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Abstract

We assess the long-run growth effects of rising longevity and increasing the

retirement age when growth is driven by purposeful research and development.

In contrast to economies in which growth depends on learning-by-doing spillovers,

raising the retirement age fosters economic growth. How economic growth changes

in response to rising life expectancy depends on the retirement response. Employ-

ing numerical analysis we find that the requirement for experiencing a growth

stimulus from rising longevity is fulfilled for the United States, nearly met for the

average OECD economy, but missed by the EU and by Japan.
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1 Introduction

Rich countries have been facing unprecedented increases in life expectancy over the past

decades. For example, life expectancy in the United States increased from about 69

years in the 1950s to about 79 years in 2020, while it increased by even more in countries

such as France and Germany, from about 67 years in the 1950s to more than 80

years in 2020 (United Nations, 2019). This development undoubtedly raises individual

well-being (Kuhn and Prettner, 2016; Baldanzi et al., 2019). However, it also comes

with certain economic concerns. If people live longer for a constant retirement age,

the resulting increase in economic dependency could lead to a reduction in economic

growth and pose a threat to the sustainability of social security systems and pension

funds (Gruber and Wise, 1998; World Economic Forum, 2004; The Economist, 2009,

2011; Bloom et al., 2010). The extent to which this is true, however, also depends on

the extent to which individuals change their savings behavior in response to increasing

longevity and on the extent to which retirement policies are adjusted to cope with

demographic change (Bloom et al., 2007, 2010).

The economic effects of changing life expectancy and changing retirement policies

have been analyzed, for example, by Futagami and Nakajima (2001), Heijdra and

Romp (2009), Bloom et al. (2007, 2014), Heijdra and Mierau (2011), and Prettner and

Canning (2014). These papers either assume a partial equilibrium perspective in which

the interest rate and economic growth do not react to individual decisions, or they are

based on models in which growth is driven by physical capital accumulation either with

decreasing returns to capital accumulation a la Solow (1956), Cass (1965), Koopmans

(1965), and Diamond (1965) or with constant returns to capital accumulation due

to learning-by-doing spillovers a la Romer (1986) and Rebelo (1991). However, long-

run economic growth in rich countries is mainly driven by purposeful research and

development (R&D) investments (Romer, 1990; Aghion and Howitt, 1992; Jones, 1995;

Kortum, 1997). To analyze the effects of rising life expectancy and changing the

retirement age for these economies, we therefore integrate a demographic structure of

overlapping generations in the vein of Blanchard (1985) into the endogenous R&D-

based growth model of Romer (1990) with a given retirement age.

In a first step, we show that increasing the retirement age raises economic growth

and the equilibrium interest rate because the positive growth effect of the larger work-

force implied by a longer working life overcompensates for the negative growth effect of

reduced savings. Thus, raising the retirement age might be an accurate policy response

to the phenomenon of secular stagnation in which economic growth is sluggish and the

equilibrium interest rate is stuck below zero (Eggertsson et al., 2019, 2020).

The savings channel – and the savings channel only – also features in Futagami

and Nakajima (2001) and Heijdra and Mierau (2011) who find that an increase in the

retirement age leads to a reduction of capital accumulation and therefore to a reduction
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of economic growth in a Romer (1986) model in which growth is driven by capital

accumulation with learning-by-doing spillovers. While their results are highly relevant

for economies with exogenous technological progress (e.g., mostly small economies

adopting technologies from abroad), our results imply the opposite effect in countries

that drive the world-wide technological frontier such as Germany, Japan, and the

United States. The opposing results are also interesting from a theoretical point of

view: It is often argued that results based on endogenous growth models with learning-

by-doing spillovers (Romer, 1986) are very similar to the results based on R&D-driven

growth models (Romer, 1990). Our contribution shows that this is not the case when

analyzing the implications of an increase in the retirement age. Thus, from a policy

perspective, it is important to keep the underlying structure of the economy into

account when considering retirement policies.

In a second step, we show that the extent to which economic growth changes in

response to rising life expectancy depends on the accompanying pension policies. This

is because as long as the boost to savings that is brought about by an increase in

longevity is not very strong, the increase in economic dependency that comes with

greater longevity for a given retirement age will typically lead to a reduction in R&D

activity and economic growth. We show that an increase in the retirement age in

proportion to an increase in life expectancy is sufficient for an increase in longevity to

stimulate economic growth. We also provide a necessary and sufficient condition for a

positive growth impulse, requiring the elasticity of the retirement age with respect to

the increase in longevity to be sufficiently large. Our analysis concludes with a set of

numerical examples, studying how the United States, the European Union economy,

Japan, and the average OECD economy have fared in respect to the rise in longevity

over the time span 2000–2017. We find that only the United States have clearly

benefited in terms of higher economic growth, whereas the growth stimulus from the

longevity increase was neutral for the OECD and negative for the European Union and

Japan. Our numerical results also suggest that a longevity-driven boost to savings is

much weaker than the effects that run through changes in labor participation.

The paper is organized as follows. In Section 2 we set up an overlapping generations

version of the R&D-based endogenous growth model of Romer (1990) with a fixed

retirement age. In Section 3 we derive our main results and discuss their relevance for

actual retirement policies carried out in different countries. Finally, in Section 4 we

draw our conclusions.
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2 The model

2.1 Household side

Consider an economy in which individuals enter the labor market as adults at time t0

and maximize their remaining discounted stream of lifetime utility given by

U =

∫ ∞
t0

log(c)e−(ρ+µ)(t−t0)dt, (1)

where c is instantaneous consumption, ρ is the pure rate of time preference, and µ

represents the mortality rate that augments the rate of time preference because the

risk of death constitutes a further reason to consume earlier in life rather than later.

Individuals earn non-capital income w (wages and lump-sum redistributions of profits

from intermediate goods producers) as long as they are not retired. Suppressing time

arguments and following Yaari (1965) in assuming that individuals save in terms of

fair annuities that insure against the risk of dying with positive capital holdings, the

flow budget constraint reads

k̇ = χw + (µ+ r)k − c, (2)

where k denotes the individual capital stock and χ is an indicator function with value

1 when working and 0 when retired (Bloom et al., 2007; Prettner and Canning, 2014).

The first term in the flow budget constraint relates to income earned on the labor

market and from receiving the lump-sum redistributions of profits (Kuhn and Prettner,

2016). This term becomes zero once an individual retires. The second term refers to the

interest earnings on capital holdings (rk), which are augmented by the redistribution

of capital from people who die to those who survive via the annuity market (µk).

If individuals have a higher income than their consumption expenditures at a given

instant, their capital stock accumulates (k̇ > 0).

Solving the intertemporal maximization problem as represented by Equations (1)

and (2) leads to the standard Euler equation

ċ = (r − ρ)c (3)

stating that consumption expenditure growth depends positively on the difference be-

tween the interest rate and the rate of time preference.

The lifetime budget constraint is

∞∫
t0

e−(µ+r)(t−t0)c(t0, t)dt =

t0+R∫
t0

e−(µ+r)(t−t0)w(t0, t)dt,
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where lifetime consumption expenditures (the left-hand side) have to equal lifetime

income (the right-hand side). In this expression, the working life span is denoted by R

such that the age at retirement is given by t0 + R in the upper bound of the integral

on the right-hand-side that represents lifetime income. For a constant age at labor

market entry t0, an increase in R is tantamount to an increase in the retirement age.

Denoting the aggregate capital stock byK and aggregate consumption expenditures

by C, we have the following definitions to derive the corresponding variables (see for

example Blanchard, 1985; Prettner, 2013; Heijdra, 2017, chapter 15):

K(t) ≡
∫ t

−∞
k(t0, t)N(t0, t)dt0, (4)

C(t) ≡
∫ t

−∞
c(t0, t)N(t0, t)dt0, (5)

where N(t0, t) denotes the size of the cohort entering the labor market at time t0 as

of date t, while k(t0, t) and c(t0, t) are the capital holdings and consumption levels of

the members of this cohort at time t, respectively. To capture the case of a stationary

population, which is reasonably close to the situation in many rich countries, we assume

that the birth rate equals the death rate. In this case, the flow of labor market entrants

is N(t, t) = µN(t), where N(t) =
∫ t
−∞N(t0, t)dt0 ≡ N represents the adult population

size and L(t) =
∫ t
t−RN(t0, t)dt0 is the labor force. Note that, in our setting, i) each

adult cohort is of size µNeµ(t0−t) at a certain date t > t0, ii) the cohort fertility

rate stays constant for a changing mortality rate µ such that the fertility decisions of

individuals do not change for changing parameters, and iii) a change in the mortality

rate does not change the population size such that the scale effect in the Romer (1990)

framework is neutralized with respect to the overall population size.1

Taking into account our demographic structure and using the stated aggregation

rules leads to the following dynamic equations for the aggregate capital stock and for

aggregate consumption

K̇ = rK +W − C, (6)

Ċ

C
= r − ρ− µ(ρ+ µ)

K

C
, (7)

where W refers to aggregate non-capital income.

The resource constraint states that aggregate production Y is either consumed or

invested in physical capital such that the goods market clearing condition

K̇ = Y − C (8)

1Assuming a growing population as in Buiter (1988) together with a semi-endogenous growth
framework as in Jones (1995) would imply similar effects as the ones that we find during the transition
to the long-run balanced growth path.
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is fulfilled. Next we turn to the description of the production side of the economy.

Since the production side closely follows the R&D-based endogenous growth literature,

we only state the most important equations that we need for the further analysis of

changing the retirement age and changing life expectancy.

2.2 Production side

There are two types of workers in the economy. The first type (LY ) is employed in

the final goods sector to assemble the consumption aggregate. The second type (LA)

refers to scientists in the R&D sector who develop the new technologies (“blueprints”

for machines or simply “ideas”) that drive productivity growth in knowledge-based

economies (see, for example, Romer, 1990; Grossman and Helpman, 1991; Aghion

and Howitt, 1992). To produce the consumption aggregate, the representative firm

in the final goods sector combines workers and machines according to the production

technology

Y = L1−α
Y

∫ A

0
xαi di, (9)

where A is the stock of technology in the country, xi is the quantity of a specific

machine i used in final goods production, and α ∈ (0, 1) is the elasticity of final output

with respect to machines. Taking the final good as the numéraire, profit maximization

of final goods producing firms together with the assumption of perfect competition

in the final goods market imply that the wage rate for workers, wY , and the price of

machines, pi, are given by

wY = (1− α)
Y

LY
, pi = αL1−α

Y xα−1
i . (10)

Each intermediate firm produces one of the differentiated machines such that there

is monopolistic competition in the vein of Dixit and Stiglitz (1977). After a firm has

purchased a blueprint from the R&D sector, it has access to a production technology

that allows them to convert one unit of capital k into one machine x such that ki = xi

for all firms i. Thus, operating profits can be written as

πi = piki − rki = αL1−α
Y kαi − rki. (11)

Profit maximization of firm i yields the optimal pricing policy pi = r/α, where 1/α is

the markup over marginal cost (Dixit and Stiglitz, 1977). As a consequence, the aggre-

gate capital stock is equal to the total quantity of intermediates, i.e., K = Ax. Using

this, the aggregate production function [Equation (9)] becomes Y = (ALY )1−αKα and

production per capital unit can be written as a function of the interest rate and the

elasticity of final output with respect to machines r = αp = α2Y/K ⇒ Y/K = r/α2.

The R&D sector employs scientists to discover new technologies (Romer, 1990).
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Depending on the productivity of scientists, λ, and their employment level, LA, the

stock of blueprints evolves according to

Ȧ = λALA. (12)

R&D firms maximize their profits πA = pAλALA − wALA, with pA representing the

price of a blueprint, by choosing the employment level, LA. The first-order condition of

this profit maximization problem pins down wages in the research sector as wA = pAλA.

Due to perfect labor mobility, wages of workers in the final goods sector and wages of

scientists equalize at the labor market equilibrium such that

wA = pAλA = (1− α)
Y

LY
= wY . (13)

Firms in the R&D sector charge a price for the blueprint they produce that is equal

to the present value of operating profits in the intermediate goods sector. The reason

is that there is always a potential entrant who is willing to outbid a lower price.

Consequently,

pA =

∫ ∞
t

e−Ω(τ)π dτ

holds in equilibrium, where Ω(τ) =
∫ τ
t r(s) ds denotes the compound interest between

t and τ . Via the Leibniz rule and the fact that prices of blueprints do not change

along a balanced growth path (BGP), we obtain the long-run equilibrium price of a

blueprint as

pA =
π

r
.

Next, by using Equation (11), we get operating profits as π = (1− α)αY/A such that

the price of blueprints becomes pA = (1−α)αY/(rA). Using the labor market clearing

condition L = LA +LY , we can then determine the quantity of labor employed in the

final goods sector and in the R&D sector by using Equation (13) as

LY =
r

αλ
, LA = L− r

αλ
. (14)

This endogenous division of labor determines the flow of new technologies in the R&D

sector. Inserting Equation (14) into Equation (12) leads to the evolution of technology

as

Ȧ = max

{
λAL− rA

α
, 0

}
. (15)

Now we have all the necessary ingredients to solve for the long-run BGP and to assess

the effects of changing life expectancy and a changing retirement age on economic

growth.
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3 The impact of rising longevity and changing retirement

policies on long-run growth

Along a BGP, we know that the growth rates of technology, capital, and consumption

coincide such that Ȧ/A = Ċ/C = K̇/K = g. Collecting Equations (7), (8), (15),

recalling that labor supply is given by L(t) =
∫ t
t−RN(t0, t) dt0, and utilizing the

definition C/K ≡ ξ, we derive the following three-dimensional system describing our

model economy along the BGP

g =
r

α2
− ξ, (16)

g = r − ρ− µ(ρ+ µ)
1

ξ
, (17)

g = λ

∫ t

t−R
N(t0, t) dt0 −

r

α
. (18)

In this system, the endogenous variables are the interest rate (r), the consumption-to-

capital ratio (ξ), and the long-run economic growth rate (g). Since this system cannot

be solved explicitly, we turn to implicit comparative statics to prove the analytical

results in Propositions 1 and 2. We focus on two sets of insights: In a first step, we

consider the balanced-growth impact of an isolated change in the retirement age. In

a second step, we consider the balanced-growth impact of a change in longevity and

study how this depends on potential adjustments in the retirement age.

Proposition 1. In the endogenous growth framework of Romer (1990) with overlap-

ping generations and retirement, an increase in the retirement age (a rise in R) leads

to

(i) an increase in the interest rate (r) and

(ii) an increase in the long-run economic growth rate (g).

Proof. Noting that
∫ t
t−RN(t0, t) dt0 = N

(
1− e−µR

)
, we rewrite the system (16)-(18)

as

W (ξ, g, r) :=
r

α2
− ξ − g = 0, (19)

X (ξ, g, r) := r − ρ− µ(ρ+ µ)
1

ξ
− g = 0, (20)

Y (ξ, g, r) := λN
(
1− e−µR

)
− r

α
− g = 0. (21)

Applying the implicit function theorem and Cramer’s rule, we obtain the following
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comparative statics

dg

dR
=

λµNe−µR
[
α2ξ2 + µ(µ+ ρ)

]
(1 + α) [αξ2 + µ(µ+ ρ)]

> 0, (22)

dr

dR
=

α2λµNe−µR
[
µ(µ+ ρ) + ξ2

]
(1 + α) [αξ2 + µ(µ+ ρ)]

> 0. (23)

Hence, in contrast to Futagami and Nakajima (2001) and Heijdra and Mierau

(2011), who base their analysis on a Romer (1986) framework in which growth is

driven by physical capital accumulation via learning-by-doing spillovers, an increase in

the retirement age unambiguously raises economic growth in a Romer (1990) setting.

The intuition for this result is that a rise in the retirement age implies an increase in

the labor force and therefore it raises the number of scientists that are available for

the production of blueprints in the R&D sector. While there is also a reduction in

individual savings due to the longer working life (as in Futagami and Nakajima, 2001;

Heijdra and Mierau, 2011), the associated negative growth effect is overcompensated

by the positive effect of the larger labor force.

The difference in the results suggests that in economies in which growth is mainly

driven by purposeful R&D investments (such as Germany, Japan, and the United

States), an increase in the retirement age will indeed lead to a rise in the long-run

economic growth rate. However, in economies, in which growth is mainly driven by

physical capital accumulation coupled with learning-by-doing spillovers (predominantly

small economies that are not advancing the world-wide research frontier and adopt

technologies developed abroad), a rise in the retirement age could lead to a reduction

in the growth rate. Consequently, any adjustment of the retirement age should be

considered in light of the underlying structure of the economy.

The results of Proposition 1 show that a rise in the retirement age might be an

accurate policy response to the phenomenon of secular stagnation as described in detail

by Eggertsson et al. (2019, 2020). According to these contributions we are facing a

prolonged period of stagnation in many countries with sluggish economic growth and

an equilibrium interest rate that is stuck below zero. Our results show that raising the

retirement age increases the workforce and – at the same time – reduces savings. Both

of these effects put upward pressure on the interest rate and, overall, lead to faster

economic growth.

As far as the robustness of our results to the use of other R&D-based growth models

as baseline framework is concerned, the following remark is in order.

Remark 1. The impact of an increase in the retirement age would follow a similar

mechanism as the one described here in both a semi-endogenous growth model follow-

ing Jones (1995), Kortum (1997), or Segerström (1998) and a Schumpeterian growth
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model following Peretto (1998) or Young (1998) without the strong scale effect. How-

ever, the growth effect itself would only be transient and vanish in the long run. In

other words, increasing the retirement age would have a positive level effect on per

capita GDP but not on long-run growth. As the transition in these growth models is

usually rather slow (see, for example, Prettner and Trimborn, 2017), even a transient

growth effect of retirement policies may span a substantial time period.

The effects of increasing life expectancy are more subtle because there are three

separate and opposing channels: (i) a reduction of the generational turnover that leads

to higher aggregate savings, which encourages investment in R&D and thereby fosters

economic growth; (ii) a reduction of the labor supply for a given retirement age because

– for a stationary population – a lower mortality rate implies a lower support ratio;

and (iii) potentially an offsetting adjustment in the retirement age by policy makers.

Proposition 2. In the endogenous growth framework of Romer (1990) with overlap-

ping generations and retirement, an increase in life expectancy (a decrease in µ) leads

to

(i) a decrease in the interest rate (r) if and only if the retirement response satisfies

dR

dµ

µ

R
> −1− ξ(ρ+ 2µ)

RλNe−µR [µ(ρ+ µ) + ξ2]
, (24)

(ii) an increase in the long-run economic growth rate (g) if and only if the retirement

response satisfies

dR

dµ

µ

R
< −1 +

αξ(ρ+ 2µ)

RλNe−µR [µ(ρ+ µ) + α2ξ2]
. (25)

Proof. Applying the implicit function theorem and Cramer’s rule to the system of

equations (19)-(21), we obtain the following comparative statics

dg

dµ
=

e−µR
{
λNR

[
α2ξ2 + µ(µ+ ρ)

]
− αξ(2µ+ ρ)eµR

}
(α+ 1) [αξ2 + µ(µ+ ρ)]

S 0,

dr

dµ
=

α2
{
ξ(2µ+ ρ) + λNRe−µR

[
µ(µ+ ρ) + ξ2

]}
(α+ 1) [αξ2 + µ(µ+ ρ)]

> 0.

Combining these expressions together with (22) and (23), we obtain the forms

dg

dµ
+
dg

dR

dR

dµ

and
dr

dµ
+
dr

dR

dR

dµ
.
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Rearranging these expressions provides the conditions reported in the proposition.

Remark 2. We have cast our analysis directly in terms of the mortality rate µ. In

the Blanchard (1985) setting life expectancy is given by the identity LE ≡ µ−1. Thus,

we obtain the relationship
dµ

dLE
= − µ

LE

by which to multiply all relevant derivatives to obtain the corresponding expression in

terms of life expectancy. Furthermore, note that

dR

dLE

LE

R
=
dR

dµ

dµ

dLE

R

LE
= −dR

dµ

µ

R

implying that the two conditions in (24) and (25) can be written in terms of life ex-

pectancy by simply reversing the sign of the right-hand-side terms.

To establish a benchmark, consider that the retirement age is not adjusted to a

change in longevity, i.e., dR/dµ ≡ 0. It is immediately verified for this case that

dr/dµ > 0, implying that the interest rate decreases in response to an increase in life

expectancy, reflecting a boost in savings. By contrast, we have dg/dµ Q 0, implying

an ambiguous effect of longevity on economic growth. This is because it is not clear

whether the shift of resources into the R&D sector that is triggered by the decline

in the interest rate (Prettner et al., 2013; Kuhn and Prettner, 2016) compensates for

the reduction in labour force participation. The proposition then provides conditions

on the elasticity of the retirement response to an increase in longevity for the overall

impact on economic growth to be positive. Specifically, an increase in the retirement

age in response to an increase in longevity (decline in mortality) is required for a

positive impact on economic growth whenever the right-hand-side of the inequality

in (25) is negative, which is true if the savings response is relatively weak. Notably,

however, the retirement age may be lowered, i.e.,

−dR
dµ

µ

R
< 0,

in cases in which the increase in longevity translates into a relatively strong savings

response (as may be true for very low levels of the retirement age). Furthermore, the

condition shows that a proportional adaptation of the retirement age to longevity, as

implied by the unit elasticity

−dR
dµ

µ

R
= 1

always guarantees a positive impact of a longevity increase on balanced growth. Fi-

nally, we see from (24) that longevity improvements lead to a decline in the interest
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rate as long as retirement is not boosted by too much. Again, this is always true for

a proportional adaptation.

The ambiguous effect of an increase in life expectancy on economic growth in case

of a fixed retirement age begs the questions i) as to how much different economies need

to adjust their retirement age in order to secure a positive impact of rising longevity

on economic growth and ii) as to whether actual changes to the retirement age are

adequate in this regard. In the following, we provide a numerical assessment of how

four economies – the United States, the EU, Japan, and the OECD (average) economy

– have fared in respect to these questions. To obtain a long-term assessment and to

balance out short-term fluctuations, we calibrate the economies to reflect the average

growth rate over the time frame 2000–2017, dropping the years 2008 and 2009 due to

the strong distortions during the financial crisis, and calculate the threshold value

Ψ := −1 +
αξ(ρ+ 2µ)

RλNe−µR [µ(ρ+ µ) + α2ξ2]

on this basis. We then calculate the elasticity of the change in the retirement age in

response to the change in life expectancy over the time frame 2000–2017 and compare

it against the threshold in order to arrive at an assessment of the impact of longevity

increases on economic growth.

Successively substituting for r and ξ in the system (16)–(18) and subsequently

reinserting, we can solve for the closed form solution

g∗ =

 (1 + α)λN
(
1− e−µR

)
,

−ρ−
√

[(1− α)λN (1− e−µR) + ρ]2 + 4αµ (µ+ ρ)


2 (1 + α)

, (26)

r∗ = αλN
(
1− e−µR

)
− αg∗, (27)

ξ∗ =
r∗

α2
− g∗ =

λN
(
1− e−µR

)
α

− 1 + α

α
g∗. (28)

For all countries, we set α = 0.33 in line with Jones (1995) and Acemoglu (2009) and a

time preference rate ρ = 0.025 that is within a reasonable range of values (cf. Warner

and Pleeter, 2001; Grossmann et al., 2013a,b). We take the economy-specific growth

rate g and life expectancy LE = µ−1 from the World Development Indicators (World

Bank, 2019) and calculate the average effective retirement age R from OECD (2019)

data.2 Based on this, we employ Equation (26) to calibrate the value of λN . Using

2According to OECD (2019) “the average effective age of retirement is calculated as a weighted
average of (net) withdrawals from the labour market at different ages over a 5-year period for workers
initially aged 40 and over. In order to abstract from compositional effects in the age structure of
the population, labour force withdrawals are estimated based on changes in labour force participation
rates rather than labour force levels.” OECD (2019) reports the average effective retirement ages by
gender. To arrive at a general population average, we weigh the gender-specific retirement ages with
the gender-shares in the total labor force, as reported in World Bank (2019).
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this value in Equation (28) to determine ξ∗, we derive the threshold Ψ to which we

compare the elasticity

ε :=
(R2010−2017 −R2000−2007)/R2000−2007

(LE2010−2017 − LE2000−2007)/LE2000−2007

that we calculate from the data. When calculating the elasticity, we average the

values of retirement and life expectancy over the time spans 2000–2007 and 2010–

2017, respectively. Table 1 summarizes our findings.

Variable United EU Japan OECD
States

avg. growth rate 2000–2017 (in %) 2.16 1.75 1.48 1.60
avg. life expectancy 2000–2017 77.96 79.28 82.62 78.90
avg. retirement age 2000–2017 64.84 61.55 68.53 63.10

threshold (Ψ) 0.944 0.951 0.946 0.947
elasticity (ε) 1.260 0.582 0.484 0.900
net gain in avg. growth 2000–2017
vs. 2000–2010 (in % points) 0.013 -0.042 -0.02 -0.003

Table 1: Comparison between the threshold (Ψ) and the elasticity (ε). Source: authors’
own calculations based on World Bank (2019) (growth rates, life expectancy, gender
shares in total labor force) and OECD (2019) (average effective retirement age).

The four economies exhibit some variation across growth rates, with the United

States experiencing average growth rates in excess of 2 percent over the time frame

2000–2017 as opposed to some 1.5 percent only in Japan. By contrast, Japan leads

in terms of life expectancy with around 83.5 years, while the United States is lagging

with some 78 years. With 68.5 years the Japanese retire very late and experience

only around 15 years in retirement, whereas EU citizens live more than 17.5 years

in retirement. The threshold value for the necessary increase in the retirement age

is rather close to one for all economies, which reflects a modest and rather similar

marginal savings response to an increase in longevity. This, in turn, suggests that

for all economies there is relatively little leeway to remain below an increase in the

retirement age that would be in lockstep with the increase in longevity unless they

were willing to forgo economic growth.

As it turns out, however, there is considerable variation in the elasticities of the

actual retirement age with respect to longevity change, ranging from 1.26 in the United

States, implying an overcompensation of the increase in longevity, to 0.48 in Japan.

According to our results, only the United States would have experienced a positive

growth stimulus from the increase in longevity, whereas Japan and the EU economy

would have suffered a loss. Notably, the OECD average economy lies very close to

the threshold, implying that the longevity increase was almost neutral. We conclude
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by noting that the differentials in the simulated average growth rates 2000–2007 as

opposed to 2010–2017 are rather small. They range from a 0.013 percentage point gain

in the United States to a 0.042 percentage point loss in the EU. This suggests that the

impact on economic growth may be of secondary importance in the determination of

retirement policies.

4 Conclusions

We showed that a rise in the retirement age implies faster long-run economic growth

in modern knowledge-based economies and that the growth effects of increasing life

expectancy depend on the underlying retirement policies. If the retirement age is left

constant, an increase in life expectancy is likely to reduce economic growth. By con-

trast, if the retirement age rises in lockstep with life expectancy, this is sufficient for

economic growth to be boosted by an increase in life expectancy. We provide a more

specific threshold requirement for the increase in the retirement age that is necessary

to preserve a positive growth stimulus and show numerically that this criterion is over-

achieved by the United States, (nearly) met for the OECD average, and not attained

by the EU and Japan. The growth impact is of relatively modest magnitude, however.

Overall, our results differ from those based on models in which growth is mainly

driven by physical capital accumulation coupled with learning-by-doing spillovers. This

modeling reflects small economies that are not advancing the world-wide research fron-

tier and mainly adopt technologies developed abroad. In these economies, a rise in the

retirement age is prone to depress the long-run economic growth rate (Futagami and

Nakajima, 2001; Heijdra and Mierau, 2011). Overall, our results therefore suggest

that keeping the underlying structure of the economy in mind is particularly impor-

tant when conducting pension policies.

The policy advices emanating from our R&D-based endogenous growth model with

demography and retirement would be i) to raise the retirement age in the face of

secular stagnation because this boosts economic growth and puts upward pressure on

the interest rate; and ii) to couple “on average” the retirement age to life expectancy.

However, we are well aware that crucial differences between different types of labor

are present in reality. For employees in the R&D sector it might easily be possible and

even desirable to extend the working age, whereas workers in the production sector

may struggle, e.g., due to health issues. Consequently, retirement may well need to

be designed in a flexible way such that an increase in the retirement age is possible

for those who are still able and willing to work, while there are options for earlier

retirement (potentially coupled with actuarially fair reductions in pension entitlements)

in physically demanding occupations and for those with health problems.3

3See e.g. Kuhn et al. (2015) for a theoretical analysis under which conditions early retirement may
be attractive on welfare grounds.
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A second qualifier is that we are currently observing breathtaking advances in au-

tomation technologies that are replacing workers (Acemoglu and Restrepo, 2018b; Pret-

tner and Strulik, 2019; Prettner, 2019). These advances are particularly pronounced

in countries that are subject to fast population aging (Abeliansky and Prettner, 2017;

Acemoglu and Restrepo, 2017, 2018a). While it remains to be seen whether automa-

tion could help to avert the negative effects of a declining workforce, this possibility is

worth to be considered in the context of future social security and pension policies.

Appendix

A Optimal consumption and retirement

The control variable is consumption c. The current value Hamiltonian is given by

H = log(c) + φ [χw + (µ+ r)k − c] .

The first order conditions (FOCs) are

1

c
= φ,

(µ+ r)φ = (ρ+ µ)φ− φ̇.

From the first FOC we get −ċ/c2 = φ̇ such that the second FOC implies the consump-

tion Euler equation (3)

ċ

c
= (r − ρ)c. (A.1)

B Aggregating over cohorts

Due to our demographic structure, the aggregation rules to calculate aggregate von-

sumption and aggregate capital are given by

C(t) = µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0, (B.1)

K(t) = µN

∫ t

−∞
k(t0, t)e

µ(t0−t)dt0. (B.2)
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Differentiating (B.1) and (B.2) with respect to time yields

Ċ(t) = µN

[∫ t

−∞
ċ(t0, t)e

µ(t0−t)dt0 − µ
∫ t

−∞
c(t0, t)e

µ(t0−t)dt0

]
+ µNc(t, t)

= µNc(t, t)− µC(t) + µN

∫ t

−∞
ċ(t0, t)e

−µ(t−t0)dt0 (B.3)

K̇(t) = µN

[∫ t

−∞
k̇(t0, t)e

µ(t0−t)dt0 − µ
∫ t

−∞
k(t0, t)e

µ(t0−t)dt0

]
+ µNk(t, t)

= µNk(t, t)− µK(t) + µN

∫ t

−∞
k̇(t0, t)e

−µ(t−t0)dt0. (B.4)

Newborns do not own any capital because we abstract from bequests, i.e., k(t, t) = 0.

From equation (2) it then follows that

K̇(t) = −µK(t) + µN

∫ t

−∞
[χ(t0, t)w(t) + (µ+ r)k(t0, t)− c(t0, t)] e−µ(t−t0)dt0

= rK(t)− C(t) +W (t),

which is the law of motion for aggregate capital with W being aggregate non-capital

income defined as µN
∫ t
−∞ χ(t0, t)w(t)dt0e

−µ(t−t0).

Reformulating an agent’s optimization problem subject to the lifetime budget con-

straint as in Prettner and Canning (2014), we have

max
c(t0,τ)

U =

∫ ∞
t

e(ρ+µ)(t−τ) log[c(t0, τ)]dτ

s.t. k(t0, t) +

∫ R+t

t
w(τ)e−D

A(t,τ)dτ =

∫ ∞
t

c(t0, τ)e−D
A(t,τ)dτ,

(B.5)

where the discount factor is DA(t, τ) =
∫ τ
t [r(s) + µ]ds. The FOC is

1

c(t0, τ)
e(ρ+µ)(t−τ) = µ(t)e−D

A(t,τ).

For the period τ = t this implies that

c(t0, t) =
1

µ(t)
.

Therefore we can write

1

c(t0, τ)
e(ρ+µ)(t−τ) =

1

c(t0, t)
e−D

A(t,τ),

c(t0, t)e
(ρ+µ)(t−τ) = c(t0, τ)e−D

A(t,τ).
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Integrating over time and using (B.5) provides∫ ∞
t

c(t0, t)e
(ρ+µ)(t−τ)dτ =

∫ ∞
t

c(t0, τ)e−D
A(t,τ)dτ,

c(t0, t)

ρ+ µ

[
−e(ρ+µ)(t−τ)

]∞
t

= k(t0, t) +

∫ T

t
w(τ)e−D

A(t,τ)dτ,

⇒ c(t0, t) = (ρ+ µ) [k(t0, t) + h(t)] , (B.6)

where h =
∫ R+t
t w(τ)e−D

A(t,τ)dτ refers to non-capital wealth, i.e., wage income plus

lump-sum transfers of profits. These calculations show that optimal consumption is

proportional to total wealth with a marginal propensity to consume of ρ+ µ (Heijdra

and van der Ploeg, 2002; Grafeneder-Weissteiner and Prettner, 2013; Prettner and

Canning, 2014; Heijdra, 2017, chapter 15). Aggregate consumption is then given by

C(t) ≡ µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0 = µN

∫ t

−∞
eµ(t0−t)(ρ+ µ) [k(t0, t) + h(t)] dt0

= (ρ+ µ) [K(t) +H(t)] . (B.7)

where H refers to aggregate non-capital income. Since newborns do not own capital

because there are no bequests, their consumption is given by

c(t, t) = (ρ+ µ)h(t). (B.8)

Using equations (A.1), (B.3), (B.7) and (B.8), we finally get

Ċ(t) = µ(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)] +

µN

∫ t

−∞
(r − ρ)c(t0, t)e

−µ(t−t0)dt0

= µ(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)] + (r − ρ)C(t)

⇒ Ċ(t)

C(t)
= r − ρ+

µ(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)]

C(t)

= r − ρ− µ(ρ+ µ)
K(t)

C(t)
,

which is the Euler equation for aggregate consumption.
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