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1 Introduction

Interest in multidimensional poverty has moved toward the policy mainstream.1 Since 2010,

the UN’s Human Development Report has included a multidimensional poverty index based on

survey data for more than 100 countries and covering ten dimensions of well-being. In 2011,

Colombia officially adopted a multidimensional poverty index to guide and track progress in

its national poverty reduction plans (Angulo et al., 2016). Despite the growing use of these

metrics, an unresolved challenge is how to adequately account for potential differences in the

relative importance of the various dimensions of well-being that make up a multidimensional

poverty measure. Colombia’s index captures social and health-related aspects of poverty across

five broad areas, using indicators spanning 15 different dimensions.2 While the five areas receive

an equal weight, the individual dimensions are treated differently – e.g., the percentage in

long-term unemployment attracts a weight of 10%, while access to a clean public water system

attracts a weight of 4%. The concern is that comparisons of progress based on one definition of

multidimensional poverty (weighting structure) may not hold up if a different definition (set of

weights) is used (Ravallion, 2012).

Various studies have sought to assess the robustness of multidimensional welfare comparisons,

focussing on the stability of differences in well-being between groups or over time to changes

in the measure of welfare employed. Following progress in the unidimensional literature on

consumption and income poverty, a prevailing approach employs metrics of distributional

dominance (Duclos et al., 2006). The idea here is to compare the properties of the multivariate

empirical distribution of the underlying data on well-being (attainments). In so doing, dominance

results obtained from such approaches should apply to a wide range of plausible social welfare

functions and, therefore, will not depend on any subjective choices used to construct specific

outcome metrics.

By dint of its generality, evaluation of robustness via multivariate stochastic dominance is attrac-

tive. Nonetheless, applying measures of distributional dominance to complex joint distributions –

which may include variables of a binomial, ordinal and continuous nature – remains work in

progress. As Arndt et al. (2012a) note, existing approaches tend to place restrictions on the

nature of the underlying social welfare functions, particularly as regards the permitted sign

of cross-derivatives between dimensions. Moreover, despite important advances in extending

multivariate measures of stochastic dominance to ordinal variables (Yalonetzky, 2013), these

approaches do not transfer easily to the popular counting-type measures of multidimensional

1 Seminal contributions to the literature on constructing multidimensional well-being measures include
Maasoumi (1986); Atkinson (2003); Bourguignon and Chakravarty (2003); Alkire and Foster (2011).

2 For further details see: http://ophi.org.uk/policy/national-policy/colombia-mpi/.
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well-being (see also Atkinson, 2003). Indeed, Yalonetzky (2011) concludes that: “ traditional

dominance conditions ... are not appropriate for poverty counting measures ... except when

extreme poverty identification approaches are considered.” (p. 18).

A reliance on distributional dominance to assess robustness can be questioned on other grounds.

First, when applied to cases that combine data from a large number of dimensions, these

techniques are extremely demanding in terms of data and computational time (Crawford, 2005).

As a result, existing applications of these methods typically consider only a few dimensions

(Maasoumi and Millimet, 2005; McCaig and Yatchew, 2007), which contrasts to the much larger

number of dimensions typically included in popular implementations of multidimensional poverty

indexes (c.f., Colombia). Second, dominance tests typically generate a single overall statistic or

binary conclusion of whether dominance holds. As such, they may not be very informative for

policy-makers where the extent of dominance and sources of distributional overlap are often

of interest (Bennett and Mitra, 2013). Third, and as noted by Hansen et al. (1978), first order

stochastic dominance does not necessarily imply pointwise dominance. Even if the (multivariate)

cumulative distribution function of deprivations for group j stochastically first order dominates

that for group j′, this does not mean that multidimensional poverty is higher in group j for

every feasible poverty definition. However, from the perspective of investigating whether poverty

comparisons are stable (in direction), assessment of pointwise dominance is important and

meaningful (see also Foster et al., 2013).3

An alternative route to assessing robustness is via sensitivity or uncertainty analysis.4 These

methods do not investigate the distribution of the underlying data directly; rather, they consider

the sensitivity of the output from a chosen measurement approach to alternative assumptions.

The aim is to characterize the empirical probability density function of the (univariate) outcome

distribution and, thereby, ascertain whether inferences drawn from a specific set of modelling

assumptions are fragile. This type of analysis holds advantages in complex situations (as

here), where closed form analytical tests regarding a model’s properties are elusive. It also

has the practical benefit of being intuitive and transparent. By providing an estimate of the

empirical distribution of outputs (point-by-point), pointwise dominance can be evaluated directly.

Furthermore, one can explore specific sources of variation or interesting features of the same

outcome distribution.
3 For simplicity, throughout this paper I focus on comparisons of poverty – i.e., whether multidimensional
poverty in group j is greater than in group j′. Where this obtains, it is equivalent to saying that well-being
in group j′ is higher than in group j.

4 For a general discussion of sensitivity analysis see Saltelli et al. (2009). The distinction between
uncertainty and sensitivity analysis is not strict. Helton et al. (2006) (inter alia), however, suggest that
uncertainty analysis seeks to quantify the degree of uncertainty in outputs due to uncertainty regarding
the appropriate values or form of inputs; sensitivity analysis, on the other hand, seeks to determine the
sources of variation in outputs due to differences (uncertainty) in inputs.
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A main disadvantage and source of criticism of sensitivity analysis is that it is often perfunctory.

That is, a general critique is that these methods fail to consider a sufficient combination of

different inputs; or, at least, it is unclear when the outcome distribution has been characterized

comprehensively. For instance, many practical sensitivity analyses rely on varying inputs one

at a time. However, as Saltelli and Annoni (2010) show, this is only justifiable if the model is

linear in these inputs. Taking the case of a counting-type multidimensional poverty measures

(discussed below), these concerns are pertinent. Alkire et al. (2010) explicitly ask whether the

multidimensional poverty measure adopted in the UN’s 2010 Human Development Report is

robust to different weights. However, to answer this, they only evaluate the stability of country

rankings under three alternative weighting structures. In similar exercises, both Lasso de la Vega

(2010) and Bennett and Mitra (2013) limit their analysis of robustness to verifying the impacts

of variation in the poverty cut off, which is just one (variable) input into the definition of such

poverty measures.5

Cognizant of the limitations of existing methods, the aim of this study is to set out a rigorous

approach to evaluating the robustness of multidimensional poverty comparisons, focussing

on counting-type measures where assessment via stochastic dominance has achieved limited

progress. In doing so, I contribute theoretically and practically. As a theoretical contribution,

I note the equivalence between the popular multidimensional headcount poverty measures

developed in Alkire and Foster (2011) (hereafter, AF) and positive Boolean threshold functions.

This is important because examination of the properties of these functions provides viable

directions for assessing robustness. I show that the space of unique poverty definitions is

countably finite and can be partitioned according to the maximum and minimum lengths of its

prime implicants. The latter means that robustness can be analysed by comparing bounds on

multidimensional headcounts for each partition; and the former means that a stochastic search

of the space of unique poverty definitions can be complemented by measures of the degree of

coverage of the search space, for which the Good-Turing estimator of missing mass is appropriate.

As a practical contribution, I show how these two approaches can be implemented. I do so via

the example of the evolution of multidimensional poverty in Mozambique, calculated from a

series of household surveys spanning around 20 years. The results provide strong evidence that

multidimensional poverty has declined over time at the national level, for any possible poverty

definition. That is, headcount poverty in 1996/97 strongly pointwise dominates poverty rates

today. Even so, I show that headcount poverty rates in the Northern and Central regions in

2014/15 overlap with those in the South in 1996/97 – i.e., no dominance relation holds. This

confirms the presence of very persistent regional asymmetries in well-being.

5 A similar critique applies to the robustness analyses set out in Batana (2013) and Alkire and Santos
(2014).
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By way of structure, Section 2 sets out a general definition of robustness in the context of poverty

comparisons. Section 3 adopts a Boolean perspective. It clarifies the equivalence between the AF

headcount and positive Boolean threshold functions; and derives three propositions about these

functions. These propositions directly inform the two robustness procedures – bounding and

stochastic search – which are described in Section 4. Section 5 moves on to their application.

Here, I begin by describing the data and context. Next, I set out the practical steps required to

implement the methods. I then present the main results of the robustness analysis, followed by

brief comments on potential analytical extensions. As a complement to the application, Appendix

A describes a set of user-friendly functions, written in R, that implement these procedures and

which are also supplied with this paper. Finally, Section 6 concludes.

2 Defining robust comparisons

To begin it is helpful to specify the precise meaning of the so-called robust comparisons problem.

To do so, the following general definitions are used:

Definition 2.1. A multidimensional poverty definition is a unit-wise mapping f : (θt, ~zij) →
yij ∈ [0, 1], where:

• ~zij is a D × 1 vector of raw observations for unit i belonging to group j and represents the

indicators of deprivation to be combined/aggregated across each unit. Throughout, this

raw data is taken as given;

• Unless otherwise stated, Zj = (~z1j , ~z2j , ..., ~zIj) is taken as a binary matrix; in which case

each ~zij is a draw from the set of deprivation domains D = {z1, z2, ..., zD} and where

zd ∈ {0, 1};

• θt is a draw from the set S of feasible input parameters, which is assumed to be compact

and takes an associated probability distribution Ω. Constraints on the parameters, such as

adding-up requirements, are implicit in the definition of S; and

• yi is assumed to follow a stable distribution, implying f is well-behaved.

Definition 2.2. A multidimensional poverty measure is a positive monotone aggregation of

the vector of unit-wise outcomes to yield a group-wise summary statistic g : yij → ȳj ∈ [0, 1].

Typically, g is the (weighted) mean operator.

Definition 2.3. Random variable ȳj is said to weakly pointwise dominate random variable ȳj′ if,

for a given choice of the multidimensional mapping function f and aggregation function g, it

holds that ∀ θt ∈ S : ȳj ≥ ȳj′ and there is at least one draw such that ȳj > ȳj′ .
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Definition 2.4. Random variable ȳj is said to strongly pointwise dominate random variable ȳj′

if, for a given choice of the multidimensional mapping function f and aggregation function g,

∀ θt ∈ S : ȳj > ȳj′ .

Definition 2.5. A comparison of multidimensional poverty between two groups j and j′ is said to

be strongly robust if, (ȳj �sp ȳj′) ∨ (ȳj′ �sp ȳj), where �sp denotes strong pointwise dominance.

Weak robustness is defined analogously.

The first two definitions state that a generic measure of multidimensional poverty for a given

group involves two operations on the raw data matrix Zj , composed of D marginal dimensions

(columns or deprivation domains) and I units (rows, typically households or individuals). The

first is the row-wise operation that combines the outcomes in each deprivation domain into a

single composite outcome; the second is the simple aggregation over all members of the group.

Definition (2.3) refers to comparisons of poverty measures between two groups and provides an

intuitive definition of dominance. It states that multidimensional poverty in group j dominates

(is larger than) that of j′ if their difference is never less than zero and is positive for at least one

vector of inputs θt.

The key aspect of this definition of a robust comparison is that it is defined on the parameter

space S. That is, pointwise dominance is defined here for a given form of the mapping function

f and aggregation function g, essentially meaning we are interested in the difference between

ȳj and ȳj′ taken over all feasible values of θ in the parameter space. In turn, Definition (2.5)

simply states an equivalence between strong pointwise dominance and strong robustness. As

elaborated by Hansen et al. (1978), pointwise dominance (PD) is a strict form of dominance

that immediately implies first order stochastic dominance (but not vice versa). This notion of

robustness also is consistent with existing uses in the literature (Foster et al., 2013; Alkire et al.,

2015).

3 A Boolean perspective

The previous section set out a general definition of what constitutes a robust poverty comparison.

Evidently, since robustness holds for given choices of f and g, as well as raw data matrices

(Zj , Zj′), the nature of these functional forms is fundamental. In fact, it is precisely the form of

f that tends to differentiate between alternative multidimensional poverty measures employed

in previous empirical work (Atkinson, 2003). One of the most established of these is the
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Alkire-Foster (AF) class of metrics. The simple AF headcount measure is defined as follows:

zid =

{
0 if xid ≥ x̄d
(x̄d − xid)/x̄d otherwise

(1a)

yi = I

(∑
d∈D

ωd[zid]
0 > k

)
(1b)

∑
d∈D

ωd = 1, ∀d : ωd > 0, 0 < k ≤ 1

H(~ω, k) = N−1
N∑
i=1

yi (1c)

As shown, the headcount is calculated in three steps. The first applies poverty thresholds,

denoted x̄d to each column of the raw data, yielding a matrix of poverty gaps, with elements zid.

Second, these are combined row-wise to classify units as either poor (yi = 1) or not (yi = 0).

Third, the prevalence of poverty, denoted H, is just the average of vector yi, which may be

calculated using sample weights (not shown). So, in relation to the definitions of Section 2,

equation (1b) corresponds to the row-wise mapping function f ; and equation (1c) corresponds

to the group-wise aggregation g.

The principal insights of this study stem from recognizing that the mapping operation f applied

by the AF headcount measure (H) is a positive Boolean threshold function. Formally, these are

defined as follows:

Definition 3.1. A positive Boolean threshold function f is a mapping {0, 1}D = BD 7→ {0, 1}
with the property that it is positive in each of its inputs and there exist D positive weights,

(w1, w2, . . . , wD) ∈ RD+ , and a threshold 0 < k ≤
∑D

d=1 ωd, such that for all inputs, (zi1, zi2, . . . , ziD) ∈
BD, it holds:

f(zi1, zi2, . . . , ziD) =

{
1 if

∑D
d=1wdzid ≥ k

0 otherwise
(2)

The equivalence between Definition (3.1) and equation (1b) is obvious. What is important is

that positive Boolean threshold functions have a number of interesting properties, which in turn

provide viable pathways for evaluation of robustness.

6



3.1 Finiteness

The first property of positive Boolean threshold functions is that they are finite in number.

Formally:

Proposition 1. When f (Definition 2.1) corresponds to a positive Boolean threshold function, then

for any given number of deprivation domains, the number of unique poverty definitions is countably

finite.

Proof. This derives trivially from the properties of positive Boolean threshold functions. A

standard result in Boolean algebra (see Theorems 1.04, 1.13 and 1.23 in Crama and Hammer,

2011) is that each positive Boolean function can be represented by its unique Blake canonical

form (complete disjunctive normal form, DNF), which is given by the disjunction of all its prime

implicants. That is, it can be represented by a unique sequence of union (OR) and intersection

(AND) operations on the individual inputs (literals), none of which enter in complemented form.

In the present context, the literals are individual elements taken from the set of deprivation

domains D.

Consider the power set, P(D), the elements of which represent all unique conjunctions of literals

in D. It follows that a poverty definition is a member of the hyper-power set populated by all

feasible complete DNFs formed from unique disjunctions of members of P(D). This constitutes

the poverty space, which is a (finite) subset of all Boolean functions in D variables.

A main implication of the above is that any combination of weights (~ω) and thresholds (k)

that enter as inputs into the poverty definition (c.f., equation 1b), can be restated as a Boolean

expression that combines the literals via a sequence of AND or OR operations. So, although there

may be an infinite number of choices for the weights and cut-off, the set of all possible Boolean

functions to which they correspond is finite. From this, it directly follows that the number of

unique points in the parameter space (see Definition 2.1, where θ = {~ω, k}) is finite. So, since g

is a fixed operator, the set of outcome measures also is countably finite.

3.2 Classifiability

What I term the classifiability of positive Boolean threshold functions refers to the fact that one

can classify any given function according to restrictions it places on the combination of literals

required to map to a positive outcome (a logical result of one). This is evident in the simplest

case as follows:

7



Proposition 2. When f (Definition 2.1) corresponds to a positive Boolean threshold function

containing all literals of interest, a multidimensional poverty measure (Definition 2.2) has greatest

lower bound when θ corresponds to the conjunction (intersection) of all literals in D, and has least

upper bound when θ corresponds to the disjunction (union) of all literals in D.

Proof. Consider a draw from the set of deprivation domains D, denoted ~zi ∈ {0, 1}D. The

positive Boolean threshold function corresponding to the union of all elements of ~zi takes a value

of one if ∃ : zi = 1; in contrast, the Boolean threshold function corresponding to the intersection

of all elements of ~zi takes a value of one if and only if all elements equal one. Without loss of

generality or need for proof, the intersection of two sets is a subset of each. So, the cardinality

of the intersection of D subsets (here, positive elements) must be less than or equal to the

cardinality of their union. Since this proves that, for any draw ~zi, the union of all literals is

the least restrictive poverty definition and the intersection of all literals is the most restrictive,

the same property carries over to the aggregate measure taken over any vector of outcomes

(y1, y2, ..., yN ) derived from the application of the same threshold function to N draws from

D.

The above is just a formal statement of the established idea that the AF headcount measure is

able to combine both intersection and union type definitions of poverty (Alkire and Foster, 2011).

More specifically, for any given matrix of binary deprivation measures (Zi), the lower and upper

bounds on the headcount measure can be derived in a straight-forward manner. That is, for all

possible choices of weights and cut-offs, the upper bound on the headcount obtains when each

unit is classified as poor if it is poor in any one domain; and the lower bound obtains when each

unit is classified as poor only if it is poor in all domains simultaneously.

The same logic can be extended to more complex positive Boolean threshold functions, namely

those containing a mix of union and intersection operations on the literals. To investigate these,

the length of (number of literals contained in) the prime implicants in the DNF of the expression

are of interest. Drawing on the weighted voting game literature (Taylor and Zwicker, 1992;

Elkind et al., 2009; Zuckerman et al., 2012), it is helpful to focus on the smallest and largest

winning coalitions (SWC, LWC) required to switch the Boolean function from zero to one.6 In the

proposition described above, the union of all literals constitutes a case where both the smallest

and largest winning coalitions contain just one element; and the intersection of literals is the

case where the SWC and LWC both contain D elements. Any positive Boolean threshold function

6 An SWC of size s implies that a minimum of s votes are required for a positive outcome; a LWC of size l
states that at most l votes are required (i.e., it is the largest coalition required in which there are zero
redundant players). Applied to the present context, the SWC gives the smallest number of dimensions on
which a person must be deprived to be classified as poor.
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can be classified according to the size/length of the SWC (denoted s) and LWC (denoted l) it

contains. In turn, this means that any poverty definition given by the input vector θt (Definition

2.1) can be classified in the same way.

To denote the partition to which a given poverty definition belongs I use the notation θs,l, which

states that θ belongs to class SWC = s and LMC = l.7 Alongside previous notation, the results of

Proposition (2) thus can be re-stated as follows:

∀(s, l) : ȳ
(
Z, θ̃1

)
≥ ȳ
(
Z, θs,l

)
≥ ȳ
(
Z, θ̃D

)
(3)

and where θ̃d is the special case in which f(θ, ·) corresponds to all feasible conjunctions of prime

implicants of length d. This corresponds to the unique Boolean threshold function containing a

vector of equal weights (∀d : ωd = 1/D) and cut-off k = d/D in equation (1b). This leads to the

final proposition, which further tightens these bounds:

Proposition 3. When f (Definition 2.1) corresponds to a positive Boolean threshold function

containing all literals of interest, then a multidimensional poverty measure (Definition 2.2) denoted

ȳ
(
Z, θs,l

)
, with shortest prime implicant 1 ≤ s ≤ l, longest prime implicant s ≤ l ≤ D and no

redundant literals, is bounded as follows:

∀(s, l) : ȳ
(
Z, θ̃s

)
≥ ȳ
(
Z, θs,l

)
≥ ȳ
(
Z, θ̃l∗

)
, (4)

where l∗ =

{
l if s < l ∧ 1 < l < D

min(l + 1, D) otherwise

Proof. Again, this is a straightforward application of set algebra. By definition, each prime

implicant of θ̃l∗ is a subset of at least one prime implicant of θs,l. Equally, every prime implicant

of θs,l is a subset of one of the prime implicants of θ̃s. So, by the rules of the cardinality of sets,

the expression holds.

The above propositions can be easily understood via a simple example. Consider the set of three

deprivation domains, D = {z1, z2, z3} and a chosen poverty definition represented in complete

DNF as f(θ1,2) := {z1} ∪ {z2 ∩ z3}. The smallest prime implicant of f(θ1,2) has one element and

the longest prime implicant two elements. It follows that the cardinality of a more restrictive

definition where all prime implicants are of size 2, namely f(θ2,2) := {z1∩z2}∪{z1∩z3}∪{z2∩z3},
must be less than or equal to that of θ1,2 for any draw of D. Similarly, the cardinality of the least

restrictive definition f(θ1,1) := {z1} ∪ {z2} ∪ {z3} must be greater than or equal to that of f(θ1,2)

for any draw of D.

7 This is for notational purposes only and is not to say that all positive Boolean threshold functions can be
uniquely indexed by s and l.

9



4 Evaluating robustness

I now reflect on how these insights can be used to evaluate robustness in practice. Specifically,

I set out a bounding procedure that identifies the partitions of the poverty space in which

robustness obtains. I then set out a more general approach, based on a stochastic search of the

poverty space complemented by a measure of search coverage.

4.1 Bounding approach

The proposed bounding approach to assessing robustness draws directly on Propositions (2) and

(3). As noted, any given multidimensional poverty measure of the AF headcount type can be

classified by the size/length of the SWC and LWC implied by the choice of weights and cut-off.

Note that while Proposition (3) requires that the same poverty measure (when expressed in

complete disjunctive normal form) contains all literals, this simply amounts to a requirement that

no single deprivation domain is redundant – i.e., each literal has non-zero power such that, at

least in combination with some other literals, its presence can switch the Boolean function from

zero to one. In effect, this requirement restricts us to poverty definitions that are informative

and meaningful across all domains, which is pertinent in most practical applications.

The important point concerning the classifiability of positive threshold Boolean functions is

that the poverty space can be partitioned, whereby each partition is characterized by a unique

combination or class of the SWC and LWC sizes underlying different poverty definitions. Further-

more, for each partition, equation (4) can be used to establish the upper and lower bounds on

the headcount corresponding to all poverty definitions within the same class. Returning to the

previous example with just three domains, all (meaningful) poverty definitions can be classified

into one of four feasible zones: θ1,1, θ1,2, θ2,2, θ3,3.8 In fact, in this simple case we can enumerate

all positive Boolean threshold functions containing no redundant literals. These are set out in

Table 1, where the first column gives the relevant partition class (SWC=s, LWC=l) and the

second column is the canonical sum of products form for the logical combination of literals.9 The

final two columns indicate the upper and lower bounds on the given headcount, as per equation

(4).

Two main implications fall out of this framework. First, and most obviously, the D Boolean

8 If the LWC is equal to the number of domains, no other prime implicants with fewer than D literals can
be present unless one of the literals is redundant.

9 As before, zi ∈ {0, 1} and that the outcome of the expression takes a value of one if and only if the sum
of products is non-zero.
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Table 1: Positive Boolean threshold functions in exactly three variables

Class Boolean expression Bounds

(s, l) Sum of products Upper Lower

1, 1 z1 + z2 + z3 θ̃1 θ̃1

1, 2 z1 + z2.z3 θ̃1 θ̃2

1, 2 z2 + z1.z3 θ̃1 θ̃2

1, 2 z3 + z1.z2 θ̃1 θ̃2

2, 2 z1.z2 + z1.z3 + z2.z3 θ̃2 θ̃2

2, 2 z1.z2 + z1.z3 θ̃2 θ̃3

2, 2 z1.z2 + z2.z3 θ̃2 θ̃3

2, 2 z1.z3 + z2.z3 θ̃2 θ̃3

3, 3 z1.z2.z3 θ̃3 θ̃3

Notes: ‘Class’ indicates the partition, defined by the
smallest and longest prime implicants (SWC = s; LWC
= l), to which the Boolean expression belongs, where
the latter is given in the sum of products form; ‘Bounds’
denote the corresponding theoretical upper and lower
bounds on the headcounts (see equation 4).
Source: own elaboration.

threshold functions formed from combining a fixed vector of equal weights with the series

of D natural cut-offs: k ∈ {1/D, 2/D, ..., 1} provide a sufficient basis to calculate bounds

for any class θs,l. Second, the same bounds can be directly applied to undertake poverty

comparisons between groups. To see this, note that for any two headcount distributions with

lower and upper bounds given by Hj ∈ [xj , yj ] and Hj′ ∈ [xj′ , yj′ ], their difference is contained

in: (Hj − Hj′) ∈ [xj − yj′ , yj − xj′ ]. So, if the lower bound of the first distribution is greater

than the upper bound of the second distribution, the pairwise difference is always in the positive

domain. It follows that a maximal lower bound on the difference between AF headcount

measures calculated over two groups, for any choice of weights and cut-offs, is given by:

ȳ
(
Zj , θ̃D

)
− ȳ
(
Zj′ , θ̃1

)
.

Admittedly, this maximal bound is likely to be wide. However, in accordance with equation (4),

we can make further progress. Specifically, the difference in AF headcounts also will always be

positive (i.e., Hj > H ′j) if the same bounding condition holds for all unique classes (partitions)

of the poverty space. Formally, for all feasible classes of θs,l such that 1 ≤ s ≤ l ≤ D, the poverty

comparison is weakly robust if:

∆s,l∗ ≡ ȳ
(
Zj , θ̃l∗

)
− ȳ
(
Zj′ , θ̃s

)
≥ 0 (5)

A useful corollary is that even if this condition is not fulfilled for all feasible combinations of s and
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l, we can identify the subset of classes, and corresponding constraints on θ, where the condition

does (not) hold. Similarly, if there is extreme overlap in the distribution of headcount rates for

the two groups, due to equality or non-dominance, this should be apparent from switches in the

sign of equation (5) according to different choices of s and l.

4.2 Stochastic approach

The advantage of assessing robustness via a bounding approach is that poverty headcounts

only need be estimated using a vector of equal weights and corresponding cut-offs. This entails

(D2 +D)/2 comparisons. The main drawback is that these bounds may be rather uninformative

(see Section 5). Another approach is to search the poverty space directly. Since by Property (1)

the search space is finite, one strategy is to enumerate all positive Boolean threshold functions

in D variables and evaluate robustness point-by-point (as shown in Table 1 for 3 variables).

The immediate complication of brute force enumeration is that the number of unique points

to visit explodes as the number of deprivation dimensions increases. Counting the number of

positive (monotone) Boolean functions is known as Dedekind’s problem, for which no concise

closed-form general expression exists. An active research agenda is just to count and/or list all

unique Boolean threshold functions (e.g., Korshunov and Shmulevich, 2002; de Keijzer et al.,

2012; Kurz, 2012). A trivial upper bound is 22D , which is the number of all possible Boolean

functions in D variables. This hints that, in all but relatively simple situations (e.g., fewer than

around five dimensions), full enumeration is not feasible.

A practical alternative to brute force enumeration is stochastic search of a Monte Carlo variety. A

well known result from the optimization literature is that pure random search will converge to a

neighbourhood ε of a global optimum y∗ (target) with probability one (Solis and Wets, 1981).

So, when designed carefully – i.e., in light of the structure of the problem – these techniques

can be extremely powerful. The disadvantage is that the expected number of iterations required

to achieve a given level of convergence is inversely proportional to the likelihood of visiting a

point in the target region, which typically is exponential in the number of dimensions of the

problem.10 This implies that achieving a desired degree of coverage of the space of definitions

(in probability) may be extremely computer-intensive.

Assuming that a stochastic search employs (quasi-)random draws, then a representative sample

of the search space should be achieved. This means that observed sample estimates, such as

the mean, are expected to be well-behaved in the sense of displaying strong consistency and

10As Zabinsky (2011) shows, the probability of failing to sample a point in the target region after g trials
is equal to (1− Pr(y∗ + ε))g.
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minimum variance. Even so, strictly speaking, robustness refers to all points in the search space,

so even one reversal would be sufficient to induce a conclusion of non-robustness. Consequently,

to make rigorous claims about robustness based on stochastic search, some measure of the

degree of uncertainty associated with the given set of comparisons is required. A natural metric

of uncertainty is the proportion of the search space that remains unseen – i.e., as this declines,

the likelihood of a reversal becomes smaller. Although the dimensions of the search space

are unlikely to be known in advance, estimation of the unseen part of a finite space has been

extensively studied. It is a variant of the balls-in-boxes problem, in which a sample of balls is

thrown independently (with no misses) at a fixed number of boxes such that, on each throw, the

nth box will be hit with probability pn. Based on the observed number of boxes occupied after N

throws, the problem is to estimate the remaining number of unseen and unoccupied boxes.

An early answer to the unseen mass problem was provided by Alan Turing and Irving John Good

during the Second World War, as part of their work to crack ciphers for the Enigma machine

during World War II (see Good, 1953; Gale and Sampson, 1995). As shown by Jones (2016), the

Good-Turing estimator is simply given by: ûGT = |N1|/N , where |N1| is the number of unique

objects that have been seen only once; and N is the total number of objects that have been seen,

typically the total number of iterations (also see Church and Gale, 1991). The intuition is that

as the coverage of the search space increases, the rate at which previously unseen objects are

discovered declines and ûGT approaches zero asymptotically. While various extensions to the

Good-Turing estimator have been proposed, such as to allow the probability measure associated

with the search space to be non-uniform (Gandolfi and Sastri, 2004; Jones, 2016), these are not

germane in the present application. A priori, the search space is probabilistically flat and there is

no reason to ‘prefer’ certain poverty definitions over others to determine robustness.

5 Application

This section summarises the results of an empirical application of the bounding and stochastic

search procedures to assess the evolution of multidimensional poverty in Mozambique. This

country is not merely chosen for illustration. Mozambique has achieved one of the world’s

most rapid and sustained rates of per capita economic growth since the end of conflict in 1992.

However, recent consumption poverty estimates, based on household survey data from both

2008/09 and 2014/15, have raised concerns as to how well aggregate growth is being translated

into broad-based welfare gains (DNEAP, 2010; Arndt et al., 2012b; DEEF, 2016). The latest

survey indicates that headcount consumption poverty affected 46% of the population, versus
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Table 2: Dashboard of deprivations experienced by households, national means

1996/97 2002/03 2008/09 2014/15
Member has primary education 64.0 53.3 40.4 32.4
Head can read 47.8 45.6 44.7 41.6
Access to electricity 93.9 91.1 84.8 72.9
Access to clean water 73.0 58.6 57.5 47.7
Quality sanitation 95.6 86.0 82.0 71.6
Quality roofing 78.2 70.8 67.3 58.0
Access to means of transport 82.4 65.6 54.7 55.6
Access to communication tech. 63.1 42.8 37.4 24.6
Owns consumer durables 87.3 79.5 68.7 49.6
Column average 76.1 65.9 59.7 50.5

Notes: Cells indicate the share of households deprived on a given dimension.
Source: own estimates.

53% in 2002.11 So there has been relatively slow progress in aggregate poverty reduction

recently, despite high levels of real GDP growth over the period. Nonetheless, the same surveys

indicate more consistent gains in non-consumption dimensions, including access to public goods

such as education services. Consequently, it is appropriate to investigate what has happened to

multidimensional poverty in Mozambique.

In order to apply the methods developed in Section 4, it is necessary to select the deprivation

dimensions to be included. This decision itself can be controversial; however, the feasible choices

are often limited by the availability of consistent data over time, as well as exclusion of highly

correlated dimensions. The domains selected for the present exercise are summarised in Table 2,

which shows the share of households deprived in each of nine individual domains across the

four available survey waves. The domains cover: human capital (education); access to electricity,

water and sanitation; housing quality; and ownership of productive and durable assets. For each

variable, households which are classified as deprived receive a score of one and zero otherwise.

Inclusion of dimensions such as these are largely conventional in the field of multidimensional

poverty (Alkire et al., 2015).12

The table indicates changes in well-being have been heterogeneous. While we see progress in all

dimensions over the full 18 year period, the pace of change is inconsistent. This implies that

when constructing a multidimensional indicator, the relative importance attributed to different

dimensions is likely to matter. A closer look at the data further reveals acute regional differentials.

The Southern region, where the capital city is located, and also the region most proximate to

11 Survey weights are applied in all estimates in this section.
12 Further details on the construction of the underlying deprivation domains is available on request from

the author. See also DEEF (2016).
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South Africa, not only shows the lowest deprivation rates on virtually all indicators, but also

more consistent improvements over time. In contrast, both the Central and Northern regions

display much higher levels of deprivation and relatively slower progress on some indicators, such

as access to electricity and housing quality. These regional differences, shown in Appendix Table

B1, raise fundamental questions regarding the depth and persistence of regional inequalities.

Concretely, despite a generally positive trend across the indicators, the levels of deprivation

in the Southern region almost 20 years ago were lower than they are today in the Central

and Northern regions across a number of indicators. This motivates a formal analysis of the

robustness of multidimensional poverty comparisons, focussing in particular on the regional-

temporal comparison of the South in 1996/97 and 2014/15 (denoted S96, S14) versus outcomes

in the Centre and North in the same years (denoted C96, C14; and N96, N14).

5.1 Robustness via bounding

Applying the procedure described in Section 4.1, the starting point is to compare upper and

lower bounds on the multidimensional poverty headcount for any two groups or time periods.

This is implemented as per equation (1c), using a vector of equal weights and thresholds

(k) corresponding to the sequential sum of weights. For reference, the raw output from this

procedure is reported in Appendix Table B2, showing both national and regional headcount

estimates. All headcounts are multiplied by 100 to facilitate presentation.

Focussing on the national results, the 2014/15 headcount rates always appear lower than

those of 1996/97; but there is a fairly sharp decline in poverty as the cut-off increases (i.e., as

we move from a pure union definition of poverty to a pure intersection definition). Table 3

employs the same national estimates to perform a bounding analysis. To interpret the results,

it helps to recall how the bounds are constructed. Recall from Proposition (3) that for a

given group j, a poverty definition with SWC of size 2 and LWC of size 4 is bounded by:

ȳ
(
Zj , θ̃2

)
≥ ȳ

(
Zj , θ2,4

)
≥ ȳ

(
Zj , θ̃4

)
. To compare poverty between two groups, such as that

poverty in j is always greater than or equal to that of j′, one takes the difference between the

lower bound of j and the upper bound of j′. So, for the same poverty definition (SWC = 2; LWC

= 4), the relevant gap is: ∆2,4 = ȳ
(
Zj , θ̃4

)
− ȳ
(
Z ′j , θ̃2

)
. Each cell of the table reports comparisons

of this form, defining j as 1996/97 and j′ as 2014/15 (nationwide). The rows indicate the

magnitude of the LWC entering the expression, corresponding to the lower bound headcount

estimate for 1996/97, taken from the vector of equal weights with LWC (=SWC) of the indicated

size. The columns indicate the magnitude of the SWC entering the expression, referring to the

upper bound headcount estimate for 2014/15, taken from the vector of equal weights with SWC

(=LWC) of the indicated size. The diagonal reports the difference in headcounts for the equal
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Table 3: Dominance comparisons for national headcounts 1996/97 vs. 2014/15

SWC (s)
LWC 1 2 3 4 5 6 7 8 9

1 5.1
2 3.3 15.1
3 0.6 12.4 21.6
4 −2.6∗ 9.1 18.3 27.8
5 −7.8∗ 3.9 13.2 22.7 34.1
6 −15.8∗ −4.0∗ 5.2 14.7 26.1 38.3
7 −28.5∗ −16.8∗ −7.6∗ 1.9 13.3 25.6 38.7
8 −46.8∗ −35.1∗ −25.9∗ −16.4∗ −5.0∗ 7.2 20.4 31.9
9 −69.1∗ −57.4∗ −48.1∗ −38.6∗ −27.2∗ −15.0∗ −1.9∗ 9.6 18.5

∗ significant at 5% level, after Bonferonni correction
Notes: For each partition defined by the smallest prime implicant s and longest prime implicant l, cells
indicate the difference between the lower bound estimate for the headcount poverty in 1996/97 and the
upper bound in 2014/15; null hypothesis is that the difference is in the positive domain.
Source: own estimates.

weight vectors of the same size, which corresponds to a unique poverty definition.13

While the sign (and magnitude) of the gaps reported in each cell are of primary interest, formal

tests against a null hypothesis are helpful. Given the conservative nature of the bounding

procedure, I use a one-sided null hypothesis running in the direction of the plausible prior that

multidimensional poverty in 1996/97 weakly dominates that in 2014/15.14 This can be tested

using the conventional statistic:

Ts,l∗ =
∆s,l∗√
σ2
ȳj + σ2

ȳj′

∼ N (0, 1) (6)

in which σ2
ȳj refers to the (estimated) standard error of the headcount estimate for group j;

and N (0, 1) is the standard normal distribution with cumulative density Φ. Following Kakwani

(1993), the standard errors are approximated as:

σȳj =

√
ȳj(1− ȳj)

Nj
(7)

where Nj is the number of observations in group j. Under the one-sided null hypothesis, we

assume ∀(s, l∗) : ∆s,l∗ ≥ 0 and focus on the rejection region associated with poverty definitions

13 This differs to the bounds on the poverty definition with SWC and LWC of equal size. For instance, the
bounds for SWC and LWC of size 3 are: ȳ

(
Zj , θ̃3

)
≥ ȳ
(
Zj , θ3,3

)
≥ ȳ
(
Zj , θ̃4

)
.

14 Null hypotheses in dominance tests can be constructed in a variety of ways, including sequential tests,
as set out in Section 4.2.
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where Ts,l∗ is below a critical value, thereby providing evidence against the null. Applying

this approach, Table 3 identifies whether the one-way null hypothesis can be rejected using a

probability threshold of α = 0.001.15

Overall, the table reveals that the null hypothesis cannot be rejected for a large proportion of the

partitions of the poverty space. All direct comparisons on the diagonal indicate that poverty in

1996/97 was higher than in 2014/15. Only for those partitions with the property that l∗ − s ≥ 3

is the null hypothesis rejected. Effectively, these cases correspond to poverty definitions with

comparatively extreme differences in how different dimensions are weighted – e.g., the partition

s = 1, l = 4 includes definitions that contain a prime implicant with just one element and another

prime implicant with four elements, which implies a factor 4 difference in weights. Thus, if we

are willing to concern ourselves with less extreme intersection/union combinations, then the

procedure directly indicates the null hypothesis cannot be rejected, meaning headcount poverty

in 1996/97 weakly dominates that of 2014/15.

Appendix Tables B3 and B4 replicate the same procedure at the regional level, comparing

multidimensional headcount poverty rates in the South in 1996/97 against those in the North

and Centre in 2014/15. These findings are less clear-cut. For most partitions (intervals) tested,

the gap is in the negative domain, suggesting we cannot be certain that a weak dominance

condition holds. By way of contrast, and as shown in Appendix Table B5, a comparison of

multidimensional poverty in the North in 1996/97 against that in the South in 2014/15 provides

the clearest result. Unsurprisingly, for all but the most extreme partitions (e.g., s = 2, l∗ = 8),

the null hypothesis of weak dominance cannot be rejected. And for all poverty definitions in

which the SWC is larger than two, the null hypothesis also cannot be rejected.16 This confirms

the bounding procedure is informative, but principally where headcount estimates between two

groups diverge considerably. Nonetheless, the results also suggest the procedure can be helpful

to focus stochastic search toward specific partitions of the search space where there is some

uncertainty. I now turn to how such search can be conducted.

15 This choice of threshold is based on a Bonferonni correction, taking into account the fact that (D2+D)/2
= 45 separate hypotheses are being tested; thus: α = 0.05/45. As Guo (2009) notes, the Bonferonni
correction is highly conservative and is robust to arbitrary dependence across the individual tests.

16 Note that for all partitions with LWC = 9 the assumption is that the largest winning coalition requires
unanimity. Thus, if there are to be no redundant dimensions, it must be that SWC=9 as well. Conse-
quently, all cells in the bottom row of the table excluding the equal weight special case can be ignored.
(They are only shown for completeness).
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5.2 Robustness via stochastic search

To implement the stochastic search, I proceed in four steps: (i) I create a 10,000 × 9 matrix

of weights, in which each row ~ωt is a pseudo-random draw on the closed standard 8-simplex

from the Dirichlet distribution;17 (ii) I shrink the weights on each row toward the vector of equal

weights by the square of a row-specific random factor distributed uniformly on the unit interval;18

(iii) associated with the matrix of weights, I choose a vector of cut-offs with elements kt, each

of which is drawn from the uniform distribution and constrained according to pre-specified

limitations on the permitted sizes of the SWCs and LWCs (see Section 5.3);19 and (iv) I apply the

combination of weights and cut-offs, which constitute individual poverty definitions θt = {~ωt, kt},
to equation (1b); and, for each definition, I collapse over relevant population sub-groups as

per equation (1c). For each sub-group (e.g., nationwide, regions, survey rounds etc.), this

yields a final vector of 10,000 headcount estimates distributed relatively evenly over the various

partitions of interest (see Appendix Table B6).20 Note that the raw data on deprivations is always

held fixed and, for each draw θt, the same weights and cut-offs are applied to all sub-groups,

implying one can then inspect the variation in headcount estimates between groups for each

definition (i.e., to make pointwise comparisons).

Figure 1 plots the distributions of pointwise differences in poverty headcounts derived from this

procedure, focussing on the four sub-group comparisons discussed in the previous subsection.

The differences are expressed on the natural log scale (approximately percentages), which is

helpful as the magnitude of poverty headcount estimates vary significantly with the chosen cut-

offs. Visually, some clear patterns emerge. In plots (a) and (b), the distribution of headcounts is

almost entirely in the positive domain. In fact, further inspection (see below) reveals that in both

cases there is no definition in which poverty in group j′ is higher than that in j. Thus appears

consistent with the condition of weak pointwise dominance, at least for all 10,000 randomly

selected points. In contrast, plots (c) and (d) reveal mass in both the positive and negative

domains, implying that poverty comparisons do not take a consistent sign and dominance is

unlikely to hold.

17 This is required so that the weights sum to one. Drawing weights for each dimension independently
from a uniform distribution will not yield even coverage of the weight space. Note that the first 9
weights and cut-offs are fixed to give the special cases of equal weights and series of natural cut-offs.

18 This has the result of permitting different deprivation dimensions to take more similar weights. In the
absence of shrinkage, differences in weights between dimensions are more extreme.

19 In this application the minimal limitations are: kt ∈ [wi=1,t,
∑8

i=1 wi,t], where i ranks weights from
smallest to largest. This states that the lower bound on the cut-off is just the smallest weight; the
upper bound is the sum of the smallest D − 1 = 8 weights, which simply avoids re-sampling the unique
definition in which an individual must be deprived in all dimensions to be classified as poor.

20 Some sub-groups contain the same members; but, the same poverty definitions are used throughout.
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Figure 1: Kernel density plots of pointwise differences in headcounts from
stochastic search

(a) National: 1996/97 - 2014/15 (b) Regional: North 1996/97 - South 2014/15
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(c) Regional: South 1996/97 - North 2014/15 (d) Regional: South 1996/97 - Centre
2014/15
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Notes: differences are calculated pairwise, based on 10,000 random search points (the same in each
plot); in plots (a) and (b) the density plot enters the negative domain only due to smoothing; x-axis is the
difference in the natural logarithm of the estimated headcounts.
Source: own estimates.
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Table 4: Sequential hypothesis testing procedure

Hypothesis Rejection rule

H0 ∀s : ȳs,j = ȳs,j′ ∃s : pt < α ∨ pt > 1− α
H1.1 ∀s : ȳs,j ≥ ȳs,j′ ∃s : pt < α
H1.1.1 ∀s : ȳs,j > ȳs,j′ ∃s : pt ≤ 1− α
H1.2 ∀s : ȳs,j ≤ ȳs,j′ ∃s : pt > 1− α
H1.2.1 ∀s : ȳs,j < ȳs,j′ ∃s : pt ≥ α
H1.3 ȳs,j 6= ȳs,j′ -

Notes: H0 is the null hypothesis of equality; H1.1 and H1.2 are
level one alternative hypothesis; H1.1.1 and H1.2.1 are level two al-
ternative hypothesis; and H1.3 is the residual alternative hypothesis,
corresponding to non-dominance.
Source: own elaboration.

To formally test these visual results, three additional steps are required. First, a relevant

hypothesis testing framework must be adopted; second, one or more global test statistics must be

chosen; and, third, adjustments must be made to account for unseen elements of the search space

(i.e., the missing mass). With respect to the hypothesis testing framework, I adopt a sequential

intersection-union testing framework (Bishop et al., 1994; Tse and Zhang, 2004), in which the

global null hypothesis is defined as the intersection of local (pointwise) null hypotheses; and

the overall alternative hypothesis is the logical union of their complement. In keeping with

the previous subsection, local tests are performed using equation (6), providing a vector of

associated estimated (lower-tail) probabilities, denoted pt = Pr(Z ≤ Tt), where Z follows the

standard normal distribution; and t denotes the draw from the space of poverty definitions.

To formalize the hypothesis testing procedure, Table 4 sets out the set of relevant null and

alternative hypotheses, as well as their corresponding rejection rules, evaluated via the vector of

estimated probabilities. The overall null hypothesis (H0) is that the two vectors of headcount

estimates being compared are equivalent, such that the distribution of test statistics taken from

the vector of pointwise differences will be indistinguishable from a standard normal distribution.

This hypothesis can be rejected if either the upper or lower tails of the pointwise difference

distribution contain mass above critical thresholds, defined as | Tt |≥ Φ−1(α). As before, the

critical significance level, α, can be selected to account for the presence of multiple comparisons.

The conservative Bonferonni correction is applied again here, yielding the critical threshold

α = .05/103.

If the global null is rejected, the next step is to investigate whether a situation of dominance

obtains. This is addressed via the alternative hypotheses H1.1 and H1.2. H1.1 tests for weak

pointwise dominance in the direction j ≥ j′, and is rejected if there is mass in the standardized
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pointwise difference distribution below Φ−1(α). If this cannot be rejected we go on to evaluate

strict pointwise dominance, which obtains if all estimated probabilities fall above the 1 − α
threshold, meaning that all standardized differences Tt are found in the extreme upper tail of a

standard normal distribution. If H1.1 is rejected, we go on to evaluate H1.2, which concerns

dominance in the opposite direction. In the case that both H1.1 and H1.2 are rejected, then

the distribution of standardized pointwise differences contains mass both above Φ−1(1− α) and

below Φ−1(α), leading to a conclusion of non-dominance.

Despite the various cases described by Table 4, in practice one only needs to evaluate the share

of standardized pointwise differences falling in both of the defined critical regions. Returning

to the four comparisons of interest (see Figure 1), Table 5 summarises the main results. The

first three rows respectively report basic summary statistics pertaining to the distribution of

pointwise differences, namely: their mean (log scale), the proportion in the positive domain,

and the mean of the corresponding vector of probabilities. The fourth and fifth rows report the

mass observed in the critical regions (pt ≤ α, pt ≥ 1− α). These provide clear guidance. In the

first two columns, all 10,000 pointwise differences are located in the extreme upper tail (critical

region) of the standard normal distribution. Correspondingly, we cannot reject hypothesis H1.1.1

and conclude that the multidimensional poverty headcount in 1996/97 strongly dominates that

in 2014/15 for all chosen definitions. The same goes for the multidimensional poverty headcount

in the North in 1996/97 versus the South in 2014/15. In contrast, the final two columns indicate

non-zero mass in both the upper and lower critical regions. For instance, in the case of the South

1996/97 versus the North in 2014/15, more than one fifth of all outcomes are found in each

critical region. In the case of the South 1996/97 versus the Centre in 2014/15, around 4% of

outcomes are found in the lower critical region and 90% are found in the upper critical region.

While this indicates that, on average, poverty was higher in the South (1996/97) than in the

Centre today (2014/15), we cannot rule out that there are some poverty definitions where the

reverse holds.

The final step is to address the uncertainty associated with the stochastic search of the poverty

space. Although the number of distinct poverty definitions is finite, they are expected to be

very large in number and not amenable to enumeration. Thus, as an approximation to the

proportion of the poverty space that has not been seen, I calculate the Good-Turing estimate

of missing mass for each vector of pointwise differences. In doing so, it is practical to apply a

simple rounding constraint. Indeed, in most empirical analyses, continuous outcomes can be

treated as discrete without loss of meaningful information, reflecting the point that outcomes

are hardly ever meaningful to an infinite degree of accuracy (for discussion see Bedeian et al.,

2009). The rounding rule I use is chosen via Sheppard’s approximate correction for calculating

distributional moments, based on a discrete approximation to a continuous random variable
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Table 5: Results from stochastic search of multidimensional poverty
headcount definitions

M96-M14 N96-S14 S96-N14 S96-C14
Mean gap (log.) 0.437 1.276 0.002 0.125
Proportion gaps > 0 1.000 1.000 0.631 0.943
Mean ps 1.000 1.000 0.618 0.943
Mean [ps ≤ α] 0.000 0.000 0.214 0.039
Mean [ps ≥ 1− α] 1.000 1.000 0.366 0.900
Missing mass (ûGT) 0.001 0.001 0.008 0.009
Adj. mean ps 0.999 0.999 0.613 0.934
Likelihood ȳj > ȳj′ 0.998 0.997 0.226 0.868

Notes: columns refer to group comparisons, where M is Mozambique, N
is the Northern region, C is the Central region, S is the Southern region,
and numbers refer to the (first) year of the survey; rows report summary
measures from the distribution of pointwise differences.
Source: own estimates.

(Wilrich, 2005; Jones, 2016). This suggests headcount poverty estimates (ranging from zero to

100) can be safely rounded to the nearest decimal place. Based on this, the estimates for ûGT

are all below 1%, suggesting that after 10,000 draws at least 99% of all quantitatively distinct

poverty headcount definitions have been seen.

Estimates of unseen mass taken from the GT estimator can be applied directly in conjunction

with other estimates. For instance, Manski-type bounds on the mean probability (p̄) are given by:

p̄ ∈
[
ˆ̄p(1− ûGT), ˆ̄p+ ûGT(1− ˆ̄p)

]
(8)

The lower bound from this expression is shown in the penultimate row of Table 5. And the

final row transforms this adjusted mean to provide a simple metric of likelihood that poverty in

group j exceeds that of j′ for any poverty definition. This is calculated as 2pt − 1, reflecting the

point that when the pointwise gap is zero, the probability associated with the test statistic is 0.5.

Both metrics confirm the general conclusion that for the first two columns, there is very strong

evidence to suggest the poverty comparisons are strongly robust; for the third column there is no

evidence that poverty in the South in 1996/97 was higher than in the North in 2014/15; and in

the final column, there is some but not overwhelming evidence to support the conjecture that

poverty in the South in 1996/97 was higher than in the Centre in 2014/15. More generally,

these range of metrics demonstrate the value of focussing analysis on pointwise differences and

how these can be adjusted to address uncertainty due to unseen points.
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5.3 Extensions

A number of analytical extensions to the basic applications demonstrated above can be contem-

plated. First, and in contrast to the bounding approach, the stochastic search procedure is not

restricted to choices for f (Definition 2.1) that are only positive Boolean threshold functions

(i.e., the AF headcount measure).21 In fact, any functional form can be evaluated in this way as

long as the search space is finite and/or the space can be suitably discretized. Consequently, the

stochastic search procedure combined with estimates of missing mass provides a quite general

approach to evaluating robustness. A natural extension is to the various adjusted AF multidi-

mensional poverty measures. These modify the headcount above to account for the intensity of

poverty. Specifically, the row-wise mapping function is adjusted via an intermediate step:

ỹi = yi
∑
d∈D

ωd (zid)
α , α ∈ Z≥0 (9)

and the final outcome is defined in similar fashion to before, as:

Mα(α, ~ω, k) = N−1
I∑
i=1

ỹi (10)

Table 6 applies the M0 (adjusted AF headcount measure) to investigate the same comparisons as

reviewed previously. Replicating the structure previous table, the same principal findings hold –

i.e., there is clear evidence that the comparisons indicated in the first two columns display strong

robustness; while the final two columns again indicate non-dominance. The close similarity

between the results for the headcount and its adjusted counterpart remains consistent with

Theorem 2 in Alkire and Foster (2011), which proves that a dominance relation found under

measure H implies a dominance relation under M0, but only for any choice of the cut-off.

A second extension is to constrain the search space according to specific limits on the poverty

definition, such as the minimum intersection of dimensions required for a unit to be classified

as poor. In the previous application no limits were applied, meaning that the cut-off was only

constrained to be at least as large as the smallest element of the weight vector. Other constraints

or rules for the choice of k are outlined in Appendix Table B7, in which the subscripts on the

weights indicate their rank order, from smallest to largest – i.e., w1 = min(~w);wD = max(~w).

Thus, row 2 states that as long as k ≤ 1 − wd, then a majority/consensus is not required to

classify any unit as poor.22

21 The bounding approach relies on the specific properties of Boolean threshold functions and the
cardinality of sets. These do not immediately extend to other choices for f .

22 In the R code developed to implement the analysis in the present study, functionality is included to
select poverty definitions with smallest prime implicant s and longest prime implicant l.
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Table 6: Results from stochastic search of M0 definitions

M96-M14 N96-S14 S96-N14 S96-C14
Mean gap (log.) 0.592 1.628 -0.001 0.171
Proportion gaps > 0 1.000 1.000 0.595 0.932
Mean ps 1.000 1.000 0.564 0.930
Mean [ps ≤ α] 0.000 0.000 0.154 0.027
Mean [ps ≥ 1− α] 1.000 1.000 0.175 0.822
Missing mass (ûGT) 0.002 0.005 0.004 0.005
Adj. mean ps 0.998 0.995 0.562 0.926
Likelihood ȳj > ȳj′ 0.995 0.990 0.124 0.851

Notes: columns refer to group comparisons, where M is Mozambique, N
is the Northern region, C is the Central region, S is the Southern region,
and numbers refer to the (first) year of the survey; rows report summary
measures from the distribution of pointwise differences.
Source: own estimates.

Finally, in cases where non-dominance is found, it may be of interest to identify whether there

are particular domains of the poverty space in which reversals in the direction of the headcount

difference take place. This can be explored in a number of ways, such as calculation of the

Euclidean distance between a baseline poverty definition (weight vector and cut-off) and that

associated with a reversal. Another simple alternative is to classify the weight vectors according

to which deprivation dimension is ranked highest or lowest. This exercise is undertaken in Table

7, which reports the mean log. headcount gap when each dimension (denoted one to nine; in the

order shown in Table 2) is ranked lowest or highest in the vector of weights. Focussing on the

four group comparisons of earlier interest, the table immediately reveals the particularly crucial

role played by the sixth dimension (quality of roofing). When this specific dimension receives the

highest weight, the headcount comparisons S96-N14 and S96-C14 fall in the negative domain

or are close to zero. Also, when literacy of the household head receives a large weight, the

comparisons S96-N14 is significantly negative on average. This highlights the particularly high

levels of deprivation associated with access to roofing in regions outside of the South, as well as

the gap between the South and other regions on this indicator (see Table B1).

6 Conclusion

The objective of this study was to provide a rigorous framework for evaluating the robustness

of multidimensional poverty comparisons. The motivation was that existing approaches have

not made sufficient progress. Multivariate stochastic dominance has been found to be generally

unwieldy and poorly suited to counting-type multidimensional measures. Alternative approaches
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Table 7: Mean headcount gaps (log.) by groups of weight vectors

When dimension takes largest weight When dimension takes smallest weight

Dim. M96-M14 N96-S14 S96-N14 S96-C14 M96-M14 N96-S14 S96-N14 S96-C14
1 0.587 1.590 -0.006 0.160 0.592 1.749 0.014 0.203
2 0.602 1.663 0.024 0.190 0.585 1.541 -0.062 0.122
3 0.588 1.686 -0.007 0.185 0.604 1.512 0.018 0.151
4 0.589 1.588 0.001 0.178 0.585 1.673 -0.000 0.157
5 0.586 1.694 -0.021 0.171 0.587 1.507 0.028 0.162
6 0.591 1.563 0.067 0.234 0.599 1.740 -0.144 0.027
7 0.596 1.715 -0.041 0.112 0.590 1.429 0.075 0.287
8 0.588 1.518 -0.003 0.154 0.596 1.871 0.021 0.227
9 0.596 1.618 -0.020 0.157 0.585 1.632 0.047 0.207

Mean 0.592 1.626 -0.001 0.171 0.591 1.628 -0.000 0.171

Notes: cells give the mean headcount difference for groups of poverty definitions (taken from the stochastic
search procedure), where groups are created according to which dimension has the largest weight (first four
columns) or smallest weight (final four columns); rows indicate the relevant dimensions, given as per the order
in Table 2; sub-columns refer to group comparisons, where M is Mozambique, N is the Northern region, C is the
Central region, S is the Southern region, and numbers refer to the (first) year of the survey.
Source: own estimates.

based on sensitivity-type analysis have become popular, but suffer from being rather limited

in scope. The contribution provided herein stemmed from situating the analysis of robustness

within the domain of Boolean threshold functions, which were shown to be equivalent to the

Alkire-Foster headcount metric. Two particular properties of these functions stand out – they are

countably finite in number and can be classified according to the smallest and largest number

of prime implicants they contain. It was argued that these properties naturally suggest two

complementary approaches to evaluating robustness, defined in terms of pointwise dominance.

These were: (i) a bounding approach, in which upper and lower bounds on headcount estimates

can be evaluated using a vector of equal weights across at most (D2 +D)/2 partitions; and (ii)

stochastic search, supported by the Good-Turing measure of missing mass. The latter is crucial –

it estimates the proportion of the space of poverty definitions that remains unvisited, from which

Manski-type bounds on poverty headcounts (or test statistics) can be constructed. Functions to

apply these approaches are provided and set out in Appendix A.

The analytical value of these two approaches was examined in an application to poverty in

Mozambique. Based on nine dimensions of deprivation, the methods confirm that, on aggregate,

multidimensional poverty in 1996/97 was strictly higher than it is today, for any possible counting

definition. However, the same methods reveal persistent regional asymmetries. Specifically, we

cannot rule out that poverty in 2014/15 in the Central and Northern regions of the country is

at least as high as was observed in the Southern region almost 20 years ago. Supplementary
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analysis showed that switches in the direction of these poverty comparisons is driven by weights

applied to two particular dimensions – housing quality and literacy of the head of household. In

sum, the methods set out in this paper constitute a practical and quite general framework for

evaluating the robustness of multidimensional poverty comparisons.
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A Appendix: Documentation of functions in R

The R code containing the three primary functions used to implement the stochastic search
procedures described in Section 5 are found in the supplementary file <mpdFunctions.R>.
Documentation for each function is found below, in standard format. The first two (genweights,
unseen) are auxiliary functions, both of which are called by the main (wrapper) function,
robust(...).

Note that, as written, the functions assume binary inputs (deprivations); but this can be easily
adapted to suit continuous outcomes and variable poverty thresholds.

The complete code stream associated with the present analysis is also available on request from
the author.

genweights Random generator of Boolean threshold functions

Description

Generates a chosen number of positive monotone Boolean threshold functions (poverty
headcount definitions of the Alkire-Foster class), typically for use in multidimensional well-
being calculations.

Usage

genweights(repsN = 1, k = 2, swc = NA, lwc = NA, shrink = 0, round = 5)

Arguments

repsN Number of (unique) threshold functions to generate

k Number of dimensions (literals) spanned by the function

swc Smallest winning coalition permitted (defaults to 1)

lwc Largest winning coalition permitted (defaults to k)

shrink Shrinkage factor applied to weights (toward equal weights; defaults to 0)

round Round weights to this number of decimal places (defaults to 5)
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Details

This function can be used as an input into stochastic search procedures.

Weights are randomly drawn on the closed standard k − 1 simplex from the Dirichlet
distribution, meaning they sum to one. By default, the first k rows are vectors of equal
weights and natural cut-offs increasing in order (1/k, · · · , k/k).

The shrinkage factor is a fixed exponent that is applied to a uniformly distributed random
variable (which varies by row) and is applied to each row of weights so as to shrink the given
weight vector toward the vector of equal weights. Where this factor is zero, no shrinkage is
applied.

Value

Outputs a data.frame with repsN rows and k + 4 columns containing the following:

weights A set of k columns, named d.1 to d.k, giving the chosen weights for each
dimension

min Vector of length repsN giving the calculated minimum cut-off associated
with the chosen constraint on the smallest winning coalition (SWC) for the
given set of weights (in the same row)

max Vector of length repsN giving the calculated maximum cut-off associated
with the chosen constraint on the largest winning coalition (LWC) for the
given set of weights (in the same row)

warning Vector of length repsN indicating TRUE if the calculated LWC for the given
row of the weight matrix (i.e., poverty definition) is smaller than the calcu-
lated SWC

cut Vector of length repsN giving the chosen thresholds (cut-offs) associated
with the weights (in the same row)

Note

Each row of the output data.frame refers to a distinct Boolean threshold function (poverty
definition).

Author(s)

Anonymous for now

Examples

# Set seed for replicability
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set.seed(12345)

# Generates 10 threshold functions spanning 5 dimensions

## NB. first 5 definitions will be equal weight vectors

genweights(repsN = 10, k = 5, swc = 1, lwc = 5, shrink = 0, round = 5)

unseen Estimates of missing or unseen mass

Description

Provides Good-Turing type estimates of missing mass, which is the proportion of a (finite)
vector space that has not yet been observed after N draws

Usage

unseen(x, digits = 2)

Arguments

x input vector of length N over which function is to be applied

digits round to the nearest number of decimal places (default = 2)

Value

Returns a vector with three elements:

lb The lower bound estimate, which is the Good-Turing estimator

gs The Gandolfi & Sastri (2004) adjusted estimate

ub The upper bound estimate, in which the tuning parameter γ (see Jones,
2016) is set to one

Author(s)

Anonymous for now
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Examples

# Set seed for replicability

set.seed(12345)

# draw a vector from the uniform distribution

random <- runif(1000)

# get the estimates of missing mass, rounding the input vector to two decimal places

unseen( x = random, digits = 2 )

robust Robustness of multidimensional poverty comparisons

Description

Core function used to analyse the robustness of multidimensional well-being comparisons
using the Alkire-Foster class of measures (see Alkire and Foster, 2011).

Usage

robust(data, group, weight = NA, m = 0, reps = 100,

swc = NA, lwc = NA, shrink = 2, dropWarning = FALSE,

unseen_type = c("lb","gs","ub"), unseen_digits = 1,

p_adj = FALSE)
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Arguments

data A data.frame with N units (rows) containing the raw data on deprivation
outcomes, spanning k dimensions, assumed to be binary indicators where 1
indicates the unit is deprived and 0 otherwise

group A vector of length N , encoded as a factor, which classifies units into groups

weight A vector of length N containing sample weights for each unit (ignored if set
to NA)

m A binary indicator that takes a value of 0 if the Alkire-Foster headcount
measure (H) is to be calcuated and 1 if the Alkire-Foster adjusted headcount
(M0) is to be calculated

reps The number of poverty definitions to be evaluated. This parameter is passed
to function genweights(...) as repsN

swc The smallest winning coalition (SWC) permitted in each poverty definition.
This parameter is passed to function genweights(...) as swc

lwc The largest winning coalition (LWC) permitted in each poverty definition.
This parameter is passed to function genweights(...) as lwc

shrink The shrinkage parameter passed to function genweights(...) as shrink

dropWarning If set to TRUE, all weight vectors that do not meet the constraints set of
SWC and LWC choices will be dropped

unseen_type Choice of which estimator of missing mass to use in subsequent calculations
unseen_digits

Rounding rule applied in calculation of estimates of missing mass

p_adj If set to TRUE, the Benjamini and Hochberg (1995) adjustment is applied to
the estimated probability values for headcount differences

Value

Outputs a list with the following components:

weights Data.frame containing the weights and cut-offs associated with each poverty
definition (in rows), derived from function genweights(...). Additional
information includes the length of the SWC and LWC contained in each
definition

outcome Data.frame containing the reps poverty estimates for each group (rows are
poverty definitions, columns are the chosen groups)

outcome.se Data.frame of estimates standard errors that correspond to the data.frame
of poverty estimates (above)

pwise.d Data.frame of absolute pairwise differences in poverty measures across
groups (rows are poverty definitions, columns are paired groups)
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pwise.dln Data.frame of absolute pairwise differences in the natural logarithm of
poverty measures across groups (rows are poverty definitions, columns are
paired groups)

pwise.z Data.frame of z-scores corresponding to the pairwise differences in poverty
measures across groups (rows are poverty definitions, columns are paired
groups)

pwise.p Data.frame of probabilities corresponding to the above z-scores (rows are
poverty definitions, columns are paired groups), derived from the standard
normal distribution function

pwise.pLB Data.frame of lower bound probabilities corresponding to the above z-scores
(adjusted for missing mass)

pwise.pUB Data.frame of upper bound probabilities corresponding to the above z-scores
(adjusted for missing mass)

pwise.s Data.frame of values that take the value TRUE if the poverty difference is
greater than zero and FALSE otherwise

pwise.sLB Data.frame of dummy variables adjusted for missing mass, the column
means of which give the lower bound share of poverty definitions for which
one group is greater than the other

pwise.sUB Data.frame of dummy variables adjusted for missing mass, the column
means of which give the upper bound share of poverty definitions for which
one group is greater than the other

pwise.u Data.frame of estimates of missing mass pertaining to each column of
pairwise differences in poverty measures. Rows are alternative missing mass
estimators, as described under function unseen(...)

Author(s)

Anonymous for now

References
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(Methodological), 57(1): 289–300.

Examples
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# Set seed for replicability:

set.seed(set.seed(13254)

# Create matrix of binary deprivations:

## (k=5 dimensions, n=1000 rows, 2 groups -- named A and B)

k <- 5

n <- 1000

correl <- matrix(runif(k^2),nrow=k)

correl[lower.tri(correl)] <- 0

means <- runif(5)-.5

library(MASS)

data <- mvrnorm(n,means,correl)

data <- as.data.frame( 1*(data > 0) )

group <- 1*(runif(n)>.5)

group[group==1] <- "A"

group[group==0] <- "B"

# Run function, with 500 poverty definitions:

output <- robust(data = data, group = group, reps=500)

ls(output)

hist(output$pwise.z) # z-scores associated with pairwise difference
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B Appendix: Additional tables

Table B1: Dashboard of deprivations experienced by households, regional means

North Center South

1996/97 2014/15 1996/97 2014/15 1996/97 2014/15
Member has primary edu. 72.0 43.0 70.1 35.0 45.3 11.9
Head can read 53.1 50.9 52.0 41.9 35.0 27.2
Access to electricity 96.6 79.8 97.2 82.9 85.5 43.8
Access to clean water 80.0 57.9 78.3 54.1 56.6 20.4
Quality sanitation 98.5 79.3 98.3 80.1 87.9 44.3
Quality roofing 95.9 77.1 90.4 65.8 38.7 15.2
Access to means of transport 83.9 59.0 81.5 45.2 82.0 70.7
Access to communication tech. 73.8 36.0 69.4 26.2 40.8 5.0
Owns consumer durables 91.2 59.6 93.8 55.2 72.7 24.3
Column average 82.8 60.3 81.2 54.1 60.5 29.2

Notes: Cells indicate the share of households deprived on a given dimension.
Source: own estimates.

Table B2: Estimates of multidimensional headcount poverty, vector of equal weights

North Center South National

k 1996/97 2014/15 1996/97 2014/15 1996/97 2014/15 1996/97 2014/15
0.1 100.0 97.4 99.8 95.3 97.4 86.9 99.2 94.1
0.2 99.6 91.7 99.3 87.7 92.0 58.4 97.4 82.3
0.3 98.8 84.4 98.0 80.5 84.9 42.5 94.7 73.1
0.4 97.3 76.3 95.4 71.0 78.4 31.0 91.5 63.6
0.6 94.7 66.2 92.7 57.5 66.6 21.7 86.3 52.2
0.7 89.4 54.2 86.7 43.4 52.3 12.8 78.3 40.0
0.8 77.2 38.2 74.2 28.7 38.7 6.8 65.6 26.9
0.9 56.6 22.8 55.4 16.5 23.8 2.2 47.2 15.3
1.0 31.4 11.3 29.5 5.9 10.5 0.6 25.0 6.5

Notes: Cells indicate the share of households classified as multidimensionally poor for a vector of equal
weights and cut-off k, as indicated.
Source: own estimates.
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Table B3: Dominance comparisons for national headcounts
South 1996/97 vs. North 2014/15

SWC
LWC 1 2 3 4 5 6 7 8 9

1 −0.03
2 −5.44∗ 0.3
3 −12.50∗ −6.7∗ 0.5
4 −19.01∗ −13.3∗ −6.0∗ 2.1
5 −30.87∗ −25.1∗ −17.9∗ −9.8∗ 0.3
6 −45.12∗ −39.4∗ −32.1∗ −24.0∗ −13.9∗ −1.9∗

7 −58.78∗ −53.0∗ −45.8∗ −37.7∗ −27.6∗ −15.6∗ 0.5
8 −73.68∗ −67.9∗ −60.7∗ −52.6∗ −42.5∗ −30.5∗ −14.4∗ 0.9
9 −86.94∗ −81.2∗ −73.9∗ −65.9∗ −55.7∗ −43.7∗ −27.7∗ −12.4∗ −0.8∗

∗ significant at 5% level, after Bonferonni correction
Notes: For each partition defined by the smallest prime implicant s and longest prime implicant l, cells
indicate the difference between the lower bound estimate for the headcount poverty in 1996/97 (Southern
region) and the upper bound in 2014/15 (Northern region); null hypothesis is that the difference is in the
positive domain.
Source: own estimates.

Table B4: Dominance comparisons for regional headcounts
South 1996/97 vs. Center 2014/15

SWC
LWC 1 2 3 4 5 6 7 8 9

1 2.1
2 −3.3∗ 4.3
3 −10.4∗ −2.8∗ 4.4
4 −16.9∗ −9.3∗ −2.1∗ 7.5
5 −28.7∗ −21.2∗ −13.9∗ −4.4∗ 9.0
6 −43.0∗ −35.4∗ −28.2∗ −18.6∗ −5.2∗ 8.9
7 −56.7∗ −49.1∗ −41.8∗ −32.3∗ −18.9∗ −4.7∗ 10.0
8 −71.6∗ −64.0∗ −56.7∗ −47.2∗ −33.8∗ −19.6∗ −4.9∗ 7.3
9 −84.8∗ −77.2∗ −70.0∗ −60.5∗ −47.0∗ −32.9∗ −18.2∗ −6.0∗ 4.6

∗ significant at 5% level, after Bonferonni correction
Notes: For each partition defined by the smallest prime implicant s and longest prime implicant l, cells
indicate the difference between the lower bound estimate for the headcount poverty in 1996/97 (Southern
region) and the upper bound in 2014/15 (Central region); null hypothesis is that the difference is in the
positive domain.
Source: own estimates.
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Table B5: Dominance comparisons for regional headcounts
North 1996/97 vs. South 2014/15

SWC
LWC 1 2 3 4 5 6 7 8 9

1 13.1
2 12.8 41.2
3 11.9 40.3 56.3
4 10.5 38.9 54.8 66.3
5 7.9 36.3 52.2 63.7 73.1
6 2.5 31.0 46.9 58.4 67.7 76.6
7 −9.7∗ 18.8 34.7 46.2 55.5 64.4 70.4
8 −30.3∗ −1.8∗ 14.1 25.6 34.9 43.8 49.8 54.4
9 −55.5∗ −27.0∗ −11.1∗ 0.4 9.7 18.6 24.6 29.2 30.8

∗ significant at 5% level, after Bonferonni correction
Notes: For each partition defined by the smallest prime implicant s and longest prime implicant l, cells
indicate the difference between the lower bound estimate for the headcount poverty in 1996/97 (Northern
region) and the upper bound in 2014/15 (South region); null hypothesis is that the difference is in the
positive domain.
Source: own estimates.

Table B6: Coverage of stochastic search procedure

SWC
LWC 1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0
2 571 187 0 0 0 0 0 0 0
3 555 216 179 0 0 0 0 0 0
4 552 263 177 147 0 0 0 0 0
5 508 346 166 137 151 0 0 0 0
6 350 490 299 161 158 163 0 0 0
7 199 485 413 250 167 177 165 0 0
8 76 312 502 461 374 250 203 188 0
9 0 0 0 0 0 0 0 0 1

Notes: For each partition defined by the smallest prime implicant s and longest prime
implicant l, cells indicate the number of search points evaluated; partitions with LWC = 9
imply that a winning coalition requires unanimity, so to ensure no redundant dimensions it
must be that SWC= 9.
Source: own estimates.
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Table B7: Examples of meaningful restrictions on the choice of cut-off (k)

Restriction Min (k ≥) Max (k ≤)

1. None w1 1
2. Not unanimous w1 1− wd
3. No dictator w1 + wD 1

4. SWC = s w1 +
∑s−1

i=1 wD−i−1 1

5. LWC = l w1
∑l

i=1wi

Notes: subscripts on weights indicates their rank order, from
smallest to largest.
Source: own estimates.
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