one client and1

one provider match and thus leave the market. Similarly to the proof of The-2

orem 3(CSgreedy) we can bound E[t(1, C)] from above by noting that it is equal to3

E[t(C, 1)]. Thus4

E[t(k, C)] = E[t(C, 1)] + E[t(k − 1, 1)] < 5C + 5k (58)

With the latter and, as above by Jensen's inequality ( 1
x
is convex) and Lemma 9

we have for the expected matching cost:

E[
A∑
k=1

1

(C + |St(k,C)|)C
] ≥

A∑
k=1

1

(C + E[|St(k,C)|])C
≥

A∑
k=1

1

(C + E[|S5C+5k|])C

≥ 1

1.23

A∑
k=1

1

(C +
√

5C + 5k)C
≥ A

1.23
· 1

(C +
√

5C + 5A)C

=
1

1.23 · C
· A− C√

5C + 5A+ C
= Ω(

√
A) (59)

Thus, given the optimal clearing schedule has �nite cost the expected matching5

ratio is α(A) = Ω(
√
A).6

The second part of the assertion follows by observing:7

E[
A∑
k=1

1

(C + |St(k,C)|)C
] <

1

C
E[

A∑
k=1

1

1 + |St(k,1)|
] (60)

Subcritical matching (CS0<γ<1/2) For the upper bound, by Lemma 8, we have:

E[
A∑
k=1

1

(kγ + |St(k,√k)|)kγ
] ≤

A∑
k=1

1

k2γ
= 1 +

A∑
k=2

1

k2γ
≤ 1 +

∫ A

x=1

1

x2γ
dx

= 1 +

[
1

1− 2γ
x1−2γ

]A
x=1

≤ 1 +
1

1− 2γ
A1−2γ (61)

Thus, given the optimal clearing schedule has �nite cost, the expected matching8

ratio is α(A) = O(A1−2γ) for 0 < γ < 1
2
.9

For the lower bound, note that t(k, kγ) < 10k for γ < 1 by similar arguments as in

Eq. (58). Further note that E[|St|] is strictly increasing in t. Thus, with Jensen's
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inequality ( 1
x
is convex):

A∑
k=1

E[
1

(kγ + |St(k,kγ)|)kγ
] >

A∑
k=1

1

(kγ + E[|S10k|])kγ
>

1

1.23

A∑
k=1

1

(kγ +
√

10k)kγ

>
1

1.23(
√

10 + 1)

A∑
k=1

1

k
1
2

+γ
>

1

6

∫ A

x=1

1

x
1
2

+γ
dx

>
1

6
[

1
1
2
− γ

x
1
2
−γ]Ax=1 = Ω(A

1
2
−γ) (62)

Critical matching (CSγ=1/2) For the upper bound, by Lemma 8, we have:1

E[
A∑
k=1

1

(
√
k + |St(k,√k)|)

√
k

] <
A∑
k=1

1

k
≤ logA+ 1 (63)

where the last inequality follows from the bounds for the harmonic series. Thus,2

given the optimal clearing schedule has �nite matching cost (lower bounded by3

log(2)

λ
), the expected matching ratio is smaller than

1
λ

(logA+1)

log(2)/λ
.4

For the lower bound note that E[t(k,
√
k)] < 10k by similar arguments as in

Eq. (58). Further note that St is strictly increasing in t. Thus, with Jensen's

inequality ( 1
x
is convex) and Lemma 9:

A∑
k=1

E[
1

(
√
k + |St(k,√k)|)

√
k

] >
A∑
k=1

1

(
√
k + E[|S10k|])

√
k
>

1

1.23

A∑
k=1

1

(
√
k +
√

10k)
√
k

≥ 1

6

A∑
k=1

1

k
>

1

6
logA (64)

Thus, given the optimal clearing schedule has costpatient(A) ≤ π2

6λ
, the expected5

matching ratio is bounded below by
1
6

logA

π2/(6λ)
= λ

π2 · logA.6

Supercritical matching (CS1/2<γ≤1) As above, by Jensen's inequality (since7

1/x is convex) and Lemma 8 we have:8

E[
A∑
k=1

1

(kγ + |St(k,kγ)|)kγ
] <

A∑
k=1

E[
1

kγkγ
] =

A∑
k=1

1

k2γ
→ ζ(2γ) (65)

where ζ is the Riemann zeta function and is known to converge for γ > 1
2
. Given9

that we are considering a sum with positive summands convergence is from below.10
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Thus, given the optimal clearing schedule has �nitematching cost (costpatient(A) ≥1

log(2)

λ
), the expected matching ratio is bounded from above by (λ/λ) · ζ(2γ)/ log 22

for 1
2
< γ ≤ 1.3

B Proof of Theorem 44

Proof of Theorem 4. First note that in order to compare di�erent clearing sched-5

ules we are interested in the additional waiting time incurred until some number A6

of couples have been matched. Thus, we consider the waiting time until T for the7

greedy schedule (the benchmark) and for other schedules the waiting time until T̂8

where T̂ is the expected time until under the given schedule the same number of9

couples have been matched as in the greedy schedule until time T .10

As in the Proof of Theorem 3 we shall simplify notation by omitting the fact that11

some of the matching schedules are de�ned via the ceiling function of functions12

mapping to R+ (e.g., dkγe). We invite the reader to convince her-or himself that13

the results are not altered through this simpli�cation.14

Let τ(k) be the moment the k-th couple is matched (given a particular clearing15

schedule). We proceed in a case-by-case basis below:16

First come, �rst served (CSFCFS) It su�ces to note that this clearing schedules17

matches players at exactly the same moments as the greedy clearing schedules.18

The result then follows.19

Subcritical and critical matching (CS0≤γ≤1/2) We shall study the worst case20

such clearing schedule with respect to waiting time. We consider two di�erent21

parts. In the �rst part we wait until at least T γ clients and T γ providers are in the22

market. The second part then proceeds in the same way as the greedy clearing23

schedule, keeping in mind that at all future times min{NC, NP} is exactly T γ. The24

expected waiting time of the �rst schedule can be bounded above by the upper25

bound for the expected time until T γ clients and T γ providers are in the market,26

that is, E[τ(5T γ)] = 5T γ (see Eq. (55) in the proof of Theorem 3) noting that we27

used the fact that the arrival of agents is governed by a Poisson clock of rate 1.28

Now, a crude upper bound for the waiting time of the �rst part of the process is29

found be assuming that all agents are in the market from the beginning (τ = 0),30

yielding the upper bound 5T γ · 5T γ.31

Note that, the �rst part of the process takes T̂ −T time. For the remaining second32
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part of the process the waiting cost is the cost of the greedy schedule (2
3
T 3/2) plus1

the cost of the � in expectation � no more than 5T γ agents on each side of the2

market to `remain' for the subsequent periods. Thus the total waiting time is3

bounded above by:4

5T γ · 5T γ +
2

3
T 3/2 + 5T γ · T = Θ(T 3/2) (66)

Thus β(T̂ ) = (3/2) Θ(T 3/2)/T 3/2 = Θ(1).5

Supercritical matching (CS1/2<γ≤1) We �rst construct a lower bound. Con-6

sider the alternative arrival process, where clients and providers alternatingly ar-7

rive to the market. Note that for any given clearing schedule this process incurs8

lower waiting time. For the clearing schedule we consider the waiting time of this9

alternative arrival process is precisely governed by the fact that the k-th match10

takes place when at least kγ players are on the short side of the market. Further11

note that T̂ ≥ T . Thus, the waiting time is lower bounded by using the approxi-12

mation by the Wiener process (by arguments as in Proposition 1 and by observing13

that arrival is governed by a Poisson clock of rate 1):14 ∫ T

0

2τ γdτ =
2

1 + γ
τ 1+γ|T0 = Ω(T 1+γ) (67)

For the upper bound, we construct a clearing schedule that constitutes an upper15

bound of the schedule under consideration. For �xed k, let T = τ(k) consider16

the following clearing schedule: First wait until there are at least kγ clients and17

providers in the market, then proceed with the greedy schedule such that at any18

future point min{clients, providers} in the market is equal to kγ. Note that this19

new schedule has the same total run time as the original schedule, that is, T̂ .20

Further it is evident that the waiting time occurred by the new schedule is greater21

than the waiting time of the original schedule. By arguments as for (CSγ=0) and22

by the fact that arrival is governed by a Poisson clock of rate 1 we can upper23

bound the waiting time by:24

5T γ · 5T γ +
2

3
T 3/2 + 5T γ · T = Θ(T 1+γ) (68)

since we assumed 1
2
< γ ≤ 1.25

The two bounds together show that the waiting time of the originally considered26
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clearing schedule is Θ(T 1+γ).Thus β(T̂ ) = Θ(T 1+γ)

(2/3)T 3/2 = Θ(T γ−
1
2 ).1

Patient matching (CSpatient) First note that for the patient schedule T̂ = T .2

The expected waiting time for the patient schedule until time T is given by3

E
[∫ T

0

NC(τ) +NP(τ) dτ

]
=

∫ T

0

E[NC(τ) +NP(τ)] dτ (69)

where the latter equality holds by Tonelli's theorem (by noting that NC(τ)+NP(τ)4

is non-negative). The expectation is with respect to the number of clients and5

providers and with respect to the arrival times of the agents (governed by a Poisson6

clock). Again by Tonelli's theorem we can consider the case where the expectation7

with respect to the arrival times is taken �rst. Then by the fact that the arrival8

of agents is assumed to follow a Poisson clock of rate 1 we have:9 ∫ T

0

E[NC(τ) +NP(τ)]dτ =

∫ T

0

bτcdτ = Θ(T 2) (70)

Thus β(T̂ ) = Θ(T 2)
2
3
T 3/2 = Θ(

√
T ).10

C Proof of approximation in Proof of Theorem 511

Proof of omitted approximation in Proof of Theorem 5. We begin by ap-12

proximating the two sums in Eq. (31), i.e.,13

A∑
k=1

1

f(k)2
= Θ

(
1

A3/2

A∑
k=1

f(k)

)
(71)

Recalling that f is assumed non-decreasing for large k, the summand on the left-14

hand side is decreasing and15

∫ A

0

1

f(x)2
dx ≥

A∑
k=1

1

f(k)2
≥
∫ A+1

1

dx

f(x)2
(72)

Considering the meaning of f(k) it is without loss of generality to de�ne f(x) = 116

for x ∈ [0, 1) since the summand 1
f(k)2

remains decreasing. Thus the absolute17

di�erence between the two bounds is bounded above by:18 ∣∣∣∣∫ A

0

1

f(x)2
dx−

∫ A+1

1

1

f(x)2
dx

∣∣∣∣ =

∣∣∣∣∫ 1

0

1

f(x)2
dx−

∫ A+1

A

1

f(x)2
dx

∣∣∣∣ ≤ 1 (73)
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It follows that1

A∑
k=1

1

f(k)2
= Θ

(∫ A+1

1

1

f(x)2
dx

)
(74)

Next consider the right-hand side of (31). The summand is increasing, so we get:2

1

A3/2

∫ A

0

f(x) dx ≤ 1

A3/2

A∑
k=1

f(k) ≤ 1

A3/2

∫ A+1

1

f(x) dx (75)

Now note that f(x) < x must hold. Thus the absolute di�erence between the two

bounds is bounded above by:

1

A3/2

∣∣∣∣∫ A

0

f(x) dx−
∫ A+1

1

f(x) dx

∣∣∣∣ =
1

A3/2

∣∣∣∣∫ A+1

A

f(x)dx−
∫ 1

0

f(x) dx

∣∣∣∣
≤ A

A3/2
= O(1). (76)

It follows that3

1

A3/2

A∑
k=1

f(k) = Θ

(
1

A3/2

∫ A+1

1

f(x) dx

)
(77)

With above approximations it follows that Eq. (31) holds if and only if the follow-4

ing equation holds:5 ∫ A

1

1

f(x)2
dx = Θ

(
1

A3/2

∫ A

1

f(x) dx

)
(78)

as claimed.6
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