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Abstract

The taxation of property based on market values requires frequent

appraisals for a large number of properties. In light of the recent prop-

erty tax reform discussion in Germany, it has been argued that a value-

based tax therefore cannot be implemented at a reasonable cost. In

several other countries, however, mass appraisal systems based on sta-

tistical methods are used for property tax assessments. In this paper, we

show how this could in principle be done in Germany, using transactions

data that local surveyor commissions are obliged to collect by law. We

discuss the regression techniques for estimating land values from such

data and illustrate them by applying them to data from Berlin, Ger-

many. We find that the methods are capable of producing land value

estimates that match up well with expert based assessments.

Keywords: land value, mass appraisal, nonparametric regression, semi-
parametric regression

JEL Classification: C14, C21, H10, H20, R32, R51, R52
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1 Introduction

Land values are important for real estate market participants from the private

and the public sector. Examples include development companies in the private

sector which need land values to decide whether projects are economically

feasible. Public sector land owners need to know the market value of their

land to assess the cost of alternative choices, such as market purchase versus

dedicated use for housing programmes. The construction of a ring road or

an airport extension may require that land is acquired through compulsory

purchase and land values are needed to compensate owners for their property

loss.

In all of these cases, land values are needed only for a fairly small number of

properties involved. This is different for another public sector application: the

taxation of property based on market values. Here, land values are required for

all undeveloped sites, but will also be required for developed properties if it is

taxed based on the cost value (sum of land and building value). The land value

is also needed if the land and the building value of a developed property are

taxed at separate graduated rates. A pure land tax, which leaves the building

untaxed, is an extreme case of graduated rates. Graduated rates have theoret-

ically appealing characteristics (Brueckner 1986, Oates and Schwab 2009), but

have been implemented in only a few areas throughout the world (Bourassa

2009, Franzsen 2009).1

In Germany, the reform of property taxation has become an urgent matter

in 2018 after the German Federal Constitutional Court (Bundesverfassungs-

1The windfall gains of home owners in successful cities, such as London, have led recently

to renewed attention for land taxes, see: The Economist August 11th 2018, Leaders: Stuck

in the past, 9; Briefing land-value tax: On firmer ground, 18-20.

3



gericht) ruled in April that the values that determine the property tax base

are unconstitutional and that a solution of this problem must be found by the

end of 2019. This solution, if found, must be implemented from 2025 onwards.

The current market value assessments use the income and the cost approach,

but rely on outdated information (from 1964 in the west part and from 1935 in

the east part of Germany). While the information for assessment should have

been updated every six years, this did not happen (Fuest et al. 2018). Obvi-

ously, these assessments do not reflect current relative market value gradations

(Beirat BMF 2010, p.1).

The judgement of the German Federal Constitutional Court gives the leg-

islator latitude regarding the new rules to assess the tax base, as long as it

reflects the relation of properties to each other. Several proposals on the cal-

culation of the tax base have been put forward, which include the income,

the sales comparison, the cost, a pure land value, and a non-value approach

that condenses the physical dimensions of a property into a numerical indi-

cator (Fuest et al. 2018, pp.12).2 A recurring topic in the discussion of the

different proposals is the question whether a market-value tax base is feasi-

ble, given a supposed trade-off between assessment accuracy and cost (Beirat

BMF 2010, p.6). Several authors see the assessment cost as argument against

a value-based property tax. Fuest et al. (2018, pp.8), for instance, assume that

a ‘sufficiently accurate’ assessment would cost 500EUR, which has to be spent

every six years per property. Homburg (2018, p.175) is less restrained and

states that value-based assessments would cost billions and give results that

are only ‘pseudo-accurate’. Hey (2017, p.35) is slightly more optimistic regard-

ing the implementation of a value-based approach, although the required data

2 McCluskey and Franzsen (2013) provide an overview of non-value approaches that are

in use in other countries.
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are not collected and analysed in every municipality to the same standards

and with the same transparency.

Computer assisted mass appraisals have been used successfully for property

tax assessment in many countries. In this paper, we draw on our own research

to show how this could also be done in Germany. We discuss the statistical

methods and the required data and illustrate how to combine them for land

value estimation using transaction data from the city of Berlin. We are fully

aware that Berlin has a very effective system of property transaction data col-

lection and storage and that similar infrastructure is not in place in all parts of

Germany. However, our research and the work of other empirical researchers

shows that if such infrastructure were in place, appraisals for taxation based

on statistical methods is feasible and accurate; at least when compared to land

values estimates of professional appraisers. We thus arrive at a more positive

conclusion: statistical mass appraisals of land values, and property-taxation

schemes building upon them, could in principle be conducted in Germany at

relatively low cost. We thus disagree with the statements that value based

assessments are necessarily expensive and lack accuracy. We agree, however,

that it seems unlikely that the infrastructure required to implement mass ap-

praisal systems can be rolled out within the period of time set by the German

Federal Constitutional Court. But mass appraisal systems cannot be blamed

for this.

The rest of the paper is organised as follows. Section 2 discusses how

property assessment for purposes is conducted in other countries, where we

focus on those countries that use computer assisted mass appraisals. Section 3

presents methods for statistical mass appraisal for two data scenarios: (i)

data from transactions of undeveloped lots and (ii) data from transactions of

developed lots (i.e. single-family houses and condominiums). In each case,
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we illustrate the methods by applying them to transactions data in Berlin.

While a discussion of statistical methods is necessarily somewhat technical, we

put emphasis on what the land value estimators are actually doing. Section 4

concludes.

2 International context

In the United States, where property taxation based on current values is com-

mon, the valuation profession distinguishes between fee appraisers, who make

individualised assessments of the market value of specific properties for busi-

ness dealings, and assessors, who make mass appraisals for hundreds of thou-

sands of properties. Since about 1968, and even more so today, do assessors

use statistical methods, such as regression analysis, for their mass appraisals

(Almy and Ferguson 2010, Back 1970). Today at least 15 countries have im-

plemented statistical mass appraisal systems for the use in property taxation

(Almy 2014, Almy and Ferguson 2010, Bidanset 2014). Among these are Aus-

tralia, Canada, Egypt, Mauritius, New Zealand, South Africa, and the United

States. Examples from Europe include Denmark, Finland, Latvia, Lithuania,

Russia, Sweden, Northern Ireland in the United Kingdom, and the Nether-

lands.

Based on the experience in Canada, the Netherlands, and the United States

Almy (2014) estimates that the cost per property of a high-quality statistical

mass appraisal system is about 20EUR. This is in stark contrast to the 500EUR

conjectured by Fuest et al, see Section 1 above, and would allow for a much

more cost effective implementation of a value based property tax. Specifically,

with an average tax revenue of 2,000EUR per property, the valuation cost

would only be 1 percent.
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The international experience shows also that statistical mass appraisals for

tax purposes can provide sufficiently precise estimates of property values. Hef-

feran and Boyd (2010, p. 155), for example, examine the Australian experience

and conclude that “[...] increasingly sophisticated computer assisted valuation

techniques have, in fact, worked to assist with uniformity and consistency [of

appraisals] in recent years.” As Hefferan and Boyd (2010, p. 155) continue,

“objection rates across Australia are well below the internationally accepted 2

per cent with many jurisdictions encountering less than 1 per cent objections.”

In the context of our paper, Australia is a particularly interesting example as

it is one of a few countries in the world that has a land value tax and employs

statistical mass appraisals.3

In Germany, it has been suggested that expert-based land values (Boden-

richtwerte, BRW) can be adopted to calculate the land value component of a

reformed property tax (Beirat BMF 2010, p.2). Indeed, BRW must already

be published at least every two years by independent surveyor commissions

(Gutachterausschuss für Grundstückswerte, GAA). Despite being based on

detailed guidelines, however, it is fair to say that BRW rely heavily on sur-

veyors’ knowledge and expertise. Given Germany’s federal structure, it has

thus been argued that the estimation of BRW would need to be harmonized

in order to assure a uniform quality standard for tax purposes (Löhr 2011).

We discuss next how statistical methods can assist the mass appraisal of

land values in a transparent manner.4

3Lithuania is an European example for such a country (Baranska 2013).
4McCluskey et al. (2013) provide an overview of how statistical mass appraisal systems

can be implemented for the use in property taxation.
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3 Statistical methods and results

We begin our discussion of the methodology with two figures illustrating what

we want to learn from the data and what the data is assumed to consist of (at

the bare minimum).

Figure 1 shows a land value map for Berlin based on the BRW values

published by Berlin’s GAA. The land values are for the year 2009, as they

are based on information up to and including that year. Land values within

the first percentile of the value distribution are shown in light grey (bright

yellow). The intensity increases to dark grey (bright red) for land values that

fall within the tenth percentile of the distribution. From this distant view, the

dominating feature of the map is the declining color intensity in the outward

direction away from the city centre.5

For the present purpose, the central aspect of the map is that it delivers

an estimate of the expected price of land at any desired location in Berlin. We

will denote such an estimate as θ̂BRW (l1, l2) , where l1 and l2 are the latitude

and longitude of the location, respectively.

The second figure, Figure 2, shows the locations of 24,519 arms-length

transactions of undeveloped land that occurred in Berlin during 1996-2009.

The transaction data comes also from Berlin’s GAA. Most transactions of

undeveloped land took place in the residential areas at the outskirts of Berlin.

Less transactions of undeveloped land took place in the densely developed city

centre. The expert-based values shown in Figure 1 are based on this data,

but the GAA surveyors will have considered also other real estate market

information. In the following section, we will consider how to estimate a land

5At the aggregate level, the land value map thus confirms the prediction of the mono-

centric city model that the land rent gradient falls with distance from the city centre.
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Figure 1: Expert-based land value (BRW) map for Berlin. Shows map of

expert-based land values (BRW, in logs) for Berlin. Reference date is 1 January
2010. Source: Geoportal Berlin/Bodenrichtwerte 01.01.2010.
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Figure 2: Location of transacted sites within Berlin. Shows the location of

24,519 undeveloped sites that have been transacted between 1996 to 2009. Solid
lines represent the borders of Berlin’s 12 administrative districts (as of the year
2000).

.
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value surface like that in Figure 1 from data such as that shown in Figure 2

alone. That is, we will consider the problem of estimating the expected land

value at a given location from geocoded data of transactions of undeveloped

land. Sales of undeveloped land directly contain information about the value of

land. However, as seen in Figure 2, undeveloped land is typically not available

and sold in the city centre. In this most valuable area of a city, often only sales

of developed properties are found. Observed market prices of such properties

contain information about the value of the underlying land and the structure

erected on it. The statistical analysis aiming to extract land values from

transactions of developed properties must thus find a way to separate the

land and building value components. How this can be done is the topic of

Subsection 3.3 below.

3.1 Statistical land value estimation with nonparamet-

ric kernel regression

Required data input. In the following section, we assume that the trans-

actions data has information on (a) the price and (b) the location of a sale

only. In short, the data is assumed to consist of n observations of the form

{pi, l1i, l2i} , i = 1, . . . , n

where pi = ln(Pi) is the log land price per square meter of the lot and l1i and l2i

are its latitude and longitude. Why researchers typically work with log prices,

rather than the prices themselves is explained below.
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The regression model. From a statistical point of view, a land value map

such as that in Figure 1 is viewed as an estimate of a regression model

(1) pi = θ(l1i, l2i) + εi ,

where θ(l1i, l2i) is the expected (log) land value at location l1i, l2i. From an

applied perspective, θ(l1i, l2i) is the aim of land value appraisal at a location.

The error term εi captures deviations of the log price of a specific lot (lot i)

from its expected value. This transaction noise is assumed to average out at

any given location and to have the same amount of variation at all locations.

The latter assumption is not needed for the regression based estimation of land

values, but is typically invoked when error bounds around the land value esti-

mate are also desired. It tends to be approximately satisfied for log prices but

violated for the prices themselves, thus providing a reason why the researchers

usually uses log prices as the dependent variable.

The estimation method. As the locations l1, l2 are varied, a surface of

expected land values at various locations arises which graphically can be rep-

resented by a coloured map such as Figure 1. It is the “regression surface”

in statistical terms. A standard method to estimate such a surface at any de-

sired location from data such as that depicted in Figure 2 is kernel regression.

It merely assumes that the regression surface has no jumps. In terms of the

present context: that land values change smoothly in space and not abruptly.

Apart from the smoothness requirement, the form of the estimated land value

map is not restricted a priori. In particular, no specific formula is imposed on

the data in this “nonparametric” procedure. It can thus freely adapt to the

information in the data of how log prices vary from location to location. It

does so by forming local averages of log prices.
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The kernel regression estimator introduced by Nadaraya (1964) and Watson

(1964) is formally defined as

(2) θ̂NKR(l1, l2) =
n∑
i=1

K
(
l1−li1
h1

, l2−li2
h2

)
∑n

j=1K
(
l1−li1
h1

, l2−li2
h2

) · pi
or, more briefly

(3) θ̂NKR(l1, l2) =
n∑
i=1

Wi,h1,h2(l1, l2) · pi

The second version, Eq.3, highlights that the kernel regression estimator indeed

can be seen as a weighted (local) average of the the log price pi with weights

W•,h1,h2(•). The first version, Eq. 2, shows more explicitly how these weights

are formed from kernel functions K(•), that give the method its name.

How transactions are weighted. Various specific formulas have been pro-

posed for the kernel function K(•, •). A popular choice is to specify K(•, •) as

the product of two separate kernel functions that work on one distance only,

(4) K

(
l1 − li1
h1

,
l2 − li2
h2

)
= K1

(
l1 − li1
h1

)
K2

(
l2 − li2
h2

)
and to use for both for both component kernel functions the formula proposed

by Epanechnikov (1969):

(5) Kj

(
lj − lij
hj

)
= I

(∣∣∣∣ lj − lijhj

∣∣∣∣ ≤ 1

)
︸ ︷︷ ︸

part 1

3

4

{
1−

(
lj − lij
hj

)2
}

︸ ︷︷ ︸
part 2

This weighting function has two parts. The first part is an indicator function

that sets the weight of an observation outside the target location’s vicinity (in

direction lj) to 0. The second part assigns weights to the observations inside

the vicinity according to the graph shown in Figure 3.
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Figure 3: Epanechnikov kernel function. X-axis represents relative distance
from the target location. Y-axis represents the kernel weight from Eq.5. Bandwidth

is set to hj = 1.

Clearly, maximum weight is given if the relative distance is zero and weights

decline in the depicted pattern with increasing distance to the target location.

In Figure 4 we illustrate the two-dimensional weighting with latitude and

longitude axes in the map format.

Only data points within the rectangle that is defined by the bandwidths

and is surrounding the target location, will receive a nonzero weight in the local

averaging procedure. Here, coordinates with equal weight are represented by

contour lines. Contour lines closer to the target location (red dot) are narrower

and represent a higher weight.
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Figure 4: Illustration of nonparametric kernel regression. Shows grid points
(dots) and observation (crosses) for a neighborhood in Treptow-Köpenick. The red

dot represents the target location. Kernel weights are represented by (red) contour
lines. Each observed transaction on a contour line receives the same weight when
the estimating the land value of the target location.

Infobox 1: Summary of kernel regression procedure

• Kernel regression works at a specific desired location. It is thus a

local procedure, just as land value assessment always works locally.

• The desired location may or may not be in the data.

• At the desired location, kernel regression simply forms a weighted

sample average over the log prices of lots sold in the vicinity.

• The vicinity is specified by an ellipsoid around the location. The

length and width of the ellipsoid is controlled by the ‘bandwidths’,

that must be specified by the user.
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• The average considers each observation but those observations out-

side the ellipsoid will receive zero weight. How much weight the (log)

price of an observation receives is determined by the kernel function.

• For determining each weight, the kernel function considers the dis-

tances of an observation from the location at which the estimate

is desired in both the longitude and latitude directions. These dis-

tances are computed relative to the bandwidth. For each observation

inside the vicinity rectangle, both relative distances are smaller or

equal to 1 in absolute value.

• The closer an observation is to the target location, the more weight

it will receive. Maximum weight is thus given to a lot that is exactly

located where an estimate of the expected log price is required.

Sample data. We illustrate the procedure with the transaction data from

Figure 2. In Germany, GAAs are entitled by law to request and collect in-

formation on all real estate transactions. Their data bases thus provide a

rich source for the regression based land value estimation described here. Our

data from Berlin provides for each observation the required input: the (log)

transaction price per square meter (sqm) and geocoordinates. A detailed data

description can be found in Kolbe et al. (2015).

Regression based land value estimates. We applied the kernel regression

estimator of Eq. 3 to estimate land value on a grid of other locations. This

allows us to produce a land value map for Berlin.6 To get the land value

6In a similar fashion, McMillen (1996) estimates a land value surface for Chicago via

kernel regressions.
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estimates on the “natural” scale, we re-transform the estimated log land values

to EUR using the formula from Kennedy (1983).

The estimated land value map is shown in Figure 5. For coloring, we

employ the same scheme as the BRW map of Figure 1 above.
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Figure 5: Kernel regressionbased land value map for Berlin. Shows contour
map of estimated land values using kernel regression. Bandwidth were set to h1 =

h2 = 650.

Where possible, a comparison of both land value maps shows that colors

(and thus estimated land values) largely agree. The coefficient of correlation
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between the two land values is 0.704. The kernel regression estimates are solely

based on the transactions data data of Figure 2. They could thus only be com-

puted away from the city centre where sales of undeveloped land occurred. The

BRW map of Figure 1, on the other hand, covers the entire Berlin area. The

GAA surveyors must have considered other information than just transactions

on undeveloped land in order to arrive at their comprehensive set of land value

estimates. In particular, they must have incorporated information about how

market participants valued land in the city centre. In this area, virtually all

land is developed. Below, we will thus consider how to do regression based

estimation of land values from transactions data of developed properties.

Bandwidth selection As demonstrated, kernel regression produces a local

estimate of the expected land value by averaging over the log prices of observa-

tions in the vicinity of the target location. A key question then is how large the

size of this vicinity should be. It is determined by the bandwidths h1 = 2, 000

and h2 = 1, 000 metres, but provided no justification for this particular choice.

A first impulse may suggest to make h1 and h2 as small as possible, i.e. to

set them to 0. This would ensure that only those transactions are included in

the average that occurred exactly at the target location for which a land value

estimate is desired. This would prevent any bias in the land value estimate

that may arise if near-by transactions sell for a (slightly) higher or lower price.

However, there may be very few or even no observations at the target location

making estimation very unreliable or altogether infeasible. From this perspec-

tive, larger bandwidths are desirable as they ensure that more observations

enter the calculation. An optimal choice of the bandwidths strikes a balance

between these two concerns.

It has been demonstrated that such bandwidth values can be found in a
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data-driven, objective way by the method of cross-validation. As the name

suggests, cross-validation uses the data to “validate” the estimates and com-

pute an overall performance measure for a given set of bandwidths. It then

repeats this process for many different set of bandwidth and finally selects

those two bandwidth values that deliver the best “validated” performance.

This procedure ensures that the land value estimate includes enough observa-

tions to be reasonably reliable but still gets the local level of the average land

value approximately right.

Statistical properties. All valuation methods are only estimates of the

true land value at a certain location. It is a major advantage of the statistical

approach described here that it allows to quantify the uncertainty that is an

unavoidable aspect of all estimation methods. Since the kernel method is

essentially a weighted local average of log prices it is not difficult to estimate

its precision. It is given by the ratio of the variance (a measure of the “noise” in

log prices) and the effective size of the sample that entered the average. Details

are given in Härdle (1990, Ch. 4). This can be used to construct confidence

intervals around the land value estimate that cover the true land value with a

prespecified confidence level.

Related literature and alternative methods. In addition to kernel re-

gression there are other nonparametric estimation methods that are also based

on local averaging.7 Colwell and Munneke (2003), for instance, estimate loca-

tion values for Chicago from transactions of undeveloped land using smoothing

splines. Just as kernel regressions, smoothing splines assume also that land

values may not change abruptly from location to location. This assumption,

7Härdle et al. (2004, Ch. 4) provide an overview of alternative nonparametric methods.

19



however, is at odds with the blockwise outlay of cities where adjacent neigh-

borhoods can be sharply demarcated by roads and may distinctly differ in their

character. Indeed, the detail of the BRW map published by Berlin’s surveyor

commission shown in Figure 6 reveals that the land value surface produced by

these experts is not smooth.
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Figure 6: Detail of expert-based land value (BRW) map. Shows central
business district including the boulevard Unter den Linden, the Museumsinsel, and

the Alexanderplatz. Reference date for map is 1 January 2010. Source: Geoportal
Berlin/Bodenrichtwerte 01.01.2010.

3.2 Identifying land value zones with nonparametric adap-

tive regression

In Kolbe et al. (2015) we use Adaptive Weights Smoothing (AWS) to estimate

a piecewise constant land value map akin to the map published by the Berlin’s

GAA in their Bodenrichtwertatlas (BRW Atlas). Adaptive Weights Smoothing

directly builds on the kernel regression estimator with a slightly simplified
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kernel function. Specifically, the kernel of Eq. 4 becomes

(6) K

(
l1i − l1j
h1

,
l2i − l2j
h2

)
= K

(
|l1i − l1j|+ |l2i − l2j|

h

)
= K

(
distance1ij

)
.

That is, distance is now simply measured as the sum of the absolute latitude

and longitude distances, divided by a common bandwidth. This bandwidth

is set to a small number to obtain the initial land value estimate, denoted

as θ̂0(l1i, l2i), or θ̂0i in short. The 0 superscript denotes the initial start-up

iteration. That is, only few spatially close observations are used to form the

resulting initial land value estimate θ̂0i at any location (l1i, l2i).

In the next step (and all subsequent steps), the land value estimate is still

a local weighted average.

(7) θ̂1(l1i, l2i) =

∑n
j=1w

1
ijpj∑n

j=1w
1
ij

The key difference is that a second kernel function enters the weighting of

observations. The weight of an observation is now formed by a product of the

familiar “distance kernel” of Eq.6 and a “level kernel”: w1
ij = K

(
distance1ij

)
×

K
(
level1ij

)
, where

(8) level1ij =

(
θ̂0i − θ̂0j√

2σ̂2
ε

)2

· n
0
i

λ

Here, the key argument is θ̂0i − θ̂0j , which represents the difference between the

land value estimates at location l1j, l2j and l1i, l2i in iteration 0. If the two

estimates are quite close, both locations appear to have rather similar land

values. Consequently, the observed (log) land price from location l1j, l2j re-

ceives substantial weight to form a land value estimate at location l1i, l2i in the

subsequent iteration. It is this feature that makes AWS ‘structurally adaptive’

and allows to find data-driven areas areas of homogenous land value alike the
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Bodenrichtwertzonen defined by the GAA. This is achieved by successively in-

creasing the latitude/longitude bandwidth in successive iterations and using

the smoothing parameter λ in Eq. 8 as a threshold for judging the closeness of

land value estimates from different locations.

Estimated land values. Because AWS is a local, iterative procedure it is

computationally intensive. We thus computed land value estimates not at

individual coordinates but on a grid of “bins”, that is small squares of size

152x152 metres. The estimated land values for each bin are shown inFigure 7,

where we use the same coloring as in the BRW map of Figure 1.

Comparing both maps shows that, just as the kernel estimates, the AWS

bins in Figure 7 only cover a part of the continuously shaded BRW areas

of Figure 1. Obviously, the expert-based BRW map must have used other

information on land value where no sales of undeveloped were available. Where

comparisons can be made, AWS and BRW land value estimates agree fairly

well in terms of their spatial color patterns.

Smoothing parameter selection and validation with BRW Like any

local, nonparametric statistical method the performance of AWS depends on a

smoothing parameter that must be specified by the user. In the case of AWS,

the parameter λ in Eq. 8 determines how responsive the estimator is to local

variation in the estimated land value level in the previous iteration. How to

optimally choose λ is the topic of ongoing research. The estimates in Figure 7

were computed using the value λ∗ = 19.9 suggested by Polzehl and Spokoiny

(2006, 2008).

In addition, we ran AWS for the eight different values reported in the top

row of Table 1. We found the performance, as measured by the coefficient of
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Figure 7: AWS-based land value map for Berlin. Shows contour map of

estimated AWS land values. Level bandwidth is set to λ∗ = 19.9.
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determination R2, of the procedure to be rather insensitive to which value of

λ is employed.

Table 1: Explanatory power. Reports coefficient of determination R2 for bi-
variate regressions of BRWi and land prices yi on AWS land values θ̂i. Regressions

include a constant. Number of observations used for regressions in first row is 7,222
and 7,448 for regressions in second row.

λ∗ λ

19.9 3.8415 4.4756 10.5180 16.8410 23.2840 29.7938 36.346

BRW 0.7747 0.7274 0.7390 0.7640 0.7720 0.7828 0.7733 0.7690

Land price 0.6992 0.8661 0.8526 0.7734 0.7195 0.6764 0.6525 0.6418

The R2 values were obtaind by regressing the AWS land values obtained

for a given value of λ on either observed land prices or BRW values. Appar-

ently, the agreement between AWS land value estimates and, both, land prices

and BRW land values is fairly good for all values of λ. In a more detailed

analysis reported in Kolbe et al. (2015), we found that AWS also determines

similar areas of homogenous land values as the BRW Atlas. In summary, we

found AWS to be a transparent statistical procedure capable of estimating

land values close to the expert benchmark, both, in their level as well as in

their geographical structure.

Related literature. AWS has also been applied by Helbing et al. (2017) to

estimate agricultural land values. An alternative to AWS for nonparametric

regression, when the regression surface may have jumps or edges, is the wavelet

method described, for instance, in Vidakovic (1999).
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3.3 Estimating land values from property transactions

using Semiparametric Regression of

Both kernel regression and Adaptive Weights Smoothing estimate land values

by averaging over prices of undeveloped lots and thus work with the most

direct and “clean” market information on the value of land at a given location.

However, such information tends to be unavailable in the centre of a city where

virtually all lots are developed. Data on transactions data of developed lots,

thought, contains information about the bundle of land and building. Hence,

for land value estimation, observed prices of houses or condominiums need to

be split into their land and building component. This can also be achieved by

a regression analysis.

Required data input. In this section, we assume that the transactions data

has information on (a) the price, (b) the location and (c) building character-

istics of a property. In short, the data is assumed to consist of n observations

of the form

{pi, l1i, l2i, X1i, . . . , Xpi} , i = 1, . . . , n

where pi = ln(Pi) is the log land price of the property, l1i and l2i are its latitude

and longitude and X1i, . . . , Xpi are building characteristics such as floor space

or age.

Semiparametric regression model. We start with the assumption that

the log price of a property can be split into the value of the building and the

value of land to obtain the partial-linear regression model

(9) pi = β0 + β1X1i + . . .+ βpXpi︸ ︷︷ ︸
building

+ θ(l1i, l2i)︸ ︷︷ ︸
land

+ εi .
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Here, the coefficients β1, . . . , βp quantify the influence on the associated build-

ing characteristics on the log price of the property and all variables are mea-

sured per square meter lot size.

Compared to our initial regression model in Eq. 1, the model of Eq. 9 has

added the building part that linearly combines variables and their coefficients

(“parameters”). It thus additively combines a parametric building component

with a nonparametric landcomponent, making the model “semiparametric” in

statistical parlance.

Two-step estimation. Our goal remains to estimate the nonparametric

land value surface θ(l1i, l2i). To do so, we estimate in a first step the coefficients

of the building part. Denote these coefficient estimates as β̂0, β̂1, . . . , β̂p. We

use them for removing the building value from the property price

(10) ûi = pi − (β̂0 + β̂1X1i + . . .+ β̂pXpi) .

The resulting deviations of property price from building value, the “residuals”

ûi, are used as the dependent variable in the second step. In this final step,

the residuals ûi are regressed on the location coordinates l1i and l2i using

a nonparametric regression procedure such as kernel regression or AWS. We

illustrate this two-step approach again with transaction data from Berlin.

Sample data. We illustrate the procedure with Berlin data combining 27,549

single-family house transactions with 166,839 sales of condominiums that oc-

curred between 1996 and 2013. Condominium transactions provide informa-

tion about land values in the centre of Berlin whereas single-family house

transactions predominantly happen in the outskirts. Hence, it is necessary to
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include sales information for both types of properties to obtain a comprehen-

sive set of land value estimates. The flip side is that the model in Eq. 9 needs

to have two sets of regression coefficients, one for each type of dwelling, to

accommodate their different specifications.

Semiparametric land value estimates for Berlin. To estimate the co-

efficients of the building characteristics in the first step, we employed the es-

timator proposed by Yatchew (1997). The basic idea of the estimator is that

the land value θ(l1, l2) can be neglected when considering differences of prices

of near-by observations. Hence, the data are ordered to be geographically

close to each other and then differences in prices are regressed on differences

in building characteristics by ordinary least squares to estimate the building

component coefficients. In the second step, we employed AWS to estimate the

land value surface shown in Figure 8.

In Kolbe et al. (2012), we calculated the correlation between the BRW

values and our semiparametric land value estimates based on house transac-

tions only. For this subset of the data, we found a strong positive correlation

of 0.845, indicating that the two-step semiparametric regression approach de-

scribed in this section is capable of extracting valid land values from data on

property transactions.

Related literature. Only a few previous studies have modeled location val-

ues from house price information using semiparametric regressions. Cheshire

and Sheppard (1995) and Bryan and Sarte (2009) are examples; none of these

studies compares the estimated land values with benchmarks.8 Anglin and

8Lack of such a benchmark is the reason why land values have to be estimated in the

first place.
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Figure 8: Land value map based on semiparametric regression. Shows
contour map of land values estimated from the residuals in Eq. 10 via AWS. Level

bandwidth is set to λ∗ = 19.9.
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Gencay (1996), Clapp (2003) and Case et al. (2004), among others, fitted

semiparametric regression models to house prices in order to evaluate their

suitability for mass appraisals. The results of these studies show that the

nonparametric modeling of the location component improves the accuracy of

house price appraisals relative to more standard methods, such as parametric

linear regression.

4 Conclusion

In several other countries, computer assisted mass appraisal systems are used

for property tax assessments, but this topic has not featured prominently in

the reform discussion in Germany.9 In this paper, we draw on our own research

to show how this could also be done in Germany using the transactions data

that local surveyor commissions are obliged to collect by law. We have consid-

ered two types of transactions data: geocoded sales of undeveloped land and

geocoded sales of developed properties. The former present the purest source

of land valuation by market participants. The latter need a statistical “sepa-

ration” of the sales price into a building component and a land component. In

both cases, we have demonstrated how to use modern nonparametric regression

techniques to estimate land values at a given location where sales occurred in

the vicinity. We have found in our application of these methods to data from

Berlin that the resulting land value estimates typically agree well with (more

expensive) expert based land values. Unlike those expert based estimates, the

statistical methods we used are transparent and can be standardised.

We are aware that there are several areas that need further investigation.

First, there might be municipalities that are characterised by fairly low num-

9Exceptions are Senatorin für Finanzen (2010) and Houben (2017).
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bers of transactions. Additional information such as list prices might be a

useful data extension. The volume of list prices is always much higher than

the number of actual transactions, simply, because not every listing leads to

a transaction. This requires an examination whether list prices can comple-

ment transaction prices. Second, there is the question about the cost and the

efficient organisation of the administrative process. There is evidence that

property assessment for tax purposes has the potential to be conducted with

economies of scale (Sjoquist and Walker 1999) and that assessment offices can

have an optimal size (Krupa 2017).10 It would also be very interesting to

assess the relationship between cost and accuracy in a rigourous manner as

suggested by Mehta and Giertz (1996). Finally, our paper focussed on market

values of undeveloped land, but statistical methods can be used equivalently

for the assessment of developed land, see for instance Schulz et al. (2014).
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